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ScienceDirect
The diversity of brain cell types was one of the earliest

observations in modern neuroscience and continues to be one

of the central concerns of current neuroscience research.

Despite impressive recent progress, including single cell

transcriptome and epigenome profiling as well as anatomical

methods, we still lack a complete census or taxonomy of brain

cell types. We argue this is due partly to the conceptual

difficulty in defining a cell type. By considering the biological

drivers of cell identity, such as networks of genes and gene

regulatory elements, we propose a definition of cell type that

emphasizes self-stabilizing regulation. We explore the

predictions and hypotheses that arise from this definition.

Integration of data from multiple modalities, including

molecular profiling of genes and gene products, epigenetic

landscape, cellular morphology, connectivity, and physiology,

will be essential for a meaningful and broadly useful definition of

brain cell types.
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One of the basic roles of theory in biology is to identify

meaningful groupings of individuals. Although descrip-

tive, this work provides an organizing framework and

conceptual foundation for hypotheses regarding causal

mechanisms and organizing principles. The classification

of organisms by natural historians such as Linnaeus,

together with deep investigation of particular cases such

as the Galapagos finches, set the stage for Darwin’s

theoretical paradigm of evolution. Similarly, a taxonomy

of cell types in the brain is ultimately required to under-

stand how neural circuits evolved to underpin complex

behaviors. Here we argue that recent developments in
www.sciencedirect.com 
high-throughput single cell molecular analysis will enable

a new classification of brain cell types that is unprece-

dented in its completeness (comprising all cells across all

brain regions), quantitative precision, and integration of

multiple modalities of molecular regulation (e.g. tran-

scriptome, epigenome), anatomy, connectivity and func-

tion. There are both conceptual and practical difficulties

standing in the way of a comprehensive and accurate

neuronal cell type atlas, and a universally accepted and

fixed taxonomy may remain an elusive goal. Neverthe-

less, the impact of a high-quality cell census will be

broadly felt across developmental, molecular, and even

computational neuroscience.

Neuroscientists have identified vastly different neural

circuits across brain regions and species, yet it is difficult

to think of a functional circuit in any complex organism

that does not involve multiple clearly identifiable, distinct

neuronal cell types [1–4]. The striking diversity of neuron

types in the mammalian brain suggests that complex

behavior relies not only on expanded cell number but

also on an increasing functional specialization that allows

particular neuron types to play-specific information pro-

cessing roles. If that is the case, then information proces-

sing in the brain can only be understood by identifying

the specialized roles and interactions among brain cell

types. Indeed, it is not unreasonable to suppose that the

evolutionary processes by which sister cell types dupli-

cate, differentiate and specialize are driven by key func-

tional needs [5], and that understanding the relationships

among brain cell types will help to organize our under-

standing of the information processing functions which

these circuits evolved to support.

Cell types as self-stabilizing regulatory
programs
Different research communities use the concept of cell

type in divergent ways, ranging from highly-specific

notions of identifiable single neurons in Drosophila

[6,7] to formulations-based on the connectivity [8] or

the functional or computational role of a neuron [9].

Although different cell categorizations may be appropri-

ate for different purposes, this diversity of definitions

raises the question of whether there is a general, if not

universal, notion of cell type that can be useful for a broad

range of neuroscientific questions. Indeed, gene expres-

sion, cell location, morphology, connectivity, and physi-

ology entail independent measurements but these prop-

erties are rarely independent variables.

Here we propose to define a cell type as a self-stabilizing

system composed of specific genetic and developmental
Current Opinion in Neurobiology 2019, 56:61–68
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62 Neuronal identity
processes. We are inspired by Waddington’s original

concept of canalization, that is the process by which a

phenotypic outcome is produced and stabilized in the

face of a range of environmental or genetic perturbations

[10]. Accordingly, we suggest that each cell type corre-

sponds to a self-stabilizing regulatory program, which acts

to maintain and restore the cell type-specific program of

gene expression (see Sidebar). We focus on self-stabiliz-

ing gene regulation, that is interactions among cell-intrin-

sic factors (principally genes and epigenetic marks) that

form recurrent functional networks with feedback loops

that preserve their structure. It is likely that, in some

cases, structural factors (e.g. laminar position or connec-

tivity) or physiological interactions (e.g. thalamic inner-

vation) could be important for maintaining cellular iden-

tity as well [11]. In contrast with the core cell type-

defining features of a cell type, other downstream prop-

erties, such as the expression of effector genes [12], may

vary over time or in response to extrinsic signals but will

generally revert to a canonical pattern induced by the self-

stabilizing program.

