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Abstract

Large field inflation can be sensitive to perturbative and nonperturbative quantum cor-
rections that spoil slow roll. A large number N of light species in the theory, which occur
in many string constructions, can amplify these problems. One might even worry that in a
de Sitter background, light species will lead to a violation of the covariant entropy bound at
large N . If so, requiring the validity of the covariant entropy bound could limit the number
of light species and their couplings, which in turn could severely constrain axion-driven infla-
tion. Here we show that there is no such problem when we correctly renormalize models with
many light species, taking the physical Planck scale to be M2

pl
>∼ NM2

UV , whereMUV is the
cutoff for the QFT coupled to semiclassical quantum gravity. The number of light species
then cancels out of the gravitational entropy of de Sitter or near-de Sitter backgrounds at
leading order. Working in detail with N scalar fields in de Sitter space, renormalized to
one loop order, we show that the gravitational entropy automatically obeys the covariant
entropy bound. Furthermore, while the axion decay constant is a strong coupling scale for
the axion dynamics, we show that it is not in general the cutoff of 4d semiclassical gravity.
After renormalizing the two point function of the inflaton, we note that it is also controlled
by scales much below the cutoff. We revisit N -flation and KKLT-type compactifications in
this light, and show that they are perfectly consistent with the covariant entropy bound.
Thus, while quantum gravity might yet spoil large field inflation, holographic considerations
in the semiclassical theory do not obstruct it.
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1 Introduction

Inflation is the best theoretical explanation of the large, old and smooth universe with small
nearly scale invariant perturbations. It fits experimental tests perfectly. If, in addition to
the observed scalar density fluctuation, tensor mode fluctuations of the CMB are directly
observed, we could probe inflation in great detail. If these modes are generated by quantum
fluctuations of the gravitational field, a direct observation by itself would imply that the
effective field theory (EFT) models of inflation required to generate large tensor modes would
have to operate up to scales around the GUT scale, which is close to the string or 10d/11d
Planck scale in many conservative string theory scenarios. Moreover, to yield sufficiently
long inflation such models would have to have very flat potentials over super-Planckian field
ranges [1, 2].

At such scales and over such field ranges, quantum field theory and quantum gravity
effects correcting the dynamics can be significant. In this light it is reasonable to ask whether
quantum gravity might provide any general constraints on these models, independent of a
specific realization in string theory. While we do not have a complete theory of inflation in
quantum gravity yet, there are hints and clues about how quantum gravity might influence
the low energy theory. The two lines of inquiry which have received particular attention
recently are the “weak gravity conjecture” (WGC) of [3] and the covariant entropy bounds [4].
The WGC uses some features of black hole entropy to place an upper bound on the mass of
charged particles and/or the action of instantons leading to corrections to the axion potential.
This can constrain some axion inflation models such as [5–8] for which the axion potential
is of the sinusoidal form expected from the dilute gas approximation for instantons. There
are more tenuous arguments [9–11] that axion monodromy inflation [12–29] is constrained
by such considerations as well, although at present they are not excluded.

The argument from the covariant entropy bound [30] is based on the following logic. If
there are many light weakly interacting species and a sufficiently long inflationary epoch1

(or, a long lived metastable de Sitter space), the large number of species will thermalize
with gravity and overwhelm the geometric entropy. The setup is especially interesting as
string-motivated inflationary constructions often consist of low energy theories with N light
species, N � 1, which are weakly coupled to each other in the IR. According to the argument
above, such models violate the covariant entropy bound, which requires that the entropy in
a given Hubble-sized patch does not exceed the Gibbons-Hawking entropy. Requiring the
validity of the covariant entropy bound thus constrains N , the couplings of these species,
and the duration of inflation (or the lifetime of the metastable de Sitter space).

In what follows we will focus on this latter issue2. We specifically show that even for
field theories with many light species, a correctly renormalized low energy theory, including
the gravitational couplings, obeys the covariant entropy bound since the number of light

1For earlier considerations of bounds on duration of inflation see [31,32].
2We stress that while this issue and its analysis at present appear distinct from the arguments about

WGC in [3], ref. [9] has suggestion a strong form of the WGC may be related to the entropic arguments
in [30]. We have nothing to say about this possibility, but it is true that both are ultimately related to
entropic considerations.
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species cancels from the entropy formulas to the leading order. Essentially, this arises since
even if one starts with many weakly coupled species of particles, when gravity is turned on
the renormalized effective field theory becomes strongly coupled well below the Planck scale,
MUV

<∼ Mpl/
√
N , which sets a cutoff on calculations using weakly coupled, semiclassical

gravity. Beyond this scale, one needs a full-blown UV completion to follow the details of the
dynamics. Nevertheless, the low energy description remains self-consistent, and obeys the
semiclassical limits, as one might have expected from decoupling.

In more detail, the argument that entropy bounds are violated begins with an estimate of
the contribution to the total de Sitter entropy of a field φ. The first step is the identification
of a cutofff MUV for the dynamics of φ. For axions, this is identified with the axion decay
constant f , which sets the periodicity in field space φ ≡ φ + 2πf . The next step is to
count the number of patches of sizeMUV on the de Sitter horizon, leading to a contribution

Sφ ∼M2
UV /H

2, where H is the Hubble scale. One then demands that
∑

i Sφi ≤
M2

pl,4

H2 . Then

if
√
NMUV > Mpl,4, there appears to be an apparent violation of the covariant entropy

bound due to a species problem.
The hole in this argument is that the formula S ∼ A/(4GN) for 4d de Sitter or in-

flating universes is valid only when the underlying (semiclassical) 4d gravity is valid. This
means that one must take into account the loop corrections to the gravitational sector, and
consistently analyze the renormalized 4d effective field theory of gravity, accounting for the
contributions of all the many light species to the relevant physical quantities which control
the dynamics, including the cutoff and the dimensional couplings. In particular the route to
the proper renormalization procedure must incorporate the following:

• The correct cutoff to impose is the scale at which 4d semiclassical gravity breaks down.
This is generically at a scale M2

UV ≤M2
pl/N . This cutoff follows from the well known

behavior of perturbative renormalization of gravity which involves the inclusion of
higher dimension of irrelevant operators in the gravitational sector, which introduce a
perturbative spin-2 ghost, with a mass ∼ 1/MUV [33].

