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Abstract

Background: Motivated by an inconsistency between reports of high diagnosis-classification 

accuracies and known heterogeneity in Attention Deficit Hyperactivity Disorder (ADHD), this 

study assessed classification accuracy in studies of ADHD as a function of methodological factors 

that can bias results. We hypothesized that high classification results in ADHD diagnosis are 

inflated by methodological factors.

Methods: We reviewed 69 studies (of 95 studies identified) that used neuroimaging features to 

predict ADHD diagnosis. Based on reported methods, we assessed the prevalence of circular 

analysis, which inflates classification accuracy, and evaluated the relationship between sample size 

and accuracy to test if small-sample models tend to report higher classification accuracy, also an 

indicator of bias.

Results: Circular analysis was detected in 15.9% of ADHD classification studies, lack of 

independent test set was noted in 13% and insufficient methodological detail to establish its 

presence in another 11.6%. Accuracy of classification ranged from 60% to 80% in the 59.4% of 

reviewed studies that met criteria for independence of feature selection, model construction and 

test datasets. Moreover, there was a negative relationship between accuracy and sample size, 

implying additional bias contributing to reported accuracies at lower sample sizes.
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Conclusions: High classification accuracies in neuroimaging studies of ADHD appear to be 

inflated by circular analysis and small sample size. Accuracies on independent datasets were 

consistent with known heterogeneity of the disorder. Steps to resolve these issues, and a shift 

towards accounting for sample heterogeneity and prediction of future outcomes, will be crucial in 

future classification studies in ADHD.
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1. INTRODUCTION

A significant challenge in assessment and treatment of neuropsychiatric disorders is that 

diagnosis is typically based upon subjective behavioral criteria, a process that is time 

consuming and requires considerable expertise and training. The need for objective 

diagnostic indicators has fueled efforts to define neuropsychiatric biomarkers, particularly 

based on structural and functional features of the brain, and with increasing deployment of 

machine learning methods. Results of these efforts have been variable, recent reviews 

indicate that classification accuracy is distributed broadly between chance and near 100% 

(1–3). Such variability can lead to puzzling outcomes, as is evident in the case of attention-

deficit/hyperactivity disorder (ADHD). On the one hand, reports of accuracies in excess of 

90% (4–17) have culminated in the electroencephalography-based theta-beta ratio metric 

(18) gaining FDA support as an adjunct to clinical assessment of ADHD (19, 20). On the 

other hand, the variability echoes increasing awareness of heterogeneity in ADHD in 

symptom presentation (21), neurocognitive impairment, (22, 23) persistence (24–26), 

treatment response (27, 28) and putative mechanistic pathways (29–31), and supports the 

existence of independent sub-groups within ADHD (32–37). The incompatibility between 

such heterogeneity and a diagnostic tool validated by existing ADHD diagnosis, has 

contributed to discussion over the utility of neuroimaging in diagnosis of ADHD (38–40). It 

also raises a conceptual question, if current diagnosis of ADHD is too clinically variable for 

classification, how are high classification accuracies achieved? The answer to this question 

is important if it lies in methodological limitations, that may continue to be a concern in 

future studies. Thus, we examine this question using ADHD as an exemplar given the large 

existing literature base on neuroimaging classifiers of diagnosis.

Potential pitfalls of applying classification approaches to neuropsychiatric data have been 

discussed extensively (1, 3, 41, 42). Two that are particularly revelant include circular 

analysis and sample size. First, to evaluate its role in clinical medicine, a machine learning 

classifier needs to have good generalizability: defined by good performance on patients not 

included in the study (i.e., new patients). In the experimental setting, this is assessed by 

cross-validation, whereby a subset of a dataset is not included in construction of the 

classification model (“training”) and subsequently used to assess the performance of the 

model (“testing”). The testing accuracy, however, can be inflated due to a common error of 

including all data when selecting features to be used for classification (i.e., prior to training). 