The concept of dynamical stability is familiar in compu-

tational neuroscience, where it forms the basis of attractor

networks for memory storage such as the Hopfield model

[13]. A network of neurons, interacting via excitatory and

inhibitory synapses, can encode multiple attractor states

which can be retrieved through appropriate dynamics

[14,15]. Similarly, networks of DNA binding transcription

factor proteins can regulate their own expression to form

stable, recurrent attractors [16�]. An attractor of a dynam-

ical system need not be a static fixed point, but could

correspond to a limit cycle with periodically repeating

properties as in a mitotic cell type. Importantly, an

attractor network provides homeostatic, self-stabilizing

interactions that ensure that perturbations which move

the state of the network away from an attractor will be

compensated to restore the equilibrium. At the same

time, such networks afford the opportunity for state

changes when a signal or perturbation pushes the network

out of the basin of attraction of one attractor and into a

different equilibrium; experimentally, this is the basis for

recent progress in transdifferentiation and artificial induc-

tion of neuronal cell types [17]. Despite the intuitive

simplicity of the concept of a stable attractor, dynamical

systems theory implies there may be important distinc-

tions among cell types in terms of the type of attractor (e.

g. fixed point, limit cycle, or chaotic strange attractor) [18]

and the types of transitions (bifurcations) they may

undergo [19].

Single cell assays advance the search for cell
types
The recent development of high-throughput single cell

transcriptomic (RNA-Seq) and epigenomic assays (mC-

Seq for DNA methylation and ATAC-Seq for open chro-

matin) has raised expectations for a new and more
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detailed empirical analysis of brain cell types [20].

Indeed, pioneering studies, reviewed by [21], have been

followed by a dramatic increase in the number of single

cell transcriptome studies and in the number of profiled

cells per study [22��,23��,24��,25,26�]. An example of the

high resolution for fine cell type distinctions is a recent

description of 133 cell types in two mouse neocortical

regions [26�], a level of complexity that was hardly

recognized before the advent of single cell transcrip-

tomics. We expect that these data resources will enable

fine-grained analysis of self-stabilizing cell type regula-

tion across the diversity of brain cells.

Whileourproposal seeksa unifying conceptual basis forcell

type, in practice we must acknowledge the limits of objec-

tivity and the inevitability of disagreement: there will

always be lumpers and splitters, each with valid empirical

data and arguments to support their views. The seemingly

simple question, ‘How many brain cell types exist?’ is more

difficult to answer than it is to state. Instead of attempting to

directly estimate the number of cell types, we propose to

focuson objective empirical criteria that couldcontribute to

meaningful discussion of cell type distinctions. One pro-

posal would follow the tradition of systematics, which

classifies species by cross-referencing as many traits or

features as possible [27]. According to this view, any cell

type classification should simultaneously account for the

similarities and differences between cells along multiple

dimensions, including gene expression (transcriptome),

epigenomic state, anatomy (laminar location, dendritic

and axonal morphology), connectivity, as well as

electrophysiological properties. To this list, we would

add that a comprehensive understanding of a cell type

should include an account of its role in processing informa-

tion in the context of local and distributed circuits. By

emphasizing self-stabilizing features, we focus on those

cellular features most likely to be central to the functional

role of a cell type and therefore to co-vary with many other

cellular properties.

Cell type definitions: predictions and testable
hypotheses
Our proposal to base the definition of cell type in the

concept of a dynamically stable state implies several key

empirical predictions. We would predict that some fea-

tures of a cell type, such as expression levels of core

transcription regulating genes and corresponding config-

urations of epigenetic marks, are critical for stabilizing the

cell’s identity. These cell type-defining characteristics

appear to emerge after the final mitotic division, as the

cell enters a developmental ground state [28]. Other

features, such as the expression of activity-dependent

genes [29], may vary across cells or over time without

altering the cell’s stable type.