• The correct value of GN ∼ 1/M2
pl to use is the renormalized Newton’s constant at this

scale, 1/GN,ren ∼ M2
pl ∼ M2

pl,bare + NM2
UV . The inclusion of the contribution of N

species at the scale MUV evades the species problem.

• The axion decay constant f and the scale MUV may be very different. Specifically,
MUV can be much smaller than the period. This may arise very simply in setups with
intermediate-mass particles, as we will show explicitly using a two-axion model [34,35].

Footnote 2 in [30] dismisses significant renormalization of Newton’s constant in models
with many species of light fields, claiming there can be cancellations between corrections.
The calculations in [36,37] show that while minimally coupled scalars and Weyl fermions con-
tribute with the same sign, Abelian gauge fields contribute with the opposite sign. However,
this is not a way out. First, for any field with spin less than 2, the divergent contribu-
tions to the entanglement entropy defined via the replica trick [38] have been shown to be
precisely taken into account by the same fields’ contribution to the renormalization of the
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gravitational action – see [39, 40], and the references therein.3 Secondly, Newton’s constant
is not the only place that quantum corrections to the gravitational action will occur, and the
relative contributions of different fields will differ in these other terms, so that the estimate
Mpl/

√
N of the strong coupling scale remains appropriate.

While the itemized points above are individually discussed in the literature, the recurring
confusions suggest that a unified and coherent discussion in the context of large field inflation
is warranted. Hence we will provide a thorough review of these arguments (§2), some addi-
tional calculations supporting them in cosmological settings (§3), and a re-examination (§4)
of the claimed constraints on N -flation and KKLT-type compactifications that are explicitly
discussed in [30].

2 The strong coupling scale for gravity and the “species

problem”

The classic calculations of the Bekenstein-Hawking entropy for black holes, and the Gibbons-
Hawking entropy for cosmological spacetimes, are based crucially on semiclassical gravity.
One can only use these results in the regime of validity of the (renormalized) semiclassical
theory, and one must use the physical, renormalized couplings and scales at these energies.
In this section we will describe the renormalization procedure and extract the behavior of
the renormalized quantities, particularly the renormalized Planck scale, as a function of
the number of light species of particles which appear in the loops that contribute to the
effective action of gravity. We will also note that the higher dimension irrelevant operators
in the gravitational sector, which arise from the loop corrections, yield a clear cutoff that
determines the validity of the semiclassical approximation. These points have been noted
in the context of black holes, via a variety of arguments elucidated below. We will close
the section by recalling the emergence of the strong coupling scale in compactifications from
d > 4 theories, and in the Randall-Sundrum scenario.

2.1 Perturbation theory arguments

We will first revisit perturbative renormalization of gravity due to exchange of virtual field
theory degrees of freedom, starting with Einstein-Hilbert theory perturbatively quantized
around a vacuum with maximal symmetry. The case of the Minkowski vacuum has been
studied extensively [33,49,50]. The generalization to de Sitter vacua is straightforward, and
has been considered in the context of computing black hole entropy in curved backgrounds.
Here we will follow [37,51,52]. In this subsection we will focus on the renormalization of the
action. Later on we will see how those results affect the horizon entropy.

If we start with the bare gravitational Lagrangian

Lg =
1

16πGN

(R− 2Λ)− Lm(φ) +
1

4π

[
aR2 + bRµνR

µν + cRµνκρR
µνκρ

]
(1)

3The interpretation of the gauge field contributions to the entanglement entropy is a subject of ongoing
research [41–48].
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where Lm is the quantum field theory of some matter, the bare quantities are GN , the bare
Newtons constant, Λ, the bare cosmological constant, and a, b, c, the higher dimension
irrelevant operator bare couplings. These terms are set to cancel the one loop divergences
in the theory due to matter couplings [49]. For simplicity we will take the matter sector to
consist of N minimally coupled scalar fields, with only quadratic Lagrangians,

Lm =
N∑
j=1

1

2

[
∂µφj∂

µφj +m2
jφ

2
j

]
. (2)

This is sufficient for our purposes. Generalizations to other matter sectors are straightfor-
ward, and as we will discuss below, do not change the essential conclusions.

The one-loop contributions to the effective action from the matter sector will generically
exhibit quartic, quadratic and logarithmic UV divergences [49]. The quartic UV divergence
is the usual divergent contribution to the cosmological constant. If we truncate the matter
theory to the quadratic Lagrangian (2) it may or may not appear depending on the regulator.
The quadratic divergences are the wave-function renormalizations of the kinetic terms in (1),
and include renormalizations of the additional “R2” terms in the action.

μνγ

Τ (φ)αβ Τ (φ)αβ

Figure 1: One loop graviton vacuum polarization diagram.