For instance, a t-test may be performed on all subjects’ data, prior to cross-validation, to 

identify brain regions that are the most discriminative of two groups. This step is typically 
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performed to reduce the number of features (e.g., brain regions) that are included in the 

model. However, including all subjects’ data in feature selection (rather than performing this 

step on the training subset only) creates circularity, or “peeking,” in the training model that 

can inflate reported test accuracy (43). Simulations suggest that accuracy inflation can reach 

40% depending on model parameters (3, 44, 45) (also see Supplemental Materials for 

simulation results). In 2008, a reported 42% of high-impact journal fMRI studies were 

subject to circular analysis, with another 14% lacking methodological detail to reach 

judgment (43, 46), suggesting that such practice is not uncommon. A second concern is 

small sample size, as it can drastically increase both accuracy and variability of cross-

validation accuracy (41, 42, 47). Simulations show that accuracy estimates, in models 

designed for neuropsychiatric diagnostics, can become unstable when total sample size is 

less than 100–150 (41, 47–50) and the problem is most severe when combined with circular 

analysis (45).

The objective of this study was to review neuroimaging-based studies on ADHD 

classification to assess the contribution of circular analysis and sample size to classification 

accuracy, thereby testing for accuracy-inflating effects of these two factors and whether 

these effects have changed over time. The results reveal a more accurate portrayal of 

classification accuracies in ADHD, revealing methodological weaknesses that should be 

addressed in future studies, and that generalize to studies of any neuropsychiatric disorder.

2. MATERIALS AND METHODS.

We performed a literature search using multiple databases (PubMed, Web of Science) and 

search engines (Google Scholar), with key words including “ADHD”, “ADD”, 

“classification”, “machine learning”, “classifier”, “prediction”, “accuracy”, retaining 

publications that explicitly described a classification framework to distinguish between 

ADHD and comparison groups (n = 95 studies) based on neuroimaging features. Studies 

were excluded if: (a) no control group was examined (ADHD only or ADHD versus other 

disorder groups) (n = 5); (b) sample size per class or age group was not specified (n = 5); (c) 

total sample was <6, limiting within-group variance (n = 2); (d) accuracy was shown 

graphically but not reported in the text (n = 3); (e) the model did not use neuroimaging 

features (n = 9); and, (f) classification was not performed based on original ADHD 

diagnostic labels (n = 1). One study was excluded due to a retraction. This exclusion 

protocol yielded a final total of 69 studies (Table 1, see Supplemental Material for list of 

excluded studies).

2.1. Study Characteristics

For each study we identified sample size, population (adult, pediatric), feature type and 

classifier model. We used a cut-off of 18 years for classifying studies as adult versus child 

populations. For simplicity, studies with participants aged up to and including 18 years old 

were labeled as “children” and studies with participants over and including 18 years old 

were labeled as “adult” studies. An exception was the 2017 study of Duffy et al (51) who 

used an age range of 2–22, which was labeled as “children” in Table 1 for simplicity. If 
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studies performed separate analyses for adults and for children, we report the study twice, 

treating each group as a separate population.

2.2. Frequency of Circular Analysis

To assess the frequency of circular analysis, we evaluated the methods section of each study. 

We identified procedures for feature selection and those for classification, with the goal 

being to identify if the same data set was used for feature selection and in the testing of the 

classification model. If this was unambiguously the case, the study was labeled as non-

independent (NI, see Table 1) with respect to model testing. In many instances, there was 

ambiguity regarding non-independence given the methods description and/or presented 

workflow. Such studies were labeled as unknown (UN), with respect to non-independence. 

For all such studies, we contacted the primary author to seek additional details in order to 

reduce the size of the UN category. Some studies presented rationale for including all 

subjects’ data in model training because the algorithm of feature selection analysis was 

independent from the analysis of the classifier, and thus should not affect classifier 

performance (14, 51). However, since true independence in such cases can be difficult to 

ascertain (43), we included such studies in the NI category. Therefore, we adopted a rather 

strict criterion of requiring a completely different set of subjects to be used for feature 

selection versus testing, to label a study as free of circular analysis. This definition subsumes 

cases where features were defined based on prior knowledge (i.e., prior studies de facto use 

independent data to define the features). It also implies that for studies that use an iterative 

cross-validation scheme, feature selection must be based either on prior knowledge or 

performed within the training set of every iteration in order for the classifier to be 

guaranteed free of circular analysis. Finally, we also identified studies in which no test set 

was defined (all data were used in feature selection and model construction) and thus no 

cross-validation was performed. Such studies may suggest potentially useful features but 

have no test of model generalizability. At the other extreme, we also identify studies that 

identified an additional completely independent testing dataset (which we refer to as 

“validation” set to distinguish it from the “test” set), not involved in feature selection, which 

provides an additional objective, exernal validation of model generalizability.

