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ON THE EQUAL MASS SPACING OF THE DECUPLET OF JP = 5/é+ BARYONS
"Richard Cyril Slansky
Lawrence Radiation Iaboratory

University of California
Berkeley, California

March 16, 1967

ABSTRACT
With fhe assumption that the unperturbed amplitude is known
in the l\ﬂ)-:L representation, equations are derived for calculating
the pertu;bed amplitude as a function of the variationsuof the left-

hand singularities and the wunitarity cuts. Exact formulas for mess

and coupling-constant shifts of bound states of the unperturbed amplitude

are given, and the equations are Then iterated to yileld a perturbation
theory.

- The resﬁoﬁse of the decuplet masses to octet perturbations of
the meson and baryon masses and couplings is studied in an ND_l model
of baryon-meson scattering, and it is found that the equal mass spacing
of the decuplet is satisfied, even for large values of the symmetry
breaking. ‘Theynumerical inaccuracy of several forms of perturbation
theory indicates that tﬂe pﬁysical baryon masses represent a large
symmetry bréaking in the calculation of the decupket; so large that
first- and second-ofder»perturbation theories do not explain the equal
mass spacing of the decuplet, although experiment and the exact

solution to the model do give equal spacing. The rapid breakdown of
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the octet sum rules for the S-matrix elements also suggests that the -
- SU(5) v1olat10ns are large, and that ‘the octet output is: spec1a1 to  .

- the masses. o
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PART A
THE MASS SPACING OF THE DECUFLET
1. mvmopvomoN
'Tbé existence and masslof the Q~. particle'weré predicted

from the unitary symmetry model.t The Ns/é*(1256) and Yl*(1585)

| particlesJWere already establishéd experimentally when evidence for

the Ei/é*(l530) was presentéd.2 Gell-Mann immédiately conjectured
that these nine particles belonged to a.decuplet represehtation of
SU(3), and that a tenth particle ﬁiﬁh hypercharge, Y = ;2, and
isospin,t.IwQ 0, should complete this supermultiplet. Wifh some simple
éssumptionsiabout thé breaking of the SU(3) symmetry,.Ggll—Mann also

predicted the mass of this baryon, which he christened the :Qf.l

Over a year later, the Q was observed at the predicted mass.5 This

remarkable discovery corroborated the existence of a decuplet of

gt = 3/2" baryons: NB/Q*(1256). with I =3/2 and Y =+1

which we refer to as the .N'); Y.¥(1385) with I =1 and Y =0
1 : .

-1

"
ol

(referred to as the Y¥*); the = /2*(1530) with I and Y
(referred to as the = ); and the Q" with a mass of 16Tk MeV,

I=0 and Y = -2.

=N

The mass spliﬁting of the decuplet is repfoduced within'Q

by the formula,

.'mY'-_-ja+bY, | . h (1.1)
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.v'where 'a : 1385 MeV} b = lh? MeV} and mY is the mass- of the particle

w1th hypercharge, Y. The mass. splitting 1s Just proportional to the

' hypercharge, a result which follows from ‘the s1mple (broken) symmetry

' model ' Although the equal mass spac1ng of the decuplet -of baryon

1resonances predicted by SU(3) has been confirmed experimentally, the

'1“high accuracy of Eq. (l.l) has not been ‘satisfactorily explained from

‘more fundamental theoretical cons1derations. '

' The usual derivation'of Eq. (l l) is basically group. theoretical,

~with a and b to be determined from experiment. We-assume the

fvex1stence of a mass operator which transforms in SU(B) space as a

: fs1nglet plus the T =0, Y= O member of an octet. (Another member

of an octet would v1olate I or Y conservation ) The mass of the
‘particle is Jjust the expectation value of the mass operator. A short_
calculatlon then yields equal mass spacing for the decuplet

As 1t stands, this . simple theory is far from being a complete
dynemical theory for two (related) reasons‘. it does.not account for
the origin of the mass operator and 1t gives no reason for neglecting
the I = ), Y = 0 members of.the 27 and 6k representations whichy
.yalso occur in lO(ﬁ 10. In Simple field-theoretic models, the
‘ Hamiltonian, which is expanded 1nto a singlet plus as octet tensor,.
is used to construct the mass operator. In first order, the mass
~operator (self energy operator) also transforms Just as a s1nglet plus

an octet. Tn this case, Eq. (l 1) has theoretical 31gnificance only

for small values of the symmetry breaking. The dominance of octet

-y
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. symme"cryvbreaking)+ can belunderstood froﬁ dynamical theorles, at
least for small symmetry breaking. waever, only the experlmental
‘masses suggest octet dominance (or 27 and 64 suppression) in the
.simple group theoretical model.A It 1s clear that aﬁy inVe;tiéation
of the theoreticalvbasis of the eéual SPacing'rﬁle must incorporate’
1vsome dynamics inh:the group theory (or vice versa)a.
| We use a simple’ dynamical model of the decuplet %o 1nvest1gate
its equal mass spacing. -The model reproduces many features of the
_analytic S matrix. In S-matrix dynam_ics,5 ét least some particles are
generated by the channels with wﬂich they communicate (i.e., the
channels that have-the same quanﬁum numbers as the particle itself)
and by the interaction mechanism. Unitarity and analyticity may then
imply other sinéularitieé that are not already apparent from the input.
Poles which appear in the analytically-continued amplitude are
identified as composite particles. |

Several features of SU(3) guide the selection of a dyﬁamical
model. -Most basic to the model is.thg choice of scattering channels
and the interaction mechanism; the “Eightford Way" classification
schéme_2 is useful in meking a Vreasonabie"rchoice. The simplest set:

" of chennels suggested by SU(3) which contain the same quantum

numbers as the decuplet is the set of two-body channels composed of

one baryon from the JP = %* baryon- octet and one meson from the
) - : "
J° = O  pseudoscalar-meson octet. With a single-baryon-exchange

interaction, the decuplet can be a bound state of these channels.



ek
So the obvious requirement that the decuplet must ex1stvis satisfied |
vln this model. Deviations from pure SU(3) symmetry are eas1ly |
R inclnded., Thelmasses of the baryon octet'and.pseudoscalar-meson

octet appear'in the dynamical equations.-vConsequently,.octet symmetry'

_ breaking of the baryon (and meson) masses 1s incorporated by requiring-

':that the masses satisfy the Gell-Mann-Okubo sum rule. " In the s1ngle-

. baryon exchange model, the baryon-meson coupling constants are

‘conveniently found from the unitary symmetry model. If the dominant

: channels are the two body baryon-meson channels, then we use the two-

~body—mult1channel S matrix.

There is one pleasant feature of our investigation which allows

some radical approximations. We are not interested’ here in calculating
.meson-baryon'scattering amplitudes for arbitrary energy. vWe‘only need
.the location oftthe bound-state pole. . Moreover, we do not attempt to
vcalculate the exact physical masses of the decuplet.o Our'ﬁnrpose is'
‘51mply to investigate the mass spacing. of the decuplet Thus,
approximations which do not destroy the features of the mass spacing

are certainly wvalid for our purposes.

Since the decuplet particles are all p-wave states, we consider

the partial wave amplitude where two-body unitarity'is_particularly :
simple. Direct channel unitarity is an important ingredient of the

dynamics, so we guarantee it by using the N/D equations for the

partial-wave amplitude. Although it is difficult'to treat cross~channel

unitarity in a satisfying manner, the mass spacing of the decnplet is

=

-5
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rather insensitive to large changes of the left singularities.

Therefore, as we discuss in Section II,‘it is sufficient to apprbximate

the left singularities by a pole.
One last simplification concerns the spin kinematics. Since
the total angular momentum is a half odd integer for meson-baryon

scattering, it 1s appropriate to work in the w = wa plane.' Then

' the once subtracted dispersion integral in the D function is

logariﬁhmically divergent. However, the qualitative features of tﬁe
mass spacing are not changed if we consider scalar bafyons, and look
for the spin one decuplet in the & = 1 scattering amplitude. On
comparision with similar models using fermion kinematics, we find that
the only change resulting from the scalar kinematics is that the
decuplet masses satisfy a mass-sgﬁared equal spacing rule for large
symmetry breaking.

In summary, our investigatisn of the decupletvmass spacing is
based on a model of baryon-mesoﬁ scattering by single-ﬁaryon exchange.

Unitarity in the direct channel is guaranteed by the ND—l equations,

"and. the model is easily solved 1f the left singularities are approximated

by a pole. The computation is greatly facilitated byvusing scalar
kinematics. TheAdetsils of the model and Justifications of our
approximations are found in Section II. Some of the lengthy calculations
necessary . . for the solution of the model are included in three
appendices. The Yukawa couplings, including octet symmetry breaking,

are calculated from SU(3) in Appendix I. The isospin crossing matrices
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are found. in Appendix II, and several dispers1on 1ntegrals are -
1ntegrated in Appendix IIT.

In Section ITI, we begin the»investigation of the‘mass:f
splitting of the deeuplet.i If the externalvbaryon and. meson masses.
andrcouplings are.set at their SU(B) degenerate values, then all four
decuplet isomultiplets (which we refer to as particles) will have the
same mass. While requiring that the octet sum rules remain satisfied,
we "turn on the octet perturbations of the external baryon and meson
masses (or couplings) As the symmetry breaking increases, we observe
.the induced mass splitting of the output decuplet <lhis is done by f‘:
'isolVing ‘det[D(s)] = 0 ) The mass splitting of the decuplet increases,
vvand equal spacing is satisfied for values of the symmetry breaking
comparable‘With tne physical symmetry breaking. However, the mass -

' splitting deviates markedly fromvbeing a_linear.function of the input.v
- symmetry breaking. o |

The most noteworthy feature of these calculations:is.the
© stability of the equal spacing. Octet symmetry breaking-input»in the
‘baryon and meson masses and couplings produces octet symmetry breaking
output in the decuplet masses over large ranges‘of the symmetry breaking
‘ parameters. Equal spacing is certainly expected for small values of
the symmetry breaking, as 1s easily proven. HbVever, as nonlinear
effects become important, it is not obwious why the equal spacing should
continue to be so well satisfied.

We further investigate the nonlinearities with several forms

of perturbation theory. In Section IV, we expand in the'masslperturba-
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tions' of the external baryons and mesons, and compare the mass

expansions with the results of Sectioﬁ IIT. The first-order mass
;expansion preserves equal spacing, as expected. However, after»the
mass splitting of the baryons has been turned oﬁ to above half the
physical amount, the first-order results become bad approximations

to the exact results of the model. Although the second-order mass
expansion appears to satisfy equal spacing, the accuracy of the second-
order calculation breaks down rather soon after the first-order theory.
When the masses of the baryons and mesons approach their physical
values, both the first- and second-order approximations are in bad
agreement with the exact result.

The results of Section IV Indicate that any first-order
perturbation theory will yield inaccurate results for the physical
mass splittings of the baryons and mesons. Héwever, the Dashen-
Frautschi first-order perturbation theory8 has been applied to fhe
octet enhaﬁcement calculation for the decuplet, and so it is useful
to gain some quantitative feeling for its accuracy. .In Section V,

. We compare the numerical results of the first-order Dashen-Frautbtschi
theory to the solutions of the quel found in Séction IIT.

In Sections IT through V, we emphasize that the equal mass
spacing of the decuplet appears to be mofe than a first-order result;
nonlinear effects are appreciable for physical mass values of the

external baryons and mesons. However, it is possible that the mass

splitting of the decuplet is a linear effect if the baryon-meson



‘-8'-'. |
channels are much more massive than the JP spl%}: barYon-pseudoscalare
meson channels. Since'heavier octets"of baryons should contribute‘to

the binding of the decuplet, it is reasonable to examine whether the

- nonlinear. effects are reduced by replacing the external baryons by more .

massive particles. This idea is examined in Section VI, and we find
that although the nonlinear effects are reduced they are still
appreciable for L BeV external baryons. However, for 9 BeV external.

baryons, the Dashen-FrautSChi formula is reasonablvsaccurate‘when thevr
decuplet mass spacing is at its phys1cal value of 150 MeV [or about

| vo 45 (Bev) . |

| v In the s1mple field theoretic model, where the Hemiltonian is
expanded into a s1nglet plus an octet tensor, the amplitude is also ab
singlet plus an octet to first order. In the dispersion theoretic

icalculations, the mass breaking satisfies the OCtet sumvrule for .

' large symmetry breaking. In Section VIl; we test Whether.the'amplitude

satisfies octet sum rules for large symmetry breaking. We find that the

~sum rules are satisfiled only for small perturbations that are less than

half the physical symmetry breaking of the baryon and meson masses.’

In Part B of the thesis we propose exact equations for mass
~and coupling shifts in dispersion theory. With.the assumption that the
unperturbed amplitude is known in the Nb-l representation, eqpations
are derived for calculating the perturbed amplitude as a function of
the variations of the left-hand singularities and the unitarity cuts.
Exact formwlas for the mass and coupling-constant shifts of bound
states of the unperturbed amplitude are given, and the equations are

then iterated to yield a perturbation theory.

-

-
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IT. A MODEL FOR THE MASS SPACING OF THE DECUFLET

The modél for calculating the mass spacing of the decuplet is
described in this section. If the JP = gﬁ baryons are composifé
systems, then the simplest set of channels that communicates with the
decuplet is the set of two-body baryonfmeson channels.6 Consider‘all
the two-body baryon-meson channels having a. particular value of I

and Y. Then the N* communicates with the Nx and X X channels;

¥ with

the Yl* with the N X, I, A, =X, and £ 1 channels; the =
the Zm, AK, = X, and = q channels; and the Q" wifh the = K
channel. Although the decuplet-meson channels, three-body channels,

and other channels all contribute‘to the mass of thé decuplet they

have not been included. We do not expecﬁ ﬁhis approximation to affect
the mass spacing results of the ﬁodel in any qualitative way.

Another basic assumption in our dynamics is the importance of
the single-baryon exchange diagram for binding the decuplet. Many other
diagrams will contribute to the exact mass of'tﬂe decuplet, however,
again the mass spacing is not qualitatively affected by the neglect of
more complicated forces.

The most important property of the S matrix for our study is
unitarity in the direct channel, so we unitarize the single;baryon
exchange diagfam with the ND-l method.

The two-body multichannel S matrix is

(2.1)

o EUNY
Spy =  Opy * i(2ﬁ)h (16 Wp Eo @) Ei) 2.8 (pf + Qo =Dy - qi) Tfi(s,t)
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Wwith the inbegral relation r.ir‘nplied vy Eq. (2.7), Eq. (2.8) is a .
vset of coupled integral equations for ‘bij(s).;- - | | 7-

| The model in which f(s) is jusf the discoﬁtinuity_across the
" Born cuts was firet coneidered by,Martin and. We116:(with fermion
kinematics), They solved Eq. (2.8) in the‘firsf-order'determinental
approximation, but without simplifications of'the Born cufs. Iater,

9

Wali and Warnock” showed that thevmeson and. beryon mess differences
have their strongest effects in the phase spaee factor, p(s), andv
‘not in the Born exchange term, They were able to duplicate the results
of Martin and Wali by fixing the masses of the exchange baryons at .a
degenerate value, and thus greatly reducé the computational labor.

