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STATISTICS IN MEDICINE, VOL. 9, 505-514 (1990) 
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SUMMARY 
Multiple imputation is a model based technique for handling missing data problems. In this application we 
use the technique to estimate the distribution of times from HIV seroconversion to AIDS diagnosis with 
data from a cohort study of 4954 homosexual men with 4 years of follow-up. In this example the missing 
data are the dates of diagnosis with AIDS. The imputation procedure is performed in two stages. In the first 
stage, we estimate the residual AIDS-free time distribution as a function of covariates measured on the study 
participants with data provided by the participants who were seropositive at study entry. Specifically, we 
assume the residual AIDS-free times follow a log-normal regression model that depends on the covariates 
measured at enrolment on the seropositive participants. In the second stage we impute the date of AIDS 
diagnosis for the participants who seroconverted during the course of the study and are AIDS-free with use 
of the log-normal distribution estimated in the first stage and the covariates from each seroconverter’s latest 

0277-67 15/90/050505-lO$O5.00 
0 1990 by John Wiley & Sons, Ltd. 

Received April 1989 
Revised October 1989 



506 J. M. G. TAYLOR ET AL. 

visit. The estimated proportions developing AIDS within 4 and within 7 years of seroconversion are 15 and 
36 per cent respectively, with associated 95 per cent confidence intervals of (10, 21) and (26,47) per cent. 

We discuss the Bayesian foundations of the multiple imputation technique and the statistical and scientific 
assumptions. 

INTRODUCTION 

Estimation of the distribution of times from HIV infection to AIDS has been the subject of much 
recent work,'-' and is of particular importance for modelling the growth of the AIDS 
epidemic.*.' For some data sets from longitudinal studies one can estimate this distribution 
almost directly2.j because the date of infection for each participant in the study is approximately 
known. For other data sets some statistical modelling is necessary to account for various features 
of the data, such as unknown date of infection, left truncation or biased sampling. Even for data 
sets in which the distribution can be measured directly there is still uncertainty in the estimates 
because of short follow-up times, small sample sizes, incomplete follow-up or the fact that the date 
of infection (or seroconversion) is known to be included in a relatively wide interval rather than 
known exactly. 

Another source of data for estimation of the incubation period distribution is transfusion 
associated AIDS Because there is no information on those who have not developed 
AIDS, this data set gives information only on the shape of the underlying density of the time to 
AIDS, that is on the conditional distribution of developing AIDS within t years of infection given 
that AIDS occurs prior to the length of follow-up in the sample. It gives no direct information 
about the cumulative proportion who develop AIDS within t years of infection, unless rather 
strong parametric assumptions are made.12* l3 

A cohort study of the natural history of AIDS can be thought of as consisting of two separate 
cohorts: the seropositive or prevalent cohort, and the seroconverter or incident cohort. The 
seropositive cohort consists of those subjects who already have HIV infection at enrolment. The 
seroconverter cohort consists of those subjects who became infected during the follow-up period. 
A problem with estimation of the time to AIDS distribution from seropositive cohorts is that 
infection is only known to have occurred prior to a given date. Some authors's6 have attempted 
to solve this problem by multiple imputation of the missing dates of infection and analysis of the 
resulting completed data sets. A problem with estimation of the time to AIDS distribution from 
seroconverter cohorts is that typically the follow-up times are short and the number of AIDS 
cases relatively small, so that accurate estimates of the distribution at long follow-up times are 
unattainable. In this article, to solve this problem, we take an imputation approach in which we 
impute the time of AIDS diagnosis for the seroconverter cohort. Compared with previous 
imputation schemes, we are imputing events in the future (AIDS diagnosis) rather than events in 
the past (HIV infection). Our approach is similar to but more formalized than Moss et al.'s 
analysis,14 in which they showed that the immunologic profile at the latest visit of participants in 
a cohort study was so poor that they predicted at least three-quarters of the seropositive 
individuals in the cohort would eventually develop AIDS. 

The technique of multiple i m p ~ t a t i o n ' ~  is a model based scheme for analysing data with 
missing values, which has been used mainly in survey research. The basis of the method is to fill in 
the missing values to form multiple sets of complete data for further analysis. The missing values 
are imputed by drawing from the predictive distribution of the missing value given the observed 
data. In our application we do not evaluate explicitly the predictive distribution, but rather 
obtain the missing value from this predictive distribution in two stages: first we draw a parameter 
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value from the posterior distribution of the parameters, and then we draw the missing value from 
the conditional distribution given that parameter value. In this way, we propagate the uncertainty 
through the analysis in a Bayesian sense. 