To compute the one loop integrals, one first needs to regulate the divergent terms. We
do so by introducing a system of Pauli-Villars regulators for every matter field in (2). The
scheme is conceptually the same as in flat space, where one introduces a regulator for every
divergent loop. If the cutoff is above the inverse curvature scale we can start with a locally flat
region of space, introduce the regulators with minimal coupling to gravity. Because there are
five distinct types of required counterterms, reflecting five different divergences, one needs five
regulators for each matter scalar [52], denoted by φi (i = 1, . . . , 5) and coming with different
statistics, ∆i (where ∆i = ±1 for commuting and anticommuting fields respectively). The
regulator masses mi are much larger than the matter ones in order to formally cancel the UV
divergences, and define the UV cutoff, µ. The choice of the regulators and their statistics
are determined by the requirements

5∑
i=0

∆i = 0 and
5∑
i=0

∆im
2
i = 0 (3)
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ensuring finiteness of the regulated theory. Here m0 is the mass of the original scalar field
φ ≡ φ0. Using this regularization procedure, the one-loop effective action is given by [52]

Lg = − 1

8π

(
Λ

GN

+
γ

4π

)
+

R

16π

(
1

GB

+
δ

12π

)
+

1

4π

[(
a+

α

576

)
R2 +

(
b− α

1440π

)
RµνR

µν +
(
c+

α

1440π

)
RµνκρR

µνκρ
]

(4)

where

α = N
5∑
i=0

∆i logm2
i , δ = N

5∑
i=0

∆im
2
i logm2

i , γ =
N

2

5∑
i=0

∆im
4
i logm2

i . (5)

These expressions are in fact dimensionless once the logs are summed up, due to the fact that
the ∆i are alternating numbers. One thus obtains the renormalized cosmological constant
and Newton’s constant

Λren

Gren
N

=
Λ

GN

+
γ

4π
,

1

Gren
N

=
1

GN

+
δ

12π
. (6)

Furthermore, the second line of the expression (4) shows how, due to covariantization of the
action, the wave function renormalization of the graviton depicted by the Feynman diagram
of Fig. (2.1) forces the introduction of the counterterms involving the “R2” terms.

The renormalized values of Newton’s constant and the cosmological constant Gren
N and

Λren are not calculable but are completely arbitrary. They are inputs to the theory which
need to be measured4. One needs to put in two renormalization conditions, which specify
the values of Gren

N and Λren at the subtraction point. This implies that the renormalized
quantities depend on the subtraction point scale in the same way as the regulator masses.
Taking the subtraction point to be the field theory UV cutoff implies that the renormalized
Newton’s constant depends on it in the same way as on the regulator masses, 1/GN ∼
O(1)NM2

UV , since mi ∼MUV for i = 1, . . . , 5. Therefore, the renormalized Planck scale is

M2
pl = O(1)NM2

UV +M2
pl,bare , (7)

where the last term includes any additional contributions from the gravitational sector,
additional UV degrees of freedom, and finite IR corrections.

When fermions are included, similar conclusions apply. Indeed, [37,56,57] point out that
upon integrating out N0 minimally coupled scalars and N1/2 fermions above the cutoff Λ,
the one-loop effective action for the gravitation field has the form

S1−loop ∼
∫
d4x
√
g
(
M2

pl,bare + c1N0M2
UV + c2N1/2M2

UV

)
R , (8)

where c1, c2 have the same sign. The renormalized Planck mass is thus

M2
pl = M2

pl,bare +
(
c1N0 + c2N1/2

)
M2

UV . (9)

4See [53–55] for a discussion of the measurement subtleties.
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In [37,58,59], it was shown that gauge fields and nonminimally coupled scalars contribute
negative shifts to the renormalization of Newton’s constant. Thus, one may object that in
some theories Newton’s constant may receive a small renormalization due to cancellations
between different fields running in the loops, and our resolution of the species problem does
not apply. However, if we compute the entanglement entropy via the replica trick [38], the
divergences in that calculation are nonetheless precisely taken care of by the renormalization
of the gravitational action: see [39, 40, 45] and the references therein. The intepretation of
the contribution of gauge fields is an active subject of research [41,42,44–47]. Nonetheless, it
appears to be consistent to take the entanglement entropy as computed by the replica trick
to account for the contribution of light fields to the gravitational entropy [39, 40]. If we do
so there is still no species problem.

Furthermore, Newton’s constant is not the only term in the gravitational action to get
renormalized: the loop contributions to the (curvature)2 will involve different combinations
of the effects of different species, without cancellations.

The upshot of this is that any truncated effective theory of QFT coupled to gravity,
with higher dimension irrelevant operators constructed from geometric invariants, is strongly
coupled beyond MUV . The action (4) already shows this, since it contains at least a spin-2
massive ghost, with a mass mghost ' Mpl/

√
cren ' Mpl/

√
N , where5 cren = c + α

1440π
as in

(4) [33]. The ghost will generically remain present at any finite loop order of the expansion,
and without a full UV completion it is impossible to determine if the theory can be extended
above this scale. This has been noted previously in the cosmological context in [60–62].

In summary, to consistently do semiclassical 4d gravity calculations, one must restrict
the theory to scales below the physical cutoff

MUV
<∼
Mpl√
N
. (10)

If Mpl is fixed by classical gravitational measurements and N is increased, the cutoff of the
QFT must in general be correspondingly lowered. The inequalityM2

pl ≥
(
c1N0 + c2N1/2

)
M2

UV ,
implied by (9), will be saturated when N � 1, yielding the scaling M2

pl = NM2
UV . This

occurs, for example, in RS2 braneworlds [63,64] and in induced gravity [50,65].

2.2 Black hole entropy

The species problem appears in considerations of black hole entropy when one tries to include
the effects of large numbers of matter fields. There are two apparently different approaches
which however yield the same answer (see [39, 40] for up-to-date versions of the relevant
arguments, and for surveys of prior work).

One approach is to compute the free energy for a black hole as a function of the tem-
perature, via computing fluctuations about the Euclidean saddle point, take the appropriate
derivatives with respect to temperature. This gives a thermal entropy whose classical con-
tribution is the Hawking-Bekenstein entropy.

5Here we ignore the numerical factors in the renormalized value of c because they can be compensated
by the logs in realistic models with very light particles.
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The other approach is to interpret the black hole entropy as an entanglement entropy.
Then the one-loop contributions from the matter fields can be computed following the pre-
scription of [38,66,67]. Technically, they involve changing the temperature without changing
the horizon radius, introducing a conical deficit angle into the spacetime. However, the result
for the entropy is the same as the saddle point approach given above. In four dimensions,
the calculation involves divergences which are quadratic in the cutoff and which scale with
the number of species. Such divergences are absorbed precisely by the renormalization of
the gravitational effective action. The resulting entropy will be the Hawking-Bekenstein or
Wald entropy for the black hole, with the renormalized Newton’s constant that is the correct
physical gravitational coupling at low energies. The species problem never appears so long as
one writes the Bekenstein-Hawking entropy in terms of physical couplings. The calculation
also confirms that the appropriate cutoff is precisely the formula (10) [68].