We take seriously the suggestion that the qualitatively
important features of the decuplet mass splitting are duevto unitafity
iﬂvthe direct channel, and not to the'fine details of the left
singularities. Thus it is possible that a pole approxiﬁation to the
left cuts will lead to essentially the same mass spacing as the exact
solution to the N/D equations with the full Born cuts. In fact,
we find that the spacing is very insensitive to the location of the pole;

. If the left cut is approximated by a pole, then the*soiution of

the dispersion relation for N(s) is

N(s) = N, (s - %)™ D(t), (2.9)

where N is a matrix of products of coupling constants and t is

0
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the position of the pole. We set the subtraction point in D(s)

equal to the pole location in N(s). The exact solution for D(s)

~1s found by substituting Eg. (2.9) into Eq. (2.8),

D,,(s) = B, - (s -t)

W (8 | o | (2.10)
‘ ' 3/2
1[00. O ax B - 2(M12 + “12) s + (Mie’ H12)2] / (n.)
(M, 4, ) X (x - t)f (x - s - 1ie) 0/43
i1

After the matrix elements of NO are computed and the integrals
evaluated, we search for the bound states. This part of the calculation

T is usually'carried out by solving

det[D(sR + 1sI)] = 0, (2.11)

9

where s is the mass squared of the resonance. Wall and Warnock

R
have shown that the solution to =i, (..

det[Re D(SR)]‘ = 0 } (2.12)

is a good'approximation to the solution of Eq.i(2.ll), since the widths
of the resonances are small compared to their masses. Moreover,

Eq. (2.12) is just the condition for a pole in the K.matrix. By
assuming that the particle mass is the location of the pole in the

X matrix, we avoid complex arithmetic on the computer while retaining



| S o
I'a good approx1mation to the solution of Eq. (2. ll) g The decuplet
'masses in the following calculations are solution: to Eq (2. 12)

The model is completed except for finding explicit expressions
' for‘NO . We merely outline the calculation here; the details are
ennumerated in the appendices. To»find NO.’ we need the (broken)
YSU(B)V béryon-meson couplingslo and the dsospin crossing.matricesll
‘(in order to compute the contribution of each exchange.to the ieospin-i
state being considered). |

The coupling constants are calculated;on the-essuﬁption that

the interaction Hamiltonian for the BBP . vertex is given by

-ace =b d

int bdg a Tc e .

wnere E;b ere the components of the octet oflantibaryons,iB ‘is the
. octet tensor of baryons; andl E; is'the octet tensor of pseudoscalar .
mesons. The decomposition ofé@ 8 ® 8 .,containsrtw‘ﬂo singlet
representations and.eight octets. If the Su(3) symmetry breaking
force.is-dominated by the I =0, Y =0 member of an ggtgt, and if

H,

int is hermitian, then two pure symmetxry and five symmetry breaking

parameters determine the BBP couplings. After a lengthy but
straightforward calculation (see Appendix I for details), we find
that the meson-baryon couplings in units of an overall coupling

consbant g are

"o
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- crossing matrices in Appendix II. The matrix; N

The F to D ratio 1s related to 'f JbYdfg"'f N
. -
)

£ o= gy @ptey)y o (213) s

l’- ‘s 5' are the octet symmetry breaking parameters{ .

The calculation of N is easily completed once . the isospln

.crossing matrlces are known. Slnce it is somewhat tricky to get all

'the‘phasesll correct, we have included a detailed derlvation of the

0 for each of the
four sets of decuplet quantum numbers is'displayed in Table l;
In Appendix:III, the integrals in Eq. (2.10) are evaluvated

analytically in order %o expedite numerical calculations..

The arbltrary parameters of the model are: . (1) the exchange

pole position, the ,oVerall coupling constant (the. NN . coupling with -

no symmetry breaking), and the F/D . ratio, f; (il) the external
baryon and meson masses; and (1ii) the parémeters € through ‘65
that characterize the octet symmetry breaking of the baryon-meson

coupling constants. We now solve Eq. (2,12) for many velues of these

- parameters. Variations of .t, g, and f are done belowj the results:

ofv(ii) and (i1i) comprise Section ITIT. The numerical solutions

of Eq. (2.12) were found by the Physics Department's IBM 16201computer h

in Birge Hall at the University of California,.Berkeley. ) ’ [
| The object of the followihg three eeleulations is to show that

the decuplet mass spacing is not sensitlive to the precise numerical

_values'of g, t, and £f. In all three discussions, the baryon-meson

Wy
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is that for fixed g > 16, the mass spacings (m .© - m

. . -17-
couplings are set at the SU(3) degenerate values. (The NNx
coupling constant‘is equai to g for‘zero oetet symmetry breaking
of the couplings.)
In Fig. 1;. the decuplet maeses are shown as a function of

2
g. We set t = -1 (BeV)™, £ = 0.33, and the baryon and meson masses

equal to their physical values. The most notable feature of Fig. 1

2 . 2 2
44 -m 2,

o S

and m _2 - m:*e) are always WithinAB% of one another. For g < 16,

9
the input forces are barely strong enough to bind the decuplet, and

the'eqnal spacing begins‘to break down appreciably. However, for
g > 16, the mass spacing is very stable, and, 1n fact, the mass spacing
itself changes only very slowly as a.function of g . So the spacing

of the decuplet is quite independent of g , at least for (approximate)

octet symmetry breaking input,:i.e., the physical baryon and meson

masses. .

It is possible that octet symmetry breaking is a special case

-and the spacing properties are not stable unless the baryon and meson

masses satisfy the Gell-Mann-Okubo sum rule. If the symmetry breaking
of the baryon masses is not octet, then the decuplet masses are not
equally spaced. However, the curves representing the decuplet masses

as a function of g are approximately parallel to those shown in Fig. 1.
As an example of baryons that are very far from satisfying the Gell-
Mann-Okubo sum rule: mN = m. = 1500 MeV; m.A = 'mZ = 000 MeV;

- 1, 2 2, _ 2
meo= me = moo= 137 MeV 3 '3 (mN + m ) = 2.25 (BeV)"; and
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% mA2 " %'me L= p0.81 (BeV) (Because of the scalap kinematics, we -
use mass-squared sum rules. By equal mass spacing ; we always meanri

'that the mass- squared spacings are equal ) As in Fig. 1, the spac1ng
is very stable for g > l6 'the N* is & few hundreths of a (BeV)
heavier than the Yl s and the spacing between the Y _is.about

v.ones seventh of the spacing between the =¥ and the Q" ; We

conclude that the mass spacing of the decuplet is quite 1ndependent of
bg 3 we set g = 19, »
| Figure 2 shows the decuplet masses-asvaufunction of (t is
the subtraction point and exchange:pole‘pcsition). .The barycn'and mescn
masses are equal to their.physical values; g = 19; and f 0.3%. As

't is varied from -O.l'(BeV)2 to -5.(BeV) , the decupletbmasses all
slowly decrease,ruhich is a typical result Qf N/b models in tne pole‘
apprcximation. The nass spacings for eacn-rt are equal within 2%.

Also, the mass spacing itself changes very‘little over the ‘range; at

t 0.1 (BeV)® the mass spacing is 0.545 (BeV)g; and at

t

]

-5 (BeV)2 the spacing'ist.5OO (BeV)2. (However, compare with
Ref. 9. We repeat that the pole is meant to approximate the entire
set of left‘singularities and not just the Born cuts.)

| The F/D ratio is veried in Fig. 3. For fixed ' f in the
range 0<f < 0.45, the mass spacings are equal within: 2%. Outside
. this range, the equal spacing slowly breaks down as phe decuplet
becomes unbound. According to the model of Martin and Wali,6vthe

decuplet exists only for -0.28 < f < 0.78; the same is approximately

N



-19-

true.in our modél. In_the range O < f < 0.45, the spacing is
insensitive to f . _ |

We see from Figs. i, 2, and 3, that the spacings of the
decuplet are quite insensitive to variations of g, t, and f over
large ranges of these parameters. Also, the actual wvalue of the
mass spacing is not very dependent on g, t, or £ . Thus, for physical
baryon and meson masses and Sﬁ(j). symmetric couplings, the value of
the mass spacing is not really a free parameter. If t, g, and T
are arranged so that the mass ;>f the N* is 1236 MeV, then the
mass of the Q" is about ‘1785 MeV. It is impossiﬁle to decrease
the Q7 mass the necessary 100 MeV with anyvreasonable value of f,
t, and g in order to fit both the N¥ and Q~ masses- for physical
baryon and meson masses and SU(B) symmetric couplings.

We conclude that the mass spacing of the decuplet is insensitlve.
to g, t, and f. However, the mass spacing is sensitive to the
symmetry breaking of the baryon and meson masses and couplings, as is
shown in the next section. We let g =19, t = -1 (BeV)E, and

£ = 0.33.



TABLE 1: The Born Matrices, N, . (?ee Eq. (2.9).) The rows and columns of N, correspond to the -
initial and final meson-baryon channels. The phase conVentions are those of de swart.12 See

Appendix II for a derivation and discussion of the isospin crossing matrices necessary in finding NO.

N x 2g: 6:2 : . - g
e | Enax EsAx T Ensk Bxma
eyrk Exarx " Bwsk Bxzn 0 “BEx
I=0Y=-2 =K
= 2 2
=K D8=px " Ezpx

(Table T continued)



Table T continued
T=1, Y=0 N X % A x =K % q
K - - . Co=2
nx 0 e BurK -\/Egl\]'NﬂgNAK g8k Ve € BNk
* &bk |
: 2 2 | -
S| ee_ g Bor -8 e, g : N
NN#~N2K b ¢ YAt T YA 2g.:.ﬂ( 8=z, 2 gZZn’gZ‘.Zn
- - . 2 - N
A = V—égNNngNAK \E- ExAn Ve Eopx®==n Ennn EsAn
= _ g Vog_, g - 0 Ve g g
X ENAKEZAK Eg:ZZK g:.:.n't ‘ 2g:AKg:_;:nc , ‘ &z =n E=yx
+ByxB=yx | | |
. | . o,
- 2. _ g
Z _\/égNNn-gNZK V2 EysnErmn Eann ExAx V2 8= €=5x €y

(Table I continued)
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Fig. 1.

Fig. 2.

Fig. 3.
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FIGURE CAPTTONS

Decuplet Masses as Function of g » Octet Symmetry Breaking.

| Baryon and meson masses are equal to the physical values,

baryon-meson couplings are equal to the SU(3) symmetric
velues, f = 0.33, and t = -1 (BeV)e.
Decuplet Masses as Function of t .

Baryon and meson masses are equal to the physical wvalues,

~baryon-meson couplings are equal to the SU(3) symmetric

~valvues, £ = 0.33, and g = 109.

Decuplet Masses as Function of f .
Baryon and meson masses arevequal to the physical values,
baryon-meson couplings are equal to the SU(B) symmetric

values, g = 19, and t = -1 (BeV)a.
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© III. OCTET SYMMETRY BREAKING AND BQUAL MASS SPACING

Seétion IT concluded by showing thét the mass spacing of the
- decuplet 1s not sensitive to the values of the overall coupling |
| COnstant,.the E/D ratio, or the subtractioﬁ point (baryon exchange
pole); We select &, g, and f so thét for physical baryon and meson
masses and SU(B) symmetric couplings, the mass of the N* is 1236
| MeV. However, we cannot fit both the Q° and N* masses by varying
g, t, and f , because of the.insensitivity_of the spacing on these
- parameters. We set f = 0.33, which 1s near its experimental value,
“and let t = -1, (Bév)e, ‘Then, g = 19.

We now vary the baryon and meson masses and couplings in such
a way that the octet symmetry breaking sum rules are always satisfied.
The baryon and meson masses (mass-sqpared) are parameterized to satisfy

the Gell-Mann-Okubo sum rule. In units of (BeV)g, they are

2 - ,
My = (1.293)° 8,
MNQ = _M22 - 0.5%0 3, ,
2 2 ,
Mz o= M +:0.316 & 5
M7 = M +0.211 85 - 0.360 5,
2 2 » o . )
m o~ o= (0.137) 8), » (Equation 3.1 continued)



.‘28_-

2 . 2
. 5)

m +";266'v6

“m .+ 0,301 6. . .
i) o 3, 5 ..

B
I

R

The mass squared is linear in the-éymmetry breaking pérameterS» B
'vbecaQSe of the scalar kinematics. We'arrange'_Si throughvv65'vsb~ >

that for 8, = 5 = ... = 85 = 1, the baryon and meson masses
are close to their physical values: for &, =.-¢o = B ' = 1,
oko MeV; m

s . 5
My A

1128 MeV; m, = 1193 MeV; m. = 1318 MeV;
m 137 MeV; M i

5
495 MeV; ~ and m‘n = 565 MeV. The baryon-

[}
1]

meson couplings, including the octet symmetry breaking terms, are
listed in Eq. (2.12); the octet symmetry Bréaking is parameterized by -

€ through ¢

setting el = €2 S oeee = 0 .

In most of the following calculations, the equal mass spacing

The su(3) symmetric couplings are recovered by

>

"of the decuplet is satisfied within several percénf. Therefore it is
Adifficuit to measure thé”deviation from equal spacing from a piot of
the decupiet masses. To remedy this inconvehience,.we have listed in
Table 2 the maximum‘deviation of the spacinés from the average

spacing. We define

0. = m.° m 2

1 v* w*

o, = m;ﬁf -m *? (Equation 3.2a
= Y” continued)



0, = (o) + o, + 0_3) /3. S (3.2a)
Then the maximum deviation from the average spacing 1s
4, = |max((oy - 0,)/0,0] . | © (3.2p)

Tn Fig. b, the decuplet masses are plotted as & funchion of
the mass breaking parameter, & = 62 = 63‘ = 65 . The X mass
and the = mass are held constant at 1185 MeV and 137 MeV,

respectively (61 = 6h = l); and the couplingé are left at the
su(3) degenerate.values (ei - € = ee= & = 0). When

® = 0, all the decuplet masses\coincide at 1.964 (BeV)2 or 1401 Mev.
As B dincreases, a mass splitting is induced in the décuplet. The
masses are nearly equally spaced as is shown in the first.line of
Table 2, where we have given dM ‘as a function of © , Figure b
reveals the remarkable fact that although the mass of thé decuplet as
| a function of the symmetry breaking 1s far from linear, equal spacing
is well satisfied. Before discussing this situafion, wé examine some
 other examples of octet symmetry breaking.

in Fig. 5 we fix the baryon and meson masses at degenerate .

values (61 = 5 =1, 8 = 63 = 65. = 0) and vary the
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symmetry breaking of'uewxmpﬁng&. The example‘snown is typical, Féf‘i'"
some combinations.of'tne e's, equal"spacing is retainediﬁe very iargev,'
symmetry”breaking. However, it i1s poseible to findvlarge.enough e'e 1"
that the deviations from the average spacing are of order ~ % .‘:In'
‘.Flg. 5, e = e = e, and & = € = e - o. Although the
'a‘symmetry breaking is large enough that nonlinear effects are very o
‘noticedje, equal spacing is satlsfied Wlthin 6% for -0.2 < ¢- < 0. 05

- For € > 0. 05, equal spacing becomes less well satisfied. As an

f:example of very large symmetry breaking and very large deviations from

equal spacing, we set € = € = '62 = 65 = § = 65 and vary -
e from 0.2 to0 0.2. At e = -0.2, 4, = 0.50, and at e = 0.2,
.dM = '0.11. Although the equal spacing of the decuplet is a remankably-.

retable result of octet symmetry breaking’input; it 1s clear that the
tdynamics do net support octet symmetry breaking.eutput indefinitely.;
It:is intereeting to fix the baryon and meson masses at near‘
the physical values and then. vary the coupling constants. One might
'ekpect that superimposing large amonnts ef octet symmetry breaking in
both the baryon masses and couplings Shonld increase the'violation of
‘equal spacing of the decuplet masses. However, adding ceupling cgnstant
"perturbations fo thevmass perturbations often improves the equal mass
spacing of the decuplet. As an example, consider Fig. 6,,Where we
fix 51 = 52 ‘=- 65 = Sh = 55 = 1 [baryon and meson messes
_near physical values--see Eg. (3.1)] and & = €, = & = 0.