DATA DESCRIPTION 

The data set used in the analysis is from the Multicenter AIDS Cohort Study (MACS).16 The 
study consists of 4954 homosexual or bisexual men recruited in four cities between April 1984 and 
March 1985. Each participant is scheduled to return at six month intervals for laboratory tests, 
physical examination and completion of a questionnaire. The laboratory tests and questionnaire 
responses relevant to this paper are HIV antibody serology tests, both ELISA and Western blot, 
T-helper cell percentage, platelet count, haemoglobin and age. The data used in this article are 
from the first eight visits of the study. 

The diagnosis of AIDS is not obtained at the semiannual visits but rather through contact with 
the participant, his family, friends or physician. We denote participants who are HIV antibody 
positve at the first visit as ‘seropositives’, and participants who changed from antibody negative to 
antibody positive during the follow-up period as ‘seroconverters’. In defining the interval of 
seroconversion we consider an HIV Western blot antibody test positive if there is any detectable 
antibody, however weak, and clear evidence of antibody, both ELISA and Western blot, at later 
visits. Table I provides details of the number of participants in the four cities. Excluded are 
participants with missing covariates and seropositive individuals with no follow-up information, 
as well as seroconverters whose conversion interval is greater than 15 months. After these 
exclusions, the data available for analysis consist of 1631 seropositive subjects and 276 serocon- 
verters. In this paper we estimate the distribution of times from HIV seroconversion to AIDS. The 
time between HIV infection and seroconversion is thought to average less than 3 months, but can 
be over a year. Thus the distribution we estimate will approximate closely the distribution of 
times from HIV infection to AIDS. 

IMPUTATION METHODS 

Let F (  V I X ,  0) denote the distribution of times to AIDS measured from enrolment time for the 
seropositive group, given covariates X and parameters 0. Let 6and cov (8) denote the maximum 
likelihood estimates and their covariance obtained from the observed information matrix. In our 
case, the sample size is large enough that we can approximate the posterior distribution of 6 by 
N(6, cov(6)). For the seroconverter group let T denote the time from HIV seroconversion to 
AIDS, and let U denote the follow-up time (that is the time from seroconversion to last follow-up 
or AIDS, whichever comes first). Let 6 denote the occurrence of AIDS at time U ,  that is S = l(0) 
denotes AIDS (no AIDS). Let Vdenote the residual AIDS-free time if 6 = 0 (that is the time from 
last follow-up to AIDS) and V = 0 if 6 = 1; thus T = U + V. The basis of the method is to 
estimate the distribution of Tfor the seroconverter group, with use of the (approximately) known 
values of U and information on the distribution of V obtained from the seropositive group. We 
use the imputation technique to ‘complete’ the data. We draw a value of V from the estimated F 
given the values of the covariates at the last visit on each seroconverter who had not developed 
AIDS. We then add this value to the known value of U .  Finally, we use standard survival analysis 
techniques to estimate the distribution of T. We perform the whole procedure multiple times and 
combine the results. The above scheme is the standard multiple imputation approach1’ slightly 
tailored to the aims of the analysis. Table I1 provides complete details of the algorithm. 
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Table I. HIV seropositivity and AIDS occurrence among participants in the study during four 
years of follow-up 

Baltimore Chicago Los Angeles Pittsburgh Total 

Number of 

Number of 

Number of 

participants 1153 1102 1637 1062 4954 

seropositives 340 453 815 215 1823 

seropositives known 
to develop AIDS 78 89 157 33 357 

Number of 

Number of 
seroconverters 87 69 89 68 313 

seroconverters known 
to develop AIDS 3 8 4 4 19 

Table 11. Imputation algorithm 

1.  
2. 
3. 
4. 
5. 
6. 
I .  
8. 
9. 

10. 
11 .  
12. 
13. 
14. 

15. 

16. 

17. 

18. 