The arguments reviewed above agree with the following qualitative picture of the black
hole from the point of view of a static Schwarzschild observer. Static observers a proper
distance ε from the black hole see a local Unruh temperature of order Tu = 1/ε. One
can consider the region within a distance ε from the horizon to be a thermal membrane or
”stretched horizon” [69] with temperature Tu. For N species lighter than Tu, the thermal
entropy of this membrane is S = NT 3

uV where V = εA is the volume of the stretched
horizon, A is the area of the black hole. Setting ε = MUV , we find S = NM2

UVA which
parametrically matches the Hawking-Bekenstein entropy when MUV = M4/

√
N [70–73].

Increasing the cutoff further takes us out of the range of 4d semiclassical gravity, and requires
knowledge of the UV completion.

The precise details of the analogous calculations for the gravitational entropy of cosmo-
logical horizons are still not available, although there are arguments that the considerations
above should extend to such cases [71, 74]. Furthermore, the qualitative discussion of the
paragraph above applies directly to the de Sitter horizon as seen by a static observer.

Since the work of [75], it has been clear that the Bekenstein-Hawking entropy for black
holes in string theory should be considered as a statistical entropy, counting the density of
states as a function of the energy. Recent advances in our understanding of the emergence of
thermodynamics in closed quantum systems [76–79] have shown that the entropy of a ther-
mal system can be understood precisely as an entanglement entropy between observed and
unobserved factors of the Hilbert space. It would be interesting to explore the equivalence
between the semiclassical gravity calculations of each, in this light. It may also help shed
light on the nature of de Sitter entropy.

2.3 Some examples of the strong coupling scale

We close this section by noting previous concrete examples of a strong coupling scale for
gravity below the Planck scale. A very simple example [57, 80] is a D-dimensional theory
(say, string theory) with a fundamental Planck scale MD < M4, compactified on a d = D−4-
dimensional manifold with volume V = LdKK . The number of KK modes between LKK and
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MD is, roughly, (LKKMD)d; the strong coupling scale is then

M2
UV =

M2
4

(LKKMD)d
=

LdKKM
d−2
KK

(LKKMD)d
= M2

D (11)

so 4d semiclassical gravity breaks down at the fundamental D-dimensional Planck scale MD.
We can also consider a general case in which N3 D3-branes are close together within

some 6d compactification with volume V ∼ R6
KK ; this corresponds to the UV completion of

the previously mentioned RS braneworld scenario [63,81]. In this case, N2
3 = (Rads/`p,10)

8 is
the number of light species, where Rads is the scale of warping near the D3-branes; deep in
the core of the D3-brane geometry, it is the curvature radius of the associated anti-de Sitter
background. The strong coupling scale for 4d gravity is

M2
UV =

m2
pl

N2
3

∼ R6
KK

R8
ads

. (12)

Now, if Rads < RKK , so that the D3-brane throat is smaller than the KK scale, M2
UV �

1/R2
ads, and the theory becomes effectively five-dimensional at scales below M2

UV . As we
increase the number of D3-branes, we have a strongly warped compactification that is well-
described by a RS braneworld scenario [64, 82]. The 4d Planck scale is δm2

pl = m3
pl,5Rads,

where mpl,5 is the 5d Planck scale; the central charge of the dual CFT is c ∝ (Rmpl,5)
3.

This implies a UV scale MUV ∼ mpl√
c
∼ 1/Rads. Thus the theory becomes effectively five-

dimensional at MUV .

3 Renormalization of de Sitter entropy

To determine the gravitational entropy of N massive (light) scalars in de Sitter space we
work in the ”static patch” of 3 + 1-dimensional de Sitter space, with the metric

ds2 = −g(r)dτ 2 +
1

g(r)
dr2 + r2dΩ2

3 , g(r) =

(
1− r2

r2H

)
, (13)

where H2 = 1/r2H is the de Sitter Hubble constant. The section of the geometry r ≤ rH is
the causal patch of a single observer at r = 0, and rH is the location of her event horizon.
One can define a Hamiltonian as the infinitesimal generator of translations in static time τ .
Let S(β) be the thermal entropy at the Gibbons-Hawking temperature T = 1/β = H/2π
computed in the canonical ensemble defined with respect to this static patch Hamiltonian.
The covariant entropy bound states that S(rH) = A/4GN .

We want to determine the contribution of N scalars to this entropy6. The blueshift near
the horizon implies that a large number of modes are concentrated there, and leads to a
divergence. To deal with these and relate them to the renormalization of the gravitational
effective action, we follow the strategy of [52] which ensures that regularization of the entropy

6A similar calculation was done in [74] for 2 + 1-dimensional de Sitter space.
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and the gravitational effective action are done in the same scheme [58]. First, we impose
“brick wall” boundary conditions (ie Dirichlet boundary conditions) on all scalar fields at
a small but finite distance from the horizon. This surface acts not only as a position-
space regulator, but also a momentum space regulator, by isolating the leading quadratic
divergence coded by the blueshift in the near horizon limit. We use the renormalization
prescription for the one-loop gravitational effective action discussed above to renormalize
the entropy. The resulting contribution to the gravitational entropy precisely matches the
renormalization of Newton’s constant, extending the Bekenstein-Gibbons-Hawking formula
to one loop in de Sitter space. We close with some comments regarding the relationship to
entanglement entropy.