2.3. Sample Size and Accuracy

For each study, we obtained the total sample size and classifier specificity, sensitivity and 

accuracy. Where multiple models were examined, we took the best performing model. 

Where accuracy was unreported, we calculated accuracy from specificity, sensitivity and 

sample size. We tested if accuracy varies with sample size using a logistic regression model 

with accuracy treated as probability of a binary outcome (i.e., corresponding to correct/

incorrect prediction) and sample size as predictor. This model assumes that classification 

accuracy follows a binomial distribution (41, 42, 52, 53). Influential observations were 

identified using Cook’s D statistic exceeding 4/n-k-1 (n = sample size, k = number of 

observations) and, if present, were excluded from final model fit.

2.4. Time Analysis

Finally, we sought to establish if the methodological factors of concern (small sample size 

and circular analysis) are current problems, or whether their presence (if established) is 
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restricted to older studies, preceding awareness of these issues in the field. To do so, we 

analyzed: (a) an analogous logistic regression model with accuracy as a probability of a 

binary outcome, and year of publication as a predictor, (b) a linear regression model with 

sample size as the dependent variable and year of publication as a predictor, and (c) 

contingency tables for presence of circular analysis (yes/no/unknown) and time windows 

constructed by binning years of publication by median split (<2013, >=2013), and, in a 

second analysis, also the top and bottom 33% percentiles (<=2011, >2014).

3. RESULTS

3.1 Study-Set Characteristics.

Of the 69 studies reviewed (Table 1, Fig. 1), 32 (46.4%) used EEG features, 35 (50.7%) used 

functional or structural MRI features, and 2 (2.9%) used MEG or fNIRS. Sample size varied 

from 10 to over 1177. Of these studies, 47 (68.1 %) included children-only, 14 (20.3%) 

included both adults and children, and (8) 11.6% were of adults-only. Classifier model 

parameters varied highly across studies. Almost no studies used the exact same set of 

features, with the exception of studies of theta-beta ratio (TBR). Among algorithms chosen, 

support-vector machines were the most common, used in 26 (37.6%) studies, followed by 

discriminant linear analysis (13 studies, 18.8%), neural networks (8 studies, 11.6%) and 

logistic regression (5 studies, 7.3%). Four studies employed receiver operating characteristic 

curves analysis (ROC, 5.8%) to draw conclusion regarding ability of features to discriminate 

between groups.

3.2 Prevalence of Circular Analysis.

A total of 15.9% (11/69) presented methods that were consistent with circular analysis, 

whereby feature selection was performed on the full dataset including the test data. Nine 

studies (13.0%) did not employ any cross-validation. Hence, the reported accuracies were 

untested with respect to generalizability. In 8 studies (11.6%, 8/69) independence was 

unclear (UN). That is, the methods provided insufficient information to determine if circular 

analysis was present. For example, some studies used linear discriminant analysis trained on 

half the dataset but t-tests were used to determine which features were considered by the 

linear discriminant analysis. Importantly, it was not specified which data were used to 

perform the t-tests (training sample only or full sample). We note that prior to active author 

inquiry, we encountered a total of 17 studies (24.6%, 17/69) with methodological detail 

insufficient to make a determination regarding feature selection.

In sum, we identified 41 studies (59.4%) that met our criteria for independence of the test set 

relative to training and feature selection. Of these, most, (29/41 or 70.7%) were studies using 

fMRI features (25 as part of the ADHD-200 competition (54)). Only 26.8% (11/41) used 

EEG features. Thus, where an assessment could be performed, circular analysis was more 

prevalent in EEG studies than MRI, χ2(1, n = 51) = 8.52, p < .004.

3.2 Sample Size and Classifier Accuracy.

In studies that met independence criteria, the relationship between sample size and accuracy 

was significant (Wald χ2=18.9, p<.001, OR=.9987, 95% CI ORCI95%=[.9983 .9993], Fig. 
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2); for a 1 unit increase in sample size, the odds of correct classification decreased by .12%. 