The parameter, € = € = €, , 1s varied, the decuplet masses are
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plotted in Fig; 6, and the maximum deviation is given in the last

line of Teble 2. Note that equal spacing is better satlisfied for

€ = -0.1 and € = 0.2 than it is for e = 0. Also, in Fig. 5
we saw for § = 8, = 83 = 85 = 0 and e = 0.2, q = 0.18;
but when the mass splittings are turned on and B8 = 1 end e = 0.2,
then dM = 0,05, Thus, the coupling and mass perturbations have

conspired to restore equal spacing.'

In Fig. T, we observe the evolution of these results by

setting € = 0.2 and turning on &, 1i.e., €& = eé = 0.20,
€5 = €, = €& = 0, Sl = Sh = 1, and & = 82 = 53 = 85 .

The large deviation from equal spacing at & = 0 dwindles %o a

small symmetry breaking at B 1. (See the second line of Table 2.)
In figs. 5, 6, and 7, we have conéentrated on the variable
€. = € = 62 . However, the qualitative results are quite general
and do not.depend on the particular efs- we choose to vary. There
.are many cases in which the baryon and meson masses and couplings
deviate from the pure symmetry vaiues by large émounts, but thé
vdecuplet satisfies equal spacing within a coupléa percent. Then, by
 decreasing the symmetryzhreaking in the céuplings, larger deviations
of the decuplet fromvequal spacing are obtained.
It is an amusing speculation to note thaf if the decuplet
. spacings ﬁere actuallybequal withiﬁ l%, then. this model would imply
large symmetryvbreéking of the baryon-meson couplings, '2,15%. of

course we cannot take this conclusion seriously since the experimental

errors on the spacing are about 5% (5% deviations are consistent with
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... no symmetry breaking in the baryon—meson couplings) and we have no;l

. accurate estimate of the theoretical errors.

We call attention to the nonlinearities apparent in Figs.‘h:TV
through 7 These might indicate that physmcal baryon and meson mass
s plittings represent 8 large symmetry breaking 1n the analysis of the

R vdecuplet mass spacings. waever, many analyses are based on the first-v5

~order term of a perturbation expansion in the symmetry breaking, SO‘it R

. is worthwhile to examine the numerical accuracy of these theories. :

,Again, we emphasize that the equal mass spac1ng of the decuplett is .

,Quite well satisfied in the exact solution to'the model.



TABLE 2: Maximum Deviations of the Mass Spacings from the Average Spacing. The maximum

deviatioh, dM', is defined in Eg. (3.2). This table is a supplement to Figs. L throﬁgh T.

8 0.0L 0.0k 6‘.09 0.16 »'0.25 6.36 | »o,h9’ o.éu 0.81 1.0

dM(e = O,) - 0.002 o.o_d9 o.oeio '.Q.o;g | 0.0151 0;016‘ '7 o.oi'( 0.025 10.033 ~ 0.0k0
q (e = 0.2) 0;183‘ Q.lhﬁ ~0.090 "o.'ojh -o».oog o.oé5 | 0.033 - o.oe‘8 6.03}0‘ 0.031
e -0.20 -0.15 | -0.10  -0.05 0.00 '.o;:o5 o_;lb . 0.15 0.20 - - 0.25' 0.30
dM(6=O) 0.057 0.053 0.0k 0.025 0.000 0.053 0.07% 0.12h  0.183 0.251  0.322
= 1) 0.225 0.0%2  0.027 0.033 | 0.040 0,039 '0.038 o.<$29 o.lo'31'} o_.058 9.099

oy (2




Fig. k.

Fig. 5.

' Fig. 6.

Fig. ?.

v‘,fh;

' FIGURE CAFTIONS

'Decuplet Maeses,as Function ¢f_‘5';g,.

The baryon and meson massvperemetefe_are-‘ai‘ %J By, eQ'_i‘Tané ,ﬁ
5 = 62vv;' 65 = 55 . The coupling paremeters‘ere
| €l = '62- = 63_ = e.h. = 65 = Lo,v. g =: 19’ f ”=_. 055, -
cand t = -1 (BeV)Q.x'The 8's - and " e's . are deflned in -

Egs. (3.1) and (2.12), respectively. The lines labeled by
enly thevparticle name repreeent the exact'solution of the
model for the ma.ss squared the llnes w1th D .prefixed before

the partlcle name are the Dashen-Frautschi first order mass .

" shifts, as discussed in Section V.

Decuplet Masses as Function of ¢ .

' The coupling paremeter, € = €y = <, , is varied. set
parameters are’ e5 =g = &5 = 0, g = 19, £ = 0.33,
and t = =1 (BeV)g. ‘The baryon and meson masses are- su(3)
degenerate, Slv = 6&. = 1 and 52 = ;83 = 65 = 0.

Decuplet Masses as Function of € ;3 Symmetry Bfokeh Baryon

and Meson Masses.'{

The coupling parameter, € = € = &, is varied. Earametefs
set at constant values are €5 = €, = €5 = 0, g =19,

f = 0.33, and t = -1 (BeV)Q.A The baryon and meson masses
are set near the physical values, =81 = §2 = 53 = 54'='§5 =1

Decuplet Masses as Function of B ; Symmetry Broken Baryon-

Meson Couplings.
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'The mass parameter, & = 8év_= ’65 = 55 , is varied, and
‘Sl ;. Bu =‘ 1. The coupling parameters are € = & = 0.2
an@_ej = ¢ = _e5"= 0. Also,. g = 19, £ = 0.33, end
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) _'I‘V.»'""PERTURBATIQN‘ THECRY: MASS EXPANSIONS

IAssumiﬁgithat,the deeuplet is a baryon~mesoﬁ 50und.sﬁete,”
we presented ev1dence in Sectlon III that the decuplet-mass spllttlng
1nduced by the phys1cal baryon and meson masses is "large". The graphs
of Lhe decuplet ma.sses as functions of the symmetry breaklng are '
notably nonllnear,_a llnear approx1matlon to Flg L glves spac1ngs
.whlch are much smaller than the exact solutlon. Alsoz we_pbserved
'somelamusing-violations of the'famous.rule that octef symmetrY—
breakiné inpq?'impiies'oetef symﬁetry-breaking Oufpﬁt to-first orders
These vioietiens (see'Figs. h-?ﬁ'cannot be explained by a»firsﬁ—order
theory. | | N

fNevertheless; ﬁany dynamical calcuiations ef:the‘decuplet
I analyze the Sb(}) symmetry breakwng only in a first- order approxima-
tiOQ.h’7 This is a frultful approach to the full dynamlcs, since many
_'theeretical and practical difficulties are absent, .and it is possible
aetuelly te cbtain numericsl resﬁlﬁs. However, beeause ef the meﬁifesta- ‘
tidns‘of higher-order contributions, we shOuldlcheck the numerical‘
accuracy ef these,calculationsfi | “

Our model of the decupiét was solved exactly in Section IIT,.
lend now we compare the npﬁerical results'of several perturbation |
formulas with those.exect squtions.n There.are some*raéher importanﬁ
reasons for making these explicit numericalvcemperisions:' (i) The
comparisions can.be used to definer"large"Asyﬁmetry:breaking. If the

exact and first-order results differ substantially for physical



-
“baryon and meson masses, then it is possibie thaﬁ'certain features
of the éhysical symmetry bfeaking cannot be discovered from the firét-
order calculation. (ii) The reliebility of linearized-perturbation
_.bootstrap calculations depends on the numerical accuracy of the
first-order approximatioﬁs. For example, fitting the spac:ing of the
decuplet with the free parametefs in a first-order calculation might
cause large distortionsrin the self-consistent baryon-meson (and
decuplet ) couplings,‘since the spacing is alsp éensitive to the symmetry
breaking of the couplings. (iii) If the first-order results are very‘
inéccurate, then it is likely that a second—ordér calculation will alsé
be unreliable. This would suggest that perturbation theory is an
awkward way to approach SU(3)-symmetry breaking in stfong interactions.
A crude second-order calculation checks this point.

We éxamine two possible perturbalion theories. In this section,
the D(s) matrix is expanded in the mass splittings of the external
baryons and mesons.7 The expansion is simple  and nonrigorous, but it
sheould yield some understanding of the accuracy of low—érder perturba-
tion theory. In Section V,  we consider the rigorous Dashen-Frautschi
first-order theory. |

Fach matrix element of D(s) [Eq. (2.1)] is a function ofI
the external baryon and meson masses of the initial channel. The
most primitive possible perturbation thebry consists of gxéanding the

2

s, ' 2 2 2 5
matrix elements, Dij<s’ My TRy ), around /D(s, My 1 Mg ), where

MO and o are the degenerate baryon and meson masses. To simplify

the notation, we define



o
Dij(s’mk ) = Dij(sfMi" “i'}"“ ; '. » - :l<h,l)

The first- and second-order mass expansions of - D(s) are .

‘i‘and

| ) ( 2_) _ .D'» ( Y Z 4 a'DI(s,mk?) ,“. : . 2 2
Pul e " ) g e | )
(2) 2 (l) 2 1 2 Ty _.
Dij (s,m, ) = Dij'v (em ) + 5 > — _
C K, 4 ) o
B e © By ™0 o (3)

- After expandingbeach matrix elemert of < D(s) accordingxto-Eqs.»(h.2)

‘and (4.3), we find the decuplet masses by solving
e (1,2) s
det [Re D (sg)] = 0. , (k1)

The derivatives of the D(s) fuﬁction in Eqs;.(4.2) and (h;})
are evaluated in Ap?endix III. Also, there is a proof»in Appendix III
that the ordériof integrationvand differentiation ma& be interchanged
for the first‘and second derivatives. However, the third deriVatives
do not exist and the expansion diverges term by term for third order

and higher., 1In spite of fhis,we expect the first- and second-order
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expansioﬁs‘té retaiﬁ soﬁe_quantitative-valiaitye The firét-ordef
approximation, BEg. (L4.2), should be as accﬁrate as any other first-
»order theéry,.eXCepf in the case of the bound-state mass néar the
degenerate threshold. [The firet derivative of D(s) with respect
to mass has & cusp at s = (MO + uo)e.] The second derivative of R
D(s) with respect to mass is unbounded at s .é <M0v+ “0)2 = 1.769
(BeV)Q, and consequently we expect inaccurate solutions to Eg. (4.L4)
for the bound-state mass near the degenerate threshold. In Fig. L,
the N* mass did cross the degenerate threshold at & = 0.6,

We limit discussion of numerical resultsvto the situation.
.describéd by Fig. L, (In Section v, Qe use the Dashen-Fréutschi
v approximation for investigating coupling'shifts.) The coupling-
coﬁstant perturbafions are zero (el = & = & = € = & = 0),

2
g = 19, £ = 0.33, t = -1 (BeV), and 8 = 5, = 1.

[See Eq. (3.1).] The baryon and meson mass-splitting parameter is-

5 = v62 = 55 = 55 .

‘and table form (Table 3).

The results are given both in graph (Fig. 8)

It is difficult to make general statements about Table 3,
since different accuracy may be required of varilous calculatipns. But
. we can make the following cbmments.

For & < 0.1, the second-order calculation more éccurately
reproduces the_exact solution than the first-order calculation does.

The equal spacing is retained within about 2% in both the
first- and‘second—order theories for © < 0.1. This suggests that

equal spacing is satisfied in the second-order theory. Of course
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(h 3) does mnot imply that the decuplet-mass shift Will ‘be purely o
second order since the determinant, Eq. (h h), is a polynomial in the.
" mass splittings. For -8 > O l, an (inconsistent) inclu51on of third-‘if'
‘.and higher order effects is already becoming important numerically
. _(except for the Q° mass); Thus, the slight breakdown of_equal mass |
fs'pacing for 8 »0.25 could well be dﬁe to the ‘inconsistent inclusi‘onl__: »
.;of-higher—order termsf - | | _ -
When o] -reaches about O}é5; thevsecond-order approximation 4
_:is no longer more reliable than the first- order approximation, and !
-When 6 goes to 1, both the first-'and second order approximations‘r
are very'unreliable. The inconsistent inclusion of higher- order L
| ~ effects in the det {Re[D(s)]) 0 condition should not disturb the o
numerical accuracy of the mass expansions too seriously. The bad
'behaVior of ‘the derivatives of D( ) at s =: (M +.uo)2i.couldvcauset
all the second-order results to be shifted slightly upwards (especially
.Y_the N*). However, the expansions are already quite inaccurate for R
5 ~ 0.5, and it is probable that any second-order calculation will
be.no more reliable than the first-order one for phy51calvbaryon and
meson nasses (6 =~ l). . In the sense that 1s necessary to go to very
| high-order perturbation theory to obtain reliable results, the physicalv

- symmetry breaking is large.