Dynamic gene expression across cells of the same type

might be observed by using single cell transcriptome data
www.sciencedirect.com
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to estimate the rate of change of gene expression, or

‘RNA velocity’ [30�]. Computational and statistical

modeling of transcriptomic measurements from a range

of neuron types could indicate which transcription factors

are the core regulators of cell type identity [7]. Such

models might take inspiration from biophysical simula-

tions of neuronal electrical dynamics, which showed that

specific conserved electrophysiological behaviors such as

central pattern generators can be produced by a variety of

combinations of molecular components [31]. Similarly,

the core transcriptional regulators of cortical neuron iden-

tity were inferred from single cell sequencing data [22��

,23��,24��,32,33��]. Such information could provide test-

able causal hypotheses, for example predicting combina-

tions of transcription factors which may be used for direct

reprogramming [17,34].

Perturbative experiments — such as transgenic manip-

ulations — provide a powerful approach for demonstrat-

ing the causal role of specific molecular regulators in

generating self-stabilizing cell types with distinct func-

tional properties. For example, a network of key tran-

scription factors comprising Ctip2, Fezf2, Satb2 and Sox5

were shown to determine Layer 5/6 projection neuron

fates in the developing mouse neocortex [35–37], while

Sox6 is critical for specifying interneuron cell fates from

spatially distinct progenitor cells [38]. Similarly, a single

transcription factor, Brn3, was shown to both establish and

maintain neuronal identity of a population of medial

habenula neurons [39]. Recent studies suggest that

post-transcriptional regulation, including alternative

splicing or RNA modifications such as methyl-6-adeno-

sine, play a role in shaping neurons’ overt phenotype

[40,41]. Given the recent progress in single cell transcrip-

tomic and epigenomic assays that can subdivide neurons

into types with increasing granularity, we may soon be

able to propose causal experiments that could validate

fine cell type distinctions by perturbing their putative

(combinations of) regulators. In the interim, it would be

useful to distinguish between provisional cell types

defined by single cell -omics alone, and verified cell types

for which more detailed causal data and mechanisms of

stabilization are available.

Epigenetic regulation and self-stabilizing
networks
Self-stabilizing gene regulation can be achieved through

direct interaction among transcription factors [42,43], and

these connections may be discerned in transcriptomic

data through co-expression analysis. However, epigenetic

modifications of histone proteins and DNA play impor-

tant roles in regulating gene expression as well. There-

fore, understanding the epigenetic landscape at the single

cell level, in parallel with single cell transcriptome analy-

sis, provides an independent evaluation of the cell’s

molecular identity. Epigenomic data are particularly use-

ful for neurons, which have uniquely abundant non-CG
www.sciencedirect.com 
DNA methylation as well as hydroxymethylation [44,45].

These epigenetic marks can have complex consequences,

including roles in both repressing and enhancing tran-

scription factor activity [46], which could impact the self-

stabilizing interactions among core cell type defining

factors. In some cases, the same gene is expressed in

multiple neuron types as a consequence of different, cell

type-specific epigenetic drivers. The use of unique com-

binations of enhancers in each cell type can lead to

differences in the regulation of gene expression, isoform

usage [47,48], or plasticity and activity dependence of

expression [49]. Recent advances in single cell bisulfite

sequencing [50��,51] and chromatin accessibility profiling

[52��,53��,54,55] make it possible to measure these epi-

genomic signatures in thousands of cells, directly com-

plementing large-scale transcriptomic studies [20,25,51].

Currently, larger datasets and more studies are available

for single cell transcriptomes than epigenomes (DNA

methylation and open chromatin). Although single cell

epigenomic assays do not necessarily resolve a greater

number of cell types, they provide an additional layer of

regulatory information that is not available from RNA-

Seq alone. For example, single cell DNA methylomes

and ATAC-Seq data can indicate cell type-specific active

enhancer regions [50��,56]. Such epigenomic information

is valuable as a stable marker of cell identity that may be

less sensitive than gene expression to changes in cell

state, including circadian rhythms and activity-dependent

gene induction [29]. New methods for joint measurement

of epigenomic and transcriptomic information in the same

cell could allow linking these complementary measures

[57,58]. Given the more recent development of single cell

epigenomic methods, we expect continued rapid

improvements in these assays to enable recognition of

cell types with similar resolution compared with the more

mature single cell RNA-Seq methods.

Cell type classification based on these molecular data

remains challenging, in part due to the sensitivity of

results to different experimental and analytic parameters

[29]. Computational methods for combining information

across experimental batches and even across data modali-

ties hold promise for reaching broad consensus [59,60].

