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ON THE EQUAL MASS SPACING OF THE DECUPLET OF JP = 3/2+ BARYONS 

in the 

Richard Cyril Slansky 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

March 16, 1967 

ABSTRACT 

With the assumption that the unperturbed amplitude is known 

-1 
ND representation, equations are derived for calculating 

the perturbed amplitude as a function of the variations of the left-

hand singularities and the unitarity cuts. Exact formulas for mass 

and coupling-constant shifts of bound states of the ui1perturbedamplitude 

are given, and the equations are then iterated to yield a perturbation 

theory. 

The response of the decuplet masses to octet perturbations of 

the meson and baryon masses and couplings is studied in an 
-1 ND model 

of baryon-meson scattering, and it is found that the equal mass spacing 

of the decuplet is satisfied, even for large values of the symmetry 

breaking. Thepumerical inaccuracy of several forms of perturbation 

theory indicates that the physical baryon masses represent a large 

symmetry breaking in the calculation of the decup~et; so large that 

first- and second-order perturbation theories do not explain the equal 

mass spacing of the decuplet, although experiment and the exact 

solution to the model do give equal spacing. The rapid breakdown of 
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the octet sum rules for the S-matrix elements also suggests that the' 

SU(3) vioiations are large, and that the octet output is special to 

the masses. 
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PART A 

THE MASS SPACING OF THE DECUPLET 

I. INTRODUCTION 

The existence and mass of the n- particle were predicted 

1 from the unitary symmetry model. The and 

particles were already established experimentally when evidence for 

the ::::1/2 * (1530) was presented.
2 

Gell-Mann immediately conjectured 

that these nine particles belonged to a decuplet representation of 

SU(3), and that a tenth particle with hypercharge, Y = -~ and 

isospin, ·1.= 0, should complete this supermu.ltiplet. With some simple 

assumptions about the breaking of the SU(3) symmetry, Gell-Mann also 

- 1 predicted the mass of this baryon, which he christened the n. 

Over ,a year later, the n- was observed at the predicted mass. 3 This 

remarkable discovery corroborated the existence of a decuplet of 

JP = 3/2+ baryons: N3/ 2 * (1236) with I = 3/2 and Y = + 1 

(which we refer to as the , N*); Y1 *(1385) with I = 1 and Y 

(referred to as the Y*); the ::::1/2*(1530) with I 1 and Y = 2 

(referred to as the ::::*)j and the n- with a mass of 1674 MeV, 

I = 0, and y'= -2. 

= 

= 

The mass splitting of the decuplet is reproduced within 2% 

by the formula, 

my = a+bY, 

0 

-1 

(1.1) 
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where a = 1385 MeV, . b = 147 MeV,' and· ny. "is the mass of the ' particle 

with hypercb.8.rge, y~ The mass splittirigis just proportional to the 
, . 

hypercharge, a result which follows from the simple (broken) symmetry 

model. Although the equal mass spacing of the decupletofbaryon 

resonances predicted by ,SU(3) has been confirmed experimentally, the 

. high accuracy ofEq. (1.1) has not been satisfactorily explained from 

more fundamental theoretical considerations. 

The usual derivation of Eq.(l.l)is basically group theoretical, 

with a and b to be determined from experiment. We assume the 

existence of a mass operator which transforms in SU(3) space as a 

. singlet plus the I = 0, Y = 0 member of an octet •. (Another member 

of an octet would violate I or Y conservation.) The mass of the 

particle is just the expectation Value of the mass operator. A short 

calculation then yields equal mass spacing for the decuplet. 

As it stands, this simple theory is far from being a complete 

dynamical theory for two (related) reasons: it does not account for 

the origin of the mass operator 8:nd it gives no reason for negl'ecting 

the I = 0, Y= 0 members of the 27 and 64 representations which 

also occur in .19 @~. In simple field-theoretic models, the 

Hamiltonian, which is expanded into a singlet plus as octet tensor, 

is used to construct the mass operator. In first order, the mass 

operator (self energy operator) also transforms just as a singlet plus 

an octet. In this case, Eq. (1.1) has theoretical significance only 

for small values of the symmetry breaking. The dominance of octet 

. ) , 
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symmetry breaking4 can be understood rrom dynamical theories) at 

least ror small symmetry breaking. However) only the experimental 

masses suggest octet dominance (or 27 and 64 suppression) in the 

simple group theoretical model. It is clear that any investigation 

or the theoretical basis or the equal spacing rule must incorporate 

some dynamic s into the group theory (or vice versa} ~ 

We use a simple dynamical model or the decuplet to investigate 

its equal mass spacing. The model reproduces many reatures or the 

analytic S matrix. In S-matrix dynamics)5 at least some particles are 

generated by the channels with which they communicate (i.e.) the 

channels that have the same quantum numbers as the particle itselr) 

and by the interaction mechanism. Unitarity and analyticity may then 

imply other singularities that are not already apparent rrom the input. 

Poles which appear in the analytically-continued amplitude are 

identiried as composite particles. 

Several reatures or SU(3) guide the selection of a dynamical 

model. Most basic to the model is the choice or scattering channels 

and the interaction mechanism; the "Eightrord Wayu classification 

2 scheme is useful in making a ureasonable" choice. The simplest set 

of channels suggested by SU(3) which contain the same quantum 

numbers as the decuplet is the set or two-body channels composed or 

P 1+ one baryon rrom the J = 2" baryon, oc:tet" and one meson rrom the 
"D 

J~ = 0- pseudoscalar-meson octet. With a single-baryon-exchange 

interaction) the decuplet can be a bou.nd state or these channels. 
6 
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So the obvious reCluirement that the decuplet must exist is satisfied 

in this model. Deviations from pure SU(3). sywnetry are easily 

included. The masses of the baryon octet and pseudoscalar-meson 

octet appear in the dynamical eCluations. ConseCluentlY.10ctet symrtletry 

breakirig of the baryon (and meson) masses is incorporated byreCluiring 

that the masses satisfy the Gell-Mann-Okubo sum rule. In the single­

baryon-exchange model, the baryon-meson coupling constants are 

coriveniently found from the unitary symmetry model. If the dominant 

channels are the two body baryon-meson channels, then we use the two-

body-multichannel S matrix. ' 

There is one pleasant feature of our investigation which allows 

some radical approximations. We are not interested here in calculating 

meson-baryon scattering amplitudes for arbitrary energy. We only need 

the location of'.the bound-state pole. "Moreover, we do not attempt to 

calculate the exact physical masses of the decuplet~. Our pUrpose is 

simply to investigate the mass spacing of the decuplet. Thus, 

approximations which do not destroy the features of the mass spacing 

are certainly valid for our purposes. 

Since the decuplet particles are all p-wave states, we consider 

the partial wave amplitude where two-body unitarityis particularly 

simple. Direct channel unitarity is an important ingredient of the 

dynamics, so we guarantee it by using the N/D eCluations for xhe 

partial-wave amplitude. Although it is difficult to treat cross-channel 

unitarity in a satisfying manner, the mass spacing of the decuplet is 
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rather insensitive to large changes of the left singularities. 

Th~efore, as we discuss in Section II, it is sufficient to approximate 

the left singularities by a pole. 

One last simplification concerns the spin kinematics. Since 

the total angular momentum is a half odd integer for meson-baryon 

scattering, it is appropriate to work in the w = I[; plane.' Then 

the once subtracted dispersion integral in the D function is 

logarithmically divergent. However, the qualitative features of the 
., 

mass spacing are not changed if we consider scalar baryons, and look 

for the spin one decuplet in the t = 1 scattering amplitude. On 

comparision with similar models using fermion kinematics, we find that 

the only change resulting from the scalar kinematics is that the 

decuplet masses satisfy a mass-squared equal spacing rule for large 

symmetry breaking. 

In summary, our investigation of the decuplet mass spacing is 

based on a.model of baryon-meson scattering by single-baryon exchange. 

Unitarity in the direct channel is guaranteed by the 
-1 

ND equations, 

and the model is easily solved if the left singularities are approximated 

by a pole. The computation is greatly facilitated by using scalar 

kinematics. The details of the model and justifications of our 

approximations are found in Section II. Some of the lengthy calculations 

necessary for the solution of the model are included in three 

appendices. The Yukawa couplings, including octet symmetry breaking, 

are calculated from SU(3) in Appendix I. The isospin crossing matrices 
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are found in Appendix II,; and several dispersion integrals are ,. 

integrated in Appendix III. 

In Section III, we begin the investigation of the mass 

splitting of the decuplet. If the external baryon and meson masses 

and:couplings are set at their SU(3) degenerate values, then all four 

decuplet isomultiplets (which we refer to as particles) will have the. 

same mass. While requiring that the octet sum rules remain satisfied, 

we "turn on"the octet perturbations of the external baryon and meson 

masses (or couplings). As the symmetry breaking increases, we observe 

the induced mass splitting of the output decuplet. (This is done by 

solving det[D(s)] = 0.) The mass splitting of the decuplet increases,­

and equal spacing is satisfied for values of the symmetry breaking 

comparable with the physical symmetry breaking. However, the mass 

splitting deviates wBXkedly from being a linear function of the input. 

symmetry breaking. 

The most noteworthy feature of these calculations is the 

stability of the equal spacing. Octet symmetry breaking input in the 

baryon and meson masses and couplings prodUces octet symmetry breaking 

output in the decuplet masses over large ranges of the symmetry breaking 

parameters. Equal spacing is certainly expected for small values of 

the symmetry breaking, as is ~asily proven. However, as nonlinear 

effects become important, it is not obVious why the equal spacing should 

continue to be so well satisfied. 

We further investigate the nonlinearities with several forms 

of perturbation theory. In Section TV,. we expand in the mass perturba-
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tions 7 of the external baryons and me,sons, and compare the mass 

expansions with the results of Section III. The first-order mass 

expansion preserves equal spacing, as expected. However, after the 

mass splitting of the baryons has been turned on to above half the 

physical amount, the first-order results become bad approximations 

to the exact results of the model. Although the second-order mass 

expansion appears to satisfy equal spacing, the accuracy of the second-

order calculation breaks down rather soon after the first-order theory. 

When the masses of the baryons and mesons approach their physical 

values, both the first- and second-order approximations are in bad 

agreement with the exact result. 

The results of Section IV indicate that any first-order 

perturbation theory will yield inaccurate results for the physical 

mass splittings of the baryons and mesons. However, the Dashen-

8 
Frautschi first-order perturbation theory has been applied to the 

octet enhancement calculation for the decuplet, and so it is useful 

to gain some quantitative feeling for its accuracy. In Section V, 

we compare the numerical results of the first-order Dashen-Frautschi 

theory to the solutions of the model found in Section III. 

In Sections II through V, we emphasize that the equal mass 

spacing of the decuplet appears to be more than a first-order result; 

nonlinear effects are appreciable for physical mass values of the 

external baryons and mesons. However, it is possible that the mass 

splitting of the decuplet is a linear effect if the baryon-meson 
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channels are much more massive than the JP = ~+ baryon-pseudoscalar-

meson channels. Since heavier octets of baryons should contribute to 

the binding of the decuplet, it is reasonable to examine whether the 

nonlinear, effects are reduced by replacing the external baryons by more 

massive particles. This idea is examined in Section VI, and we find 

that although the nonlinear effects are reduced, they are still 

appreciable for 4 BeVexternal baryons. However, for 9 BeV external 

baryons, the Dashen-Frautschiformula is reasonably accurate when the 

decuplet mass spacing is at its physical value of 150 MeV [or about 

2 0.43 (BeV) ]. 

In the ,simple field-theoretic model, where the Hamiltonian is 

expanded into a singlet plus an octet tensor, the amplitude is also a 

singlet plus an octet to first order. In the dispersion theoretic 

'calculations, the mass breaking satisfies the octet sum rule for 

large symmetry breaking. In Section VII, we test whether the amplitude 

satisfies octet sum rules for large symmetry breaking. We find that the 

sum rules are satisfied only for small perturbations that are' less than 

half the physical symmetry breaking of the baryon and meson masses. 

In Bart B of the thesis we propose exact e~uations for mass 

and coupling shifts in dispersion theory. With the assumption that the 

unperturbed amplitude is known in the -1 
ND representation, equations 

are derived for calculating the perturbed amplitude as a function of 

the variations of the left-hand singularities and the unitarity cuts. 

Exact formulas for the mass and coupling-constant shifts of bound 

states of the unperturbed amplitude are given, and the equations are 

then iterated toyi~ld a perturbation theory. 

,~ 
/', 
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II. A MODEL FOR THE MASS SPACING OF THE DECUPLET 

The model for calculating the mass spacing of the decuplet is 

P 3+ 
described in this section. If the J = 2 baryons are composite 

systems) then the simplest set of channels that communicates with the 

decuplet is the set of two-body baryon-meson channels. 6 Consider all 

the t1w-body baryon-meson channels haVing a particular value of I 

and Y. Then the N* communicates with the Nre and EK channels; 

the Y * with the N K) Ere, Are, ~,¥, and ET} channels; the -* with -
1 -

the :=: re, AK, E K, and :=: T} qhannels; and the ~ 
- with the :=:K 

channel. Although the decuplet-meson channels, three-body channels, 

and other channels all contribute to the mass of the decuplet they 

~~ve not been included. We do not expect this approximation to affect 

the mass spacing results of the model in any qualitative way. 

Another basic assumption in our dynamics is the importance of 

the single-baryon exchange diagram for binding the decuplet. Many other 

diagrams will contribute to the exact mass of the decupletJ however, 

again the mass spacing is not qualitatively affected by the neglect of 

more complicated forces. 

The most important property of the S matrix for our study is 

unitarity in the direct channel, so we unitarizethe single-baryon 

exchange diagram with the ND-l method. 

The two-body multichannel S matrix is 

= 
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with the integral relation implied by Eq. (2.7), Eq •. (2.8) isa 

set of coupled integral eqUations for Dij(s). 

The model in which f(s) is just the discontinuity across the 

Born cuts was first considered by Martin and wali6 (with fermion 

kinematics,): They solved Eq. (2.8) in the first-order determinental 

approximation, but without simplifications of the Born cuts. Later, 

Wali and Warnock9 showed that the meson and baryon mass differences 

have their strongest effects in the phase space factor, pes), and 

not in the Born exchange term. They were able to duplicate the results 

of Martin and Wali by fixing the masses of the exchange baryons at.a 

degenerate value, and thus greatly r.educe the computational labor. 

We take seriously the suggestion that the qualitatively 

important features of the decuplet mass splitting are due to unitarity 

in the direct channel, and not to the fine details of the left 

singularities. Thus it is possible that a pole approximation to the 

left cuts will lead to essentially the same mass spacing as the exact 

solution to the N/D equations with the full Born cuts. In fact, 

we find that the spacing is very insensitive to the location of the pole. 