19 

D O j = l , J  
Draw B j  from N(6, cov (d)) 

D O i = l , N  
Draw Oi j  from U ( P i ,  A i )  
If di = 1 

T . . = D L . - O . .  I I,’ ? . . = I  I ,  

Else if hi = 0 
Draw vj from F ( V I X i ,  flj) 
VCij  = min ( V , j ,  48) 
Tij = DLi - OIj + VCij  
If Vij.< 48, qi, = 1 
Else if Vij > 48, v i j  = 0 

Form Kaplan-Meier estimate ( K j )  and 
Greenwood variance ( Gj )  using ( Tij,  q i j )  

1 
K = - c K j  

J 

95% confidence interval = ( f - ’  cf- 1,96SE(f)],f-’ [f+ 1.96SE(fl) 

J is number of imputed data sets; N is sample size of seroconverters; Pi (Ai) is date of last visit 
before seroconversion (first visit after seroconversion); DL, is min (date of AIDS, date of last 
follow-up); hi = 1 (0) if AIDS (no AIDS) at time DL,;  X i  are covariate values at last visit; 
f ( K )  = arcsine (K’”). 
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We note the following points regarding Table 11: 

(i) Line 2 is a random draw of 8 from its posterior distribution; thus we incorporate into the 
analysis the uncertainty in the estimated value of 8 from the seropositive group. 

(ii) In line 4 the date of seroconversion is randomly drawn from a uniform distribution that 
covers the possible interval during which we know seroconversion occurred. In this way, 
we incorporate into the analysis the uncertainty associated with the actual date of 
seroconversion. Strictly speaking, whether or not the seroconverter has developed AIDS 
does contain some information about the date of seroconversion within the interval. We 
restricted attention, however, to seroconverters whose interval of seroconversion was at 
most 15 months (for 91 per cent of these seroconverters the interval was less than 8 
months). For these short intervals we assume that a uniform density approximates well 
the conditional density of the date of seroconversion. Choice of the date of seroconversion 
from a uniform distribution on the interval allows us to include seroconverters with 
somewhat wider intervals than if we had used the midpoint of the interval in the analysis. 

(iii) The combination of line 2 and line 8 represents a draw from the predictive distribution of 
V given the covariate value. Thus we have integrated out the dependence on 8, that is 

(iv) In line 9 the distribution of Vis censored at 48 months, which is approximately the largest 
follow-up time from the seropositives. We included this censoring to avoid extrapolation 
beyond the range of the observed times. 

(v) In line 16 there are two components to the final estimate of uncertainty: the usual 
sampling variability (Greenwood’s formulae) estimate, and the between-sample vari- 
ability representing the uncertainty associated with the imputation. The ( J  + 1)/J 
correction is an adjustment for small J,I7 which in our case is negligible since J = 100. 

(vi) In lines 17 to 19 we use the variance stabilizing arcsine root transformation to improve the 
confidence intervals when the estimated proportion who develop AIDS is near zero. 

(vii) For lines 13 to 19 an alternative and computationally simpler scheme is to estimate the 
cumulative hazard H j  ( = - log K j )  and its variance for each imputed data set, calculate 
the final estimate and confidence interval for H, and then invert the transformation to 
obtain the estimates and confidence intervals for the required distribution. We would 
expect the arcsine root and log transformations to give similar results. We preferred 
the arcsine root transformation in this application because of its variance stabilizing 
properties. 

The parametric model used for F is an accelerated failure time model with log-normal 
distribution, that is 

F ( V I X )  = ~ F ( v ~ x ,  e)P(e)de. 

where Vis the residual time to AIDS, Xik is the kth baseline covariate measured on the ith person, 
( 0 , ~ )  are the parameters and e has a Gaussian distribution. This model gave a better fit to the data 
then other models in which e was logistic, gamma or Weibull. The covariates used were (T-helper 
cell percentage)’”, platelet count, haemoglobin and age. We restricted attention to at most four 
covariates. We did consider other covariates (T-helper/T-suppressor cell ratio and T-helper cell 
number), but the combination (T-helper cell percentage)’”, platelet count, haemoglobin and age 
gave the largest maximized log-likelihood. 
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RESULTS AND DISCUSSION 

Despite the fact that platelet count, haemoglobin and age were statistically significant predictors 
of AIDS in the seropositive group, they had negligible influence on the estimated distribution and 
standard errors from the imputation procedure and thus we omitted them in the final analysis. 
The parameter estimates, standard errors and correlation matrix for the model including only 
(T-helper cell percentage)'I2 appear in Table 111. Table IV shows the estimated residual 
AIDS-free distribution evaluated using the maximum likelihood estimates of the parameters 
for various values of T-helper cell percentage. The wide spread of the distribution illustrates how 
variable are the imputed dates of AIDS diagnosis for the seroconverters. 