3.1 Renormalizing the entropy of N scalar fields

Consider a free, massive scalar field in de Sitter space. To regulate the theory in this
background, we impose the “brick-wall” boundary condition

Φ = 0 at r = rH − ε . (14)

Here ε is the coordinate distance of the brick wall regulator from the horizon rH = 1/H.
An an infrared cutoff is not necessary since the static patch of de Sitter is finite. We now
compute the free energy of this scalar at a temperature T , which in the end we will set to
be the Gibbons-Hawking temperature TGH = H/2π.

We next determine the mode expansion for the the energy levels E(n, l, l3) of the field Φ.
Here l is the total angular momentum and l3 the angular momentum along some fixed axis.
The field equation for the modes with energy E and angular momentum quantum numbers
l, l3 are Φ = e−iEτY l3

l (θ, ϕ)φ(r), where the radial modes obey

1

r2
∂r
(
r2g(r)∂rφ

)
+

(
1

g(r)
E2 −m2 − l(l + 1)

r2

)
φ = 0 . (15)

Close to the horizon, the energy blueshift as g(r) → 0 guarantees that the WKB approxi-
mation exp(±i

∫
k(r)dr) where

k2(r, l, E) =
1

g2(r)
E2 − 1

g(r)

(
m2 +

l(l + 1)

r2

)
, (16)

will give a good accounting of the behavior and multiplicity of modes with a given energy,
πn =

∫ rH−ε
L

drk(r, l, E). Moreover, the blueshift also guarantees that this region gives the
dominant contribution to the entropy which diverges in the near horizon limit. Hence, the
leading order contributions to the entropy will come from precisely the modes in this regime.
Within this approximation, the number of states up to energy E is

ρ(E) =
1

π

∫ rH−ε

0

dr

∫ lmax(E)

0

dl(2l + 1)

√
E2 − g(r)(m2 + l(l+1)

r2
)

g(r)
, (17)
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where lmax is the value at which the argument of the square root vanishes, and the summation
of angular momenta l is approximated by an integral, which is valid for l � 1 near the
horizon.

Now, for N identical scalars, the free energy at inverse temperature β is given by

e−βF =
∏
n,l,l3

1

(1− e−βE(n,l,l3))N
. (18)

Hence, βF = N
∫
dE dρ(E)

dE
ln(1− exp(−βE)) = −βN

∫
dE ρ(E)/(eβE − 1) after integration

by parts. Further, following [83], since the dominant contributions will come from the highest
energy modes, which have large l, their density of states and total number of modes with a
given energy behave as l(l + 1) ∼ l2, (2l + 1) ∼ 2l. Integrating over l in (17) then gives

F = −2N

3π

∫ ∞
0

dE
1

eβE − 1

∫ rH−ε

0

dr
r2

g2(r)

(
E2 − g(r)m2

)3/2
. (19)

Rewriting g(r) = − 2
rH

(r − rH) − 1
r2H

(r − rH)2 to extract the divergences in the limit ε → 0

we find

F = −2N

3π

∫ ∞
0

dE
E3

eβE − 1

r4H
4

[
1

ε
+

(
1

rH
+

3m2

rHE2

)
log(ε/rH) +O(1)

]
= −Nπ

3

90

r4H
β4

1

ε
− Nπ3

90

r4H
β4

(
1

rH
+

15

2

β2m2

π2rH

)
log(ε/rH) + finite terms . (20)

The free energy has two divergences, an inverse power and a logarithmic one. These are
the cutoff-dependent contributions which are subtracted off by the counterterms of the the-
ory, defined by the regulators. In order to subtract these divergences using the prescription
for the renormalization of the effective action (20), we must compute these quantities in the
same scheme [58]. Since – as [52] – we are using the Pauli-Villars regulators, the total free
energy for N scalar fields and the system of Pauli-Villars regulators for each of them is

βF = β
5∑
i=0

∆iF
i (21)

where F i is (20) computed using the mass, mi, of the i’th species. Because the individual free
energies are replicas of each other, their divergences will be the same as in (20). So when we
extract them from the total free energy (21), the sum rules (3) imply that these terms vanish.
Of course, this means that in the regulated theory the divergences reappear as the mi →∞
divergences. These terms are renormalized by the counterterms in the effective action. In
principle, we would have to compute the finite terms in (20) to identify them. However, here
we can use a shortcut, noting that that the counterterms are defined by taking the limits
mi → ∞ at the same rate. Thus these divergences will behave in exactly the same way as
the blueshift divergences which occur when we move the brick wall to the horizon. Since the
blueshift formula yieds Eblue = E/g1/2 = E

√
rH/(2ε), we can simply trade m2

i ln(ε/rH) for

10



m2
i ln(m2

i ) in each contribution ∝ m2
i ln(ε/rH) in the sum of F i’s. This yields the dominant

contribution to the regulated free energy in the limit mi →∞7

F = −Nπ
12

r3H
β2

5∑
i=0

∆im
2
i logm2

i + . . . . (22)

Given the free energy F (β), S = β2∂F/∂β. So the leading divergent contribution to the
entropy as the cutoff is taken to infinity is

S =
Nπ

6

r3H
β

5∑
i=0

∆im
2
i logm2

i ‘ . (23)

This is the leading contribution of N species of particles and their Pauli-Villars regulators to
the total entropy in de Sitter causal patch, coming predominantly from the modes which are
accumulated near the horizon. Now, since this system is in equilibrium with the background,
we set the temperature β−1 to the Bekenstein-Gibbons-Hawking temperature of de Sitter
space TGH = H/2π, or alternatively we use rH = 1/H = β/(2π). Recalling that the horizon
area is A = 4πr2H ,

S =
N

48π
A

5∑
i=0

∆im
2
i logm2

i =
A

48π
δ , (24)

where we have employed the definition of the counterterm δ from (5). When we add this
UV contribution to the bare Bekenstein-Gibbons-Hawking entropy of de Sitter, we obtain
simply the finite renormalized entropy

Sren = SdS + S =
A

4GN

+
A

48π
δ =

A

4Gren
N

. (25)

The divergences match: the leading order N dependence precisely cancels. So the species
problem never appears when the de Sitter entropy is correctly calculated using the physical
renormalized Newton’s constant.