If the left cut is approximated by a pole, then the solution of 

the dispersion relation for N(s) is 

NCs) = NO (s - t)-l D(t), (2.9) 

where NO is a matrix of products of coupling constants and t is 
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the position of the pole. We set the subtraction point in D(s) 

equal to the pole location in N(s). The exact solution for D(s) 

is found by substituting Eq. (2.9) into Eq. (2.8), 

( ) (s - t) 
D .. s = 6 - 2 

1J ij (81t) 

2 2 3/2 
IJ,i ) ] 

(2.10 ) 

After the matrix elements of N are computed and the integrals 
o 

evaluated, we search for the bound states. This part of the calculation 

is usually carried out by solving 

(2.11) 

where sR is the mass squared of the resonance. Wali and Warnock9 

have shown that the solution to 

(2.12 ) 

is a good approximation to the solution of Eq. (2.11), since the widths 

of the resonances are small compared to their masses. Moreover, 

Eq. (2.12) is just the condition for a pole in the K matrix. By 

assuming that the particle mass is the location of the pole in the 

K matrix, we avoid complex arithmetic on the computer while retaining 
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a good approximation to the solution of' Eq. (2.11).' The decuplet 

masses in the following calculations are solution to Eq. (2.12). 

The model is completed except for finding explicit expressions 

f'or NO' We merely outline the calculation here; the details are 

ennumerate?- in the appendices. To f'ind NO' we need the (broken) 

SU(3 ) 
10 . 11' 

baryon-meson couplings and the isospin crossing matrices , 

(in order to compute the contribution of' each exchange to the isospin 

state being considered): 

The coupling constants are calculated on the assumption that 

the interaction Hamiltonian f'or the BBP vertex is giveriby 

where -b 
B 
·a 

= 
::.,,:,,·,ace 

gbdg 
j3b B d p g 
ace' 

are the components of' the octet of'antibaryons, B 

(2.13 ) 

is the 

octet tensor of' baryons, and P is the octet tensor of' pseudoscalar 

mesons. The decoInposition of' ~ ® .§ ® §, contains two singlet 

representations and eight octets. If'the SU(3) symmetry breaking 

f'orce is dominated by the I = O,Y = 0 member of' an octet, and if' 

Hint is hermitian, then two pure symmetry and f'ive symmetry breaking 

parameters determine the BBP couplings. After a lengthy but 

straightf'orward calculation (see Appendix I f'or details), we f'ind 

that the meson-baryon couplings in units of' an overall coupling 

constant g are 

• 
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1--' gN.N1! = 1 + (2/3) €l 

gLA1! = (2/>13) (1 - f - E
5

) 

g~. = 2f + (2/3) E1 - €2 - (2/3) E3 

g::::::::1! = - (1 - 2f + (2/3) €3) 

gNAK = 
,--

- Ij 3 (1 + 2f + E2 + €3 + 2 ES) 

gN2X = 1 - 2f - (1/3) €3 

gA::::K = - -{5 (1 - 4f + €1 - E2 + 2€5) 

g::::2X = - 1 + (1/3) €1 

9mT] - -v3 (1 - 4f - E2 - 2€3 + 2€4) 

gMT] = - (2/1./3) (1 .,. f + €4 + 2€5) 

gL:L:T] = (2/-{3) (1 - f - €4) ~ 

;.. 
- (1/1/3) (1 + 2f - 2€1 +€2 + 2€4) • g::::::::T] = (2.12 ) 
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The F to D ratio is related to fby' 

f ( , )-1 
= gF gF + gD "' .",,' 

and El , ···,E
5 

are the octet symmetry breaking parameters. 

The calculation of NO is easily completed once the isospin 

crossing matrices are known. Since it is somewhat tricky to get all 
, 11 

the phases correct, we have included a detailed derivation of the 

crossing matrices in Appendix II. The matrix, NO' for each of the 

four sets of decuplet~uantum numbers is displayed in Table i. 

In Appendix III, the integrals in E~. (2.10) are evaluated 

analytically in order to expedite numerical calculations., 

The arbitrary parameters of the model are: (i) the exchange 

pole position, the overall coupling constant (the, NN~ coupling with 

no symmetry breaking), and the F/D. ratio, f; (ii) the external 

baryon and meson masses; and (iii) the parameters El through E5 

that characterize the octet symmetry breaking of the baryon-meson 

coupling constants. We now solve E~. (2.12) for many values of these, 

parameters. Variations of t, g, and f are done below; the re'sults 

of (ii) and (iii)· comprise Section III. The numerical solutions 

of E~. (2.12) were found by the Physics Department"s IBM 1620 computer 

in Birge Hall at the University of Ca.lifornia, Berkeley. 

The object of the following three calculations is to show that 

the decuplet mass spacing is not sensitive to the precise numerical 

values of g, t, and f. In all three discussions, the baryon-meson 
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couplings are set at the SU(3) degenerate values. (The NN~ 

coupling constant is equal to g for zero octet symmetry breaking 

of the couplings.) 

In Fig. lj;, the decuplet masses are shown as a function of 

2 
g. We set t = -1 (BeV) , f = 0.33, and the baryon and meson masses 

equal to their physical values. The most notable feature of Fig. 1 

is that for fixed g > 16, the mass spacings 

2 2 
andmn_ - ~* ) are always within 3% of one another. For g < 16, 

the input forces are barely strong enough to bind the decuplet, and 

the equal spacing begins to break down appreciably. However, for 

g > 16, the mass;spacing is very stable, and, in fact, the mass spacing 

itself changes only very slowly as a function of g. So the spacing 

of the decuplet is quite independent of g, at least for (approximate) 

octet symmetry breaking input, ·,1.e., the physical baryon and meson 

masses. 

It is possible that octet symmetry breaking is a special case 

and the spacing properties are not stable unless the baryon and meson 

masses satisfy the Gell-Mann-Okubo sum rule. If the symmetry breaking 

of the baryon masses is not octet, then the decuplet masses are not 

equally spaced. However, the curves representing the decuplet masses 

as a function of g are approximately parallel to those shown in Fig. 1. 

As an example of baryons that are very far from satisfying the Gell-

Mann-Okubo sum rule: 

m~ = ~ = m~ = 

= 1500 MeV; 
.::. 

.• 1 2 2 
137 MeV;~ . 2" (~ + Ill:=: ) 

= m = 900 MeV; 2: 

= 2.25 (BeV)2; and 
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. '·2 
0.81 (BeV) • (Because of the scalar kinematics,. ,we 

use mass-squared sum rules. By "equal mass spacing", we always mean 

that the mass-squared spacings are equal.) As in Fig. 1, the spacing 

is very stable for g >16: the N* is a few hundreths of a (BeV)2 

heavier than the Y1*; and the spacing between theY
1

* is about 

one: seventh of the spacing between the ~* and the~-. We 

conclude that the mass s:r;acing of the decup1et is quite independent of 

g; we set g = 19. 

Figure 2 shows the decup1et masses as a function of t (tis 

the subtraction point and exchange pole position). The baryon and meson 

masses are equal to their physical values; g = 19; and f = 0.33. As 

2 2 t is varied from -0.1 (BeV) to -5 (BeV) , the decuplet masses all 

slowly decrease, which is a typical result of N/D models in the pole 

approximation. The mass spacings for each t .are equal within 2%. 

Also, the mass spacing itself changes very little over the range; at 

t = -0.1 ~BeV)2 the mass spacing is 0.545 (BeV)2; and at 

t = -5 (Bev)2 the spacing is 0.500 (BeV)2. (However, compare with 

Ref. 9. We repeat that the pole is meant to approximate the entire 

set of left singularities and not just the Born cuts.) 

The F/D ratio is varied in Fig. 3. For fixed f in the 

range 0 < f < 0.45, the mass spacings are equal within:. 2%. Outside 

this range, the equal spacing slowly breaks down as the decuplet 

becomes unbound. According to the model of Martin and wa1i,6 the 

decup1et exists only for -0.28 < f < 0.78; the same is approximately 
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true in our model. In the range 0 < f < 0.45, the spacing is 

insensitive to f. 

We see from Figs. 1, 2, and 3, that the spacings of the 

decuplet are ~uite insensitive to variations of g, t, and f over 

large ranges of these parameters. Also, the actual value of the 

mass spacing is not very dependent on g, t, or f. Thus, for physical 

baryon and meson masses and SU(3) symmetric couplings, the value of 

the mass spacing is not really a free parameter. If t, g, and f 

are arranged so that the mass of the N* is 1236 MeV, then the 

mass of the U- is about 1785 MeV. It is impossible to decrease 

the U- mass the necessary 100 MeV with any reasonable value of f, 

t, and g in order to fit both the N* and U- masses for physical 

baryon and meson masses and SU(3) symmetric couplings. 

We conclude that the mass spacing of the decuplet is insensi ti ve ..• 

to g, t, and f. However, the mass spacing ~ sensitive to the 

symmetry breaking of the baryon and meson masses and couplings, as is 

shown in the next section. We let g = 19, 
2 

t = -1 (BeV) , and 

f = 0.33. 
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TABLE I: The Born Matric,es, NO' (see Eq. (2.9).) The rows and columns of NO correspond to the 

initial and final meson-baryon channels. The phase conventions are those of de Swart. 12 See 

Appendix II for a derivation and discussion of the isospin crossing matrices neces~ary in finding NO' 

I, 

I=L,Y=l 
2 

N:n: ~K 

"'. ~. 

2 
N:n: 2g gNA:n: g~A:n: - gNLX:git:n: NN:n: 

.' 

2 .' 

~K gNAK gLA:n: - gNLX g~~:n: 2g::::~K 

'. 

I = 0, Y ='-2 ::::i< 

::::K 3g::::~K 
2 2 

;,., g=:AK ... 

(TableI continued) 

(' 
.. J:" " -

i 

I 

I 

t'.J 
o 



i --
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FIGURE CAITIONS 

Fig. 1. Decuplet Masses as Function of g, Octet Symmetry Breaking. 

Baryon and meson masses are equal to the physical values, 

baryon-meson couplings are equal to the SU(3) symmetric 

values, f = 0.33, and t = -1 (BeV)2. 

Fig. 2. Decuplet Masses. as Function of t • 

Baryon and meson masses are equal to the physical values, 

baryon-meson couplings are equal to the SU(3) symmetric 

. values, f = 0.33, and g = 19. 

Fig. 3. Decuplet Masses as Function of f. 

Baryon and meson masses are equal to the physical values, 

baryon-meson couplings are equal to the SU(3) symmetric 

values, g = 19, and t = 2 
-1 (BeV) • 

;; 
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III. OCTET SYMMETRY BREAKING AND EQUAL MASS SPACING 

Section II concluded by showing that the mass spacing of the 

decuplet is not sensitive to the values of the overall coupling 

constant, the F/D ratio, ,or the subtraction point (baryon exchange 

pole.) ~ We select t, g, and f so that for physical baryon and meson 

masses and SU(3) symmetric couplings, the mass of the N* is 1236 

MeV. However, we cannot fit both the n- and N* masses by varying 

g, t, and f, because of the insensitivity of the spacing on these 

parameters. We set f = 0.33, which is near its experimental value, 

and let t = -1. (J3EN)2. Then, g = 19. 

We now vary the baryon and meson masses and couplings in such 

a way that the octet symmetry breaking sum rules are always satisfied. 

The baryon and meson masses (mass-squared) are parameterized to satisfy 

the Gell-Mann-Okubo sum rule. In units of (J3ev)2, they are 

M2 2 
= (1.193 ) 51 ' L: 

~2 2 
52 ' = ~ - 0~540 

M:=2 = M2 
L: 

+ 0.316 53 ' 

M2 
!I. = ~ 2 + 0.211 53 - 0.360 52 ' 

2 (0.137)2 54 ' (Equation 3.1 continued) m -
11: 
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2 2 
+ .266 °5 ' nx = m 

:1! 

2 2 
+ 0.301 °5 

m = m 
T) :1! 

The mass squared is linear in the symmetry breaking parameters 

because of the scalar kinematics. We arrange ° 1 through ° 5 
so 

that for °1 = °2 = ... = °5 = 1, the baryon and meson masses 

are close to their physical values: for °1 = ... = °5 = 1, 

.~ = 940 MeV; mA = . 1128 MeV; m~ - 1193 MeV; m... 
=- = 1318 MeV; 

m = 137 MeV; ~ = 495 MeV; 
:1! 

and m = 565 MeV. The baryon-
T) 

meson couplings, including the octet symmetry breaking terms, are 

listed in Eq. (2.12); the octet symmetry breaking is parameterized by 

El through €5' The SU(3) symmetric couplings are recovered by 

setting =€ 
2 

== ••• = o . 

In most of the following calculations, the equal mass spacing 

of the decuplet is satisfied within several percent. Therefore it is 

difficult to measure the deviation from equal spacing from a plot of 

the decuplet masses. To remedy this inconven.ience, we have listed in 

Table 2 the maximum deviation of the spacings from the average 

spacing. We define 
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2 2 
° = m ~ m-=* 3. n-

(JA = (°1 + °2 + (
3

) / 3 . (3 .2a) 

Then the maximum deviation from the average spacing is 

In Fig. 4, the decuplet masses are plotted as a.function of 

the mass breaking parameter, = ::;:: The L: mass 

and the ')'( mass are held .constant at 1185 MeV and 137 MeV, 

respectively (01 = 04 ,= 1), and the couplings are left at the 

SU(3) degenerate values (€l = €2 ::;:: ••• = €5 = 0). When 

2 ° = 0, all the decuplet masses. coincide at 1.964 (BeV) or 1401 MeV. 

As ° increases, a mass splitting is induced in the decuplet. The 

masses are nearly equally spaced as is shown in the first line of 

Table 2, where we have given ~,as a function of ° i Fig'\:U'~ 4 

reveals the remarkable fact that although the mass of the decuplet as 

a function of the symmetry breaking is far from linear, equal spacing 

is well satisfied. Before discussing this situation, we examine some 

other examples of octet symmetry breaking. 

In Fig. 5 we fix the baryon and meson masses at degenerate 

values = = °5
, = 0) and vary the 
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symmetry breaking of ttecri:tpJ:irgs. The example shown is typical. For 

some combinations.of the €IS, e<lual spacing is retained. to very large· 

symmetry breaking. However, it is possible to find large enough EIS 

1 that the deviations from the average spacing are of· order N 2"' In 

Fig. 5, € = = and = = o. Although the 

symmetry breaking is large enough that nonlinear effects are very 

. noticeab1e, . e<lual spacing is satisfied within 6% for -0.2 < € < 0.05 •. 

... For € > 0.05, equal spacing becomes less well satisfied. As an 

.example of very large symmetry breaking and very large deviations from 

e<lual spacing, we set = = = and vary 

€ from ~0.2 to 0.2. At E = -0.2, ~. = 0.50, and at € 

~ = 0.11. Although thee<lual spacing of the decuplet is a remarkably 

stable result of octet symmetry breaking input, it is clear that the 

dynamics do not support octet symmetry breaking output indefinitely. 

It is interesting to fix the baryon and meson masses at near· 

the p~ysical values and then· vary the coupling constants.· One might 

expect that superimposing large amounts of octet symmetry breaking in 

both the baryon masses and couplings should increase the violation of 

equal spacing of the decuplet masses. However, adding coupling cQnstant 

perturbations to the mass perturbations often improves the equal mass 

spacing of' the decuplet. As an example, consider Fig~ 6, where we 

fix 51 = 52 = 53 = 54 = 55 

near physical values--see Eq. (3.1)] 

= 1 

and 

[baryon and meson masses 

= o. 