Table V gives the estimated distribution of times to AIDS and the associated standard errors. 
The estimates and standard errors are based on the Kaplan-Meier estimates (lines 13 and 14 in 
Table 11) whereas the confidence intervals are based on the variance stabilizing transformation 
(line 19 in Table 11). Also given are the estimates from separate analyses of both the seropositive 
and seroconverter data from each of the four centres, with use of only the (T-helper cell 
percentage)'I2 as the covariate in the model. The estimated distribution is consistent with the 
information from other in particular that very few individuals, less than 3 per cent, 
develop AIDS within 2 years of infection but for longer times the hazard rate increases. Most 
studies suggest that about 11 and 32 per cent will develop AIDS within 4 and within 7 years of 
infection respectively, although the effect of other factors, particularly age and mode of transmis- 
sion, may be important.' 1,4 This analysis, by using the multiple imputation technique to extend 
the follow-up, estimates the distribution up to longer times after seroconversion than is available 
using the data from most other studies. The results in Table V apply to gay men; caution should 
be exercised in extrapolation to other risk groups. 

There is some evidence of difference among the four cities, with Chicago having the highest rate 
and Pittsburgh the lowest rate of occurrence of AIDS; but due to the large standard errors these 
differences should not be overinterpreted. 

Also shown in Table V is the distribution of times from seroconversion to AIDS, for the 
combined data with no use of imputation to extend the follow-up time. The estimated distribution 
is similar to that from the full analysis of the combined data, but the longest time is only 42 
months, compared with 84 months with use of the imputation scheme. 

The estimated hazard is 2.5 per cent at 2 years, 8 per cent at 3 years, 8 per cent at 4 years, 9 per 
cent at 5 years and 10 per cent at 6 years. The hazard is calculated with the use of the formula 
12[F^(t + A) - F^(t - A)]/2A[1 - P(t)], where A is 3 months. The apparent levelling of the 
hazard after 3 years is similar to the results of a different analysis of the MACS data,6 and is not 
consistent with the Weibull distribution which has been used commonly in the estimation of the 
incubation period of AIDS. This hazard is more consistent with a log-logistic or a log-normal or a 
gamma distribution or a distribution with a hazard given by a[exp(bt) - l]/[exp(bt) - b t ] .  
Extrapolation of the incubation distribution beyond 7 years, with the assumption that the hazard 
remains constant at 10 per cent per year, suggests that the median time to AIDS is about 9.5 
years. This is similar to the 10.7 years estimated by Muiioz et and the 9.8 years estimated by 
Bacchetti and Moss.7 

The results in Table V are based on 100 imputations ( J  = 100). The ratio of the between- 
imputation variance to the total variance varies depending on the time point. The ratio is 0.27 at 
18 months and 0.48 at 6 years; this difference reflects the fact that the 18 month estimate is based 
mainly on measured data whereas at 6 years the imputation scheme plays an important role. 

We fitted the accelerated failure time model to the seropositive group with the SAS procedure 
PROC LIFEREG. We wrote a FORTRAN program to perform the imputation step; the 
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Table 111. Parameter estimates, standard errors and correlation matrix from analysis of seroposi- 
tive group: residual AIDS-free times in months modelled as log-normal 

Variable 
Standard Correlation 

Estimate error 43 01 0 

Bo (intercept) 1.1402 0.2239 1 .oo -096  -0.18 
0, (T-helper %)I/*  0.6624 00452 - 0.96 1 .oo 0.38 
(r (scale) 1.1438 ,O*O498 - 0.18 0.38 1 .oo 

Table IV. Percentiles* of estimated distribution of residual AIDS-Free Time 

T-helper 
10 15 20 25 30 35 40 

5th percentile 
25th percentile 
Median 
75th percentile 

4 6 9 13 18 24 31 
12 19 28 40 54 73 95 
25 41 60 86 1- 
55 88 

- - 
- - - - - 

* exp [& + 6, (T-helper %)'Iz f &Za], where Z ,  is the ath percentile of N(0, 1). 
t Values larger than 100 months are not shown. 