This translates into a predicted drop of approximately 5.9% in classifier accuracy when 

increasing a sample from n=10 to n=300, or 25.4% when increasing a sample from n=10 to 

n=1000. A sample-size accuracy relationship was not significant for studies that failed to 

meet independence criteria (Wald χ2=.03, p=.88, Fig. 2), possibly because of inflated 

accuracy across sample sizes. Confirming these effects, the mean accuracy of the 25% 

largest independent test-set studies was significantly lower than the mean accuracy of the 

25% smallest studies (Mlargest = 68.1%, Msmallest = 84.5%, t(18) = 4.4, p<.0001), and also 

significantly lower than the non-independent studies (Mnon-independent = 83.6%, t(18) = 3.3, 

p<.005).

Since a larger portion of MRI than EEG studies used independent testing, we repeated the 

analysis for each modality to test if this relationship is largely driven by MRI studies. As 

expected, for MRI studies, the negative association of sample size and classification 

accuracy was significant (Wald χ2=17.0, p<.001, OR=.9988, ORCI95%=[.9983 .9995]). For 

EEG studies, the relationship was not significant (Wald χ2=.01, p=.91).

3.3. EEG-TBR.

Our analysis included 7 studies (9.9%) that classified ADHD based on the EEG-signal theta-

beta ratio (TBR) (10, 18, 20, 55–58). These studies are considered separately because they 

did not uniformly conform to the above assessment of circular analysis, and also because of 

their significance as an FDA-approved adjunct to clinical assessment (19, 20). Of these, the 

studies of Ogrim et al (56), Liechti et al (57), and Sangal & Sangal (58) used analyses that 

did not include cross-validation. The remaining four studies (Snyder et al (18, 20) and 

Monastra et al (10, 55)) used a distribution-based classification scheme. They predicted 

ADHD diagnosis based on a TBR threshold defined as 1.5 standard deviations greater than 

the mean of a normative control population (55). In the Monastra et al (10, 55) studies, the 

1999 study identified the threshold, whereas the 2001 study provided the cross-validation 

result using new participants. In the Snyder et al (18, 20) studies, the thresholds were 

defined based on an external database in the 2008 study, and based on the 2008 result in the 

2015 study. Thus, the Snyder et al (18, 20) studies and the 2001 Monastra et al study (10) 

can be considered independent cross-validation and by this definition do not fall under 

circular analysis. However, these studies had limitations with respect to estimation of 

specificity. The non-ADHD comparison sample size averaged 16 individuals per age group 

(i.e., n=7, 11 and 15 per tested age group in Monastra, 2001 (10), n=9, 20 and 33 per tested 

age group in Snyder 2008 (18)). Finally, in the 2015 study of Snyder et al (20) accuracy 

based on TBR alone was not reported. In all, test results are either lacking or under-powered 

for effective assessment of TBR-classification generalizability.

3.4. Time Effects.

As shown in Figure 3, year of publication did not predict accuracy (Wald χ2=.77, p=.38) nor 

sample size (F(1,67)=.22, p=.64 for a linear fit; F(1,67)=.75, p<.39 for an exponential fit). 

Given a median split (based on year published) of studies into those published in or 

post-2013 (n=36) versus pre-2013 (n=33), there was no difference in proportion of studies 

that met independence criteria (pre-2013 = 19, in/post-2013 = 22), failed the independence 
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criteria (pre-2013 = 10, in/post-2013 = 10) or were unclassified (pre-2013 = 4, in/post-2013 

= 4), χ2=.09, p=.97. A similar result was obtained comparing the bottom third (oldest) 

versus the top third (newest) of studies. The relationship between accuracy and sample size 

reported in the previous section remained significant with the inclusion of publication date 

as a covariate, (Wald χ2=25.5, p<.001, OR=.9988, ORCI95%=[.9983 .9992]).

4. DISCUSSION

The aim of our study was to assess the contribution of circular analysis and small-sample 

bias to accuracy of diagnostic classification studies in ADHD using neuroimaging 

biomarkers. We found circular analysis in 15.9% of ADHD classification studies, lack of 

cross-validation in 13% and insufficient methodological detail to establish its presence in 

another 11.6%. Our results reveal that accuracy of classification is 60–80% in the 59.4% of 

studies that met our criteria for independence of feature selection, model construction and 

test datasets. There was a negative relationship between accuracy and sample size even in 

the presence of independent testing, suggesting that small sample accuracies may be subject 

to bias.