The parameter, € = = €2 ' is varied, the decuplet masses are 
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plotted in Fig. 6, and the maximum deviation is given in the last 

line of Table 2. Note that equal spacing is better satisfied for 

€ = -0.1 and € = 0.2 than it is for € = o. Also, in Fig. 5 

we saw for = = = = o and € = 0.2, 0.18; 

but when the mass splittings are turned on and = 1 and € = 

then ~ = 0.03. Thus, the coupling and mass perturbations have 

conspired to restore equal spacing. 

In Fig. 7, we observe the evolution of these results by 

setting € = 0.2 and turning on 5 , Le., = 0.20, 

= = = = 1, and = = 

The large deviation from equal spacing at = o dwindles to a 

0.2, 

small symmetry breaking at 5 = 1. (See the second line of Table 2.) 

In Figs. 5, 6, and 7, we have concentrated on the variable 

€ = = However, the qualitative results are quite general 

and do not depend on the particular €'s we choose to vary. There 

are many cases in which the baryon and meson masses and couplings 

deviate from the pure symmetry values by large amounts, but the 

decuplet satisfies equal spacing within a couple percent. Then, by 

decreasing the symmetry breaking in the couplings, larger deviations 

of the decuplet from equal spacing are obtained. 

It is an amusing speculation to note that if the decuplet 

spacings were actually equal within 1%, then. this model would imply 

large symmetry breaking of the baryon-meson couplings,~ 15%. Of 

course we cannot take this conclusion seriously since the experimental 

errors on the spacing are about 5% (5% deviations are consistent with 
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no symmetry breaking in the baryon-meson couplings) and we have no . 

accurate estimate of the theoretical errors. 

We call attention to the nonlinearitiesapparent in Figs. 4 

through 7. . These might indicate that physical baryon and meson mass 

splittings represent a large symmetry breaking in the analysis of the 

decuplet mass spacings. However, many analyses are based on the first­

order term of a perturbation expansion in the symmetry breaking, so it 

is worthwhile to examine the numerical accuracy of these theories. 

Agaip., we emphasize that the equal mass spacing of the decuplet~.; is 

quite well satisfied in the exact solution to the model. 

J 
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TABLE 2: Maximum Deviations of the Mass Spacings from the Average Spacing •. The maximum 

deviation, ~, is defined in Eq. (3.2). This table is a supplement to Figs. 4 through 7. 

5 0.01 0.04 0.09 0.16 0.25 0.36 0.49 0.64 0.81 

~(€ = 0) 0.002 0.009 0.020 0.019 0.015 0.016 0.017 0.025 0.033 

~(€ = 0.2) 0~183 0.144 0.090 0.034 . 0.009 0.023 0.033 0.028 0.030 
-

, 

€ -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 , 0.15 " 0.20 . 0.25 

~(5 = 0) 0.057 0.053 0.042 0.025 0.000 0.033 0.074 0.124 0.183 0.251 

~(5 = 1) 0.225 0.092 0.027 0.033 0.040 0.039 0.038 0.029 0.031 0.058 

---- - - - ----

1.00 

0.040 

0.031 

0.30 

0·322 

0.099 

I 

LN 
uJ 



FIGURE CAPrIONS 

Fig. 4. Decuplet Masses, as Function of _ -5 • 

The baryon and meson mass parameters are = 
," 

,5 = 52 = 53 = 55 . The coupling parameters are 

~ 
and 

El = E2 = E} = E4 = E5 = 0, g' = 19, f = 0.33, 
, 2 

, and t = -1 (BeV) • The 5's and E'S are defined in 

Eqs. (3.1) and (2.12), respectively. The lines labeled by 

only the particle name represent the exact solution of the 

model for the mass squared; the lines with D ,prefixed before 

the particle name are the Dashen-Frautschi first-order mass 

shifts, as discussed in Section V. 

Fig. 5. Decuplet Masses as Function OfE • 

Fig. 6. 

The coupling parameter, E = El = E2 , is varied. Set 

parameters are E3 -, E4 = E5 = 0, g = 19, f = 0.33, 

2 SU(3 ) and t = -1 (BeV) • The baryon and'meson masses are" 

degenerate, 51 = 54 = 1 and 52 = 53 = 55 = 0. 

Decuplet Masses as Function of E ; Symmetry Broken Baryon 

and Meson Masses. 

The coupling parameter, E = El = E2 , is varied. Parameters 

set at constant values are E3 = E4 = E5 '- 0, g = 19, 

2 f = 0.33, and t = -1 (BeV) • - The baryon and mespn masses 

are set near the physical values, = 

Fig. 7. Decuplet Masses as Function of 5; Symmetry Broken Baryon-

Meson Couplings. 

-" 
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The mass parameter, 8 ~ 82 =. 8
3 

= 8
5

, is varied, and 

81 = 84 = 1. The coupling parameters are €1 = €2 = 0.2 

and €3 = €4 = 

t = -1 (Bev)2. 

€ = o. 5 . Also, g = 19, f = 0.33, and 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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IV. PERTURBATION THEORY: MASS EXPANSIONS 

Assuriling. that the decuplet is a baryon-meson bound state, 

we presented evidence in· Section JII that the decuplet-mass splitting 

induced by the physical baryon and meson masses is "large". The graphs 
'. . ' 

of the decuplet masses as. functions of the symmetry-breaking are 

notably nonlinear; a linear approximation to Fig. 4 gives spacings. 

which are much smaller than the exact solution • Also, we observed 

some amusing violations of the-famous rule that octet symmetry-

breaking input implies octet s~metry-breaking output to first order. 

These violations (see Figs. 4-7) cannot be explained by a: first-order 

theory. 

Nevertheless, many dynamical calculations of the decuplet 

analyze the SU(3) symmetry breaking only in a first-order approxima­

tion. 4,7 This is a fruitful approach to the full dynamics, since many 

theoretical and practical difficulties are absent, and it is possible 

actually to obtain numerical results. However, because of the manifesta-

tions of higher-order contributions, we should check the numerical 

accuracy of these calculations. 

Our model of the decuplet was solved exactly in Section III, _ 

and now we compare the numerical results of several perturbatioIl 

formulas wi'th those exact solutions. There are some rather importan:t 

reasons for making these explicit numerical comparisions: (i) The 

comparisions can be used to define "large" symmetry breaking. If the 

exact and first-order results differ substantially for physical 



-41-

baryon and meson masses, then it is possible that certain features 

of the physical symmetry breaking cannot be discovered from the first-

order calculation. (ii) The reliability of linearized-perturbation 

bootstrap calculations depends on the numerical accuracy of the 

first-order approximations. For example, fitting the spacing of the 

decuplet with the free parameters in a first-order calculation might 

cause large distortions in the self-consistent baryon-meson (and 

decuplet) couplings, since the spacing is also sensitive to the symmetry 

breaking of the couplings. (iii) If the first-order results are very 

inaccurate, then it is likely that a second-order calculation'will also 

be unreliable. This would suggest that perturbation theory is an 

awkv~rd way to approach SU(3)-s~metry breaking in strong interactions. 

A crude second-order calculation checks this point. 

We examine two possible perturbation theories. In this section, 

the D(s) matrix is expanded in the mass splittings of the external 

baryons and mesons. 7 The expansion is simple' and nonrigorous, but it 

should yield some understanding of the accuracy of low-order perturba-

tion theory. In Section v, we consider the rigorous Dashen-Frautschi 

. 8 
flrst-order theory. 

Each matrix element of D(s) '[E<l., (2.1)] is a function of 

the external baryon and meson masses of the initial channel. The 

most primitive possible perturbation theory consists of expanding the 

matrix elements, 
, 2 2 2 2 

D .. (s, M. ,1-1. ),around D(s, MO J 1-10 )J where 
lJ l l ' I 

MO and 1-10 are the degenerate baryon and meson ~ssses. To simplify 

the notation, we define 
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, (4.1) 

The first- and second-order mass expansions of D(s) are. 

D
iJ

. (1) (s, m. 2) = D ( 2) \' 
K ij s,mO +,~ 

and 

(2 ) 2 . (1) 2 . 1 ,D
ij (s,~ ) ': D (s,~ ) +-

ij 2 

x (~2 2 
- mO ) (mt 

2 ·2 

L 
;) D(s,~ ) 

~ 2'0 m
t
2 

k, t c 

2 2 
- m ) , 0 

22 
(~. - mO ) 

. (4.2) 

2 
mO 

After expanding each matrix element of D(s) according toECls .(4.2) 

. and (4.3), we find the decuplet masses by solving 

(4.4) 

The derivatives of the D(s) function in ECls. (4.2) and (4.3) 

are evaluated in Appendix III. Also, there is a proof in Appendix III 

that the order of integration and differentiation may be interchanged 

for the first and second derivatives. However, the third derivatives 

do not exist and the expansion diverges term by term for third order 

and higher. In spite of this,we expect the first- and second-order 
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expansions to retain some quantitative validity. The first-order 

approximation, Eq. (4.2), shou~d be as accurate as any other first-

order theory, except in the case of the bound-state mass near the 

degenerate threshold. [The first derivative of D(s) with respect 

to mass has a cusp at s = 2 
(MO + ~O)·J The second derivative of 

D(s) with respect to mass is unbounded at s = (MO + 

(B.eV)2, and consequently we expect inaccurate solutions 

2 
~O) = 1. 769 

to Eq. (4.4) 

for the .bound-state mass near the degenerate threshold. In Fig. 4, 

the N* mass did cross the degenerate threshold at 0 -:; 0..6. 

We limit discussion of numerical results to the situation. 

described by Fig. 4. (In Section V, we use the Dashen-Frautschi 

approximation for investigating coupling shifts.) The coupling-

constant perturbations are zero (El = €2 = €3 = €4 = €5 :::: 0), 

g = 19, f = 0.33, t = -1 (BeV)2, and 0
1 = 04 = 1 . 

[See Eq. (3.1).J The baryon and meson mass-splitting parameter is 

= :::: = The results are given both in graph (Fig. 8) 

and table form (Table 3). 

It is difficult to make general statements about Table 3, 

since different accuracy may be required of various calculations. But 

we can make the following comments. 

For 0 < 0.1; the second-order calculation more accurately 

reproduces the exact solution tl>.an the first -order calculation does. 

The equal spacing is retained within about 2% in both the 

first- and second-order theories for 0 < 0.1. This suggests that 

equal spacing is satisfied in the second-order theory. Of course 
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Eq. (4.3) does:. not imply that the decuplet-massshift will be purely 

second order since the determinant; Eq. (4.4),' is a polynomial in the 
. . 

'., mass splittings. For 8 ~ 0.1, an (inconsistent) inclusion ·of third-

and higher-order effects is already becoming important numerically 

(except for the .0- mass). Thus, the slight breakdown of equal mass 

spacing for 8 ~ 0.25 could well be due to the ,inconsistent inclusion, 

of higher-order terms. 

When 8 reaches about 0.25; the second-order approximation 

is no longer more reliable than the first-order approximation, and 

when 8 goes to 1, both the first- and second-order approximations 

are very unreliable. The inconsistent inclusion, of higher-order 

effects in the det (Re[D(s))} = 0 condition should not disturb the 

numerical accuracy of the mass expansions too seriously. The bad 

behavior of the derivatives of .D(s) at s = 2 (Mo + J1.o)could cause 

all the second-order results to be shifted slightly upwards (especially 

the N*). However, the expansions are already quite inaccurate for 

5 ~ 0.5, and it is probable that any second'jorder calculation will 

be no more reliable than the first-order one for physical baryon and 

meson masses (8 ~ 1). ,In the sense that is necessary to go to very 

high-order perturbation theory to obtain reliable results, the physical 

symmetry breaking is large. 

''''' 



TABLE 3: Decup1et Masses As Function of 8 ~ No prefix or a prefix 

of 1, 2, or D in front of the particle name denotes the exact 

solution, linear mass expansion, second-order mass expansion, or 

Dashen-Frautschi approximation to the model, respectively. Equation 

(3.2) defines ~ and we omit ~ for 8 = 0.01 because of round 

off error. The coupling perturbations are zero, f = 0.33, 

t '= -1 (BeV)2, g = 19, 81 = 84 = 1, and 8 = 82 = 53 = 8
5 

. 

[See Eq. (3.1).] 

5 0.01 0.04 0.09 0.16 0.25 0.36 0.64 LOO 

N* 1.9645 1.9665 1.9699 1.9688 .. 1.9505 1.9136 1.7734 1.5~92 

1N* 1.9644 1.9658 1.9672 1.9671 1.9639 1.9560 1.9194 1.8489 

2N* 1.9644 1.9665 1.9702 1.9756 1.9820 1.9872 1.9738 1.8578 

DN* 1.9646 1.9670 1.9725 1.9754 1.9665 1.9472 1.8770 1.7698 

I 
y* I 1.9687 1.9836 2.0087 2.0393 2.0663 2.0894 2.1162 2.1028 

1Y* 1.9686 1.9825 2.0040 2.0314 2.0624 2.0951 2.1588 2.2124 

2Y* 1.9687 1.9836 2.0092 2.0L.64 2.0953 2.1554 2.3044 2.4818 

DY* 1.9688 1.9843 2.0121 2.0399 2.0654 2.0871 2.1183 2.1290 

(Table 3 continued) 
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51 0.01' 0.04 . 0.09 0.16 ~ 0.25 . (i.36 . ·0.64 Loo 
I 

--x- 1.9730 2.000)+ 2.0466.· 2.1088·' 2.1816 2.2645 2.4508 2.6586' 

I' 

2:=:-)(' : 1.9729. 2.0004 2.0472 2.1141.2.2015 2.3097 2.5914 .2.9729 
. i 

D-=* : 1. 9731 2.0016 2.0506 2.10752.1626 2.2180 2.3275 2.4282 - I 
! 
I 

n- ! 1.9772 2.0173 2.0839 2.1767, 2.2945 2.4357 2.7769 3.1904 
.. 

In- 1.9770 2.0153 2.0755 2.1532' 2.2436 2.3420 2~5467 2.7428 

2n- 1.9771 2.01712.0844 2.1793 2.3025 2.4548 2.8562 3.4202 

Dn- 1. 9773 2.0190 2.0924 2.17012.2458 2.3204 2.4628 2.5916 
i 
i 

i 
d
M 

! 0.0094 0.0196 0.0194 0.0151 0.0166 0.0252' 0.0396 
I 

.0.00850.0202 " 0.0359 0.0563 0.0815 0.1451 0.2206 

0.0111 0.0248' 0.0420 . 0.0602 0.0793 0.1238 0.1982 

0.0026 0.0444 0.0415 0.1069 0.1773 0.3071 0.4035 
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FIGURE CAPrIONS 

Fig. 8. Graph of Table 3. 

