UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Conditional Probability and Word Discovery: A Corpus Analysis of Speech to Infants

Permalink
https://escholarship.org/uc/item/7bp2n6hw

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 21(0)

Author
Swingley, Daniel

Publication Date
1999

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/7bp2n6hw
https://escholarship.org
http://www.cdlib.org/

Conditional Probability and Word Discovery

A Corpus Analysis of Speech to Infants

Daniel Swingley (swingley @bcs.rochester.edu)
Department of Brain and Cognitive Sciences
Meliora Hall; University of Rochester
Rochester, NY 14627 USA

Abstract

Analyses of an idealized corpus of English speech to infants re-
vealed that simple conditional decision rules can separate fre-
quent bisyllabic words from bisyllables not corresponding to
words. If infants accurately represent speech in terms of syl-
lables, and compute conditional statistics over these syllables,
such computations have the potential to inform infants of likely
English words.

Introduction

Researchers have shown an increasing interest in the possi-
ble use of statistical regularities by language learners. Re-
cent experiments have shown that infants are sensitive to cer-
tain distributional properties of syllable sequences (e.g. Aslin,
Saffran, & Newport, 1998; Goodsitt, Morgan, & Kuhl, 1993;
Morgan, 1994; Saffran, Aslin, & Newport, 1996). If the statis-
tical properties to which infants’ sensitivity has been demon-
strated are in fact present in speech to infants, distributional
regularities could serve as valuable cues for word discovery.

Several researchers have shown that the segments com-
prising words in speech or in text exhibit distributional
regularities that can be computationally exploited for word
boundary detection (Aslin, Woodward, LaMendola, & Bever,
1996; Cairns, Shillcock, Chater, & Levy, 1997; Christiansen,
Allen, & Seidenberg, 1998; Elman, 1990; see also Brent &
Cartwright, 1996; de Marcken, 1996). However, corpus anal-
yses have yet to assess the value of distributional regularities
for clustering syllables into words in speech. Given that in-
fants spontaneously cluster syllables in the laboratory, deter-
mining whether this ability could aid in identifying words in
speech is of interest.

Syllables are widely considered to be a unit of speech in-
fants are capable of processing and representing. Several ex-
periments have shown that infants categorize varied sets of
words by their number of syllables, but not their number of
segments, suggesting that syllables are crucial units in in-
fants’ representation of speech (Bertoncini, Floccia, Nazzi, &
Mehler, 1995; Bijeljac-Babic, Bertoncini, & Mehler, 1993).
Furthermore, Bertoncini, Bijeljac-Babic, Jusczyk, Kennedy,
and Mehler (1988) found that when infants were habituated to
sets of CV syllables containing a common onset (such as /b/),
infants dishabituated equally after the introduction of novel
/b/-initial CVs, and after the introduction of novel CVs con-
taining a new C, suggesting that infants did not consider the
/b/-initial syllables as similar. Though these results do not
necessarily indicate that infants fail to represent segments as
units, much evidence now suggests that the syllabic level of
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representation is significant in infancy, and that syllables may
be relevant as units over which statistical computations may
be done.

In the present study, a corpus of speech directed to chil-
dren under 18 months was used to evaluate the utility of tran-
sitional probability information for grouping syllables into
words. The problem may be stated as follows: given that
over 80% of the words children hear are monosyllabic (Aslin
et al., 1996; Christiansen et al., 1998), would infants’ ten-
dencies to cluster syllables according to conditional probabil-
ity criteria lead infants to inappropriately conflate monosyl-
labic words? Or, alternatively, would these clustering mecha-
nisms help lead infants to discover words in speech? Answer-
ing these questions requires a statistical analysis of large sam-
ples of speech directed to infants. Below, we demonstrate that
given certain assumptions about the mechanisms that underlie
infants’ sensitivities to statistical structure, American English
speech does contain statistical regularities that could be used
for word discovery.