Table V. Distribution of times to AIDS after HIV seroconversion 

95% 
Number confidence No 
of Estimate * (standard error) interval,? imputationJ 
months Baltimore Chicago Los Angeles Pittsburgh Combined combined combined 

12 
18 
24 
30 
36 
42 
48 
54 
60 
66 
72 
78 
84 

0.000 (0.003) 
0.002 (0.008) 
0,009 (0.01 5) 
0.029 (0.073) 
0.062 (0.032) 
0.082 (0.038) 
0.1 1 2 (0.047) 
0.147 (0.056) 
0.185 (0.063) 
0.227 (0.069) 
0.267 (0.071) 
0.306 (0.079) 

0.016 (0.016) 
0.033 (0.023) 
0038 (0.026) 
0.078 (0.039) 
0.1 1 5 (0.046) 
0.151 (0.053) 
0,195 (0.061) 
0.249 (0.068) 
0.306 (0.076) 
0.353 (0.081) 
0.391 (0.087) 
0.423 (0.090) 

0.010 (0015) 
0.023 (0.020) 
0.03 1 (0.025) 
0,045 (0.030) 
0.086 (0040) 
0.129 (0.046) 
0.175 (0.056) 
0.216 (0.062) 
0.257 (0.067) 
0.294 (0.073) 
0.328 (0.081) 
0.353 (0.089) 

O~OOO (0004) 

0022 (0.021) 
0.016 (0.018) 

0.027 (0.026) 
0.061 (0040) 
0.103 (0.048) 
0,121 (0.053) 
0.140 (0.059) 
0.164 (0.067) 
0190 (0.078) 
0.214 (0.090) 
0240 (0.108) 

0006 (0.006) 
0.019 (0.010) 
0.026 (0.012) 
0.048 (0016) 
0.083 (0.020) 
0.121 (0.024) 
0.155 (0027) 
0.191 (0.031) 
0.229 (0.034) 
0.263 (0.037) 
0298 (0.041) 
0,332 (0,045) 
0.362 (0.052) 

~~ 

(OOOO, 0021) 0006 (0005) 
(0.004, 0.041) 0.017 (0.009) 
(0.008, 0.053) 0.019 (0.010) 
(0.022, 0083) 0.042 (0.017) 
(0.048, 0.126) 0.098 (0.030) 
(0.078, 0.171) 0.174 (0.050) 
(0.105, 0.212) 
(0.134, 0.255) 
(0.166, 0299) 
(0.195, 0.338) 
(0.221, 0.381) 
(0.247, 0.421) 
(0.264, 0465) 

* Based on 100 imputed data sets. 
t Using arcsine root transformation. 
1 Estimate when residual time is censored at time zero, that is no imputation used to extend the follow-up. 

program included calls to IMSL subroutines (GGNSM and GGNPM) to generate multivariate 
and univariate Gaussian quantities. 

Although the analysis is easy to perform and describe, it does involve certain scientific and 
statistical assumptions. A major assumption implicit in the title of the paper is that the 
distribution of times from infection to AIDS is constant over chronological time. There is some 
evidence of a lengthening of incubation times because of the greater availability of partially 
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effective treatments and because of the reduced incidence of Kaposi's sarcoma (a generally less 
severe clinical manifestation) relative to the total incidence of AIDS among homosexual men with 
AIDS. There are known biases" in the analysis of data from seropositive cohorts and with use of 
the enrolment date as time zero when the natural zero time is the unknown date of infection. In 
this situation, however, onc can justify the analysis if all the information about the future course 
of the disease is contained in the current value of the covariates; such covariates are sometimes 
called surrogate response variables." This assumption would seem a reasonable approximation 
to the truth given that the T-helper cell percentage is a good predictor of AIDS. 