See the caption for Table 3 for values of parameters. 
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V. PERTURBATION THEORY: FIRST-ORDER DASHEN-FRAUTSCHI APffiOXIMATION 

8 
The Dashen-Frautschi first-order mass-shift formUla has 

provided a·powerful method for studying strong and electromagnetic 

mass shifts. Because of its popularity, it is certainly of interest 

·to examine the numerical accuracy of this approximation. In this 

section, we compare the first-order results with the calculations of 

Section III. Both the baryon and meson masses and couplings are 

perturbed, and the induced decuplet mass shifts are computed directly 

from the Dashen-Frautschi formula. This formula is convenient, since 

it is not necessary to solve determinant equations such as Eq. (4.4). 

Many objections to the mass expansion of Section IV do not 

apply here. The mass expansion was termwise divergent for third order 

and higher. However, the Dashen-Frautschi formula is the first term 

of perturbation series. We discuss this in great detail in Bart B, 

where we derive an exact mass-shift formula. Here, we simply note 

that there.~ no difficulties at the degenerate threshold, 

There are two practical difficulties with the expansion 

associated with the Dashen-Frautschi formula. We find .that the accuracy 

of the first-order theory fails for symmetry breaking less than physical, 

and so it would be useful to examine the second-order theory. The 

second-order mass-shift formula [Bart B, Eg. (4.8)] contains very 

complicated dispersion integrals. We have not attempted to apply this 

equation to this problem, but have relied on the less rigorous second-

order mass expansion for estimating the accuracy of second-order theories. 
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The second difficulty is rather trivial} but a discussion will aid 

the interpretation of our results. The Dashen-Frautschi theory is 
. "" , . . . 

first-order in the changes of the left and right singularities} not. 

the baryon and meson mass or coupling perturbations. 'Small changes " 

r 

of the right cuts are e~uivalent to small shifts in the baryon (and 

meson) masses. However} the baryon mass shifts are not linearly " , 

related to the changes of the right cuts. Thus, the simple group 

theoretical result, octet symmetry breaking of the input masses implies, 

octet symmetry breaking in the output masses to first order in the 

input ~ perturbations; does not apply to large baryon mass shifts. 

There is no obvious reason that the Dashen-Frautschi formula should 

give equal spacing for large baryon mass perturbations. In fact, for 

physical baryon and meson masses' and no coupling perturbations, the 

Dashen-Frautschi theory gives deviations from equal spacing that are 
-

about 10 times those found in the exact solution. This result is 

probably not significant. However} the accuracy of the first-order 

mass shift is important. 

The mass-shift formula is a result of the factorization theorem 

of the bound-state-pole residue. The first-order formula is most easily 

obtained by following the' original derivation of Dashen and Frautschi 

in Ref. 8. We show how it follows from the exact mass-shift formula 

in the following paper. The first-order mass shift is 

= (5 .la) 
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where 

w(s) = ; J ds' 
n(s') V'(s')D(s') 

s' - s + ~ J ds' 

IV . 

N(s') 5p(s') N(s') 
s' - s 

L R 

The mass shift is 5sB ; sB is the location of the bound~state pole 

with no symmetry breaking; N(s) and D(s) are calculated without 

syw~etry breaking; 5p(s) is the change (due to the baryon and meson 

mass splittings) of the right discontinuities; V' is the ~hange of 

the lef~ discontinuities resu~ting from the symmetry breaking; and 

g.6i are the SU(3 )-degenera te couplings of the decuplet to the baryon-

meson channel. 

In the pole approximation) the discontinuity across the left cuts 

is a matrix of constant coefficients times a delta function. The NCs) 

matrix is simply 

where t is the pole location and BO is Cone of) the NO listed in 

Table 1 with = = = 

SU(3)-symrnetric. 

The change of the left cuts is 

B ! 

o 

= 0) i.e.) N(s) is 

(5.3 ) 

where NO can include symmetry-broken coupli~~s. With these simplifica­

tions) E~. (5.1) becomes 
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ci. 

where 

p. v.! ds' 

R. 

8p(s' ) 

(5.4a ) 

In the following calculations} we have defined the integral over 

the change of the right cuts to mean 

P.v. f'" '2 

(M+!J.) 

ds' ds' 
po(s') 

(s ' -.t f( s '- sB) 

(5.5 ) 
The coupliJ:1..gs} gb,i} are just the isoscalar factors for connecting 

a 10 representation to the I and Y Cluanti.lm numbers of the baryon ·and 
.-"vV' . 

meson •.. An overall normalization (whic h is also the coupling of the 

n- to the K~. channel) is 

I( 

[(SB - dD ! 1 -1/2 
(5.6) gb, = t) d- , I 

s.! s = sB J 

The derivative was .taken numerically in the following calculations. 

In units of gb, J decuplet couplings .are 

1 

g(N*Nrr) = -(2,f2 J 

1 
(5.7) 

g(N*EK) = (2 )-2 J 
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1 

g(Y*N K) = -(6f2 , 

g(y* 
1 

L:rc) = 6--2" , 

g(Y*Arc ) 1 
= - 2 , 

1 

g (Y* =-:K ) = 6-2 , 

g (Y*L: 11) 1 
= 2 , 

g (=-:* =-: rc ) 1 
= 2 , 

g(? A K) 1 
= -2 , 

g(?L: i<) 1 
= 2 , 

(-*- ) g .::. .::. 11 = 
1 
2 , 

g (Q-=-: K) = 1 . 

The manipulations necessary to find the mass shifts from Eq. :(5.4) 

were again performed on the IEM 1620 computer. Numerical comparison of 

this approximation rNith the exact solution of the model is shown in 

Figs. 4, 5, 6) and 7. In Table 4, we compare mass shifts for the case 

sho>-m in Fig. 4 (no coupling perturbations); we note that the Dashen-

Frautsc;:hi mass shifts are wrong by a factor of two for physical baryon 



and meson masses. The mass expansions are compared with the Dashen-

. Frautschi approximation in Fig. 8 and Table 3 .' Some furthercom.parisons. 

are made in the next section. 

'. 

i) 
C 
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TABLE 4: Comparison of Exact Mass Shifts with the Dashen-Frautschi 

Approximation as Function of 5. The coupling perturbations are 

2 
zero, f = 0.33, t = -1 (BeV) J g = 19, 51 = 54 = 1, and 

5 = 52 = 53 = 55' The mass shift is in units of (Bev)2. The 

prefix denotes the Dashen-Frautschi approximation; no prefix denotes 

the exact solution to the model. 

0.01 0.04 0.09 0.16 0.25 0.36 0.64 

N* 0.0007 0.0026 0.0061 0.0049 -0.0133 -0.0502 -0.1905 

DN* 0.0007 0.0031 0.0086 0.0116 0.0027 -0.0166 -0.0868 

Y* 0.0049 0.0197 0.0448 0.0755 0.1025 0.1256 0.1524 

DY* 0.0050 0.0204 0.0483 0.0760 0.1016 0.1232 0.1544 

-* 0.0092 0.0366 0.0828 0.1449 0.2177 0.3007 0.4870 

D:=:* 0.0093 0.0377 0.0868 0.1436 0.1988 0.2542 0.3636 

Q- 0.0134 0.0534 0.1200 0:.2129 0.3307 0.4718 0.8130 

DQ- 0.0135 0.0551 0.1286 0.2063 0.2819 0.3565 0.4989 

1.00 

-0.4346 

-0.1940 

0.1390 

0.1652 

0.6948 

0.4644 

1.2266 

0.6278 
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VL REA VY BARYONS AND LINEAR APPROXIMATIONS 

With a simple model, we have established that the 150 MeV' 

mass :spacing of thede,cuplet is not a small violation of . SU(3) 

symmetry if the baryon-meson channels are most important in binding 

the decuplet. In spite of the nonlinearities, the model does give 

equal mass spacing, a result which the dynamics seem to favor independent 

of linear (or second order) perturbation theory. Even so, it is 

possible that the equal spacing of the decuplet is a fir?t-order 

effect. We speculate about this possibility by considering baryon-

meson. channels in which the baryons are much more massive than the 

JP = ~+ octet. Perhaps it is already clear that the physical 

spacings of the decuplet will be reached before the first-order formula 

breaks down if the baryons are.sufficiently heavy. 

This speculation is not completely idle since we have ignored 

all the higher mass channels that might help bind the decuplet. For 

p 1+ example, if the J = 2 octet lies on a Regge trajectory, then we 
. P 5_+ 

might expect some contribution from the· J = 2 octet containing 

the Nl(1688), and so on. We include the higher-mass channels in the 
2 . 

following crude way. We assume that the incoming baryons transform. 

as an octet, but that, averaged over all contributions, the baryons 

P 1+ have a mass heavier than the usual J = 2 octet; i.e., we increase 

51 in Eq. (3.1). All decuplet meson channels are neglected. Thus, 

the model is exactly the same as·tlatusedin Section III, and it is 

solved in the same way. We then compare the exact solution of the 

t . t" 8 model with the Dashen-Frau schi approx~ma ~on. 

: ,'-" 
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Suppose that the most important channels for binding the 

decuplet are composed of one baryon from the JP = ~+ octet and 

one pseudoscalar meson. The thresholds are farther from the bound-

P 5+ 
state poles and the mass spacing of the J = 2 is smaller than 

for the JP = ~+ octet. Conse~uently, for physical ~+ baryon 

masses, the decuplet spacings are about one half the physical spacings. 

More precisely, we adjust g and t so that the 

MeV. Then for physical 1+ 
2" masses and t = 

N* mass is 1236 

-1 (Bev)2, the s~cing 

is 
2 

0. / 5 (BeV) • For the 

a spacing of 
. 2 

0.20 (BeV) , 

= 

t 

baryon masses, 

= 
2 

-3 (BeV) 

t = -1 (Bev)2 implies 

implies a spacing of 

implies a spacing of 2 0.27 (BeV) • 

P 1+ Since physical J = 2" baryon masses and physical pseudoscalar-

meson masses with SU(3) degenerate couplings lead to too large a 

spacing; it is possible that the higher mass-channel contributions 

reduce the spacing to its physical value. 

We. now show how the linear approximation is improved by 

increasing the baryon masses. In Fig. 9, we set = 4 so that 

the degenerate mass of the baryons is 2386 MeV. We also set 

t = 
2 

-7 (BeV) , g = = = = = 0, 

= = Note that for physical decuplet spacings, 

the Dashen-Frautschi approximation is beginning to fail. 

If 51 is set e~ual to 9 (the degenerate mass is 3579 MeV) and 

the subtraction point put at 
2 . 

-15 (BeV) , then the Dashen~Frautschi 

approximation is ~uite good when the physical decuplet spacing is 

reached, as is shown in Fig. 10. 
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FIGURE CAPrIONS 

Fig. 9. The D~cuplet Mass Splitting with Heavy B3.ryons. 

, , The degenerate baryon mass is 2386 MeV. Also, f 

[J '2 -7 (BeV)', theeoupling,pertvrbationsare 

zero, = 1; = The 

'prefix D indicates that the Dashen'-Frautschi approximation 

was used in finding the mass' shiftj,no prefix indicates the 

exact solution of the model,. 

,Fig .10.' The Decuplet Mass Spli ttirig with Very Heavy Baryons. ' 

The degenerate baryon mass is 3579 MeV.' Also" f 

g = 30.013, t = -15 (BeV)2, the cQuplingperturbations 

are zero, 5 4 
,- 1, 51 = 9, and 5 = 6

2 = 6 ' = 6
5 3 

The prefix: ' Dindicates that the D8.shen-Frautschi'approximation 

was used in finding t~e mass shift; 'no prefix indicates the 

, 'F\ 

exact solution of them6del. 
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Fig. 9 
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VII. AMPLITUDE OCTEr SUM RULES 

If the octet deviations from pure SU(3) are small} then 

both the masses of bound states and the elements of the scattering 

amplitude satisfy octet sum rules. When the s~mnetry breaking 

parameters are large enough that the decuplet spacing approaches the 

physical value} the first-order approximations are poor and many 

manifestations of nonlinear behavior are obvious. Thus} the equal 

mass spacing of the decuplet is not explained by assuming tp~t the 

symmetry breaking is small. 

We do not know why the dynamics favor octet sum rules for 

the bound-state masses. But it is conceivable that the matrix elements 

of the transition operator also satisfy the octet sum rules} and that 

octet symmetry breaking is a general property that is rather independent 

of perturbation theory. However} the amplitude octet sum rules fail 

for about the same values of the symmetry-breaking parameters at 

which the first-order theories become inaccurate. We now discuss 

this quantitqtively. 

In Section III} we calculated the amplitudes for meson-baryon 

scattering for the values of I and Y that correspond to the 

decuplet quantum numbers. 'These four scattering matrices were written 

in a channel basis in which each matrix element was the amplitude for 

a transition from one meson-baryon state to another. To discuss the 

SU(3) transformetion properties of these emplitudes, it is convenient 

to transform to an suO) basis. We· then assume that the emplitude 



o 
transforms 'as an SU.(3) singlet plus the y' = 0, memb'er., of 

an octet. A simple application of the Wigner:'Eckhart Theorem for 

SU(3) gives 

T 
(U AU) '\I ''\I' rl,r I ' = B rr' B ,a + ~ ,(~ , "" 

rr . rr ~ \.6 

This expression is very simple, although the multiplicity of ~,' s in 

complicates the notation •. The amplitude A is in the channel 

basis as calculated in Section III, cmd ,the matrix, U, which is a 

matrix of isoscalar factors, transfonns A to the SU (3)- basis, 

( 8 8 rr'\ 
(u).. r . \ 

- I i, 
~J,r 

\ IiYi I.Y. 6. ~/ 
J J 

(7.2 ) 

where Ii and Y., and 
~ 

I. 
J 

andY. are theisospin and hypercharge 
J 

of the baryon and meson in channel ij • The indices rand 

r' Cr' and r') denote the SU(3) representation and, the multiplicity: 

respectively (i.e., there are two for the channels communicating 

with the y* and -::* ) - . The first term on the right side of Eq. (7.1) 

is the SU(3) singlet contribution. TheWigner-EckhartTheorem 

factors ·the quantum numbers of the decuplet particle out of the 

arb, itrary constant" a' (~) 
r"/,r'r' 

The ~ is the multiplicity index 

of r in r':)2 $, and 6. denotes . ~ -__ -v. • I and Y of the decuplet particle . 

The sum rules are derived in the usual way. For example, the 

10 to 10 transition,amplitude appec:-rs in all four scattering matrices. 
',..v 
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Since there are two arbitrary constants, we find two sum rules. 