Methods for statistical cross-validation of cell types from

independent datasets are also critical [61�,62].

As rich, high-quality molecular data resources become

increasingly available for neurons as well as other cell

types (e.g. Human Cell Atlas [63]), we expect increasing

opportunities to apply sophisticated machine learning

and artificial neural network-based analyses to the chal-

lenge of unsupervised and semi-supervised learning of

structure in these datasets [64–66]. Directly complement-

ing the transcriptomic and epigenomic data, assays of

chromosome conformation (e.g. Hi–C) at the single cell

level can identify intra- and interchromosomal
Current Opinion in Neurobiology 2019, 56:61–68
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interactions that may represent the 4-dimensional physi-

cal manifestation of gene expression regulatory networks

in the nucleus [67,68].

Integrating data from multiple modalities:
benefits and challenges
Despite the power of high-throughput single cell tran-

scriptomic and epigenomic assays, these modalities likely

do not fully reflect all the relevant differences between

cell types. For example, transient expression of genes

during differentiation can lead to situations in which

mature neurons with different projection patterns show

indistinguishable transcriptomic profiles [6]. Such distinc-

tions may be evident at the epigenomic level, but in some

cases information about anatomy, morphology, connec-

tivity and/or physiology will be needed to fully distin-

guish neuronal cell types. Indeed, the concept of a self-

stabilizing network need not be limited to genes and

epigenetic regulators, but could include physiological

feedback loops [69].

From these considerations, we argue that there will be

substantial benefit from integrating empirical data across

multiple modalities, both as a means of cross-validation

and to provide greater precision and accuracy in cell type

assignments. Methods that can provide spatial context for

transcriptomic data via computational analysis [70] and in
situ sequencing [71] can help connect molecular and

anatomical information. Moreover, molecular data can

provide a stable platform on which to build and assemble

more detailed information from other modalities that are

needed to complete a comprehensive characterization of

cell types. For example, data that define a cell type at the

molecular level can be used to create transgenic lines-

based on genes or enhancers that are specifically active in

that cell [72,73]. Such tools provide the experimentalist

with genetic access, allowing analysis of the cell’s func-

tional properties. They would also provide a means of

perturbing the cell genetically, optogenetically and che-

mogenetically to test predictions about the cell’s identity

and function-based on its transcription and signaling

factor networks, connectivity, or physiology. Alterna-

tively, unbiased experimental techniques for simulta-

neous measurement of physiology and gene expression

(e.g. Patch-Seq) may help to link these modalities [74–

76]. Such multi-modal data showed, for example, that an

apparently continuous distribution of parvalbumin

expressing neurons in the dorsal striatum has a corre-

sponding continuous gradient of electrophysiological

properties [74].

In contrast to molecular modalities, however, quantitative

measurement of anatomy, physiology and connectivity is

less straightforward. Analysis of these data requires first

defining the key, cell type-defining features and further

estimating these from the data, tasks for which no settled

consensus is available. For example, optical microscopy
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can provide information about dendritic and axonal mor-

phology and connectivity, but extracting these parame-

ters is challenging due to the high dimensionality of

image data. Here again we expect that sophisticated

computational tools, in particular computer vision algo-

rithms such as deep convolutional neural networks

(CNNs), will play a key role in objectively quantifying

traditional parameters of cellular morphology and con-

nectivity with high-throughput and across the entire

brain. Indeed, neural networks have already proved use-

ful for automating and improving the annotation and low-

level quantification of anatomical data from high-through-

put brain-wide anatomical data [77,78]. These computa-

tional approaches may also help to discover new regulari-

ties and features of neuronal anatomy that may not be

easily extracted and quantified in traditional, manual

analyses.

Outlook
The challenges of measuring and integrating data about

neuronal cell types across multiple modalities are large

and exceed the capabilities of any one research group.