- TABLE 3: Decuplet Masses As Function of & . No prefix or a prefix
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of 1, 2, or D in front of the particle name denotes the exact

~solution, linear mass expansion, second-order mass expansion, or

Dashen-Frautschi approximetion to the model, respectively. Equation

(Teble 3 continued)

(3.2) defines dy @nd we omit 4  for 8 = 0,01 because of round
off error. The coupling perturbatibns are zero, f = 0.33,
2
£t = -1 (BeV) ;8 = 19, 8 = 8 = 1, and & = = 55,= 55 .
{see Eq. (3.1).]
) 0.01 0.0k 0.09 0.16 vo.25 0.36 0.64 1.00
N 1.9645 1.9665 1.9699 1.9688 1.9505 1.9136 1.7734 1.52%
ANt bo1.968k 1,9658 1.9672  1.9671 1.9639 1.9560 1.9194% 1.8489
o™ | 1.964k  1.9665 1.9702 1.9756 1.9820 1.9872 1.9736 1.8578
D' | 1.9646 1.9670 1.9725 1.9754 1.9665 1.9472  1.8770 1.7698
Y* ! 1.9687 1.9836 2.,0087 2.0393 2.0663 2.0894% 2.1162 2.1028
C1Y* | 1.9686 1.9825 2,0040 2.031h 2,062k  2.0951 2,1588 2.2124
oy* | 1.9687 -1.9836 2.009%2 2.0k64 2.0953 2.1554 2.304k 2.4818
Copy* | 1.9688  1.9843  2.,0121 2.0399 2.0654 2.0871 2.1183 2.1290
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Q1 1.9772 .é.6175 ' 2.0839 2;1767vv';29h§v i .h557’; L7769 5;190u
19413 1.9770 '2{d155  2;0755 PR _.2&56 ' 13&20} | .5L67 2.7428
2Q” €'1.9771.: 2.0171 "2,Q8AAL’ 2;1793 .3025°  2.14548 o 2.8562  3.k202
aing i;9773.' é,o19o.' 2.000h  2.1701 2.2458 2.3204 L4628 é.5916
“gﬁ | 0.000k VIQ;0196 __o;0i9u' v7015i_ | .6166  0.0252 0.0396
1, | 10,0085 0.0202 . 0.0359° 0.0563  0.0815 .1k51 0.2206
‘eq ‘Q.0111'. 0.02L8 " ;oQoheo__- .0602 .0795 .",1238. 0;1982 -
D@M ' ofooeé 6;ouhuf¢ 0.0M15  0.1069 ,i775f .3071 0.4035
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FIGURE CAPTIONS

Fig. 8. Graph of Table 3.

See the caption for Table 3 for values of parameters.
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V. PERTURBATION'THEORY: FIRST-ORDER DASHEN-FRAUTSCHI APEROXIMATION

The Dashen-Frautschi first order mass~-shift formula8 has
provided a -powerful method for studying strong and electromagnetic

| ma.ss shifts. Because of its popularlty) it is certainly of interest

to examine the numericel accuracy of this approximation. In this

Seétion, we compare the first;order results with the calculatlons of

Section IIIf Both the baryon and meson masses and éouplings are

' perturbed, and the.induced decuplet mass shifts.are computed direcfly

from the Dashen-Frautschi formula. This formula is convenient, since

it 1s not necessary to solve determinant equations such as Eq. (4.L).
Many objectioﬁs to the mass expansion of Section IV do not

apply here., The @ass expénsion~waé termwise divergent for third order

and higher. However, the Dashen-Frautschi formula is the first term

of perturbation series. We discuss this in great detail in Part B,

where we derlve an exact masé-shift formule. IHere, we simpiy note

that there are no difficulﬁies at the degenerate threshold, s = (Mb+lpo)2.
There are two practical difficulties with the expansioﬁ

associated with the Dashen-FTautschi formula. We fipd.that the accuracy

of the first-order theory falls for symmetry breaking less than physical,

and. so 1t would be useful to ex@mine the secdnd-order theory. The

second-order mass-shift formule [Part B, Eq. (4.8)] contains very

complicated dispersion integrals; We have not attempted to apply this

equation to this problem, but have reliled on the less rigorous second-

order mass expansion for estimating the accuracy of second-order theories.
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nThe second difficulty is rather trivial, but a discus51on will aid‘
Vthe interpretation of our results. The. Dashen-Frautschi theory 1s .iv
ﬂ'first—order in the changes_of the left,and right-singularities, ggi;Vf;
the baryon and meson mass or coupling'perturhations; }Small changes;;px;.
.of the right cuts are equivalent to small shifts in the baryon (and
- meson) masses.' However, the baryon mass shifts are not linearly

related to the changes of the right cuts. Thus, the 51mple group _“;:_

N theoretical result, octet symmetry breaking of the Anput masses. implies v -

,'octet symmetry breaking in the output masses to first order in the
1nput mass perturbations, does not apply to large baryon mass shifts..
There is no obvious reason that the Dashen-Frautschi formula should
givevequal spacingvfor largg baryon mass perturbatioms. In fact, for
physical baryon and meson massesiand no coupling‘perturbations,sthe'
Dashen-Frautschi theoryvgives deviations from equal spacing that are
about 10 times those found in the exact solution.s This result is-
probably not significant. However, the accuracy of the first-order_
‘mass shift is important. | )

The mass-shift formula is a result of the factorization theorem :
of the bound-state-pole residue. The first-order formula isvmost easily
obtained by.following the'original derivation of Dashen.and Frautschi‘

in Ref. 8. We show how it follows from the exact mass~-shift formula

in the,following paper. The first-order mass shift is

boy = gl e wle) viep) g, (532)
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where

. : 9 ‘ C

- o r ~s .
. . Ty A 1 t
w(s) = L fd ICRRACH CONE 3 RTIR (COR-ICOR(CUl

i1 . 8" - s T - 8" - s

L S - R
| » o ; (5.1b)

The mass shift is SsB ;'sB is the location of the bound-state pole

~with no symmetry breaking; N(s) and D(s) are calculated without
symmetry breaking; dp(s) ié_the-change-‘(dﬁe to the baryon and meson
| ﬁass splittings) of.the right discontinuities; V' 1s the change of
the left discontinuities resulting from the symmetry breaking; and
gny BTe the SU(})—dégenerate couplings of the decuplet to thé baryon-
meson channei.

In the pole approﬁimation, the discontinuity across the left cuts

is a matrix of constant coefficients times a delta function. The N(s)

matrix is simply
. -1 :
N(s) = 3B, (s -1t)", | (5.2)

where t 1s the pole location and B, is (one of) the .NO listed in

Table 1 with e, = ¢, = €5 = = & = 0, i.e., N(s) is
SU(3)-symmetric. ‘
The change of the left cuts is

O . O o) (5'3)

where NO can include symmetry-broken couplings. With these simplifica-

tions, Egq. (5.1) becomes
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B = - 55) gy vy(sg)ens Gela)
.I- N : . C\ . - v .. . -
where * . . T B i o -
_ : X o e s L E . 1_; -
w. (s) = B'vJ_'B "B Ty 2 : P.V. | ds' -~ .Sp(s-) : .
1Y o] 0 0 s .- (s~ t)g(S’- s.)
' ' R. . g B

. . R (5.k0)
In the following'calculations; we have defined the integral over.
the change of the right-cuts tdvmean

S ' j N ; p~(s")
o 2 (8- )P (s- s) 2 (st-tf(st- sl

. I | - (5.5)
The couplings,v 8p; 7 BTE Just the isoscalar factors for connecting
a'ag representation to the T ande-qpan£Um numbers df the baryon and
- meson.. An overall normalization (vhich is also the coupling of the
Q" to the X =. channel)'is
R : ' .

T ECAEO N U ST X

The derivative was taken numerically in the following calculations.

In units of g » decuplet couplings are

!

g(W*Nx) 7(2)-% s

(5.7)

]

g (W*sK) "('2>’% s
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s
=
5k
=
=i
g
1
1
™
[0)Y
S’
1
[jb}
-

g(¥" =x) = 6"'% )
g(Y'An) = -3,
(=) - 6%,
g(vzn) = %,
g(='zxn) = 3,
g(FAK) = -3,
g(=zkK) = 3,
g(="=n) = %,
g(sz“:i) = 1.

The manipulations necessary to find the mass shifts from Eq. (5.4)
were again performed on the IBM 1620 computer. Numeriéal comparison of
this approximetion with the exgct solution of the mcdel is shown in
Figs. 4, 5, 6, and 7. .In-Table.h, we compare mass shifts for.the case
shown in Fig. 4 (no coupling perturbafions); we note that the Dashen-~

Frautschi mass shifts are wrong by a factor of two for physical baryon
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and meson:masseé;' The mass expansions are compared with the Dashen-
'Fraufschi apprbximation,in Fig; 8 and Table”3;' Some further éomparisons.

are made in the next section.
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TABLE b: Comparison of Exact Mass Shifts with the Dashen-Frautschi

’ Approximatibn as Function of 8 . The coupling perturbations are

zero, f = 0.33, +t = -1 (BeV)g, g = 19, 81 = 5& =1, and
® = 82 = 85 = 85 « The mass shift is in units of (BeV)Q. The

prefix denotes the Dashen-Frautschi approximation; no prefix denotes

the exact solution to the model.

3 0.01 0.0k | 0.09 0.16 0.25 0.36 0.6k 1.00
N 0.0007 - 0.0026 0.0061L 0.00k9 -0.0133 =-0.0502 -0.1905 -0.h346
DN®  0.0007 0.0031 0.0086 0.0116 oQooe7 -0.0166 -0.0868 -0.1940
Y*  0.0049 0.0197 0.0448  0.0755 | 0.1025 0.1256 0.1524  0.1390
DY*  0.0050 0.020% 0.0483 0.0760 0.1016 = 0.1232 0.154h  0.1652
=% 0.0092  0.0%366 | 0.0828 0.1khk9  0.2177 0.3007 0.4870 0.6948
=% 0.0093 0.0377 0.0868 0.1436 0.1988 0.25k2 0.3636 O.L6LL
Q  0.0134 0.0534 0.1200 0.2129  0.3307 0.4718 0.8130 1.2266
0.6278

DR~ 0.0135 0.0551 ©0.1286  0.2063 0.2819 0.3565 0.4989
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V. HFAVY BARYONS AND LINEAR APPROXTMATIONS o

With a simple model, we have eStab.liShed thatithe.l.5>(.)_ MeV’
mass spacing of_the'decuplet is not a Smalibviolationfoff.SU(E) |
symmetry if tne baryon-meson channels'are most important_in binaing;
-the decuplet. Inzspite of the nonlinearities, the modei aoes giﬁe“
equal mass spacing, a result ‘which the dynamics seem to favor independent :
of linear (or second order) perturbation theory. Even S0, 1t is |
possible that the equal spacing of the decuplet is a first-order .
effect. We speculate about this possibility by considering baryon-
meson. channels in Whlch the paryons are much more maSSive than the
| ,_JP = 3* octet. Perhaps it is already clear ‘that the physical |
tspacings of the decuplet will be reached before the first-order formula
breaks down if the baryOns are.sufficientiy heavy.

This speculation.is noticompletely idle sincevwe have ignoredp'

all the higher mass channels that might help bind the decuplet. For

'example, if the JP = %ﬁ octet lies on a Regge trajectory, then we
' +
might expect some contribution from the- JP = g. octet contalning

1the_ N%(l688),vand so on. We include the higher-mass channels in the
following crude way. We assume that the incoming baryons transform.

as an octet, but that,.averaged over ail contributions,:the baryone
have & mass heavier than the usual JP = %* octet; i.e., we increase
61 in Eq. (3.1). All decuplet meson channels are‘neglected. Thus,
the model is exactly the same as-thitusedin Section III, and it is

solved in the same way. We then compare the exact solution of the

model with the Dashen-Frautschi approximation.
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Suppose that the most important channélS'for binding the

decuplet are composed of one baryon from the J°. = 5 octet and

 one pseudoscalar meson. The thresholds are farther from the bound-

+ . :
state poles and the mass spacing of the JP = 2 is smaller than

2
for the JP = 5&‘-octet} Consequently, for physicél gf baryon
~masses, the decuplet spacinés are about one half the physical spacings.
More precisely, we adjust g and t so that the N* mass is 1236
" MeV. Then for physical %% masses and t = =1 (Bev)e, the spéding
is 0.55 (Bev)g. For the gﬁ baryon masses, t - -1 (BeV)2 implies
a spacing of 6.20 (BeV)e, t = -3 (BeV)2 implies a spacing of

0.30 (BeV)E, and t = =5 (Bev)2 implies a spacing of 0.27 (BeV)e. .

Since physical JP = %& baryon masses and physical pseudoscalar-
meson masses with SU(3) degenerate couplings lead to too large a
spacing, it is poséible that the higher mass-channel contributions
reduce the spacing tb its physical value.

We now show how the linear apfroximation is improved by
increasing the baryon masses. In Fig. 9, we set Sl = L so‘that
the aegenerate mass of the baryons is 2386 MeV. We also set
t o= -7 (BeV)e, g = 27.3, & = €& = & = €, = & = 0,
and & = 82 = 65 = 65,. Note that for physical decuplet spacings,
the Dashen-Frautschi approximation is beginning to fail.

If 61 is set equal to 9 (the degenerate mass is 3579 MeV) and
the subtréction point put ét ~-15 (BeV)g, then the DasheneFrautschi

approximation is quite good when the physical decuplet spécing is

reached, as is shown in Fig. 10.
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 FIGURE CAPTTONS |

| The Decuplet Mass Splitting with Heavy Baryons.

o The'degénerate baiyon7mass s 25865Mev.~ Also, f‘;e- 0.33,
27 5,- = -7 (BeV) 5 the coupllng perturbatlons are.
vv,zero, 54 =1, L517'e~:u;, and 5 N 62_‘="63 = 5. The

"Tprefik D 1ndlcates that the Dashen Frautschl abprox1matlon .
" was used in flndlng the mass shlft .no preflx 1nd1cates the
'f_exact solutlon of the model

_The Decuplet Mass Splltulng w1th Very Heavy Baryons..'

' The degenerate baryon mass is 3579 MeV Also,. f3_= 0.33,
g = 50.015, t o= -15 (BeV) ; the coupllng perturbatlons
grezero, By = L B = '»9:: end B = 5 = ¥ = % -

, The.prefix fD 1ndlcates that the Dashen Frautschl approxwmatlon
- was used in flndlng the mass shlft no preflx 1nd1cates the

‘exact solutlon of the.mode15
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VII. AMPLITUDE OCTET SUM RULES

If'the octet deviations from pure su(3) afe small,'then
both the masses of bound states and the elements of the scattering
amplitude satisfy octet sum rules. When the symmetrj breaking
paraméters are large enough that the decuplet épacing approaches the
physical value, the first-order approximations ére poér and many
manifesﬁations of nonlinear behavior are obvious. Tﬁus, the eqﬁal
mass spacing of the decuplet is not explained by assuming that the
symmetry breaking is sﬁall.

~ We do not know why the dynamics favor octet sum rules for

ﬁhe bound-state masses. But it is'conceivable that the matrix-eleménts
of the transition operator also'satisfy the octet sum rules,‘and that
octet symmetry breaking is a genéral rroperty thatvis rather independent
of perturbation theory. However, the amplitude ocfetvsum rules fail
for about the same values of the symmetry-breaking parameters at
which the first-order theories become inaccurate. We now discuss
this quantitatively. _

iﬁ Section IIL, we calculated the amplitudes for meson-varyon
scattering for the valves of I and Y that cofresp§nd to the
decuplet quantum numbérs. 'These four écattering matrices were written
in a chénnel bdsis in which eachbmatrix element was the amplitude for
a transition from one meson-baryon statg to anbther."To_discuss the
su(3) transformation properties of these amplitudes, it 1s convenient

to tranéform to an SU(3)  basis. Wé'then assume that the amplitude
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transformsfas an  sU(3)" éiﬁélét7plus~thex"14;10, Y= 0. member. of
an octet. ‘A'siﬁple‘appliCation of ﬁhe_Wignér%EékhéfﬁuTheofem.fof |
SU(B) gives | | |
a (u)’.