Altogether, there are nine octet sum rules that an octet symmetry-

broken amplitude must satisfy. We define a set of nine symbols, 

° (j) which are zero for pure octet symmetry breaking. The r-r'YI , 

subscript, r - r'1" , means the transition from representation r 

to representation r', and as before 1" is the multiplicity 

index of r'o (There are no sum rules for the 8 to 8 transitions 
~ ~ ~ 

and the amplitude is always symmetric, so we only need one multiplicity 

index. ) The index, j , simply numbers the sum rule for those 

transitions which have several sum rules. Ifo (j) is set 
r-r'y' 

e~ual to zero, these sum rules follow from Eq. (7.1): 

s °27-10 
(1 ) 

= A
27

-10 (y*) -, (8/15)1/2 ~ (N*) 
c 7-10 

, 

°21-10 
(2 ) C-*) (rl / 2 ~7-l0 (N*) , s = A27-10 ~ - 5 c 

s °27-8,1 = ~7 -8,1 (y*) - (2/3 )1/2 A2T .. 8,1 (:=:*) c , 

',s 
°27- 8,2 = A (y*) _ (2/3)1/2 ~7 ~8, 2 (:=:*) , c 27-8,2 

(Equation 7.3 continued) 
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s °10_8) 1. = A· C=:x- ) A Cy* ) ; c 10-8,1. 10-8,1 

s ° = A C::::*) A (y* ); 
c 10-8,2 .10-8,2 - ·10-8,2 

s °10-10 = AIO_IO 
(y~- ) (7.3 ) c 

The amplituq.e A . , I (.6) 
r-r r . is the transition amplitude between 

representations rand r' r', and the I and Yquantum numbers 

are again denoted by the decuplet particle symbol. The. scale factor) 

s • is inserted to ~~ke 
·c ' 

cr . (j) 
r-r'r' 

. dimensionless. 

In Section III, we calculated the determinant of Re(D(s)} 

in the computation of the bound-state pole positions. This was 

equivalent to finding the pole positions in the Hermitian K matrix, 

and had the adva.ntage of avoiding complex arithmetic. For the same 

reason, we assume that the K matrix satisfies the octet sum rules) 

where 

K (s ) = N (s) eRe DC s ) } -1. 

The sum rules will not be valid for all values of s. For 

s near a bound-state pole,the sum rules can be violated arbitrarily. 

For example, if s is between the· y*' and ~- masses) then 

KlO_lOCN*) and IS.O-IO(Y*) are both negative.and IS.O-lOC::::*) and 

Ie CQ-) are both positive. (This is true for svmmetry breaking_ 
-~O-lO "U~ 
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where the decuplet masses are in their physical order.) Conse~uently, 

e~ual spacing of the amplitudes is impossible, even for very small 

symmetry breaking. [See E~. (7.3).] Thus, we test the sum rules for 

values of s. where K(s) is a slowly-varying function. In our model, 

this is e~uivalent to avoiding s near pole positions, or 

max (K'V 1'V'(.6;S)} ~b, . r l -r I 

where b is a bound of order 1. 

In applying this criterion to K(s), it would seem natural 

to take s much larger than the decuplet masses. However, the K 

matrix has a set of' poles where the phase shifts return through zero. 

For reasonably small symmetry breaking, these poles appear at 

2 2 10 (BeV) ~ s ~ 15 (BeV). We avoid all poles by choosing b = 2. 

For symmetry breaking of order 0 $ 0.5 (See Fig. 4), K27-l0(.6) 

is from 5 to 10 times larger than the next largest Off-diagonal 

K~matrix element in the SU(3) basis. Also, the spacings of ~0_10(.6) 

are of order K27-l0(.6). If the scale factor is chosen to be of this 

magnitude, then the violations of the other sum rules will be "small". 

We let the scale factor be 

s c = max (j~0-10 (y*) - ~O-IO (N*) I, I ~O-IO (?) - ~O-IO (Y* ) I , 
(7.5 ) 
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We evaluate the first hlO sum rules ofEq. (7.3) as they are} 

but discuss the~0_10(6) spacings by a simple parameter} ')' } i-Thich 

is the maximum deviation from· the average. spaci ngof the 10~10 

amplitude} 

s ')' = c 

. Before examining the numerical details} i-Te should emphasize 

trat s is linear in the sYIT~etry breaking toloi-Test order. Since c 

the right side ofEq. (7.3) is already second-order in the symmetry­

breaking (the octet sum rules~ s~tisfied to first-order), it follOi-TS 

that the linear behavior of 0 and ')' corresponds to second order 

symmetry breaking effects and the curvature of the plots of 0 and 

')' to higher- order effects. 

In Fig. II, i-Te shoi-T0 and,), as functions of the meson and 

baryon mass splitting parameter} o. The plots are remarkably linear 

out to 0 = 0.7. HOi-Tever, on closer examination i-Te find that third-

order effects and higher are important, even at 0 = 0.7. This is 

because a strong second-order effect in s c 

order effect in, for example, K27-l0(Y*). 

cancels the strong third-

The importance of the higher-order effects becomes obvious 

i-Then i-Te plot 0 and ')' as functions of the coupling syrmnetry-breaking 

parameter, E Here, the second-order terms of s 
c 

are of the SB.me sign and magnitude as the third-order effects in, for 

example} K27-l0(Y*)' and the plot is ~uite nonlinear} as shovm in· 

Fig. 12. 
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These results are not very dependent on the value of s, if 

s is not near a pole of K(s). The sum rules slowly become better 

satisfied as s 

E 

s 

= 0, then: r 

= 20 (BeV)2; 

is increased. For example, if 0 = 

= 0.23 at s = 14 (BeV)2; y = 

andy = 0.04 at 2 
s = 45 (BeV) . 

0.25 and 

0.10 at 

The symmetry breaking is large in the sense that first-order 

formulas are ~uite inaccurate. Tpe second-order theory improves the 

situation only slightly, and when physical symmetry breaking is reached, 

it is as unreliable as the first-order theory. Finally, the octet 

symmetry breaking output is special to the bound-state pole positions; 

the amplitude does not satisfy the octet sum rules for physical 

symmetry breaking. 
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FIGURE CAPI'IONS' , 

. Fig. 11. Violations of the Amplitude octet Sum Rules as Function of 8. 

The parameters are: a= 0'27~10(1) [Eq.(7.3)); (3 = 0'27_10(2); 

and' "/ is defined in Eq~ (7.6}. Also,. f= 0:~33,t = -1 (BeV)2, 

. g =19, s ::: 5 (Bev)2 ,81 =~\= 0,121 = 122 == 123 == 12 4 = 125 = 0, 

and 8 = 8
2 

= 8
3 

=8
5 

• 
. . 

Fig. 12. Violations of the Amplitude Octet Sum Rules as Function of 12 .• 

. (1) . (2) 
The parameters are: a = 0'27-10 . [Eq. (7.3)]; i3 = 0'27-10 . ; 

and "/ is defined in Eq. (7.6). Also, f = 0.33, t·= -1 (Bev)2, 

g = 19, 

and 12 = 12= 12 • 1 2 
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Fig. 11 
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Fig. 12 , 
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APPENDIX' I: OCTET '. PERTURBATIONS OF THE BARYON -MESON COUPLING' CONSTANTS· 

The eight baryons, the eight antibaryons, and the eight 

pseudoscalar mesons are assigned to eight-dimensional rep;resentations 

of SUe) ).. In tensor notation, we symbolize the elements of the octet 

b 'a . tensor by T , where T = O. 
a a' 

(T b is traceless.) A sum on 
a 

repeated subscripts is implied, aJid .a, b, etc. take on values 1,2,3. 

We associate particles with tensor components by the. prescription, . 

(Al.·l) 

and' 

where 

or = T a
l 
... a. 
. J 

, 

and the symbols n· (i) and' nl(j)' denote the number of upperi;i.s 
. u 

and the number 0t: lower j I s' of the tensor component. The requirement. 

of tracelessness with respect to .SU(3) and isotopic spin also gives 

some non ... trivial normalization conditions. The usual identifications 

follow, 

. ~. 
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(AL3) 

-0 

-0 
A L: -+ =+ 

-J2--J6 L: 

Cs b) 
-0 A ~- L: =0 

= --,J2- -V6 
::::.. 

a 

p - 2 -n -A 
-v6 

0 

~_.....!l. + K+ 
-J2-v-6 

1( 

(p b) - (p b) = 1( 
_ 1(0 _ .....!l. 

KO 
a a 1/2-v6 

K - KO 2 

-J6 11 

The derivation of E~. (2.12) is analogous to the derivation 

of the Ge1l-Mann-Okubo mass formula. The mos.t general Yukawa coupling 

is 

We omit the ?'5 

H 
int 

= C ace 
bdg 

to shorten the notation. 

(Al. 4) 

The representations 

contained in E~. (Al.4) are those included in .§, .• ® § ® §.,. If 
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. land Yare conserved, Hjk cannot contain any components belo~ing 
. . .. . .' 

tonon-self-conjugate representations, and the six· 27's' and the 64' 
. ", /IN .. V,'/ 

are eliminated by assuming thatlthe symmetr;ybreaking transforms as 

the Y .- 0, I = 0 member of an octet. Thus, the two l' sand 
/\,'.; 

the eight I = 0, Y= 0 components of the eight 8's 
(V'I 

in Eq. (A1.4 ) 

are all that we need to consider. We write Hint as 

1 

. 2··2" Hint = gD tdB'(PB + BP)] + gF[B'(PB - BP)] 

(Al·5 ) 

TheC/s cannot all be independent; since tp.ere are only eight 

in 8 ® 8 'xl 8 • But the product of three traceless matrices is 
/Y'J MJ~) /IN 

. . - . . ", 

not neces$arily traceless, so we must subtract out the ~. included 

.in the last nine terms of Eq. (A1.5). Moreover; the hermiticity of 

H .int impli,es that 01 - °2 , 0· = 06} 
5 

This 

leaVes five independent octet symmetry-breaking terms. 

. 10 
~s 

The relation that gives the linear dependence of the coefficients 

, ,", 
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+ B 3 tr(BP). (Al .. 6) 
3 

E~uation (Al.6) is easily verified from Table Al.l, where the results 

of the necessary matrix multiplications are exhibited. 

If gD = gd, gF = gfJ and d + f = lJ then Eq. (Al.5) 

becomes 

Hint /(gJ2) = tr[B(PB + BP)J - 2f tr(BBP) 

We .have used Eq. (Al.6) to eliminate the term proportional to 

[(BBP +PBB)33 - (2/3) tr(BBP)]. To obtain the simple parameterization 

of the coupling perturbations ofEq. (4.7), let 



.. E ' 
4 
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":, . 

. 1 1 . ·2· 
= 3- E1 - - E -.-;. E • + E4 

2 . 2 .3 .. 3 

(Al.8 ) 

, Substituting Eq. (Ai.B) into Eq. (Al.7), we compare the following two 
, . . . 

forms of H.·t to derive Eq. (2.12), . In 

Hint / (g 1(2) =. tr Ci3(PB + BP)] - 2f tr (BBP) 

1 3 _. 1-3 1 3 -
- 2" B3 tr(BP) - 2" B3 tr(BP) - 2" P3 tr(BB)]· 

Equation (Al.9) continued 
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+ gill{ i ~.::S x ~. - g=:=:1( :=: !.~~. - ~AK (K K N +N K A) 

., (A1.9) ... 

TableAl.l aids in the comparision of the hro forms of E<l. (A1.9). 

The twelve isotopic spin invariant couplings are written out in 

Table A1.2. 



·1 ..... 

TABLE Al.l: Decomposition of the Singlet and Octet Couplings Into the Isotopic-Spin-Invariant 

Couplings. Each SU(3) term is a sum of isotopic-spin couplings with the coefficients shovm in 

the table. 

12 tr(BPB) 

J2 tr(BBP) 

~ (PBB + BBP)'; 

V2 (BPB)33 

\[2 (BI:13")33 

{2 (B~tr(BP)-':':~::_' 

:~B33 tr (BP)) 

f2 P
3
3 tr(B"B) 

1V2 tr[i3(PB+BP)] 

\/2 tr[B(PB-BP)] 

"2 (BBP+PB:s)/ 

N!'nN 

1 

o 

o 

1 

o 

o 

o 

1 

1 

o 

i\~.rr i~.rr 
"" r..# ""v -'V 

+' 1\f.·rrX~, 
'V rv 'V 

i -~-I AKN 
I ==T',rr"'il +ANK' , ~ "" 
I 

NT·LX I 1\==KI

1 

KT'~~I 
+ RT~fiir +1\~ +==;.lli

l 
01') 

........ ....... -"'\, ....... ' 

I 

r:' ~1') -I, =1') 
~ '" 

1\1\1') 

-1/J5 

-1/{5 

o 

o 

o 

2/13 

o 

-2/{3 

o 

o 

1 

-1 

o 

o 

o 

I 
I 

o I-

I 
o I 

o 

2 

o 

o I 2/{3 

1 

o 

o 

-1/{3 

2/{3 

2//3 

o 

,1 

o 

o 

-1/15 1 1 

2/131 0 

"""",' I 
-1/..j3 I ,1 ' 

! 
o i 0 

! 
I ! 

o 'I 2/{3lo 
, 'I" ! 

1 o 
- 1 ,,' I 

", I! 

'\ 2/~1 0 
. . :1 

, 1 

, 0, i 0 

I , I 
li/v'3! 1 

-131 1 ";1 

2/13 I 0 
I 

o ' I 2/{3 I 0 

I 
! 0 
! 

1 I 1/{5 -~~ 1 
I I 

-1 I Y3 
o I ~1/f5 

I 

1 

o o 

I I 

-1/{3 1/{5 ·1-1/{51' 2//3 

2/{3 l/p l-l/J3I~l//3" 

o 1~{31 0 1 4/{3 

-1//31 o/3J3!, 0 

II 
o 

o :L/3Y3 I 0 -1/{3 

I 
;0 -, I 4//3 ,1- 0 '1'0 
I ' ," I 

12/J312/J3 !2//312//3 
11//31 2/.f} 1-2//311//3 

::\ 0/:131 : .: r: 

, i 
-.I' ' 
00 
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TABLE Al.2: Decomposition of the Isotopic-Spin-Invariant Couplings. 

N !·zs N = f2 p n 1! + + {2 p n 1! + (pp - nn)1!° 

f2 =0 --. + fr.,2:::-+ -0 -+:-(--=+ _0=0) 0 _ ".1! _ = .::..::. 1! + V c .::. .::. 1! +.::..::. -.::..::. 1! 
~ /\. 

- 0 + . r;; - + 0 r;:. - - + - 0 0 -0 -
N :::..~ K + K :s.~ N = p L: K . + V 2 P L: K + v2 n L: K :.. n L: K + L: P K 

+ {2 ~ n K- + (2 ~- pKo - ~o n EO 

NNT) = PPT) + nnT) 

(Table Al.2 continued) 
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--+ - -0 0·· -- + = ZZ 1)+Z Z1)+Z Z 1) 

=+--=- '=' 0 _0 
1)+- =- 1) 

" 



APPENDIX II: ISOSPIN CROSSING MATRICES 

Although the derivation of the isospin'crossing matrices is 

rather elementary in principle) it has been plagued with phase 

convention difficulties. In extending an appendix to a paper by 

13 . 11 
Mandelstam et. al.) Carruthers and Krisch proposed to overcome 

the confusion by explicitly displaying the particle-state phase 

conventions in the field operators. In this formalism) there is a 

neat separation between the phase conventions for the particle states 

and the conventions related to the group theory of SU(2). The Condon 

and Shortley phase conventions place some restrictions on the phases 

in the field operators) but they do not determine the overall phase 

of the creation operators relative to the annihilation operators in 

the field operators. The phase choices of Carruthers, and Krisch do 

12 not agree with those taken by de Swart in his calculation of the 

vector coupling coefficients for SU(3). Since we use the de Swart 

isoscalar factors on several occasions (see Sections V and VII)} it is 

mandatory that we follow his conventions. In o~rr derivation of the 

isospin crossing matrices) we follovl the general method of Carruthers 

and Krisch} but completely redo their phase convention discussion. rfTe 

restrict our discussion to the u-channel to s-channel crossing matrices .. 