4.1. Methodological factors and classification accuracy.

A key conclusion from our anlaysis is that in 28.9% of the studies reviewed, reported 

accuracy was likely inflated due to presence of circular analysis or lack of internal validation 

(test set). In some cases, the use of a full dataset for feature selection was justified by using 

an analysis thought to be independent from the contrast of ADHD versus controls (e.g., 

mean effect across all subjects within a condition (14), PCA (51)). However, the 

independence of such approaches is difficult to guarantee, can still contribute to bias during 

testing(43) and therefore should be avoided. External validation, an even stronger test on 

generalizability, was absent in 55 (79.7%) studies, suggesting that our estimates of true 

accuracy in classification of ADHD may be optimistic still. Time analyses did not support 

the conclusion that rates of circular analysis are decreasing across publication year. 

However, our estimate of 15.9% of studies reviewed is nearly a third of that reported in 

2008, when 42% of high-impact journal fMRI studies were subject to circular analysis (43, 

46), supporting an awareness of these methodological issues in the community. 

Nevertheless, the frequency of lack of sufficient methodological detail (24.6% prior to 

author inquiry, 11.6% post author inquiry) was high and highlights a need for systematicity 

in review criteria of classification studies. There are now a number of excellent reviews, 

many specifically targeting biomarker studies in neuropsychiatry, that provide such guidance 

(1–3, 41, 42).

Replicating recent review findings of Varoquaux et al (41, 42) (classification using MRI & 

MEG), Arbabshirani et al (1) (classification across brain disorders, using functional and 

structural MRI features), and Schnack et al (48) (classification in studies of Schizophrenia 

using structural MRI) we show, in the context of ADHD, that accuracy in classification 

studies of neuroimaging data decreased with sample size. This suggests bias at play in small 

sample studies, particularly given that, in unbiased analyses, accuracy is known to increase 
with sample size (47, 49, 59). Sources of this bias likely include publication bias, with 
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small-sample studies that fail to obtain high classification accuracy unlikely to be published, 

leading to under-estimation of accuracy variance in small-sample studies. In classification of 

psychiatric conditions, such as ADHD, a pertinent source of bias may be sample 

homogeneity in small samples that is not representative of the broader population (48). An 

important caveat to our observations, the interaction between sample size and accuracy may 

be additionally affected by choice of cross-validation scheme (e.g., k-fold versus leave-one-

out), data preprocessing (e.g., control for motion artifacts), and classifier. An exhaustive 

analysis of these factors fell outside of the scope of the current study, due to variability in 

these factors among studies, but a preliminary analysis did not reveal differences in choice 

of classifier or cross-validation scheme across sample size (c.f, Supplemental Materials, 

section 4). It is notable that accuracy did not appear to decrease across year of publication, 

whereas sophistication in machine learning has certainly improved. The decrease in 

accuracy with sample size that we observed appears robust to these alternate methodological 

choices.

Critically, the solution to small-sample problems lies in rigorous statistical assessment of 

classifier accuracy. This can be achieved using the binomial test (for two-class problems) 

and permutation testing (50). Permutation testing, in particular, is a reliable, flexible and 

readily available tool to assess the significance and variability of a given accuracy (53, 60). 

Reporting of both significance and an estimate of variability, such as confidence intervals, is 

perhaps the most important recommendation, as, independent of availability of larger 

samples, such reporting continues to be done inconsistently based on a 2017 review of 237 

classification studies across brain disorders (1). Finally, although difficult to quantify, it is 

inherent that the amount of data per subject varies from study to study, and, thus the 

reliability varies depending on the neuroimaging measure employed. This fact underscores 

further the importance of data quality in addition to data quantity in predictive modeling.

4.2. Value of biomarkers in ADHD diagnosis and beyond.

This study was motivated by an apparent inconsistency between reports of high 

classification accuracies and known heterogeneity in ADHD. We found that the subset of 

studies with independent test sets reported an accuracy in the range of 60–80%. The fact that 

these values were significantly above 50% suggests that neuroimaging-based biomarkers 

were associated with ADHD and therefore have some value. However, these accuracies are 

too low to be used without other supporting information in clinical practice because they 

would result in substantial false positive and false negative rates (also see Loo & Barkely 

2005(61)). We also note that the test set was difficult to define in the studies of TBR(10, 18, 

20, 55), significant because TBR is an FDA-approved adjunct to clinical assessment (19, 

20). These studies also did not include large control samples to accurately estimate the 

standard error, which could mean that the specificity of the TBR has been over-estimated. 