T ' & P : - S
(U AU)I‘}';I‘_'?"' = _Brr? 6771 ar}' LA . 0,0 A / 'rY)r'yy

' ’ o (7.1)
This éxpressidn:is'véry simple, althbugh the'multiplicify’of _§;s' in
§<g>§ complicates:tﬁé”notatién,\ The amplitude A is iﬁ the_chaﬁnei..
basis as calculated in Section TII, and the matrix, U, which is a
_vﬁatrix of isoscaiaf factors,vtragsfofms' A to the SU(z)'Abasis;

(U). (/8 :-8'.- = 1".7\"\' L o : ‘(’l(z)

s s = : . . 12 I .

. 1J,r7n _Y>Y'Ii¥izg_Iij 41/ _ o
where I, and Y. éﬁd 154 énd'.Yj;'ére thé-is§§pin'%éd h&percharge
: of the,baryqn_ahd meson.ih‘chénnei’ ij . -Zhéhindice#’_r' and -
_'7-¢r,and ¥') " denote the . sﬁ(j) _répfeggntgtioﬁ and:thé'multiplicity,
respectively (i.e., fherelare two zﬁfs - Tor thevchaﬁnels communicating
with the i*f and Z° ) The first termvon the.right side of Eq. (7.1)
is the SU(B). singiet céntfibution. The_Wigher-Eckhérf-Tﬁeorem

factors the guantum numbers of the decuplet particle out of the

arbitrary constent, ar}'r,y,(“).' The p 1is the multiplicity index
cof r in 3'(2}@, énd A denotes I and Y of the decuplet particle.

The sum rules are derived .in the usual way. For example, the

W L B . .
10 to 10 transition amplitude appears in all four scattering matrices.
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'Sincé thefe are two arbitrary constants; wé find two sqm‘rules.b
Altogether, there afe nine octeﬁ sum rules that an octet symmetry-
broken amplitude must satisfy. We define a ‘set of nine‘symbols,

r-r'y’(j)’ which ére zéro for pure octet symmetry breaking. The
subseript, r - r;y' , means phe transition from representation

to representation r',‘and as befére ‘y'. 1s the multipiicity
index of r'. (There are no sum'rules'for the 8 to§ transitions

and the amplitude 1s always symmetric, 50 we only'need one multiplicity.

index.)v The index, J, simply numbers the sum rule for those

tranéitions which have several sum rﬁlesf If Cr-r'y'(j). is set
equal to zero, these sum rules follow from Eq. (7;1):
c5) _ * 1/2 o
Se Tpro10 = Apqio (V) = (8/25)7F Ay 1o (W),
0y 1o®) = o @) - 52 o)
Sc %27-100 © T ferar0 V2 Aa7-10 ’
% %27.8,1 = for.sy () - @B 4 o =),
¥ 1/2 —%
SC 0'27_8’2‘ =z A27—8,2 (Y ) - (2/3) A27_8,2 ('— ) b4
o ) A : (7*) - 2A .(Y*)‘+ A (3 )
°c “10-10 T 10-10 ‘7 10-10 *10-10 ’
| (2) _ | - : - ' *
S %0-10 = A10.10 () 38000 () #2850 (0D

(Equation 7.3 continued)



L -6
e 08,1 = hogy &) ko )5
. . ’ v __* :
Se GlOaB,Qv:é. Alo 8 2 (— ) lO 8 o (Y )),"

S¢ %10-T0 = Ar0.10 (¥) - L R 2
The amplitude _Ar;r,y,(A)l is the transition amplitude between
representations :rv.and*‘r' 7’,,end the I and ‘Y ;quantumvnumbere.

- are again denoted'Ey-the deeuplet-particle symbol. The scale factor,.
) o |

s_c , is 1nserued to make o dlmenSlonless

r-r'y!
In Sectlon III, we calculated the determlnant of Re{D( )}
in the cemputatlon ef uhe boundestate pole positions. ,Thls wa.s
equivalent to finding the pole'ﬁoeitionsrin ﬁhe Hef@itian"K matrix,
and had the_adventage of avoiding eomplex arithmetic. For thefeame

reason, we assume that the KX matrix satisfies the octet sum rules,

where
.K(s)‘ =4 N(s) {Re D(e)}-l.'.‘v vv:.. (7.4)

The sum rules will not be valid for all values of s . For
s near a bound-state pole;‘the sum rules-can be violated arbitrarily.
l For example, if s 1is between the: Y*‘ and _E* masses, then
& —%
X o- lo(N*) and K10 lO(Y ) are both necatlv and K lO( ) and

KlO-lO(Q ) are both p031u1ve (Tnls is true for symmetry breaking
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where the decuplet masses are in their physical order.) Consequently,
| equal spacing of the amplitudes is impossible, éven for very small
symmetry breeking. [See Eq. (7.3).] :Thus; we test the sum rules for .
_values of s where X(s) is a slowly-varying function. In our model,

this is equivalent to avolding s near pole positions, or

(AES)} <b,

mex {Kfy-r'y'

where b . is a bound of order 1.

In applying this criterion to X(s), it wbuld seem natural
to take s much larger than the decuplet masses. However, the K
matrix has a set of poles.where the phase shifts return through zero.

For reasonably small symmetry breaking, these poles appear at.
10 (Bev)2 <s <15 (BeV)e; We avoid all poles by choosing b = 2.

For symmetry breaking of order & < 0.5 (See Fig. L), Ké?-lO(A)
is from 5 to iO times largef than the next largest off-diagdnal
K-matrix element in the ‘SU(j) basis. Also, the spacings of Kio-lO(A)
are of order Ké?-lO(A)' If the scale factor is chosen to be of this
magnitude, then the violations of the other sum rules will be "small".

We let the scale factor be

Sc T mex {]Klb-lO(Y*)'_ K0-10 s 1K1 50(F) = K507
(7.5)

Ky 010(87) - Ky oGO
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| We.eValuéte.thé firsf‘two sﬁm'ruleé‘éffEé.‘<?'3) és'theyiare;
.but dlscuss the Kio lo(A) spacings by a 51mple parameuer, y ,'wnlch
is the maximum dev1at10n from the average spacing of the 10-10
amplitude,

s e s s 3T Mgl S Ko L (76

- Before exéminihg'thé_nuﬁerical detailg;-we’should emphasizev'
tet s, 1s liﬁear'in the éymmétry-Bréaking to lowest order. Since
the right side of Eq. (7 3) is already second- order in the symmetry-
breaking (the octet sum rules are satlsfled to flrSU order), it follows
that the llnear;oghav1or of o and Y cor;eéponds to second order
symmetry breaking'effecﬁs and the cgr&ature of the plots of o and
¥ o higher-order effécts;

In Fig. 11, -we éhow ¢ and . ¥ las funétions of the meson and
baryon maés spiitting parameter, 8 . The plots are reﬁarkably linear
‘ out to 8 = 0.7. However, Qn_cloéer exémination we find fhaﬁ.thira;
order effects and higher are important, even aﬁ. & = 0.7. This is
because a strong second—order effecf in; 5, ’cancels fhe strong third-
order effec# in, for example, Ké?—iO(Y*)' .

The importancg of the higher—ofder’effeqts becomes obviﬁus
when we plot ¢ and 7 _;s functions of'the coupling symmetry—breaking
~parameter, € = € :.uegy. Hbre,vthe second-oraef;terms_of s,
are of the same sign and ﬁagnitude as the third-order effects in, for 
‘example, Ké%-lé(Y%)’ and the plot is quite_noﬁ}inear, as sthn in

Fig. 12.
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These results are not very dependent on the value of s , if
s 1s not near a pole of K(s). The sum rules slowly become better

satisfied s s is increased. For example, if & = 0.25 and

€ = 0, then: 7 = 0.23 at s = 14 (BeV)g; y = 0.10 at
s = 20'(BeV)25 and ¥ = 0.04 at s = L5 (BeV)g. '

The. symmetry breaking is large in the sense that first-order-
formulas are quite inaccurate. The second-order theory improves the
'situétioﬁ only slightly, and when physical symmetry breaking is feached,
it is as unreliable as the first-order theory. Finally, fhe octet
éymmetry breaking output 1s special to the bound-state pole positioﬁs;
the amplitude does not satisfy the octet sum rules for physical

symmetry.breaking.
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Violations of the Amplitude Octet Sum Rules as Functlon of 8 .

(2),

-f_'The parameters are: o =g %7 lO(%) [Eq"(7 5)]’ = %1- 10 b

'and 7 is defined ivaq. (1. 6). Also, .f'f= o 33,6 = -1 (Bev) ,

: 2 . . . . ._ — R R
‘ --_g‘ | 19:v -= ‘5 ‘(BeV) ) »8’]_‘—‘ )+ f‘. Q; ?l = 62.—‘65, = 54 = 5 = Q)’
"end =5 =8_=5_ . . " ' B '
o 23 5 T , :
Violations of the Amplitude Octet Sum Rules as Function'of_e..

Fig. 3-2. .

(2),

.1Theuparaméters‘are* ,a';l 27 10(1) (Eq. (7 3)]; 5 = 27 10

end 7 is deflned in Eq. (7 6). Mlso, £ = O. 33,' $.o= -1 (BeV) ,

.8 = 19’ S = (BeV) s T = 8)4 - l, 82 - 83 = 65 = 0 ’

l

e, = eh'= €. =0, and e€=¢€, =¢€, .

3. 17 2
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Fig. 11
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- APPENDIX'I°‘ OCTET PERTURBATIONS OF THE BARYON-MESON COUELING CONSTANTSe

- The eight baryons, the eight antibaryons, and the eight
pseudoscalar mesons are assigned to eight-dimensional representations.
,of SU(B) In tensor notation, we symbolize the elements of the octet‘
. tensor by - T b, where T ?'-Q--¥'(Tap is traceless ) A sum on

repeated subscripts 1s 1mplied, and a, b, ete. take on values 1,2,3.

- We assoc1ate particles With tensor components by the prescrlptlon,\

..IZ_»_%%{nu@)'-'f-_nl(l)‘x_v?-.nl(gz)u_-nu(l)?E : ;v_vpb.. (Al;i) |
band d 1pf
where i '»;v“ | :
o e
T - al_' "-aj l k"

._and the symnols "n (i) énd ' n, (j) denote the number of upper iis
-and the number of lower- J s‘ of the tensor component -~ The requirement_
.of tracelessness with respect to SU(B) and isotopic spin also glves'
~ some non-triv1al normalization conditions. The usual 1dentif1cations

_follow,
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3
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(22) = ()

~-T5=

 n IE (A1.3)

i 11}
o +

Im

The derivation of Eq. (2.12) is analogous to the derivation

of the Gell-Mann-Okubo mass formula. The most general Yukawa coupling

is

. We omit the 75

to shorten the notation.

(AL. L)

The representations

contained in Eq. (Al.4) are those included in 8:® & ® 8 . 1If



I 'and' Y'*sre conserved,-Hj;rIt cannot contain any components belonging

'.to non- self conJugate representations,'and the six - 27 s and the 6hp'

*-pare eliminated by assuming that: the symmetry breaking transforms as.

’ the Y = »O,_:I = O member of an octet Thus, the two l's and.

" the eight 1 ='O, ‘f.; 0 components of the eight 8' in Eq. (Al h)_ft

‘are all that we need to consider. <We,wr1te Hint -as :”W
t¢[B(B + BP)) + g, [B(2B - BP)]

T S BRI o
+ C,(PBB),”. +:C,(BBP + C,{BPFB),”
0y ()7 0 (), + 0B
L | | (a1.5)
+ C, (BFB; + C.:{BBP; + C,.(PBB
- 4_( »_)3.‘-4-, 5_-( )5 - Cel , .)5
Cec. Bl t-r.(EABY) + 0, B tr(BP) + . B 3. “tr(BP) .
ST RN B TR S
The Cls cannot all be independent‘ Since there are only eight 8's
in- 8 (:) 8 (:) 8 But the product of three traceless matrices is
not necessarily traceless, 50 we must subtract out the l Aincluded
in the last nine terms of Eq. (A1, 5) Moreover, the hermiticity of
'”eHint implies that Cl #:'CQ:;. C5g = Cg and Cg = C9 . This
'leaves five 1ndependent'octetpsymmetry-breaking terms,
' ”The relation that gives'the linear dependence of the coefficients

10

. is
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(PBE + BBP + BFB + BFB + BBP + PEB);-

- tr .(EBP) -tr (B®B) = P 3 tr (BB) + B

5 —
o tr (BP)

3

+ B

5 tr(zp). - (aL6)

Fquation (Al.6) is easily verified from Table Al.l, where the results
of the necessary matrix multiplicationsiére'exhibited.
If gy, = ed, g, = ef, end d+f = 1, then Eq. (Al.5)

becomes

ot /(g v‘_ve). ﬁr[ﬁ(PB + BP)] - 2f tr(EBP)

+eyt [PEE 4 ;B:.'-S;P)Bj— (2/5) tr(EeB)]

> . 1L

5 3 tr (BBP)]

+ ey’ [(BEB),° - 3 x(EEB)] + &' [(315)

3

4 p 3 = ' 3 = =3
€, P5 tr(BB) + 65 [35 tr(BP) + 35

+4-

tr(BP)]. (AL1.7)

We have used Eq. (A1.6) to eliminate the term proportional to
[ (BP +‘P§B)55 - (2/3) tr(EBP)]. To obtain the simple parameterization

of the coupling perturbations of Eq. (4.7), let
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Substltutlng Eq. (Al 8) into" Eq (Al 7), we compare the follow1ng two

forms of B 'to der:Lve Eq (2.12),

1ot

/(g\/_)

‘tm ) - e )
) ) 1 )
) "+ (1/3) B tr(BP)v + (i/B) P ‘Gll"(.ﬁ)»j |

B> tr(BP) ’cr(BP) -5

3

[ R
o=

T
B, P fr_(B]?)],

- mlp o

Equation (Al.9) continued



-77-
e 1 = - =3
€ {- tr(BPB) -3 tr(BBP) + (FBB + BB:P)3

tr(BPj + p,0 tr(ﬁB)j}

+ (BPB) >4 (BPB - (2/5) tr(ﬁp) + E 5 5

3

5 tr(BP)]

+ € P3 tr(BB) + e.5 [B3 tr(B?)_+ B5

+ gZZn1 i g'ﬁ Xz - 8=, = T T . gNAg (KN +NXA)
+gNm(ﬁg~§K+f{'g'§N)-gA (R=X+AKE)
- g5y (K 2T+ TEK) - &y NN - &pan AAn

Table‘Al.l aids in the comparision of the two forms of Eg. (Al.9).
The twelve iscotopic spin invariant coupllngs are written out in

TabWe Al.2. -



TABLE Al.1l: Decompdéition of the'Singlet and Octet Couplings Tnto the IsotopicQSpin;invariént‘_c-
Couplings. Fach SU(3) term is a sum of isotopic-spin couplings with the coefficiehts showvn in ,

the table.
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=
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TABLE Al.2: Decomposition of the Isotopic-Spin-Invariaht Couplings.