The sand u channels are defined by 

a + b (s) 

(A2.l ) 

a +d ~ c + b (u) 



where band d . are pseudoscalar mesons and a and c are baryons. 

The letters, a, b, c, and d, also denote the isospin of the particles,: 

and ex, (3, ')', and 0 label the third component. The antiparticles of 

a, b, c, and d are denoted by a, b, c, and d, and have third 

components -ex, -(3, -,)"and -0, respectively. 

The continuation of the u-channel amplitude to the s-channel 

physical region yields 

(A2.2 ) 

After transforming to amplitudes of definite isospin (is'ospin 

conservation is assumed here), .we solve for MS(Sf), the s-channel 

amplitude with isospin Sf • A useful relation is 

C(adu,: ex, - 0) C(cbu; ,)" -(3) =L (2u + 1) (_l)b+d-tO:-ry x 
s 

{~ ~ ~} C(cds; ')' 0) C(abs; ex(3), 

\ 

where C (cbu; ')' .r.J3) 

coefficient and { ~ 
is 

_ (c,,),;b,-(3 Ic,b;u,')' -(3) is the vector-coupling 

b s} is a 6 _ j symbol. The solution for M
S (s f) 

d u 

= L (A2. 4) 
u' 

Xsu = ssu(-l)b+d-tO:+')' (2u + 1) {~~ ~} , (A2.5 ) 

and X is the crossing matrix. 
su 

'. ,. 

~.. .... 



. .,. 

We return to Eq. (A2.2) to evaluate ~su. Since we are 

crossing pseudoscalar mesons, we need consider on;ty the rc-" i)-" 

and K-meson: fields. The phase conventions are revealed in the field 

operators. The rc field is 

where ~ is the third component of isospin, and 

-ik·x 
e 

To solve for we need the orthogonality 

( 
and 

relations" 

J d3~ fk , *(x) 
<.--l' 

53 (k f i dO fk(x) = - k) " IV rv 
;/V /V 

J d3
x 

~ 

fk(X) i do fk(X) = o • 
-v /V 

Combining Eqs. (A2.7) and (A2.6a), we find 

a (~) (k) = J d3x fk*(X) i 2: ;b (~) (x) , 
rc ." o rc 

''V 

a (~)t (k) = (-l)~ J d3x ;b (-~) idO fk (x) • rc f'- rc 
/V 

(A2. 6b) 

(A2. 6c) 
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The '11 field is obtained by replacing 1C with·Tj in E~. (A2. 6)" 
'. 

; 

setting ~ = 0" then dropping the index" ~ •. 

TheK and K mesons do not belong to .the sameisomultiplet" 

so the K-meson field is defined by 

(A2.8a) 

f 

where K is also the isospin of the K meson and ~ is the third 

component. Inversion of the field operator gives" 

= 

(A2 .8b) 

a (~)t(k) J d3x w(~)t b~) ~ 

= i dO f (x) , K ;v k 
/V 

a (~)t(k) (_lrK+~ J d3x W (-~)(x) ~ 

= i do fk(x) K ",. K 
N 

A simple application of the L. S. Z. reduction formalism is 

sufficient for determTITIr.g ~ • After reducing the initial and final su 

mesons out of the s-channel S-matrix element" and out of the u-channel 

S-matrix element" we compare· the two S-matrix elements. A crossing 

condition results" and comparison with E~. (A2.2) gives ~su. 

To ·see how this goes" consider the example where the s reaction 

is 



We retain the momentum labels, but ignore a possible unit operator 

for elastic scattering. Reducing the mesons out of the S-matrix 

element, we find 

(N, K(k 0) out I~; ~(k'~) in) 
N /V 

:::: (N out la
R 

(0) (~) a~ (~)t (~' ) I i: in) 

:::: (_l) -K+O (-l)~· 2 J 4 4 *() () i d x d y. fk x f k , Y 

A similar calculation for the u reaction, 

~K ~ N;:(, 

yields 

(N; ~(ClJ-~) out I ~; K(q', - 0) in) 

:::: (N out I a, ,(-~) (q) aK(-o)t (q') ~ in ) 
~ """ 

2 J 4 4 :::: i d x d y f *(y) f ,(x) 
q q 
"'" tv 

(Equation continued) 
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J( (0 + trl_2) ( 0 + m 2) (N IT [r' (-~) (y) 
x K Y":rr, l:rr .'. 

A comparison of'these two expressions gives the crossing relation 

C ) '-C )] C )K-O-~ '" S [Z, :rr k'~ -> N K k 0 .... = ' -1 S[Z,K(-k, -0) -> N, :rrC-k', -~}] • 
f'\.J IV IV N"' 

The phase f'actor, ~ is 
!::'su ' 

C )K-O-~ -1 . 

This type of' calculation is easily perf'ormed'f'or the sixteen possibilities 

of' incoming and outgoing :rr! ~ , K, or K mesons. The results are 

tabulated.in Table A2.1. 

From Table A2.1, it is clear that X is just a phase times su 

(2u + 1) {~~ ~} • The derivation of'the isospin crossing matrices 

is now reduced to looking up 6 - j symbols. The crossing matrices 

are f'ound in Table A2.2. In this phase convention, the S matrix is 

symmetric (s~e,~arruthers and Krischll ). The couplings derived in 

Appendix I and Table A2. 2 imply the matric es, NO' shown in Table 2.1. 

Perhaps we should note that there are some phase dif'f'erences between 

our NO and those calculated by Martin and wali.
6 

: ... 



TABLE A2.l: The Phase Factor, s ,for E~s. (A2.2) and (A2.5). su 

Mesons in s channel 

Incoming 
b 

K 

Outgoing 
d 

K 

I 
I 
I ) 
I 

1 
I 

( _1)2a+b+d 

i 
I 

i 
I 
I 
I 

I 

----~l 

I 
I 

i 
j 
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TABLE A2.2: Isospin Crossing Matrices} X~u} For Baryon-Meson Scattering. 

, The symbols (s') and [ u ' ] denote M
S 

(s ,) and M
U 

(u ' )} respectively. The-

baryon exchanges needed in' Section II are listed in the, final two columns: 

IMU(U' ) 

, 

S (_l)b+d+/+a I 
:i' Baryon EXchange 

MS(s') 
, i 

Channel X s'u' 
_ --T--.-----------; 

su 'I I s-channel i Baryon --

I 
! , 

. ~ _ isospin ,- exchanged' 
i i 

I 
(1/2) (:~ 4/~![1/2l 3/2 

'I 
IN":rr ~ N:rr ! ! N 
I i i 

i - I ! 
! I 

(3/2) 1/}! 1[3/2] - I I l:.- . ! . I _ 

! .r .. 
j 1 

I (1/2) , C/: 1\1[0] 3/2 ! :N:rr ~ LX I -- A L: 
I - - \i - } , -
I ! l/J![l] 

i 
i (3/2) 1/V6 j ! j I i i I I 

-, 

ILX ~ LX 
I 

, 
I ! I 

4/3\)[1/2] 3/2 -- ! (1/2) C/3 I 

i - . i -I 'j 

1 i 
I 

! 

1/):[3/2 ] 
- , 

(3/2 ) 2/3 
, 

I 
- I t ., 

I I i 
! 

3/2'\ " -> NK '+ I (0 ) C/2 [ 0] I 
I l' 
! (1 ) _ 1/2 1/~: [ 1] 1 None , 

4//6\l [ 1/2 ] 

~ . 

I f-2/~ 
\ 

tNK ~ Dc (0) 
~ 

i I 
I 

~/3 I 
Ii 

I (1 ) -2/}J:[3/2] 1 N 
! I· 

I 
, 

I I I 
I 

-2/{6 j[ 1/2] r~A:rr I (1) 1 N 
I I ! ! , 

(Table A2.2 continued) 

-,. 



s (':'l)b+d+r ,.a MS(s') 
. u ..' Baryon Exchange I 

Channel Xs'u' M (\I') ~-::l---. ------J su . .' .' I 
s-channe1 Ba.ryon ! 

isospin I eXChanged! 

NK' .... =x (0 ) -3/
J1 

[0] I 1 A,L. 

(1 ) -1/2 I [1] 

2//6 I [1/2] NK .... L.11 . +. (1) 1 N 

~/3 I (0) 
I 

[0] L.rc .... L.rc + -1 
I I (1) -1/3 1/2 I [1 ] 1 A,L. I i 
I I 

1\.1/3 1/2 
I [2] ·(2 ) 

I i ,'" I 

i 
I . I L.rc .... Arr + (1 ) -1 [1 ] I 1 I r. I 

·1 

I 

! 
IC/V6 -4){6-" 

I 
L.rc .... :=:K + (0) I [1/2] I 1 I 

I -
. I 

I I I I 
(1 ) I -2/3 -2/3./ I [3/2] 

I I 

I I 

! I I I 
iL.rc -+ L.11 I (1 ) 1 [1 ] i 1 L. I I 
I I I i 

i i 

~ ~A" 
I t i i I 
I + I (1 ) 1 

I 
[1 ] 1 I L. 

I ! I 
~rr ~ :=:~ I 2/f6 

I 

(1 ) i I [1/2] 1 
I .1 

+ I - 1 

I 
! 

I 
I 
I 

I I 

I i 
-lA/5 ! !Arr .... L.T} I I (1 ) I [0] .. 1 A 

t 

I 
I i I I I I 

I ! I· 

(Table A2.2 continued) 
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. , 
'.' . . ~ 
.... '. 

,. .' ';,., ,'" 

. '." 
, ,' . 

.... ;. ~ ( 
", '\ \ ·-90- . '. ," 

I 

I :::1 
::::11: ~ AK ! 

I 
" - I 

=:n:.-+ LX I 
I 
I 
t 

- - I '='11: -+.=.1) ! 

AK ~ "K I 
- - j AK -+ LX I 

- I IAK -+:=:1) ( 

., '. ','. 

x· ... 
s'U" 

Baryon Exchange 
. MU( u') f---,-'-----------

. ".;,', .'. s .. :channe1 B9.ryon· . 
. . '. I • 

,isospin exchanged, .' . 

+ 

+ I 

(0) 

(l) 

(1) 

(1) 

'(-1/2 ... 3/2). 
, 1/2 .. ' 1/2 .. 

1 

[ 0] 

[1] .' 

[1/2 ] 

[1] 

-, I ;~;:; ; C;: :~) ~~;: ~ 
+ (1/2) .. 1.. .3/16' ...... [1] 

(1/2)1(1//6 -~1 '.' [0] 

(3/2) \::..1//6 -1/~/1 [1] 

1 

1 

1 

None 

I 

I 
I 
I ,1: 

I 
1 

i 
I 
J 

I .+' (1/2) 1 

(1/2) .. I 1 [1/2]' 

[1/2] 

"'.1/2 I' : 

, .-. 

+. 

I (1/2) I -1 [1/2] I 
1(1/2)' 1/12! . [0] I 

1/2 

1/2 

1(1/2)/ e/3 4/3)1 [1/2]1 1/2 I 
I (3/2 ) I ,,2/3' 1/.v [3/2] l! 
I ' I . , ,.1,','. I 1 (1/2) I. . -3/[6 , 1 [1] ,1/2. Ii 

I (1/2) I 1 'I 11/2 ]1 '1/2 'j 

'! 
(0 ) 

,'I, (1) 

(I/2 
~/2 

3/11 I [0], I, 0 

I 
1/S/i . [1]1 : 

N 

N 

" 

i 

I 

i 
{ 

I 
I 
t 
I 

I 

I 
! 

I • 
i , 
! 
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APPENDIX III: SOME INTEGRALS 

The integrals needed in the calculations of Section III and 

the mass expansions of Section IV were done analytically. We list 

here the results of these computations. The solution to the N/D 

e~uations in Section III was reduced to evaluating the integral, 

E(s; M, /-l) = 

where 

s - t 
JL 

'fOO dx P.V. 

~ 

2 2 
x (x- t) (x - s) 

k(x) 
2 

- 2bx + c , = x 

(Nf 2 b = + /-l ) , 

(Nf 2 2 
c = - /-l ) , 

~ = (M + /-l)2 

, 

A partial fraction decomposition (with ~(x) in the 

numerator) and integration of each term yields 

( t) -l E( M ) -_ t-2 [cs-l + k(t) (s _ t)-l] s - JL s;, /-l 

(A3 .la) 

(A3 .lb) 

(A3.2 ) 

I, 

X [t2 (s - 3b) + (3c + sb) t - 2sc] L(t) - k2 (s) s-2 (s - t)-2 Xes), 

--~--



." . 
.. : . 

',' 

':'92-: 
" .,r 

, " . ,." " .'. ' 
,I: , 

where . : : 

, " 1 ' ' ' 

L(t) '=' tnl[b -t - k2 (t)]/2Mj..l/ , 

and '. ," • •• ·f 

, . .' . . 

,1'" 1 . ..'..'.< 

x(s)' =' .k-2 (s)tn I[b~ s -'k2 (s)V(2M ,.t)I:,k(s) >.0 

. ; " .; .... ", ,', 
, . .(A3 .,3) 

1 .' 1 

x(s) = -' [-k(s)) -2 {ta~-l [(8 -b)/ (~k(s) )2] +~/2J, k(s t'.:::' 0 

,The apparent sihg~a~ityat "s ':: (M-· ~l' has ,ze~bdiscontinuity. 

Thus, the two forms of x(s) inEq. (A3.3) are' simple analytic 
.;, .'., , . 

continuations of one anbther~ . 

To second order in the mass symmetry breaking, the "mass 

expansion" of E(s;M,~J' is 

, (A3. 4) 

Where 

and 

~ " 

d(ll) 
E(S;M,~) 12 2 ": + d(~2) E(s;M,~) I '2 .. 2 

MO ,110 ' " ',' " Yo ,110 

o , 

... ; 

. ' .... 
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2 2 
5 = (fl - flO·). 

Since the integrand of . E(s;M, fl) .is unifo~m1y continuous for all s, 

we can diffe~entiate E(s;M,fl) under the integral sign, 

1 

k'2(x) (d - ex) 
2 2 . 

x (x - t) (x - s) 
= L (s - t) P.V. 1!. 

with 

2 2 
d = (MO .. flO ) (~. - 0) , 

Another partial fraction decomposition and integration gives 

-1( )-1 ( ) -2 [ -1 ( ) ( . )-1] 3 s - t 1! El s = t ds -' d ~ et t - s 

1 . 

+ s-2 t-3 c-'2 [Cd(t + 2s) _. st(ce +bd)] tn(fl
o 

Mo-1) 

1 -

- k -'2 ( t) t -3 (t - s r2 (t (t - . s) (d - et) (t - b) 

- k(t) [d(3t - 2s) + et (s - 2t)lJ L(t) 

- k (s) s-2(s -. t)-2 (d - es) ·X(s). (A3. 6) 
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If 8 -1 f3 0 , we can take a second mass derivative of 

E(s;M, Jl), 

3 "" 
E2 (8) ="~ (8 - t) P.V. 