Providing notation for the above heuristics, let Vdenote the residual AIDS-free time at time U 
for individuals who seroconverted at time zero and who have not developed AIDS. Let 
{ X ( u ) ,  0 d u < U )  be the history of the time varying covariates and let S(u) be an indicator of 
AIDS, that is S(u) = 1 if AIDS has developed by time u and S(u) = 0 otherwise. Let T be the time 
from infection to AIDS. Let F (  V,  U ,  X ( U ) )  be the distribution of Vgiven X ( U )  as a function of U ,  
that is F(v, U ,  X ( U ) )  = P(V < U I  U ,  X ( U ) ,  S (U)  = 0). To justify the above analysis we need 
to assert that F(V, U ,  X ( U ) )  depends on U only through X(U) .  This follows if we assume that 
P( V < v I U ,  X (  U) ,  S( U )  = 0) = P( I/ < v 1 X (U),  S( U )  = 0). We attempted to check this assumption 
in two ways. First, we estimated at each centre P ( V <  o lX(U) ,  S(U) = 0) for the seropositive 
groups. We found the four estimates with use of T-helper cell percentage as the covariate were 
similar, which, given that the infections in Los Angeles probably occurred slightly earlier and 
those in Pittsburgh slightly later than at the other two centres, provides evidence that favours 
the assumption. Secondly, for the seroconverter group, we estimated P (  V <  u lX(U) ,  U = U i ,  
S(U)=O), where U i = 3 ,  9, 15 and 21 months. Although the sample size, particularly the 
number of AIDS cases, is small, the four estimated models did appear similar. Thus, although we 
are unable to validate the assumptions, the available data did suggest they are not unreasonable. 

The large sample size for the accelerated failure time analysis of the seropositive group suggests 
that N(6, cov (6)) is a reasonable approximation to the posterior distribution of 8, so this should 
not be a concern with the validity of the analysis. In addition, when we set 8 equal to @ in the 
imputation scheme rather than draw it from N(6, cov(@)), it made very little difference to the 
estimated distribution and reduced the standard errors by less than 2 per cent. 

In estimation of the distribution of times to AIDS from a cohort study, one must consider the 
statistical issues of length-biased sampling and left-truncation.' Because the final estimated 
distribution comes from only the seroconverter group, left-truncation does not occur. The 
problem of length-biased sampling for the seropositive group is handled by estimation of the 
residual AIDS-free time distribution conditional on the T-helper cell percentage value. We 
assume that given this covariate the residual AIDS-free time is independent of the time interval 
from seroconversion to the time of measurement of the covariate. 

T-helper cell percentage, the covariate used as a predictor of the residual time in this analysis, is 
subject to measurement error. This suggests that we could obtain a better predictor of AIDS-free 
residual time with use of multiple measurements on each individual at different time points. 
Incorporation of repeated measurements in the analysis would probably reduce the uncertainty 
in the final estimated distribution, although we suspect not by a large amount, because most of 
the information about the future course of the disease is contained in the current covariate 
measurement and the addition of prior measurements may not dramatically improve our 
knowledge for most individuals. In addition, this would require a more complicated model than 
F (VIX,  8), which is a drawback from the appeal of our intuitively simple analysis. 

Other markers, in particular Neopterin, P24 antigen and beta-2-mi~roglobulin,'~~ 2o are 
possible covariates to include in the model. These will likely be more useful additions to the 
T-helper cell percentage than platelet count, haemoglobin and age. These variables, however, 
were measured only at the necessary visits on a small fraction of the study participants. 
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An analogous, more non-parametric multiple imputation approach would be a ‘hot deck‘ 
procedure. In such an analysis, we would find multiple matches for each seroconverter from the 
seropositive group. For each seroconverter we would extend the follow-up by using the exact 
follow-up and AIDS incidence information from the matching seropositive participant. The 
matching would be based on the covariates; we would use the baseline values of the seropositive 
group to match the covariate values from the last visit of the seroconverter group. This scheme 
avoids the need for the parametric modelling in the first stage of the analysis, but it does require a 
method to perform the matceing. 

Another point worth mentioning is that although we have incorporated many sources of 
uncertainty in the final estimate, we did not incorporate the uncertainty in the model selection 
stage. That is, we essentially mined the data to discover that the T-helper cell percentage, platelet 
count, haemoglobin and age were the best covariates to use with a log-normal distribution. We 
then performed the analysis conditional on this selected model and covariates. Strictly speaking, 
one should incorporate the uncertainty associated with the model selection stage, possibly with 
use of the methods suggested by Hodges.” This, however, is not standard practice and the 
computations involved make it unattractive. 

In summary, we used data from a study with 4 years follow-up in conjunction with multiple 
imputation techniques to estimate the distribution of times from HIV seroconversion to AIDS up 
to 7 years after seroconversion. 
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