We note that this conclusion is expected to remain correct even if the entropy is calcu-
lated as the entanglement entropy (from fields with spins < 2). In the case of black holes,
the contribution of background fields to the entanglement entropy and Gibbons-Hawking
free energy match precisely. A similar argument holds for quantum fields on de Sitter back-
grounds [40,84]8.

4 Effective field theory and inflation

The discussion in the previous sections sets the stage for the analysis of inflation in theories
with many light matter species. Only after we have renormalized the gravitational sector of

7There is also a purely logarithmic divergence coming from the first logarithmic term in (20). We expect
that this should match the renormalization of the (curvature)2 couplings as in [52], if we extend the Gibbons-
Hawking entropy to the Wald entropy, but we will not pursue that here.

8Calculations of the de Sitter entropy in flat slicing can be found in [85–87].
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the theory, as well as the standard local QFT matter sector, can we consider the question of
corrections to the scalar and tensor power spectrum of CMB fluctuations, the inflaton sector
dynamics and the viability of long inflation against both perturbative and non-perturbative
corrections from both field theory and quantum gravity.

With these points in mind, we will review the general aspects of large field inflation
driven by axions, and the conditions and reasons for its viability as a QFT. We will then
revisit some of the explicit arguments in [30] regarding non-perturbative quantum gravity
effects, and reconsider their implications for the correctly renormalized low energy theory.

4.1 Inflation with many species

The standard picture of inflation and its main observable prediction, the CMB fluctuations,
rely on the validity of semiclassical 4d gravity at the Hubble scale H, which is the curvature
scale of the background during the inflationary epoch. In light of the discussions above, it is
clear that M ren

pl /
√
N ≥MUV � H is required for this picture to be valid. This is manifest

in calculations of loop corrections to the scalar and tensor power spectrum. The metric
couples to matter fields with Planck-suppressed couplings, so a 4-d calculation of the density
fluctuations (assuming the locally Lorentzian vacuum, aka the Bunch-Davies vacuum, for
the inflaton and graviton fluctuations) will produce a spectrum of perturbations [88–91]9

P = Ptree

(
1 + cN

H2

M2
pl

+ . . .

)
= Ptree

(
1 + c′

H2

M2
UV

+ . . .

)
(26)

for both scalar and tensor modes, where c′ � 1 if MUV � M4/
√
N . For example, the N

species could be Kaluza-Klein modes; the resulting UV scale is the 10d Planck scale [88]. This
picture arises from a general effective field theory analysis of the inflaton-graviton sector [88]:
higher powers of H come from terms in the effective action that are of higher power in the
curvature, are dictated by the graviton wavefunction renormalization, and will be suppressed
some UV scale MUV , which plays the role of a cutoff of the low energy theory. It is clear
that the corrections are only small ifMUV > H, which is at any rate required for the validity
of semiclassical gravity at the scale H. For inflation with the minimal required number of
efoldings, there is also the question of initial states which deviate from the Bunch-Davies
vacuum, which we will ignore in what follows. As long as the inflationary dynamics obeys
the standard rules of EFT, these deviations are limited [92]. The main physical observables
do not depend significantly on the number of light species to the leading order, because they
are automatically expressed in terms of the renormalized 4d physical quantities.

4.2 Axions: inflation and N-flation

4.2.1 Axions as inflatons

Axions are perfect candidates for inflatons: the periodicity of the axion φ ≡ φ+2πfa protects
the potential from perturbative corrections, allowing for a relatively shallow potential. In

9Up to logarithmic corrections [89–91].
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the cases that the potential is generated by a dilute gas of instantons and takes the form
V ∼ Λ4 cos(φ/fa), inflation requires a fairly large value of fa ∼ Mpl, to support long and
uninterrupted slow roll regime that can sustain at least ∼ 60 efolds of inflation [5]. There
has been much work on constructing axion inflation models, and we will not review that
work here. Instead, we will focus on the aspects of axion-driven inflation, with a quasi-de
Sitter geometry, relevant for understanding possible entropy bounds.

As noted above, to ask questions about the validity of entropy bounds in a quasi-de Sitter
space, we must first determine the regime of validity of the semiclassical theory. Ref. [30]
argues that the proper cutoff at which to evaluate the de Sitter entropy in a theory with
an axion is the axion decay constant fa. The argument is that the composite operator
φ2(0), evaluated with a momentum cutoff MUV , scales as M2

UV . So, the argument goes,
when MUV ∼ fa, the fluctuations in the scalar field completely delocalize it on the circle
φ ≡ φ + 2πfa, preventing the semiclassical description of the scalar as a rolling in a single
perturbative sector, and smearing it over the full covering space. An alternative reading is
that the two-point function 〈φ(x)φ(y)〉 ∼ 1/|x − y|2 at short distances, and for separations
|x− y| ∼ f−1a the fluctuations between points cover the entire target space circle.

As we will now explain, this argument is not correct. In fact, the cutoff MUV can be
either larger or small than fa without leading to any inconsistency. First of all, if the cutoff
MUV is smaller than the period fa, fluctuations at the cutoff would obviously do little in the
way of smearing the expectation value of the axion over the scale fa. This might be countered
by claiming that the cutoff should be close to Mpl. Yet, as we have seen previously, this is
not the case in many models of interest. Secondly, the estimate of the scale of φ2(0) in [30]
ignores the renormalization of this composite operator. In fact the estimate 〈φ2(0)〉 ∼ M2

UV

is really the regularized quadratic divergence of the cosmological constant term in de Sitter
space with a massive scalar field, and it will be subtracted off in the correct renormalization
procedure. Indeed, in the flat space vacuum, 〈φ2(0)〉 = 0 after properly renormalizing the
operator. In de Sitter space, there is an IR contribution only to the renormalized operator,
and 〈φ2(0)〉 ∼ H2.