1 """ "" 

d.x 
k-2(x) [f ~l + g x + hJ (" 

2 2 ' . A3.7) 
x (x - t) (x - s) 

where 

2 222 
g = - 2 (Mo 6. + JlOO) (6 - ° ) , 

h = 222 2 
(M - Jl ) (6. - 0) o 0 

The integral" Eq. (A3. 7)" is then 

~-l( t)-l E ( ) -1 -1 t-2 h (f" t 2 + g t +"h) / ' "J 8 - ~ 2 s = s c -

-3 -2 -1/2 ( )J ( -1) + t 8" cst g+ h t + 2 h s tn Jlo Mo 

(A3. 8 ) 

x (3t - 2s)J) L(t) - s-2(s - t)-2 (f s2 + g s + h) Xes) 
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Equation (A3. 8) is infinite at s =. ~O. However) for s 

near ~O' the integrand of El(s) is no longer uniformly continuous, 

and we must separate the integral into two parts in order to decide 

how E2 (s) behaves at s = ~O. We write 

3 . 
= - (s - t) P.V. 

1\. 

f~ 
~O 

1 

+ ~ (s - t) ,,(~ 0'; MO~O) P. v. lX' dx 

~o 

(x - ~oy2 
x(x - s) , 

where 

1 

a(x;M,~) = x-lex _ t)-2 (d _ ex) [x _ (M.- ~)2]2 

The integrand in the first integral of Eq~ (A3.9) is uniformly 

continuous for all s and the mass derivatives exist. The second 

integral can be done explicitly, and then differentiated. 

1 
(x _ ~ )2 
x(x - s) 

1 

= ~ ~2, 

1 1 

(A3.9) 

When (~ S)2 is differentiated, there is a (~- S)-2 singularity 

at s = ~. Thus, spurious zeros ar~ introduced into det[D(s)] in 

the second order mass expansion. The mass expansion is not very reliable 

when the dynamically-:produced zero in det[D(s)] lies, ciose to. s = ~O 
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PART B 

EXACT EQUATIONS FOR THE PERTURBED AMPLITUDE AND MASS 

AND COUPLING SIITFTS IN DISPERSION THEORY* 

I. INTRODUCTION 

A systematic assault on the total bootstrap problem seems 

impossible at present. However, approximations based on the concept 

of supermultiplets of strongly interacting particles reduce the 

problem into more manageable units. After rough calculations have 

been performed with the supermultiplets, it is possible to induce 

symmetry breaking within the multiplet to obtain finer details. I -3 

Computations are not too difficult :i:f.the symmetry breaking is treated 

2 
in a first-order S-matrix perturbation theory. The usefulness of the 

linearized theory is well demonstrated in the theory of octet enhancement. 3 

The perturbation consists of variations of the left- and right-

hand singularities of thelpartial-wave amplitude. The Dashen-Frautschi 

2 theory describes the mass and coupling shifts of a dynamically bound 

state as a linear function of these variations. The linear theory is 

capable of calculating small shifts when the bound-state pole remains 

on a given Riemann sheet of the scattering amplitude. However, if the 

pole changes sheets) or if it executes a large motion on a single 

sheet, the linear theory is not ade~uate. For these and for mathemati-

cal reasons it is desirable to have a more complete theory of perturbed 

amplitudes and of mass and coupling shifts of bound states. 

E~uations for the perturbed amplitude, and for the mass and 

\ 
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coupling shifts) have been derived byM. Kugler for single-channel 
. 4 . . 

potential theory where only the left-hand singularities are varied. 

Using a Castillejo-Dalitz-Dyson (CDD) pole in his perturbed-amplitude 

4 
equations,. Kugler then recovers the potential-theory analog of the 

I 

Dashen-Frautschi mass-shift formula. The inclusion of many channels irt 

his formalism is trivial. However) the generalization to the relativis-

tic case in which the unitarity cuts are also varied is less simple. 

In Section II) we propose a set of exact nonsingular equations 

for the perturbed amplitude. The input into these equations is the 

unperturbed amplitude in the form 
:..1 

ND and a perturbation represented 

by variations of the exchange and,unitarity cuts. It is clear that this 

is sufficient information to calculate the total amplitude. Moreover) 

in a two-body elastic-unitary formalism) it is consistent with the 

bootstrap philosophy to use the change of the unitarity cuts as input) 

since without three-body intermediate states it is impossible to determine 

whether an external particle is a bound state or "elementary." At the 

end of section II we show that the perturbed amplitude equations can 

account for the appearance of a stable-particle pole on the physical 

sheet) when the perturbation supplies the, necessary additional binding force. 

In Secti'on III we find the mass shifts and the coupling-constant 

perturbations of a bound state when the unperturbed amplitude already 

has a pole on the same sheet. These are given in terms of the 

solutions to the equations derived in Section II. To describe the 

mass shift of a bound state, we note that the unperturbed and total 

amplitudes must each have simple pole) but located at different values 

of s . Thus) the perturbed amplitude must have tvlO pole s : one to 
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cancel the pole in .. the unperturbed amplitude and the other to ,correspond 

to the bound state of the total amplitude. It is possible to achieve 
\ . . " 

,this effect ~thematically by reinterpreting the dynamical bound 

, state of the unpertlirbed amplitude as an elementary part:i.cle for the 

" calculation of the perturbed ampltiude. 

The most obvious application of the tnass-and coupling-shift 

formulas of Section III is a perturbation expansion for these 

quantities. In Section IV, which is divided into three subsections, 

we derive formulas for the first-order mass shift, the first-order 

coupling shift, and the second-order mass shift. The first-order 

2 results are' identical to those of Dashen and Frautschi. The second-

order coupling shifts and higher order terms in the perturbation 

expansions are easy to derive, but the complicated results are 

probably of little use in numer·ical calculations. 
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I:r:.:EQuATIONS FOR TE-IEPERTORBEDA.1v1PLITlJDE' 
" , .\"" 

'.," . 

,',suppose', the many-channel pa.rtial':''\<lave scatteriI'!-g amplitud.e .... 

A(s) ... canbevlTitten as a sum of tyro terms ... 

(2.1) 

where we shall call AO (s ) the "unperturbed amplitude" and, A
l

( s) . 

the" "perturbed amplitude. "Restricting oUrselves t~tw6-bOdy 

channels and t"l-ro-body un'itarity, we aSS1.1me thatAO is knO'lm in 

the form 

The discon~inuity relations' for N(s) and D(s)' are the usual 
..; 

ones: D(s) has only a right~hand cut, 

iE)] = 

andN(s) has only left~hand singularities; 

Moreover, A(s), AO(s), and Al(S) are syrmnetric and Hermitian 

'. analytic. 

(2.2 ) 

(2 .3a) 

The input for the calculation of the perturbed amplitude is 

thecrange of the unitarity cuts, 

'" ' 
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. opes) = pes) - Po (s) , (2.4a) 

where 

[A( s) ]R = At(s) pes) A(s) , (2 .1.~b) 

. and the change of the left-hand singularities, 

V' (s) = V(s) - VO(s) , (2.4c) 

with 

[A(S)]L = V(s) . (2.4d) 

Neither V' (s) nor opes) is ass~~ed to be small in this section. 

To derive equations for ~ (s) ,it is convenient to define2 

"-' 
J(s). = D(s) ~ (s) D(s) . 

The tilde signifies matrix transpose. Since J(s) has separate left 

and right singularities, it can be factored into the form 

J(s) 
-1 

nCs) d (s) . (2.6) 

The discontinuity relation for J(s) is sufficiently compli-

cated that if all the right cuts are put into des) and all the 

left cuts are put into n.(s) , then the equations for n(s) and des) 

are nonlinear. To preserve the linearity of the equations, n(s) must 

contain some of the right cuts. The equations for n(s) and 

des) are then singular, but they are very similar to the three-body 
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ND~l equations.d~;i;edbYMandelstam'.5 By follovling Mandelstam's' 
',' ,' .. " . ,.... "'" 6'· 
analysis; we use the' standard techniques for'reducingthe Cauchy-

singular equations to nonsingular e;quations. ' 

The discontinuity of Ales) on the right is needed for 

deriving the discontinuity relation for J{s) . From Eqs. (2.1), 

(2·3); and (2.4L we find 

[A1 JR , 
A t op AO +A to ~ 

·t 
Ao +'~t A (2·7) = + A1 p 0 .• 0' P 1 ' ' 

, In transforming Eq. (2.7) into a discontinuity relation for J(s) ; 

we use the fact that J is hermitian ana1ytic;7 

Jt = J{-} (2.8) 

Substitute Eqs. (2.5) and (2.8) into Eq. (2;7); multiply on the left 

by Dt and on the right by D; then use the r~latibn; 

-1 * D D 

The discontinuity of J across the right cuts is then 

[JJ
R = JtGJ + JtBt + BJ + T ; 

' , 

where 

G 
'''"'-It """-1 

= D p D 

t """''';1 
B = N op D ; 

T = Nt op N 

(2·9) 

(2.10a) 

(2.10b) '. 
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The discontinuity of' J across the left cuts folloyrs fromEq. (2.4), 

r..J 

D V'D • (2.l0c) 

To obtain linear equations for. n and d in Eq. (2.6), the 
... 

last tyro terms of Eq. (2.l0a) are put into the 'discontinuity of n . 
The coupled equations for n and d are 

des) I 1 J ds' G(s') n(s') 1 J ds' B t (s' ~ d( s ' ), 
= , 

TC ., 
S' - S - i€ 

TC 
S' - S - i€ R R 

" (2.lia) 

n(s) 1 J ds' 
,L(s') d(s') + 1 J ds' 

'T(s')"d(s'} = . -
TC S' - s+ i€ TC S' - i€ L R - s . 

1 f ds' . B(s" n(s') (2.l1b) + -
TC s' - S - i€ R 

The exact limits of integration are obvious from the discontinuity 

relations, Eq. (2.10). 

Equations (.2.lla) and, (2 .11b). are' both Cauchy singtila:r. The 

reader who is uninter'ested in the technical details of finding 

equivalent nonsingular equations should now turn to the text below 

Eq. (2.I9b). Equations (2.l1a) and (2.I1b) are conveniently reduced 

to nonsingular equations if "Ie first remove the . d term from the 

,1 right-hand side of Eq. (2 .lla) and the n term from the right-hand 
. . . 

side of Eq. (2.l1b).· This can be done by defining 
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'd(s) = ~:1!l( s }.f{S),;.· , 
. . ..' , . , .. ',' < ....: .• 

. 'n(sy"~ fei) 

--~-. ,.,... , . ' 

where m( s), and t( s) satisfy: the equations) " .. : , 

m(s) . ··r -~.J ds" , 
R s', - s - iE 

(:. 

t(s) .. '= I +' ~ :.J, . . ' ds' . Be Ii) t (Sl)' . 
. S I - S - iE 

.. R 

I.: • , , .' 

., ' . 

.' '-.-' ".,:' ~ .... : 

r'·.::'" ',,' 

'.'. ':.,>. 

. ~ , ~. 

, " ~" . 

,,! .. ' 
... 

, :' ..... -

. :,. 
,,',' .. 

,,:,,"(2.12b') 

(2.13b) 

Equations, (2 .13a, b) are CauchYSi~gular, but are easily reduced to .. ' 

nonsingular equations .. (We do this later). To find equations for 
.' . ' .' .', 

f and· u, compare the di~contiriui ti~s of Eq. (2.12) and (2.11). 

The fOrmula for finding the discontinui tyin f is 

(2.14): " 

The integral representation of f (or u)' is easily' constructed. 

The equations for f and u in matrix form are 

(S))= I' 1 J ds ' 

. J ds ' 

+ -
u(s) /-..(Sl) f(s') T( S I - is - iE 

R 

L 
s I - S + iE 

x 
( 

0 -y(s' )\) (f(S') \), .. 
-r ( s I ) 0 \u ( s' ) 

(2.15a) 

" 

. " " .. ', ... 

.. 
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"There 

A(s) = [t C-) (s)·]-1 L(s) me s). 

res) = [mC -) (s)r1 G(s) t(s) , -- (2.15b) 

-res) [t (-) -1 - -
= (s)] Tes) m(s) .. -

All_ four equations for m,t, f 1 and u are Cauchy singular. 

Equation (2.13a) is reduced to a nonsingular equation by operating 

on both sides of the equation from the1eft ~'Tith5 

R s' - s + i€ 

The nonsingular equation for m(s) is 

m(s) = I - [I + 2i Bt(s)]-l I b(s) 

J b(-)(s') - b(-)(s) m(s')] , (2.16a) 
+ 1 ds' Bt(s' ) -

1( 
S t - s R 

where 
t---' 

J Bt(s' ) b(a) 1 ds' (2.16b) = 
1( 

s' - s - i€ R 

The operator f9r reducing Eq. (2 .13b) is 

I 
1 J ds' B(s') + -
:rc s' - s + i€ R 

The nonsingular equation for· tes) -is 
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.... .'t(s),~.{+.}I - ~i B(S; J-1 [b1(S) 

....••• >')'~!dS' .bi-~: S~) :b1 ( -)( S )B(S') t(s' lJ· , 
. (2.17a) 

. '.': 

'.'" ' 

. ..... -. :" .. 

. 1. ·.·J· .' 
. ": :.: , .... 

... b;'<S) = .. ; 
' . 

:. B(s') ds; 
s' - s- i€ 

R 

. (2.17b) 

... ;. 

'·The reduction of the coupled equations, ,for •. f. a..1'1d· U· is . 

faci1it~ted by the matrix notation in Eq •. (2.13c) '" Operate on 

both sides of the equation from the l~ft.wi th 

-r~S'J} I + ! J _....;d.;.,.s_' .,---
n s. - s + i€ 

'R 

. .' 

(

0 , 

, T(s') 

The reduced equations are 

. r (-)(s') - r (-)(s)' 
I, ' .. I-r(s'J f(s') f(s) . - I ..: 2i res) u(s) = ! ,1' 'ds' 

n . 
'R s' - s 

+ . ~ J ds' . r;<- )(s') - r/"'(s) 

s· -'s 
A.(s' )f(s') , 

L 

(2~18a) 

r'l(s) 
1 J ds' 

. r.( s') , 
= - .: , 

n s' i€ 
R - s 

. (2.18b) 

1 

• 
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u(s) - 2i ,(s) [f(s) - 11 ; J ds' 
/-..(s') fes') 

L 

+ ~ r 
J1 ..I 

R 

t (-)(S') 7 (-)(S) 
_1 __ -,-. --,_1 __ ·_ Y(S') U(S') , (2.i9a) ds' 

s' - s 

= 1 r ds' 
n: J s I _ S - iE 

R 

7 (s' ) . (2 .19b) 

Our final set of Cauchy-singularity-free equations for the 

perturbed amplitude is Eqs. (2.16) through (2.19). The integrals 

of Eqs. (2.18) and (2.19) are linear in the perturbation} and the 

kernels of Eqs. (2.16) and (2.17) are already of second order. Thus} 

simply expanding nand d in. a NeQ~ann series will lead to a J(s) 

which is the ratio of two pOl·rer series in a parameter describing the 

perturbation. It is then possible for J(s) to develop poles as 

the perturbation is changed. Even in a first-order iteration of 

d } this gives a mechanism for describing the binding of a resonance 

into a stable-particle pole} i.e.} the appearance of a pole at 

threshold on the physical sheet. The emergence of resonance poles 

onto the unphysical sheet is described in the S8Jl1e i-ray, but Eq. (2.11) 

must be continued onto the second sheet. (The details of a similar 

analytic continuation are found in Sec. III.) 