Nt N =_\/—2_ vfnnv++ 2 pﬁn-.f.'(v—ﬁp--ﬁn)no
KZJ;EY“LA%',{E = »1—\'Z+nv'+Kzoné+/—\Z'n++A-f"zr'+A_Zégo+AE-n+
1§-£x2 = ?(Zon-.?;"ar-:o);fo(z-n -er)+2(+ 7° - On"
EI'I;EE = \/E-E- En +\/—é—+—o—’- :°'E—+;-EO'EO 7°
AKXKN+ANK = KflK'+KnKo+§AK++E.AI.{O .
Ni1.2K+KTEN = p zox““,%ﬁ ok’ +V2nzX @ ;OKO + 5p K
+/2 S nk +/2E5 pE°-Z°nK°

AZK+AKE = K:'K++7\'E°K°+§;AK'+§°AK°
Frgf+Zn.Ex=3%8% +/2E5 2%°+ 22°: x - E°K°%°

+ 0=k 42K 422K - 2020 ¢°
TNn = Dpn + Ann
KAT].= KAn

(Teble Al.2 continued)
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APPENDIX II: ISOSFIN CROSSING MATRICES

”Although the derivation of the iéospin'crossing matrices is
.rather eleﬁehtary in prinéiple,7it has been plagued with phase |
convention difficulties. In extending an appendix to a papér by
Mandélstam et. gi.,lB Carruthé;s and K’rischll proposed to overcome
the confusion by explicitly displaying the partidle—state Phase
conventions in the field operato?s. In this formalism, theré is a
neat separation between the phase'conventions for the particle states
and the conVentions related to the group theory of SU(E). The Condon
and Sheortley phase conventions place some restrictions-on the phases
in the field operatofs, but they do not determine the overall phase
of the creation operators relafive to the anninilation operators in
the field operators. The phase choices of Carruthers and Krisch do
not agree with those taken by de Swart12 in his calculation of the

/

vector coupling coefficients for SU(E). Since we use the de Swart
isoscalar factors on several occasions (see Sections V and VII), it is
mandatofy_that we follow his conventions. In our derivation éf the
isospin crossing matrices, we follow the general method of Cerruthers
and Krisch, but completely redo their phase convention discussion. We
restrict our diséussion to the u-channel to s-channel crossing matrices.

The s. and u channels are defined by

a+b - c+d (s)
. (A2.1)
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ﬁhere b andA d - are péeudoééalér mesons'ana .a:"ahd 'c- éré bafyoné.
Thevletters, ‘a, by é; ahdl a, aiso deﬁoﬁe'tﬂe isospin ofvthé particles;
and a, é;vy, and 5 label the third component. The antipaftiéles of .
a, b, ¢, and 4 'éré Qénoted by &, b, c, and 4q, and have thira
compoéénts -o;.-ﬁ, -7,'and: -3, respectively.

The continuation of the u-channel amplitude to the s-channel

physical regionfyieldé
ea ¥ ap) = £ (B bPled) . (@)

After transformlng to amplltudes of deflnlte 1sosp1n (1sosp1n
conservation is assumed here), we solve for M (s'), the S= channel

amplitude With isospin s' . _A'useful relation ;s R ' ':.' \\.‘

Cadu; o - 8) C(cbu; 7{'“5) =.§: (2u + 1) (-1)bfd+af7 ps

S R o C(2.3)
abs] o '
{232} cteass 7 0) cans; om),
where C(cbu; 7,-8) = (c,y, ,-B le,biu,y - B) is the vector coupling

abs

coefficient and‘{c d'u} isa 6 - j symbol. The solution for M°(s')

‘is

M(s') = L Xy M), BECERY
-ul ) . .
XS'U. = Es‘u(-l.)t.).-’-dm—*‘? (2u+l) {i};i} s o .7 (A2-5)

and Xsﬁ is the crossing matrix.
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. We return to Eq. (A2.2) to evaluate S Since we are
crossing pseudoscalar mesons, we need considef only.the =, N~
and.K-meson:fields. The phase conventions are revealed in the field

operators. The =n field is

s

g0 ) - Z}'{{fk(x)-aﬂ(“) (x) + (-1* g0 e (P <1_<>} , (22.6)

s

where o 1s the third component of isospin, and

£ 6) = 2o ME

[ad o

. 4 | , .
To solve for aﬂ(“)(k) and aﬁ(u) (k), we need the orthogonality
~n ~ {

relations, _ _ M A\
deX £ ¥ (%) 1S ¢ (x) = (k' - k) (A2.72)
~ £1 O ,16 "~ o 2 v
[ o |
J ax £, (x i ao fk(x) = 0. : | (A2.7p)

Combining Eqs.‘(AE.Y) and (A2.6a), we find
a M) - deX £, ) 13, gﬂ(“> (x) , (42.6)

aﬂ(H)T(lg) - (_1)“fd5x_;zfﬂ('“) 19, f}\(’(x) . (A2.§c)



 ;8h-,
Tﬁe 1 fleld is obtained by repla01ng 7t w1th n in Eq. (A2 6),
setting u = 0, then dropplng the 1ndex, i .'v L t o ?'“ E_
{ The X and K mesons do not belong to the same - 1somult1plet;

so the K-meson field is deflned by

WP+ I a0 4P ¢ 2 5w e ), e

v ¢ : o _ B
‘where K is also the isospin of the X meson and uis the third

component. Inversion of the fieid operatér gives,l'

Mo - [ ;thg(x)_i % vé“.)@ ’
a'g(“)(%)l = wa x (X) : a W y ;M)_ -

‘ - | (A2.8b)
: T A «> ) : .
N LT Y f%(x),

W - (e Joe v 0 15, e 00 -

A simple application of the L;‘S. 7. reduction fofmalism is
sufficient for determining gsu . After.reducing the initial and fiﬁal
mesohs out of. the s-channel.s-matrix element, and out of the ﬁ—channel
S-matrix element, webcompare'the two S-matrix elements. Avcrossing
condition results, and comparison with Eq. (A2.2) gives gsu -

To 'see how £his goes,vconsider the example where the s reaction

is
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Sx->NK.

We retain the momentum labels, but ignore a possible unit operator
for elastic scattering. Reducing the mesons out of the S-matrix

element, we find

(v, X(x 8) out |z ; =(x'8) in)

[}

(ot a_(®) (x) aﬂ(B)T(lg)lz in)
X

(- () 4 fdl‘x a'y £ X () £, (y)
X (0 +md) (O n®) @iz e 00 4 B 1o
A similar calculation for the wu reaction,

TK - Nx,

yields
(W ; n(q,-B) out | =; X(q', - 8) in )

&) () | z1m)

li

(N out | aﬁ(_ﬁ) (%) 2y

Il

2 [ n b
i ‘/dxdy..fc}v(y) fq,(x)

. (Equation continued)
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.. ‘{(D + m\K ) (D +m ) (I\TIT Igf (- B (y) WK(.?) ( )}IZ>
;A comparison Of théSe'twO‘éfoeSéiOnS gives the_érossinggrelati§n :9

S 03, 2gp) ~ TR )] = (1P slnlg-0) - x, (8] -

'Thevphase factor, . gsu 5, 1s

(1)K

This type of calculation ié easily performed for theisixteen possibilities
‘of incoming and outgoing « , 1, X, or f,meéons. The results are
- tablilated in Table A2.1.

From Table A2.1, it is clear that :Xsu' is just a phase times

ja b s
lcdu

is now reduced to looking up 6 - j symbols. The crossing matrices

(2u + l) } . The derivation of the isospin crossing matrices
are found in Table A2.2. In this phase convention, the Svmatrix is
symmetric (see.Carruthers and Krischll)f The couplings derived in
Appendix I and Table A2.2 imply the matrices, Nd', shown in Table 2 1.
Perhaps we should note that there are some phase differences between

- . 6
our NO and those calculated by Martin and Wali.
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TABLE A2.1: The FPhase Factor, E., » for Eas. (A2.2) and (A2.5).

Mesons in s chahnel
Incoming Outgoing gsu ”gsu<'l)d+b+7+a
) d
7 B
7t 1 ,
- > ( -1 )5'6 ( -1 )28.+b+d.
n- s
n 1 )
K X (_l)b+d+6+6’ | (-1)20+2e
X % (_l)b+d+5-8. ‘ (-l)Ea
K K (_l)b+d+6-6 ) (-l)2c
K K (-l)b+d'5'5 ‘ (_l)2d+2c
' 4+8- 2c+b -
% K (-1)3+5P (-1)2¢
T a-8- 2a+b
o) K (-1)4-°# (-1)
b+p+8. Dg 44,
K 7, (-1) 5_ (-1)
| 7 b-p+d 2c+d
| X 51 (-2)7P | (-1)
;
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TABLE A2.2f,fis@spin:erséing_Matricés, Xéu','For«ﬁdryon-MéSOﬁfSCattering.

1,

“The symbols (s') and  [u5]' denote Ms(s’) ‘and Mu(u’);vrespectively;‘ The -

 _baryon'exchéngés'needéd in Section’II are listedfin ﬁhe{finalltWO'éolumns{ . -

Baryon EXchange

b+d* +a ’ i . : 3
7 '!Mu_(u)bi’ ' §
.
l
?

. S ' B ' ]
M (s') X i ‘s-channel | Baryon

Channel g (1)
| ,f ~isospin | exchanged

A S tak <1/3 RN 1/2} 7-5-‘.4.3/»2‘ BRI
o e N e
-z e s N s | oas
I g (e W R R
sz - <1/2),<1/5 »“u/z\-i el s
o (3/2) /5 "1// 5/21 o |

EEY oL B . ".,‘
i .

s <L/2 . 5/2 T —— -
| : (l) = l// [l]l .._!:Non‘e | | |

BRem | - ) AR wRNua
| @ 2_/3 | _2/5/ [3/2] 10X

= ]
=

NK > A |- () ] «-2/./ '21/2.} ey N .

(Teble A2.2 continued)
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o '_ s~channel

: Barybn Exchange

isospin

.Baryon
exchanged!

NK - In

I - Ixt

(2)

1/éA:
\-1/2

- 5/3
/2 5/6
1/2 1/6

/5
-1/3
“1/3

N

Id].
‘[13;.
[i)é]
[oi :
(1l

2l |-

o1

A)Z . i

Yt = Ax

In = ZK

X > Zn

)
1) |

REON

(0)

2/ u//E
tz/i 2/5./

l .

[1];
(1/2]

(3/2] |
{11

11}

" A~ An

At = Zn

S EK |

(1)
L@

(1)

1

2/f6

-1/V3

(1/2]

| '! (o]
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11t

(Table A2.2 continued)
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APPENDIX IIT: SOME INTEGRALS

The integréls needed in the calculations of Section III and
the mass expanSions of Section IV were done analytically. We list
here the results of these computations. The solution to the N/D «

equations in Section III was reduced to evaluating the integral,

| | e | "
B(s; Mu) = =2 B.v. ax (G177 , (A3.12)
" " “é xg(x - t)2 (x - s) ,

where

k(x) = X - 2bx + c ;

b e 0B,

e = (Q? - “252 ,

5 = (»M+u)2 L (43.10)

. 5 '
A partial fraction decomposition (ﬁith X (x) in the

numeratof) and integration of each term ylelds
-1 - - ' -1 ' |
(s ~t) o E(s;Myu) = t 2-[cs s k(t) (s ~t) 7] (a3.2)

1 : R - | -
+ 2 g0 g8 [e (t +2s) - 3stb] n(uM l) + k2(t) 5 (t - s) 2

x [t?ks - 3b) + (3¢ + sb) & - 2s¢] L(t) - ¥ (s) s (s - £)F X(s),

—



where

©X(s)

5 ’f"a<M? R N T e A

R o~ 1 N - L
SoEm L
Lo .. +
N v 2

o

RIS

Xe) = e an o - e - k%‘s>i/.<em"éf>"l-,,i¥<ﬁs'>_‘-'>'<'<?-"_,'_§,"fl. i

S T S L (A3 3)
;sl[sk(é)]f%- ﬁtan ; (s - b)/( k(s))a] + n/e] k(s) < O ﬂf

"The apparent singularity at s"*'tt(M‘--Q) has zero discontinuity. o
3 Thus, the two forms of X(s) in Eq. (A3 3) are simple analytic' o

. continuatlons of one another.""

To second order in the mass . symmetry breaking, the mass':»*v

~ expansion" of E(s M,u) is

U; _E(s;M;n)b= E(S?Mo"lﬁé)f;.ﬁi(s)'f Ee(e) t;j[»?.'v<A3'A)>

where =

E(s M,u) A+ S 0

f\)tlj
—~
n
~—
]
=
=
—
1]
e
=
=
p
D

2 8(1\42)  R '2.1“'2_.7_ B(MZ)B(p.) — v_.-M2'2_

. andvA

-~
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 Since thé‘ inte‘gré.’nd’:of. E(s;M,p) -is.unifopmly continuous for all s,
we can differentiate E(s;M, pn) under thé‘inte'gral sign,
o)

Drv [ e O E-e) ()
L ! Y Pt e 7
0 o R

B (ssdym) = 2 (s
with

of - ud) (a-8),

A
I

e'_='A+5.',

Another partial fraction decomposit:_[on and integration gives
5f1(s - t)‘l T El(s) = £72 [as”t - (@ - et) (¢t - s)'l)
1

)

N . _ .
+ s'e’t'B_ ¢™? [ed(t + 2s) ~ st(ce +bd)] !Ln(uo M,

K2(s) 73 (¢ ;'s)’g (6(t -'s) (@ - et) (& - b) _ ) o

Q - x(t) [a(3t - 2s) + et (s - 2t)j} L(t)’
-k (s) s(s - 1) <d_'¥ es) "X(s) . ) O (#3.6)



e

If s # By » We can take a second mass derivative of

E(SSM; H)) .
E,(s). = ,% (s -'%) P.V.. J( ax E éx) £ Xg Lex b ,  (83.7)
. : L xT(x - t) (x - s) o
o -50 -
_wheré ' '
f = fA? . 8P

|
I

» -
() - 1)) (8- 0)° .

jay
]

The integral, Eq. (A3.7), is then’

1‘5‘1(5 - ﬁ)'l 7 By(s) = st 72 ﬁ -v(f t? ; gt +n)/ -
[%(6 - 5) x(6)] + [e2 t-?s-l bh

+ 170 g2 c-l/? (stg+ht f 2 h:s)] tn (uOVMO-l)'
ot i(:_£2 gt +n) b-t) T (¢ -.s>'i ko)

"'+_£'5 (t -_s)'2 (t(t -s) (2 f t.+ g) ;'(f t2‘+ gt +h) (A5;8)

N (5t - 28)]) L(t) - s2(s - 4)2 (£ 62 + g 5 + n) X(s) .
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Equation (A3.8) is infinite at s = Bp - However, for s
near . BO , the integrand of El(s) is no longer uhiformly continuous,

and we must separate the integral into two parts in order to decide

how E2<S) behaves at s = BO . We write
. 1 ,
B e R C - L
E (ssip) = £ (s -t)P.V. f S CRON (=M ug) = B3y 1))
Bo '
-1
5 ) (X - Bo)z
2 (s -0 ol up) BT [ @ SO, (3.9)
where
| 3
aleMp) = x (e - )7 (- ex) [x - (1- )]

The integrand in the first integral of Eq: (A3.9) is uniformly
‘continuous for all s and the mass derivatives exist. The second

integral can be done explicitly, and then differentiated.