The alternate point that 〈φ(x)φ(y)〉 ∼ 1/|x− y|2 leads to the axion being delocalized at
the scale 1/fa is true. However, the correct interpretation of this phenomenon is that fa is
the strong coupling scale for the axion dynamics. The axion potential typically arises from
instantons which couple to the axion via an irrelevant operator ∼ φ

fa
F ∧F . Periodicity of the

axion guarantees that any direct dependence on φ (as opposed to its derivatives) must be a
periodic function of φ/f , ie a harmonic series in cosφ/fa. If we write a low-energy effective
field theory by expanding this about a minimum, the expansion will be in powers of φ/fa,
thus indicating that fa is a natural scale for strong coupling, beyond which the potential
cannot be approximated by the first few terms in the expansion.

There is no reason for the axion sector strong coupling scale to be the one at which 4d
semiclassical gravity breaks down. For example, for the cases where fa < MUV , the UV
completion of the axion sector can be described fully in the four-dimensional EFT below
MUV . The axion can be UV-completed as a phase of a Peccei-Quinn complex doublet
Φ = ϕeiθ, with potential V (Φ) = λ(|Φ|2 − f 2

a )2. After symmetry breaking and integrating
out the heavy radial mode, the axion decay constant is the Peccei-Quinn vev fa. The mass of
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the radial mode is mϕ ∼
√
λfa, and as long as the theory is weakly coupled, λ� 1, we have

mϕ � fa. The cutoff of the low energy theory with only the phase retained is ∼ mϕ, where
the low energy theory of the axion with interactions governed by higher dimension operators,
generated after integrating the radial mode, becomes strongly coupled and violates unitarity.
To resolve this, all one needs is to integrate the radial mode back in at scales above mϕ. This
happens entirely within the realm of the EFT with gravity belowMUV . In more complicated
cases, as in string theory compactifications, the UV completion will depend on the details of
moduli stabilization. Of course one should understand this UV completion properly when
accounting for the axion sector’s contribution to the de Sitter entropy below the scaleMUV .

For axion decay constants near the Planck scale, four-dimensional gravity typically breaks
down at scales well below fa, as also noted in [10]. In particular, if the Kaluza-Klein scale
is below fa, most string theory axions lift in 10 or 11 dimensions to a higher-form gauge
field at this scale. The worry arises if one requires fa > Mpl as in the early models of axion
inflation [5]. The QFT sector of such models appears to behave without a problem. However
nonperturbative gravity effects – as exemplified by wormhole calculations of the corrections
ot the low energy actions – may be very dangerous for such models [3,93–96]. Moreover, the
WGC is in tension with elementary axion theories with such large fa [3, 9–11,97,98].10

However it is possible to realize low energy axion models with a very large effective fa,
above the actual strong coupling scale of the theory (whether the strong coupling dynamics
is from local QFT degrees of freedom, or from quantum gravity). Examples are provided by
various realizations of axion monodromy. We provide a specific example here for illustrative
purposes, inspired by [34, 35]. The purpose is not to build a complete model of inflation,
but to illustrate how to generate a hierarchy between an effective fa and the actual strong
coupling scale MUV � fa, within field theory.

Consider a simple case involving two axions, coupling via topological terms to three
different gauge groups, in non-orthogonal linear combinations:

Lint =
φ1

f1
trF1 ∧ F1 +

φ2

f2
trF2 ∧ F2 +

(
φ1

f1
− nφ2

f2

)
trF3 ∧ F3 , (27)

where n is an integer. Provided that all the gauge sectors are weakly coupled just below the
cutoff, we can calculate the instanton potential generated by the gauge theories in the dilute
gas approximation (when it applies), and find to leading order

Veff = µ4
1 cos(

φ1

f1
) + µ4

2 cos(
φ2

f2
) + µ4

3 cos(
φ1

f1
− nφ2

f2
) . (28)

Let the axion decay constants be comparable, f1 ∼ f2 <MUV , but let there be a hierarchy
between the gauge sector strong coupling scales µ1 � µ2 � µ3. This can be arranged by a
choice of the fermionic charges in the theory, gauge groups, and their coupling constants.

To understand the perturbative behavior of the theory, pick a particular vacuum of the
theory, say φ1 = φ2 = 0, and consider small fluctuations. The potential (28) yields the mass

10Ref. [99], on the other hand, claims these are not problematic in principle, but that there are problems
with using them for inflation in specific string models.
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matrix of the small fluctuations,

Vmasses =
µ4
1

2f 2
1

φ2
1 +

µ4
2

2f 2
2

φ2
2 +

n2µ4
3

2f 2
2

(
φ2 −

f2
nf1

φ1

)2

. (29)

Given the scale hierarchy, (29) shows that the heaviest field in the theory is really the linear
combination χheavy ∝ φ2 − f2

nf1
φ1, which is mostly φ2, with a small admixture of φ1. So

to understand the low energy dynamics, we can pick it as one of the two normal modes
of the system, and choose the direction orthogonal to it as the other. Picking canonical
normalizations for these fields yields

χheavy =
f1f2
feff

(
nφ2

f2
− φ1

f1

)
, χlight =

f1f2
feff

(
φ2

f1
+
nφ1

f2

)
, (30)

where feff =
√
n2f 2

1 + f 2
2 . Substituting these field redefinitions into the potential (28) yields

Veff = µ4
1 cos(

nχlight
feff

− f2χheavy
f1feff

) + µ4
2 cos(

nf1χheavy
f2feff

+
χlight
feff

) + µ4
3 cos(

feffχheavy
f1f2

) (31)

with canonically normalized kinetic terms.
The hierarchy of strong coupling scales means that the last term strongly localizes χheavy

in a minimum of the final term in (31). The first term gives a small sinusoidal modulation
of the second term, which is a cosine potential for χlight with periodicity feff ∼ nf1. The
trajectory of this field in the coordinates φ1, φ2 can be seen in Figure 2; we have produced
a form of axion monodromy.