KUgler4 has studied in single-cha:r..nel potential theory8 

the appearance of poles at threshold i-rhen the perturbation supplies 

the final binding force. 1iTith an effective range formula, he.found 
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that, the firstit'eration off, correctlydescr'ibedthe motion of the 

j ',- ',' 

the !pole is already present in the.-unperturbeda.mplitude, and that 
. ':"'~ 

'c' the perturbation merely. shifts the position of the 'pole on the saIne 

sheet. ',,,, 
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III. MASS AND COUPLING-CONSTAl'\TT .SBIFTS OF :SOUND STATES 

The -1 
NDtechniClue is. freCluently used in dynamical calcule.-

tions to find the masses and coupling constants of the composite 

particles corr~unicating Inth a given set of channels and generated 

by a certain set of input forces. The mass of the bound state 

. satisfies 

(3.1 ) 

Since the eCluations of Sec. II are readily continued to the unphysical 

sheet (see below), we use the term "bound state" to mean either a 

stable particle ora resonance pole. However) we now restrict the 

perturbation so tr~t the pole will remaih on the same sheet. The 

case in which the pole does change sheets was briefly discussed at 

the end of the preceding section. 

We now derive exact mass- and coupling-shif~ formluas.· Let 

Eq. (3.1) have only one physical solution. Since the pole in A 

is shifted with respect to the pole in AO ) the amplitude Al must 

have two poles: one to cancel the pole in AO and the other to 

represent the particle in the total amplitude. From ECls. (2.5) and 

(3.1)) it is clear that the pole in AO can be cancelled only if 

(3.2 ) 

is a simple zero. Since· det [D(s)] also has a simple zero at 

sB ) Al(s) will r~ve a simple pole at s = S:s 
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Formally; ,ve can satisfy Eq. 0.2) by ,utilizing the CDD 

arnbigui ty in the n d -1 equations of Section II. A CDD pole 

is inserted into Eq. '(2 .11) to force the' occurrenc~' 'of a zero at 

equations for .. J . are 
.' :. . ..., ~ . .:.-

s'· - s- iE 

1 r ., 
ds' - J :n: 

R 

Bt(s,) des;) . 
d( s) 

1 .' r . ····GC·s'·)·n(s') 
I - ;J ds'. -

R- s' S';' iE 

, 
.... , s 

:, . 

:·S' '- s·..;. iE 
+ ; JdS' . T ( s' )d( s' ) n( s) ,L(s') des') 

Sf - S - iE 
·R 

l'J ds f B(s') n~ .+ , 
:n:: ' s' - s - iE 

R 

where des) now satisfies an equation with one CDD pole .. The residue 

of the CDD pole' is denoted by r; the remaining terms are defined 

in Section II .. A.cancellation between the CDD pole and the remainder 

. of the right side of Eq. (3.3a) \Vill cau~e a pole in J(s) • The 

location of the new pole satisfies 

Thus, the zero imposed on J(s) 'by the CDDpole can:be used to 

cancel the pole in AO ' and the pole generated by the CDD pole at 

sB' in Al(s). represents the particle vThen 5p and V' are' 

nonzero. The restriction to one bound state in the unperturbed 

amplitude is trivially overcome by inserting several CDD poles into 

,Eq. (3. 3a). 
'. ' 

.. 

" 
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Tne situation for shifts of resonance p~les on the second 

sheet is similar e.xcept that Eq. (3.3) must be analytically 

continued far enough onto 'the second sheet that the resonance 

region is exposed. The correct. continuation consists of re-

dra,'Ting the contours denoted by R so tha~ they go be1o~'T sB 

Then the position of the resonance pole in the unperturbed amplitude 

is explicitly exposed, and the CDb'po1e can be inserted as in the 

case of a stable botmd state. The proof that this is the correct 

continuation is some,,,hat complicated by the fact that some of the 

right cuts begm at the unperturbed threshold and others begin at 

the perturbed threshold. If op were zero, then this ~'Tould 

certainly be the correct continuation. HOftTever) w~en OP I 0, 

it would appear that the sB that solves Eq. (3.1) "Tould not be 

on the sheet specified by the deformed cuts. This Oakes-Yang9 

type di1em.'ua is resolved by noting that there exists a family 

of poles on the sheets connected by the nerturbed threshold.. Con-

sequently there is a resonance pole in the resonance region of 

the perturbed amplitude. Locating the CDD at this point would then 

have the sa~e consequences as in the case of a stable bound state. 

Thus Eq. (3.3) is correct for the resonance case, except that R 

represents contours that go be1o,"T sB' rather. than just along the 

reai axis. 

It is clear that the CDD pole gives the proper mathematical 

behavior. itTe no~" give a m.Jre physical interpretation of the eDD 

pole. The existence a..l'ld properties of the particle were calculated 
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in findingAo .' In theunperturbedam:plitudej 'th~:partiel~-pole 
:" .. ' ,': ~',' ' 

" , ..... ,/' 
".' , 

represents a dynarnieal bound state' .. ':~~:n.rever jthep~rticie vrill be 
; 

'. !' eletnentary"in any further calcUlation .. ' In. thissense,an ..... 

elementary .particle,is one whose existenc~andquantUt~ numbers' . . ' . 

are available for further computation. Thus, the purpose of the 
, . . 

CDD pole is to reinterpret the corrrposi teparticle. of theu.l1perturbed 
. " 

amplitude as: input (i.e., an' elementary particle) . for the Galculation 

of the perturbeda.'TIplitude. 
" f' 

, We determine r from the form of AO (s)·· . near s = sB ' 

where R is the factorizable matrix of u..'1.perturbed channel-bound-state 

coupling constants. Since there exists a pole in. Al (s) that cancels 

the pole in AOJ ~ (s) is 

.. 

'~(s) ~ - (s-sB)-1 R 

It follows from Egs. (3.3), (3.5), (2.5) and (2.6) that 

Tne total am:plitude has a simple pole at s = sB 
I 

ass~~ed well-behaved at 
' I 

s· = sB J 

~(s) 
,.....,. 

(s 
. '. -1 

;-v - S ,) R' , 
B 

'where R' is the new'coupling matrix . 

In order to find a convenient formula for the mass shift) we 

... 
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define" 

IdS' " F(s) I 
1 G(s') n(d (3.7) = 
rt s' iE R - s -

1 J ds ' 
B+(s ) d( s ) 

rt s' iE 
R - s -

F(s) is not simply related to des) in Eq. (3.3) since the solution 

" -1 
"to the nd equations i-ri thout CDD poles is not simply related to the 

solution of the equations with CDD poles. To evaluate F(s) , Eq. (3.3) 

must first be solved, then the solution inserted into the defining 

equation for F(s) . 

where 

Equation (3)~) is equivalent to 

det [8sB -F-lCsB') rJ = 0, 

is just the mass shift of the bound state. Equation (3.8) has the 

appearance of an eigenvalue equation except that F-l(s) 'is 

evaluated at the unknown value of s = sB' • However, it is extremely 

convenient to analyze Eq. (3.8) formally as an eigenvalue equation, 

T.~en there are n values (n is the n~~oer of channels) of 5 sB 

which solve Eq. (3.8). Thus, n-l of these must be zero for 5 sB 

to be unique. The derivation of this result relies on the pole-

factorization theorem for the bound-state pole residues, 

- g. g .. 
1 J 

." 
From the Laplace expansion ofEg. (3.8), it follows by induction 

. that 

det(8 s -B 
)n-l " -1 

= (8 sB " [~sB- tr(F (~B') r)J ~" 

(3·10) 
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.. We emphasize that. no approximation has been made. '. Equation (3.10)' 

fOlJ~~WSdirect1Y. f~o~t~~· ~acto;izabili tYOf.F~lCsB' )'t .. Con- . 
, .. ~ " . 

sequent1y, '. . .> ~ " ~.~ , 
... 

Equation (3.9) aids. in writing another expression for" c:s
B

} 

. T 
where § .(§. ) is a (:olumn (.row) vector whose elements· areg. 

.. ~ 

the coupling constant of the bound st~te to channel .1 

Equation (3.12) can be rewritten in terms of 

6 - lim (s - sB) n-1
(s) . 

s -):. sB 

Then we find that 

g = 

so that substituting Eq. (3.13b) into Eq .. (3.12) yields a formula 

foro sB of similar form to the first-order mass shift formula 

derived by Dashen and Frautschi.
2 

We find :8.' by calculating the residue of ~1 (s). at 

s = s ' B } 

. r 

(3.11) . 

is 

(3·13a) 

. .41 
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with 

K. lim (s - sB') [F (s) (s- )-1 J-l - - sB r 
s -l> s , 

B 

= F-l(sB') r F-l ( sB') . 

The pole-factorization theorem has again been used in obtaining 

Eg. (3.15b) from Eq" (3.15a). Equation (3.7) relates F(s) to 

n(s) and des) . 

The factorization theorem satisfied by R' is 

The coupling shift is h if G = g + h. Setting R' equal to 
... -

the right side ofEq. (3.14) yields an equation that contains zeroth-

order terms. It is difficult to solve for h since the equation is 

not linear. However, a more useful equation for application to a 

perturbation expansion of the coupling shifts can be obtained by 

substituting the mass-shift formula into Eqs. (3.14) and (3.15). 

We also set 

where t3(s) is the backgrou.l1.d term, Le., it is the unperturbed 

amplitude minus the pole at sB' It is of order R. The zeroth­

order terms cancel and after some maniptuations, we find 

-, 



"," .. 

, .:~'. 
• 'j' • 1.' • 

" ,.:, " ! ".: .' 

" ..... 

g.h. ~ h.g; +h.h. 
1J1.J 1J 

. .... , 

(Xl X2 -'Xl,-'X2)gigj+(l:~ X 2)· gibj 

+ (1- Xl· ) b.' -g. + b.' b. ,. 
. ... .1 J 1.J 

' ... '" 
. (3·l8a). 

,', , 

where 
': .. " . 

. ':., .' " . 

, .' .... . .. 

- rlN-l(sB)n(sB)F-l(SB')[N-l(SB') ~ N~l(SB)](SB' )-i sB g) 

(3~l8b ) 

(3·l8c) 

(3 .18d)· 

b' (3·l8e) 

The leading terms of .. Xl ' X2 ' E , and b' are first order in the 

. perturbations. 

Equations (3.12) and (3.18) are the exact mass- and coup1ing-

shfft formulas wh'en the pole position does .not change sheets under 

the influence of the perturbation. 

• 
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IV. PERTURBATION THEORY 

Equations (3.12) and (3.18), along .'lith the equations of 

Section II, are sufficient to generate a perturbation expansion for, 

the mass and coupling shifts. The zeroth-order iteration of the 

perturbed amplitude equations leads to results which are identical 

2 to the first order Dashen-Frautschi formulas. The first order 

iteration of the perturbed amplitude equations is used in the 

second-order mass and coupling shifts. Ttle only display the second-

order mass-shift formula since it is straightforvlard to derive 

other terms in the expansion. The higher-order terms in the ex-

pansions are probably of little use in numerical calculations. 

The application of the reduction procedure of Section II to 

Eq. (3.3) yields a set of non-Cauchy-singular equations that are 

identical to Eqs. (2.16) through (2.19), except that the term, 

, 

must be added to the right side of Eq.(2.l8a), and the term, 

1 J ds' 
1"(s') [m(-)(s )]-1 r . B 

:n: 
, 

(s' - s + iE) (s • - s ) 
R B 

must be added to the right side of Eq. (2.l9a) 

(4.la) 

(4.lb) 

To generate a perturbation series for o· sB', we need the first 

several iterations of Eq. (2.l8a) and (2.l9b ) , 

f(s) = (4.2a) 

u(s) = w(s) + u(2)(s) + ••• (~.2b) 
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where f (j)( s) and:u (j) (s)are. of j -the' orderil1the perturbations 

, .. ;.; . " . 

1. '. First-Order Mass Shift. I:·· .. 

!.". :',' 

Since Eq.(2.19) is' already first orderin.th~ perturbation, 

. the first-order mass shift is, simply 

where 

w(s) = 

+, 

os·· 
B 

....... 

J 1 ds' 
1C 

L 

1 'J 'ds' 
1! 

R 

., 

. , . )"" 

.... , 

.. 

D(s") V' ( s' ) Des' 

S' . - s +"i€ 

,..,. .. 

N(s') 8 p(s') N(s' 

s' - s - i€ 

, . 

) 

) . 

'. .. 

, . 
" 

(4.4) 

The Dashen-Frautschiresult2 is recovered by iriserti~g 'Eq.·C:;.13b) 

. - . T, , 
for g and g' 

2. First-Order Coupling Shift. 
';' .. 

As in Reference 2, we defin: 

tJ." = d~: N-
l

( sB) R +. N-1CsB) (3 (sB) 

= -.. ~ [(s s~) D-
1

Cs) Js=sB .' ds .,' 

.. The first order,' Eq. C3.l8) becomes, 

"', ;' 

. ."., 

. ~; .. . .,". 
"."", " 

. i " 

. (4.5a ) 

(4.5b ) 

(4.6) 
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The first-order Dashen-Frautschi 'result fo11owsfromEq. '( 4. G), as 

sho'l<1!lin'footnote 8 of Ref. 2" ' 

3. Second~Order ~~ss Shift. 

The second-order mass shift is" 

T "'-1 . 2\ 1 r = ~,N ( sB) , ,;;) 
, L 

r " 
l,' U(S'), - 'U(~B,), 

ds' L(s') 
s' - s , , B 

+ ' _____ p;;..(_l_) ___ ~_] +,'; J ds 'T( s' ) 

(s' - sB - iE) (s' - sB) R 

r U(s') - U(sB) 
~ 1 + 

L s' - sB 

; J ds' 

R 

NCs') apCs' ).n-1
eS ') wes' )J 

s' - sB - 1E ' " , , 

where 

(4.8) 

U(S) = ~ J '''''-It ) 
ds' D • (s', CD(S') D~l(s') w.cs') + ap(s') N(s') J , 

p(l) ,= 

L(s) = 

T(s) -

R s' - s - iE 

N-1 ( sB) Rrtl( sB) ~(sB) 

D(s) V' (s) D(s) , 

.... 
apes) N(s) N(s) 

, . 

, 

(4.9a) 

(4.9b) 

(4.9c) 
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Equation ,(4.:8) is the· secori'd.':;o~der mass~hiftforbothstable. 
.: ...... ,': 

'In th~ :.,~~se·· br:a re~bn~ce shift ~.' 
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particles and resonances. 
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