Moreover, the value of a cell type atlas is directly tied to

its broad acceptance and utilization by the neuroscience

community. For these reasons, collaboration is critical,

and collaborative consortia, including the NIH BRAIN

Initiative Cell Census Network (BICCN) to which we

contribute, aim to build consensus through joint devel-

opment of cell type resources. Building on the experience

of the previous BRAIN Initiative Cell Census Consor-

tium [20], BICCN members contribute a broad range of

expertise and techniques, including high throughput

single cell transcriptomic and epigenomic assays which

will form the basis for a comprehensive survey of molec-

ular cell types in the mouse brain. In parallel, comple-

mentary data from human and non-human primates,

though less comprehensive, will enable comparative

and evolutionary perspectives on mammalian brain cell

types [79,80]. Importantly, the BICCN is also investing in

large-scale anatomy, morphology, connectivity, as well as

physiological investigations. The long-term, aspirational

goal is to integrate information from all of these modali-

ties to provide a comprehensive taxonomy of brain cell

types. Although this collaborative and coordinated strat-

egy is critical, organizing a multi-site, multi-platform

analysis does bring challenges of coordination, consis-

tency in experimental protocols, analysis, metadata and

data formats, and effective distribution of data to the

larger scientific community. In addition to the BICCN,

other consortia such as the HCA and the Human Biomo-

lecular Atlas Program (HuBMAP) are also attempting to

address these challenges and to build large-scale cell type

resources [63,81]. These consortia represent experiments

in organizing neuroscience research, and the sociological

experience and lessons of these endeavors will be valu-

able dividends of the projects.
www.sciencedirect.com
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Here we have outlined a conceptual perspective empha-

sizing the self-stabilizing nature of cell types, which may

help to guide otherwise subjective debates about the

appropriate division between cell types. As Darwin rec-

ognized, it is healthy for lumpers and splitters to chal-

lenge each other over the empirical and theoretical valid-

ity of their frameworks. Their arguments will not go away,

but with new molecular and functional data and more

data-driven theoretical constructs we look forward to a

productive discourse in the years ahead.

SIDEBAR
Self-stabilizing regulation of olfactory neuron identity

Our proposed definition of cell type emphasizes self-

stabilizing regulation. Here we explore the relationship

between feedback, stability and deterministic versus

stochastic processes. Feedback is a key feature of recur-

rent networks, that is systems in which each element

causally affects, and is reciprocally affected by, activity in

other elements of the network. Perhaps the simplest

paradigmatic example from computational neuroscience

is the interaction between excitatory and inhibitory neu-

ral populations, as in the classic Wilson–Cowan model

[82]. Here, increased spiking activity in a population of

excitatory neurons stimulates increased activity in locally

connected inhibitory neurons, which in turn leads to

inhibition of the excitatory neurons. Depending on syn-

aptic weights, such a system can have different attractors,

that is static or periodically varying (oscillating) trajecto-

ries that are stable against perturbations [83]. Negative

feedback between the two neural populations ensures

that any external or internal stimulus, such as afferent

input from another neural population, may temporarily

move the network away from the attractor but will ulti-

mately be reversed. This basic model explains the

dynamic stability of neural circuits which maintain activ-

ity levels within a physiologically normal range, and it can

explain the breakdown in equilibrium and the generation

of epileptic activity following the loss of inhibition.

Complex networks with more than two elements can

stabilize multiple stable attractors, that is alternative

configurations which are each stable against limited per-

turbations. A simple type of attractor network appears to

govern the choice of a single odorant receptor (OR) out of

>1000 OR genes during olfactory sensory neuron differ-

entiation [84]. Here, the initial expression of an OR gene

results from stochastic demethylation of overlying repres-

sive histone methylation marks. Expression of a func-

tional OR leads to expression of Adcy3, which in turn

promotes the OR expression (positive feedback) and also

prevents derepression of other OR genes by inhibiting

histone demethylation (negative feedback) [85��]. This

‘epigenetic trap’ mechanism ensures that only a single

OR is expressed in each mature olfactory sensory neuron,

and it further enables a cell that fails to express a func-

tional OR to select a new OR for activation. This simple
www.sciencedirect.com 
network shows how thousands of distinct attractor states,

each corresponding to expression of a single OR, can be

encoded and stabilized through epigenetic feedback.

Our concept of dynamic stability should be distinguished

from the question of deterministic versus stochastic reg-

ulation of gene expression in single cells [86]. A self-

stabilizing system can have stochastic state transitions, as

in the stochastic selection of a single OR gene during

olfactory sensory neuron differentiation. Moreover, ran-

dom fluctuations in gene expression, for example due to

transcriptional bursting, can cause ongoing stochastic

differences between the molecular state of individual

cells. However, the self-stabilizing dynamics of the core

regulators of cell identity serve as a buffer that will

prevent stochastic fluctuations from altering the critical,

self-reinforcing pillars of the cell’s machinery.
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