Let us study the dynamics of χlight in more detail, and understand when the low-energy
effective action becomes strongly coupled. Vacua of the theory correspond to non-zero
χlight, χheavy: the arguments of the cosines must be odd integer multiples of π. Specifically,
pick a vacuum χheavy = (2l + 1) f1f2

feff
π for the heavy degree of freedom. Expanding the

potential (31) about it, and taking n� µ2
2/µ

2
1 the effective potential for χlight becomes

Veff '
µ4
2

2f 2
eff

(
χlight + (2l + 1)

nf 2
1

feff
π

)2

+ µ4
1 cos

(
nχlight
feff

− (2l + 1)
f2
feff

π

)
. (32)

We do not expand the second term: the frequency of this harmonic is much larger than
that in the first term, by n � µ2

2/µ
2
1; and the phase shift is small, ∼ f2/feff ∼ 1/n, for

many vacua in the theory. The cosine is merely a harmonic modulation on top of the first
term as long as the field χlight is far away from the vacuum, which is approximately at

' (2l + 1)
nf21
feff

π ' (2l + 1)f1. The potential energy stored in this vacuum displacement is

quite small, on the order of Veff <∼ (2l + 1)2µ4
2, safely in the regime of semiclassical gravity

as long as
√

2l + 1µ2
<∼ Mpl.

The field displacement of χlight from its vacuum can be larger than Mpl even when f1 is
safely below the Planck scale, if l >∼ Mpl/f1, and the low energy action (32) can still remain.
This situation is depicted in Fig. 2, where the slanted lines denote the trajectory of the light
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Figure 2: A simple axion monodromy from two axions.

field χlight, and the field region between different segments belongs to field configurations
with energies much larger than those along the slanted lines.

The cutoff limiting the regime of validity of the single light axion χlight low energy theory

is given by the mass of the heavy field which has been integrated out, Meff ' nµ23
f2
∼ n2µ23

feff
.

This can be easily arranged to be smaller than the apparent strong coupling scale feff of the
dynamics for χlight, by choosing µ3

<∼ feff/n ∼ f1. Thus the theory can be fully constructed
in the regime where the standard perturbation theory operates, with low energy shift sym-
metry protecting the flatness of the effective potential, and the phase misalignment between
the two axions simulating the transplanckian field displacements required for supporting long
inflation. The nonperturbative corrections from gauge theory, and even wormhole induced
terms from quantum gravity remain small. Finally, in light of the discussion beforehand,
when the theory is correctly renormalized it also automatically obeys the covariant entropy
bounds. More general monodromy models work in a similar way.

4.2.2 N-flation

N -flation [8] proposes to achieve effectively super-Planckian inflaton range from a large
number of axions with sub-Planckian decay constants. The underlying assumption is that
there are many axions which are displaced from their potential minima and are light. The
total energy that drives inflation comes from the sum of the individual energies for each
field, and this is what supports the slow roll of each individual field. So for N axions
rolling in unison, the effective inflaton range can scale as

√
Nfa, where fa is a characteristic

fundamental axion decay constant and N is the number of axions.
There is an active, ongoing discussion in the literature as to whether such a theory can

be embedded in a good string theory model, and whether it is consistent with a properly
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interpreted version of the Weak Gravity conjecture: see for example [9,10,100–105]. This is
an interesting question, and we will not address it here. Our point is merely that there is no
obvious violation of the covariant entropy bounds in this example. Ref. [8] already noted that
a large number of species can run in loops and correct the bare value of Newton’s constant.
As argued above, 4d semiclassical gravity will break down at some scale MUV ≤ M4/

√
N ,

and there is no intrinsic problem with the covariant entropy bound.
The real issue is the value of MUV . In addition to requiring MUV > H, there is also an

open question for the calculability of the underlying string compactification ifMUV is lower
than all of the compactification scale, the string scale, and the 10d Planck scale. In this
case, the 4d dynamics relevant for the compactification intrinsically requires understanding
strongly coupled quantum gravity; this could, for example, complicate considerations of
moduli stabilization.

4.3 Flux compactifications with large gauge groups

Ref. [30] examines the one-Kähler-modulus KKLT model [106] and its generalization to race-
track models [107], when the nonperturbative potential for the Kahler modulus is generated
by gaugino condensation on wrapped D7-branes, and claims that the species problem ren-
ders them inconsistent. As we have argued, it does not. However it is interesting to ask at
what scale 4d semiclassical gravity is expected to break down, and what dynamics becomes
relevant.

Let us consider the the scenario described in [106]. The modulus σ = (RKK/`p,10)
4 is the

volume modulus; the gauge coupling is then g2YM = 4π/σ. The superpotential generated by
gaugino condensation is taken to be

W = W0 + Ae−2πσ/N7 (33)

where N7 is the rank of the D7-brane gauge group, and W0 is the tree-level flux-induced
term in the superpotential. If, following [30,106], we take W0 � 1, in order to get a solution
well-described by classical 10d geometry. In this case, the Kahler modulus is parametrically

σ =

(
RKK

`p,10

)4

∼ N7

2π
| lnW0| . (34)

Now using the fact that m2
pl,4 ∼ R6

KK/`
8
p,10, and taking the number of light species to be

∼ N2
7 (more precisely, we are assuming here that N7 is the dominant contribution to this

number), we find

M2
UV =

m2
p,4

N2
7

∼ | lnW0|2

(2πRKK)2
(35)

in other words, for small W0, the strong coupling scale is at or larger than the Kaluza-Klein
scale of the string theory compactification. Thus, before (or when) this scale is reached, 4d
semiclassical gravity has already broken down in a completely standard fashion.

While the potentials in [107] are more complicated, we may take the specific numbers
used in eqs. (3.11-3.13) of that paper and find once again that the stromg coupling scale Λ
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is of of the same order as the Kaluza-klein scale. This is preserved under the rescalings of
parameters in sec. 3.3 of that paper.
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