00

% 1
P.V. f ax ;g.’(‘x;_% —gsﬁ, s >8
B
. X 1
= 3 [B*-(8-5)% s<p.

L L
When (B - s)? is differentiated, there is a (B - s) 2 singularity
at s = B . Thus, spurlous zeros are introduced into det[D(s)] in
the second order mass expansion. The mass expansion is not very reliabie

when the dyhamically-produced zero in det[D(s)] lies close to s = By -
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PART B

EXACT BQUATIONS FOR THE PERTURBED AMPLITUDE AND MASS
AND COUPLING SHIFTS IN DISPERSION THEORY®

I. INTRODUCTION

A systematic assault on the total bootstrap problem seems
impossibie at present. Howe§er, approximations based on the concept
of supermultiplets of strongly interacting-ﬁarticles reduce the
problem into more manageable units. After rough calculations have
been performed with thé supermultiplets, it is possible to induce
symmetry breaking within the multiplet to obtain finer deﬁails.l—5
Computations are noﬁ too difficult if. the symmetry breaking is treateq
in a first-order S-matrix perturbation théory.2 The usefulness of the
linearized theory is well demonstrated in the theory of. octet enhancement.5

The perturbation consists of variations of the left- and right-
hand singularities of the,partial-wave amplitude. The Dashen-Frautschi
theory2 describes the mass and coupling shifts of a dynamically bound
state as a linear function of these variations. The linear theory is
capable of calculating small shifts when the bound-state pole remains
on a given Riemann sheet of the scattering amplitude. However, if the
pole changes sheets, or if it exécutes a large motion on a single
sheet, the linear theory i1s not adequate. For these and for mathemati-
cal reasons it is desirable to have a more complete theory of perturbed

amplitﬁdes and of mass and coupling shifts of bound states.

Equations for the perturbed amplitude, and for the mass and

\
\
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. coupling shifts; have been derived by»M; K@glérvfor_singie-channclv'_f
potential theory’ vhere only the left-hénd ‘sihgularities are -%;aried._
Using a Castillgjo-DalifzéDysén (QDD) pole in’hié ﬁertﬁrbéd—amplitude i
:-equations, Klugle:rlL then reéovers the potential-theofy_analbg of the

of many channels in

.Dashén-FTautschi mass-shift formula; The'inélusion
his formalism is trivial. However, the generaliéation to the relatiyis-
_ tic case in whiéh the unitarify cﬁts-aré also'varied'is less simple.
: in'Seétidn 171, ﬁé propose a set of exéct ngnéingular éqﬁations .
for the perturbéd_amplit@de. Tﬁe ihpﬁt'intp these equétioné is the
unperturbéd amplitﬁdé in the form NDEl- and'a,perturbation représénted “‘
by variationé of the exchange and\ﬁnitarity cuts. It is clear that this
is sufficient inférmation to'Caldulate thebﬁotal amplitude; Morebver,'
“in a two-body elastic-ﬁnitary formalism, 1t is CGnsistent with the
bootétrap philosophy to use the'éhaﬁge'of the unitarity cuts as input;
since without three;body intermediate_statés it is impossible to detérmine
' whether an external particle is a'bound_state-or "elementary." = At the
end bf Secfion II we showvthat the perturbed amplitude equatlons can
“account for the appearance of a Stableeparticle‘pole on the physical
sheet; when the pertufbation supplies the necessary additional binding force.
In Section IIT we find the mass shifts and the coupling-constant

perturbations of é béund‘state when the ﬁnperturbed amplitude already

has a pole on fhe same sheet. These aré given in terms of the
solutionsvto the equations derivéd in Section II. To describe the

mass shift of a bound state, we note that the unpertdfbed and total
amplitudes must each have simple pole, but located at diffefent values

of s . Thus, the perturbed amplitude must have two polesf one to



- cancel the péle iﬁ,ﬁﬁe ﬁﬁpeftﬁrbed ampli£ude énd %he‘othériﬁo.cérreS§ond”
to the bound state of the fot_al amplitude. It 15 possible _tc; achieve |
-fhis:effect mathématiééily by reintefpreting fhe“dynamicéi boﬁﬁd
'5state-bf the uﬁperthbéd ahplitude as an eleﬁentary particle for the
 calculation of the perturbed amplﬁiuae. | |
The ioéﬁ’obviousiaéplication of_tﬁe mgss—3and'coupling—shift
formulas ofISeétioﬁ IIi is a perturbatign expansion for these'
.quantitieé,  In Séction IV, which is divided into three subsections,
we derive formulas fér the first;ordér mass shift, the first-order
-coupling shift,.and the second-order mass shift., ' The firét-order
results are ldentical to those of Dashen and ETau.tschi_.2 The second-~
order coupling shifts'and higher order ferms in the perturbvation
expansions are easy to derive, but the éomplicated resulﬁs are

probably of little use in numerical calculations.



IJ:.:?'-EQUATI"ONS_:FQR IT'EPERTJRBED .'AM?LITUD;E LS
Suopose the manv channel nertlal-wave scatterlng amplltuae,.{-r:j‘e' .
. .A(s), can be writ uen as a.sum of_two,terms,';;
zo:é(s>,.=iRAO<S):f Al(S)"fjei :ef';f;; ”5"e7e(27é) -

- whereiwe shellvcall ,Aé(s)”;th unnerturoed amplltude and A (s), e
l_the*"pefturbed amplitﬁde}"i Restrlctlnu ourselves to two-body
' channels and tWoébody_uﬁitarlty, we essume‘that 'Aoe ;s known»1n;.

"the form
°1s,Abi;) f=__N(s)'D41(s)j,",‘.}; __;j}" i (é.g)” :

The dlsconulnulty relations for N(s) and D( ) are the us ual

ones. D(s) has only a rlght hand cut,
- In(e)l, E'}(eiﬁfl'tbks{f»ié5_; o Qviéiio'=v§ éé(éf_N(éi; . (2.$§)'.;
: and _Nts) Hhes oslyfieft;hepd sinéuie?it£es,

e, '<éi>_’_l'kt;.%<“s-_- te) - (s  +' ) - :Vo@ib@; f: _(e.ﬁé)
Moreover,lvA<s)% Ab(s), ano 'Ai(é}[ ere symﬁeﬁfic eﬁd>He£mitien
’:analyfic.' | B

The input forifhefcaléulation of the perturbed amplitude is

the change of the unitarity cuts,
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o) =) egle), (e

‘where

e - e e A, (e

--and the change of the left-hand singularitiés,

Vi(s) = V() -V, (s) | (2.ke)

with

Al = Vi) . e
Neither V'(s) nor B&p(s) is assumed to be small in this section.

To derive equations for Al(s) ,tit is convenient to define”
3(s) = Ble) ay(s) D(s) . (2.5)

The tilde signifies matrix transpose. Since J(s) has Separate lefg

and right singularities, it can be factored into the form
J(s) = n(s) da ~(s) . i (2.6)

The'diécbnﬁinuity.feléfionvfof J(s) is sﬁfficiently ébmpli—
"cated that if all the right cuts are put into d(s)‘ and all the
left cuts are_?ut’into ﬁ(s) ; then the equations for n(s) and d(s)
are.nonlinear.' To preserve the linearity of the equations, n(s) must
contain some of the right cuts. The equations for n(s) and

d(s) are then singular, but they are very similar to the three-body
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R NDf;J equatlons derlved by Mandel tam 5} By follow1ng Mandeestam s’

*ﬁ'analys1s, we use the stanaard becnnlques6 for reduc1ng the Cauchy-"

"f31ngular equetlons to non31ngular equatlons

The dlSCOHulnulty of A ( ) ‘on the rlgqt is needed for
"der1v1ng tne dlsconthulty reWatlon for J(s) Erom.Eqs (2 l),v,
'-(2 5), and (2 h), we find
(A Jg = Ay  Bp Ay + Ay oA thA e AT A1e? Ay (2'7)_

1'r. T o

" In transforming Eq; (2.7)-intb a discontinuity relationqur J(s) 5
we use the fact that J is hermitian analytic,

.vai=_:J(_)u ;v,  .:¥ “_f': H .» .vv(2f8)

Substitute Eqs. (2'5) and“(2 8) inﬁe Eq. (2 7), multlpTy on tne le

by DT and on the rlgho by D, then use the relatlon,
D ; D. .= I+ 2iD 1 o Noooo 0 (2.9)
Therdiscontinuity of J across the right cuts is then

Wl = dTer + B+ B + T, . (2.108)

R
where -:: _
d e ' ":D’-J_-;-p vrb/-l ,
] (2.10v)
B = NT 05,

T o= N* 80 N - e
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~ The disc‘¢n'£;huity'of" J across the left cuts follows from Eq. (2.k),
Ly er=Fve. o ao
To obtaln llnear equatlons for n and d in Eq. (2 6), the

‘l»last two. terms of Eq (2 10a) are put 1nto the dlscontlnulty of n .

. The coupled equatlons for n and 4 are

j cis'- .‘Gl(s')An(s')_ -ide' B"'(s-')d(sv)' ,.

d(s)

1
= I - =
n ; T, ] .
™ s' - s - 1ie R .s -8 ~-1le |
(2.112)
n(s) =v\ ;; j ds,L(S') d(s') n _l_ de'TKS').d(S')
/ on . ot s b g a§ -
. 1 s s + ie¢ R s ] ig

Q|

s' - 8 - 1i¢

j ds B(s') n(s') (2.11b)
2 e
The:exact limits of integration aréiobvious from the discontinuity
relaﬁions, Eq. (2.10)f |
EQuationé (2.lia).and,(é.llb).are'bdﬁh Cauchy singuiar. Thé
reader who is'unintereéted,in the technical details ofvfindingl
equivalent nonsingular equatiohs'should now turn.fo the teXt»below
Eq. (2.19b). Eguations (2.ila) and-(2.llb) are conveniently reduced
to noﬁsingular equétions if we first rémbvé the . d  term from the
right-hand side‘of Eg. (2.115)'and_the ﬁ term from the»right-hénd

side of Eq. (2.11b)." This can be done by defining



where n(s) | gﬁa f£(s)' satwsfy the:edﬁatiéﬁé

Tfo(s’) m(s )

S Nsﬂ -8 -'1e

]
ﬁ”"j’

i B 8]

' L.s”v

i
o -'A:"__T y
=

BRICEES
R - s - 1e
’»-Eouatlons (2 lBa b) are Ca uchy s1ngular, but are eas¢ly reduced uO'”
7nons1ngular equatlons ) (We do thls later) To flnd equaulons for , 
':'f and u o, compare the dlscontlnultles of Eq (2 12) and (2 ll)

 . The formula for- flndlng the lecontlnulty in f is‘ o

S

: (2 -‘v_le) .

.‘f;n»f]Rv} =m(~)[fJR+ [mJRf : (‘2_14)_.{’.,

The 1ntegral representatlon -of £ (or u) 1S eésiiyJéonsﬁructed.

-The equatlons for £ and u in matrix'fOrm'are ‘

I

) o ) ()

R

o (s

,T(g'y‘ Qi ‘v';‘u(s')

(2.15a)
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" where e o
e Ao = 1) (1™ 1) n(a) |
r() tm<‘>."<s">'1"'1“e'<é>‘t’,(s),, e
e - O e ee .

All four equatlons for m ,'t ,° F ’ and u are Cauchy s1ncular
Equatlon (2 13a) is reduced to a non31ncular equatlon by operauwn

on both sides of the eouatlon from the left w1th5

oy e
I - _l ,_j as' -2 (s1) .
{8 R . s' - 8 + ie
The nonsinguigr equétion for m(s) is -
oom(s) = T- (1428 BT {u(s)
‘ . e ' .162.)
. (Very - o ey (22
+ g.'. f ds' b (S ) - b (S) B'f(s,) m(s') ., .
. "R - 8" -s : o )
_ where ' o : _
- p(s) = 2 fds' _BI(s") oL (2.160)
. o n R s' -8 -1 I L .

~ The operator for reducing Eq- (2.13b)'iéb

1+ % _[ ast =B
T R s'}-»s + ie R

The nonsingular equation for,'t(s)”'is



N [y o

:»sf;- s .- ie R

The reductlon of the coupled eouatlons for f and o 1s o
fa0111tated by the matrlx notatlon in Ec (2 130) Operate on.

'both s1des of the equatlon from the left w1th .
ﬂ .‘- . . T(S') 0

The.reduced'equations'are'

R ’<s ) -'rI( oy
ds ‘. . — T(S ) f(s )

-S' - S» :

...4

fs) - T + 2tr(s ) u(e) =
| Fh

fds' , tI_ ( )-,' YI : ) AMs') £(s') , (2:182)

_.n%v.jr ds‘lz . frls')i.v ;,'.f:. -'21; :7 .  (2.180)




a(e) ~2(e) In(e) - 11 = 2 [ e e
- | Ty S -
. TI(_)(S’) - TI(->(S)

|...J
—_—
o
Cw

+,TI(S) % ) Y(S') us") ;, k2-£9a)

{ 8 T(S')V_.._ A - .(2.19p)
J_'I’{ S'_fS—_ie . .

A

TI<S> -

our final set of Cauchy-singularity-free equationé for the
perturbed amplitude is Egs. (2.16) through (2.19). The integrals

of Egs. (2.18) and (2.19) are linear in the perturbation, and the

~kernels of Egs. (2.16) and (2.17) are already of second order. Thus,

simply expanding n and' d in a Neumann series will lead to a J(s)

. whnich is the ratio of two power series in a parameter describing the

perturbation. It is then pdssible for J(S) vto develbp poles as

the perturbation is éhanged. Even in a first-order.iteration.of

d , this gives a mechanism for describing the binding of a resonance
into a stable-particle pole, i.e., ‘the appearance of a ?ole at
threshold on the physical sheet. The émergence of resonance pdles

onto the unphysical sheet is described in the same way, but Eq. (2.11)

must be continued onto the second sheet. (The details of a similar

analytic continvation are found in Sec. III.)
' KuglerLL has studied in single-channel potential theory8
the appearancé of poles at threshold when the perturbation supplies

the final binding force. With an effective range formula, he. found



.:;108-

. ';’-\.. .

.’that the flrst 1teratlon of f correctly descrlbed the motlon of thev..