Such a conclusion is consistent with both reported variability in group difference effects size 

of TBR(38, 62, 63) and, in particular, with the observation that decreasing effect sizes of 

TBR across studies appears to be correlated with a change in TBR in the control sample 

rather than the ADHD sample(62).
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The low and variable accuracies are however consistent with the inherent heterogeneity of 

ADHD, documented in ADHD in symptom presentation (21), neurocognitive impairment 

(22, 23) persistence (24–26), treatment response (27, 28) and putative mechanistic pathways 

(29–31). Given a heterogeneous population, classification models will learn to accurately 

identify those individuals with features that are shared among sub-populations but will be 

less successful in identifying individuals who have features specific to a sub-population. 

However, as argued by Schnack et al(48), a drop in accuracy in a new, testing sample in this 

context, carries information about the mutual homogeneity of the sample and may help to 

identify shared versus non shared features.

What is the future of biomarkers in ADHD? Echoing recent reviews, we suggest that the 

primary goals within ADHD ought to include parsing of heterogeneity and prediction of 

future outcomes, rather than diagnosis. Addressing heterogeneity, dimensional analyses 

approach (e.g., Research Domain Criterion Initiative (64, 65)) that seek to identify novel 

subgroups, based on shared neuroimaging (and other feature) profiles. A promising example 

of this approach is that of Bansal et al (66) who developed an automated routine to first 

discover natural groupings based on brain morphology. Using these novel groupings, they 

achieved classification sensitivity of 93.6% and specificity of 88.5% on an independent 

testing set including children with ADHD and controls. In complement, a shift toward using 

machine learning and biomarkers to predict future outcomes – development & aging, 

education, learning, criminality, health-related behaviors, response to treatments – is likely 

to have a greater impact, than prediction of diagnosis, on personalized clinical practices than 

can directly improve patients’ lives (67–69). For instance, brain network connectivity 

associated with sustained attention performance, has been shown to predict ADHD 

symptoms in an independent sample (70–73), defining a potential tool for diagnosis-

independent assessment of attentional integrity.

4.4. Conclusions.

In this study, we found that unbiased classification accuracy in ADHD diagnosis in the range 

of 60–80%, too low to be viewed as an independently useful biomarker of disease, is 

consistent with known heterogeneity in this disorder. These data are also consistent with 

contributions of circular analysis and small-sample bias to inflation of higher accuracies, 

thus accounting for the discrepancy. We conclude that steps to resolve these issues, as well 

as a shift towards accounting for sample heterogeneity and prediction of future outcomes, 

will be crucial in increasing the utility of classification in ADHD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Study characteristics.
(A) Of the reviewed studies, 28.9% did not meet independence criteria due to non-

independence (NI) or lack of cross validation (noCV), with another 11.6% lacking clarity to 

rule out circular analysis. (B) Most studies used features derived from EEG and MRI-related 

signals. (C) SVM and DLA were most common algorithms. (D) The majority of ADHD 

classification studies included pediatric populations. DLA = discriminant linear analysis, 
SVM = support vector machine, NN = neural network, LR = logistic regression, ROC = 
Receiver-Operator Characteristic (Analysis), THR = threshold based classification.
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Figure 2. Sample size vs classification accuracy.
A negative relationship between classifier accuracy and sample size was evident in studies 

that met test-set independence criteria (top panel). This group was dominated by MRI 

studies. In contrast, studies that did not meet independence criteria (bottom panel) were 

dominated by studies that used EEG features. Shading indicated 95% confidence interval. 

Starred observations were found as influential by Cook’s D, and were excluded from final 

model fits.
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Figure 3. Classification across publication year.
Neither accuracy (top) nor sample size (bottom) could be predicted from publication year. 

The relationship between the two (Fig. 2) was also significant with publication year as a 

covariate (see text). Frequency of circular analysis, also did not vary by year. Shading 

indicates 95% confidence interval.
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