In the next seCulon, ve assume,”

R pole as 1t moved aray from thresbold'*;

‘fﬂ‘the nole 1s alreadJ present 1n the unperturbed amplltude, and that

L the peruurbatlon merely shlfts the p051tlon of uhe pole on the same ff

V.,sheet
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'ITI. MASS AND COUPLING-CONSTANT SHIFTS OF BOUND STATES
‘The ;ND-l ‘technique is_f:equently'uééd in dynamical calcula~
tions to find the masses and_qoupligg,constants.éf‘fhe composite

. particles communicating with a given set of channels and generated:

o by a certain set of input forces. The mass of the bound state

*satisfles
et [D(sz)] 0. ()

Since the eQuatiéns bf Sec; II  are feadily‘continﬁed tb the unphysicai
sheet (see belQW), we ﬁse»ﬁhe.terﬁ_"bouhd étate” to»mean either a
stable:parﬁicle,Qr'é‘feéohanée pole. vaweQer) we noﬁ restrict the
perturbation so>that the pole will remainh on thé same sheet. The
éase in which the pole does.change sheeté wa.s briefly discussed at
the eﬁd of the pfeceding,section.

We now derive e%act ﬁass-vand coupling{shift‘formulas.‘ Let

Eq. (3.1) have only one physical solution. Since the pole in A

is shifted with respect to the pole in A the amplitude A

N ‘must"

O)
have two poles: one to cancel the pole in AO and the other to
represeht thé particle in the total amplitdde. From Eqs. (25) end

- (3.1), it is clear that the pole in A, can be cancelled only if

at el =0 (a2

is a simple zero. Since det [D(s)] also hasa simple zero at

‘ o i 19,3 ‘ _"_, : . = R
Sp s Al(s) will have a simple pole at: s sB
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WOrmally, we can Satlsfy Eq (3 2) by ut*llzlngvthe CDD a
| amblgulty in the n d L equatlons of Sectlon ;I A CDD nole o
E is 1nserted 1nto Eq (2 ll) uO force che occurrence of a zero at

8 =8s_ . ‘The_ n d.;_.equatlons for J are c;-

[ o Sty 3 [ My
é : _- 'fﬁ S.- 1e L S . -

e
P -
w
S
1

' ﬂ]ha‘f

= )

1

M":ceﬁﬁ‘wl‘ jv-i(ejsld(sk>”j;:fi.-}'ej;f-:
.n(S>__ f 'i's’“_ 'S‘.—*. ie T fd_s

. L , . e ' ,. .<lea-:R;; e L ‘

.'f“'ds; el nl. |, - G '-',_(3‘.31@)'
R . . B R

8" -8 -die

Al

: Where Vd(é) vnow setisfies aﬁ_eéﬁeticn with.oﬁe CDD:pole.;fIﬂe-residue
of fhe CDDvpoleiis aeﬁcﬁed'eyv s the>remdiﬁing terms are.defined
invSection IT, A cancellatlon between the CDD pole and the remainder

:of the right side of Ec (3. 5a) will cause a pole in J( ) The

locatlon of the new pole satlsfles‘

"'_(5-1‘) -

i

det ,['d(sB' )] _

’Thus, the zero 1mnosed on J( ) by the CDD pole can be used to
' cancel the pole in AO s and che Dole generated by the CDD nole at
SB' in A (s)-- represenus the particle when 8o and V' are’

ndnzero.‘ The restriction to one bound state in the unperturbed

amplitude is trivially overcome by 1nserp1ng several CDD poles into’

‘Eq. (3-5@).-



| The sitﬁation_for:shifts of resonan§e pqleé on tﬁe seéond
‘_sheet is similar.éxcept.thafvK.v(3}3)'must bé analytiéally
-'COhtinued far:enouéh onto’tﬁe second sheet that:the resbnance
'Vregioﬁ'is’éxposed. .The cdrfect,cahtinuatioﬁ consists of re-

' digwing the éontours dgﬁoted b& R .so that they_go below ‘SB .

' Then'the position of the résonanéespole in the_ﬁnperturbed amplitudé

- is explicitly exposed, and the CDD pole can be insefted és in the - -
case of a stable bound state. The proofvthat thié is ﬁhé'cbrrect.
continuation is som;what complicated by the fact that some of the
right cuts begin at the unperturbed.thréshold and others begin at
the perturbéd thfeshold. If B®p were zero, then this would
certainly be the correct continuation. However, when Sp £ 0,
it would appear that the sy that solves Eq. (3.1) w5uld not be
“on the sheet specified by the deformed cuts. This Oakes-Yang9
type dilemmé is resblvéd by noting that there exists a family
of poles on tﬁe sheets connected by'tﬁe perturbed threshold.. Con-
sequently there is a resonance pole in the resonance region of

the perturved amplitude; Locating the CDD at this point would then
have the same conseguences as in the case of‘é stéble bound state.
Thus Egq. (5.3) is correct for the resqnanée case, except that R
represents contours that go below sB y réther'than Jjust along the
- real axis. |
It is clear.that the CDD péie gi?eé the proper mathematical
behavior. Ve now give a more physical interpretation of the coD

pole. The existence and properties of the particle were calculated
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O.
‘;renresents a dynamlcal bound state*7 Htlsu'lﬂ5the partlcle Wlll oe

1n flndlnv_tA"{' In the unoerturbed amplltude, the partlcle-pole r

L elementary }ln any lurthef calculatlon.” In thle sense, an “GT:”;fTﬂ
elemenuary Dartlcle is one whose éy1ste£¢é and qoantum numoefeb

. are avallable for further.comnutaulon Thus, the purpose of thevﬁv
CDD oole ls to relnternret the comooslfe Dartlcle of the unberturbed
| amnlltude as 1npot (1 e. ; an elementary 2 tlcle) for the calculatlo
'l_of the perturbed amplltude e

A We determlne T from tne form of A ( ) ‘near s = Sp
A (s)virA(s --sv)-l R - ” ":F'>.: | (3 5e> -”
0 {s=sg) Ry 358

where R is the pactorvznble matrix of unperuurbed channel-bound state

coupling constants, Slnce there ex1sts a. Dole 1n A (s) that cancels

the pole in o Al( s)
A (s) = - <s .~s> SR f <35b> o
" for ‘sas. . Tt follows from EQs. (3.3), (3 5), (2 5) and (2 6) that
T.o= W (s)R (s)n(s) S (5.6)
The tOual aleltude has a 31mple pole at -s = eB'.gevSince‘vAo(s) is
assumed well~benaved at. S'='Sé , _. | .
A () (s - sg") TR, . o (3.5¢)

‘where R' 1is the new-coupling matrix.

In order to find a coanvenient formula for the mass shift, we
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deflne SR o o
: l ; ] n S' "' v.- v_'..
F(S) = I - = .j'ds ? ( } o (3.7)
) 1 j , 3(s ) as)
T | 8' - s - ie
F(s) .ie net's1mply related to d(s) in Eg. (3. 3) since the solutlon

-to'the"ﬁd—l; equatlons w1thout CDD poles is not s1mply related to tne
solution of the equatlons with CDD poles. To evaluate F( ), Eq. (3 3)
must fwrst be solved then tnevsoluuloq 1noerted 1nto the deflnlng_
equation for F(s) . |

Eéuaﬁion (3.#) is eéuivalent to

dets [5sy é-.F'l.('sB') rl =0, | (5-8)

where

is just tﬁe mase shlft of fhe bdﬁnd state. Eqﬁeﬁioﬁ (3.8) has the
appearance of an eigenvelﬁe equatlenbexceptuthaf F'l(s) is

evaluated at the unkhown value of s ;-sB' . However, it is extremely -
convenient to énalyze Eq. (3.8) formallv'aS'an eigenvalue eguation,
Then there are' n valuesv (n ie;the nuﬁberlof channels) of B g
l‘which solve Eq. (3.8). :Thue, n-1 of these must be zero for 8 sy

to be_unique.;.The derivation ofethis‘result relies on tﬁe pole—'

factorization theoren for,the_bound-étate.pole residues,

Ry = & & | (3-9)

From the Ldplace expansion foEq. (3.8), it follows by induction

- that

det(é sy - Ffl(sB') P) = (s sB)nfl (5 s. } ,- tr\F (s ') P)] | .
RRTE | (31o>



‘ 'W° eﬁphas1ze unau no approx1mat;on Has been made Equatlon (5 lo)
'-¥ fol7ows dlrectly from the facborﬂzablllty of F l( ) p _Con-' j:

sequently,.,""

;'Equatibﬁ (3:9)‘aids_inﬁwriting‘anoﬁhef-é#préséiénjfofj_6¥éﬁf;;

 $ %5?3%  & g?;§;¥(sé) n(éﬁji#i%<53<?vN_l(é;)‘§ :;:J,i;?}i(3512) '

' where. g (g ) is a column (row) vector whose elements are. {gi 3 ]gi “is
'the coupllnﬂ constant of the bound state to channel i :
Equatlon (5 12) can be rewritten in terms of
A = lim (s-sB)D (s).. S (3.132)
: 8 > s ' N L
, B. ‘ '
Then we find that
8 = -(g g " Nsp)ag, . o ()

o) that subSultutlng Eq (3 l}b) into Eq. (3 12) ylelds e formula

for }6 sB of" s1mllar form to the flrst-order mass shlft formula S

. derlved by Dashen and Frautschl 2

We flnd R’ by ca1culat1nﬂ the res1due of A (s) at

R= Bs,) ﬁ(s ) K D <s >, S e



':‘5f;_il5; :fw

with

. RPN T e - I
K= lim o (s -sy) [F(s) - (s -s) 7 TITH L (3.15)
' s —>s_'. . » : oo " .
1 B 1 ' | B S  '.'  _ .
= Folsg)TE(sy) . (5.15p)
'-;'The*polé;factorization theorem. has égaih‘beenxused in obtaining
" Eq. (3.15b) from Eq. (3.152). Equation (3.7) relates F(s) to
n(s) and d(s) . | v ) | |
. The factorization theorem satisfied by R' is
R,y' =-G, G, . S (3.16)
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The coupling shift is ‘b if G=g+h . Setting R' equal to '

the right side of Eg. (3.14) yields an eQuation-that contains zeroth-
' ordéf_tefms. It is difficﬁlt.to solve for h. sinéé thé equation is
not linear. Howevér, é ﬁgré useful'equatioh fér application to a

- perturbation ekpansioh of the coupling shifts can bé obtained by
substituting the mass-shift formula into Egs. (3.14) and (5.15);

We also set

‘ ...1 , _ ~l' .." s ’ o -l - —l . ,' ' '. . : : .
‘where B(s) is the background term, i.e., it is the unperturbed
amplitude minus the ﬁole at SB.' It is of order R . The zeroth-

order terms cancel and after some manipulations, we find
. . - 2



s

gihy + hygy + hyby (xigxa, Xy %) gyEy (1 Xp) €505

where

£ 5, ) n(ep) 3 <s ) [N‘l<s" ) - N‘l<s'>1 Gy - ) e,

(3 l8b)

- & ”l<s") n<s ’>7'“‘l<s ) n<s )J (s eyt

el
1

S r sy ) W <s ) g, (5.18)

Tl ’ﬁ’l(s];)_‘lncsg)'Ff_‘l<sB",>rr‘iksB">'é'-<'sB"->;, o Gas)

e
|

b'

If

Blsy') ”‘l< >n<s '>F Ls, >‘N‘_1'<"s}‘3>-§;-._‘ L Gase)

The léading terms qf._Xi_; Xé ,13 ,'and h" are firsf Qraer in the
" perturbations.
Equations (3.12) and (3.18) are the exact mass- and coupling-

- shift formulas wﬁén the pole position does not chaﬁge sheets under.

the influence of the perturbation.



‘";:: ;l;7;.
VIV.‘.PERTUREAffON;TﬁEORY'Q _  _'
V'Equatlons (5 12) and (5 18), alopg Jlth the equatLons of
‘Sectlon TI are SLF 1c1ent to ganerate a Derturbatlon expan31on for
the mass and couoll g shifts. Ihe zeroth-order i#eration of the
' perﬁurbed ampliﬁude eQuaﬁions leads'fo résults which are identical‘
‘to the'fifst ordeAr‘Dashen¥frautséhi‘formul_as.2 The first order
:iteration of the perturbed am?liiude equations.is used in the
second-order mass and coupling shifts. We_oniy displey the second-
order mass—shift formula s;nce it is straightforward té deriver
other terms in the gxpansion.’ The higher-order terms in the ek-
pan51ons are probably of llttle use in numerical calcuiatlons
The apb11cat10n of the reductlon nrocedure of Sectlon.II to

Eq. (3.3) yields a set of_non-Cauchy—singular equatlons that are

identical to Egs. (2.16) through (2.19), except that the term,

w1t e st O (h1a)

must be added to the right side of Eq. (2.18a), and the term,

o ey e | S
;[ ds' - SRS , ~ (4.1b)

(s' - s + ie) (s’ -‘sB)

+

A [

R
must be added to the right side of Eq. (2.195)
':To generaté—a'perturbation series for 5 SB , we need the first

several iterations of Eq. (2.182) and (2.19b) ,

S O (S

it

u(s) w(s) + u(g)(s) 4o : A. | (L.2v)



- ;'where , (J>(s) and u(J)(s) are of J-the order in the perturbatlons

89 and V' and u( >( )_' is denoted by W( ) | el

1. 7?1rsv—Order Mass Shlft

Since Eq (2 19) is &lready flrst order 1n the perturbatlon, f'( -
fthe first- order mass shlft 1s 51mply . AR :
S 8sglE §, (s ) w(s ) N (s ) g 5 -_fKJT;~ﬁF55; (4,3),_‘__
, wﬁere_ <“i;_E: ) o
Cw(s) ‘_l_. as’ - D(s_).y _<S ) D(s )

e Ty soley ms) L
R S'.'- s -' ie . : T
fThé'bashen-Frautééhiiresuit? iévrécove?ed:by iﬁséftiﬂg:Eq,¢(3}13b)'

. for g and g . ‘ e

2. FirStQOrdér'Cégpiihg Shift.

As in Reference 2, we define

s ) b'l<s>3 T ()
R =y . e :
“;Thé,fiféf‘Srder;'Eé;:(j.is);Becomgéi o

gy + gjhi"_..,= - (A' w(s ) A+ K w'(s Yo+ & w(s ) A')ia -(,h.'S)

et




._li9im x'“""

;,The flrsu-ordev Dashen-Frautschi result f0110ws from Eq (h o) as

shown in foo°vote 8 of Ref 2

. 5 - @ s) <A' w<s JoriEwisag. (D

3. Second-Order Mass Shift.
The second-drdérlmass“shift is, _f L :
: ) : ( : ' -.U(s )
. T =1 l [ ' U(S )
5(2) SB = g N <SB> T J gs L<S ) ]‘ . “s' - s
: E L L ST B
e ] o
. L e 2 as T(s')
1 - S ) . n .

-_ie).(s "

U(s Yeulsy) @ }
- S)

" -8 ;Y(S' -.sBT;‘ie) (s"

[ds.' ¥(s') ap<s)n (sJ w<s> N'l"(sg’)lé e
R . s - SB - ie- , ' I

al—=-

where

U(s)v

. 'm—l vi | .
J R EACI RN <s>w<s>+ap<s>w<s>3,v
§8' - 8 = ie

iy Rfﬁ;i(ﬁg):§<53> ,<'3 _"f,  -,!**'f - v'(h’9b)'

Al

]

(s} >3?s>_V’(s) b(s) }:f,' - ":3 e L (k.9e)

7(s) :

M) o) M) . e
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