Methods

Corpora of 15 parents’ speech to American infants under
18 months (CHILDES; MacWhinney, 1995; see Bernstein-
Ratner, 1984; Bloom, 1973; Hayes & Ahrens, 1988; Hig-
ginson, 1986; Sachs, 1983; Warren-Leubecker & Bohan-
non, 1983) were combined to form a 50,000—word corpus.
Spelling of words throughout was regularized by hand, and
pronunciations of the resulting words were estimated using
the CMU pronouncing dictionary (v. 0.4, 1995). This phone-
mic corpus was syllabified using an implementation of Kahn's
(1980) formalism for slow speech (essentially maximal on-
set). The syllabification algorithm was run over words, not
over utterances; thus, no segments were syllabified across
word boundaries (a point we return to below). Over the
resulting corpus of syllables, three metrics were calculated
for each consecutive pair of syllables AB (bigrams): pre-
dictive transitional probability , or p(B|A); reverse transi-
tional probability, or p(A|B), and mutual information, or
loga[p(AB)/p(A)p(B)]. (Mutual information is a measure of
how much the occurrence of one syllable is informative about
the other syllable; cf. Charniak, 1993).

Predictive transitional probability is high when one sylla-
ble makes the following one predictable. This metric would
be useful if it tended to be higher in words (such as “pretty”:
p(B|A) = 1) than in other sequences (such as “thank you™:
p(B|A) = 1). Reverse transitional probability is high when
one syllable makes the previous one predictable. This met-
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ric would be useful if sequences like “little” (p(A|B) =
.81) were more common than sequences like “the door”
(p(A|B) = .81). Mutual information is high when both syl-
lables tend to co-occur, and would be useful if sequences like
“daddy” (m.i. 7.7) were more common than sequences like
“sit down” (m.i. 7.5).

Because the vast majority of the word types in speech to
children are monosyllabic (in the present corpus, about 55%)
or bisyllabic (about 42%), the syllable-grouping problem in
English reduces largely to a problem of deciding whether two
syllables form a bisyllabic word. If this distinction could
be made accurately, 97% of words in the corpus would be
correctly identified. Thus, the current analyses examined
whether conditional-probability metrics could be used to dis-
tinguish the bigrams that are words, from those that are not.

In a series of analyses, a threshold value of one of these
three conditional probability metrics was set, and the bigrams
above that threshold were identified as words. The question
asked was whether thresholds for the three metrics could be
set to produce a favorable ratio of hits to false alarms (pre-
cision, or accuracy), and of hits to misses (completeness;
cf. Brent & Cartwright, 1996). Precision indicates whether
“yes, it's a word” responses tend to be correct; completeness
measures the proportion of words that are identified. At the
same time, the frequency of bigrams considered as possible
words was varied, to evaluate possible interactions between
frequency and conditional-probability information.

proportion of corpus

1 3 5 7 9 11 1315+
# of syllables in utterance

Figure 1: Sentence lengths in syllables.

For computational convenience, analyses included only the
utterances containing 2—-14 syllables. (The upper bound ex-
cluded about 1.3% of the utterances.) The remaining cor-
pus included approximately 41,000 bigram tokens, and about
13,000 bigram types. Among these types were 761 differ-
ent bisyllabic words, the primary targets of the analyses. As
shown in Figure 1, the majority of utterances directed to in-
fants contained only a few syllables. This illustrates a com-
mon observation about speech to infants (e.g. Snow, 1972).

Results and Discussion

As a baseline for comparison, we first consider the precision
and completeness scores that would be expected from simple
guessing, an estimate of “chance” in finding bisyllables. A
guessing-based decision rule could say “yes” or “no” equally
often (p=0.5), or could say “no” most of the time (say, p=0.8).
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Considered in Figure 2 are precision and completeness (by
types) for a range of guessing rates, from O (calling all bi-
grams words) to 1.0 (calling all bigrams nonwords). The re-
sults make clear the fact that bisyllables cannot be located ef-
fectively by guessing; they are too rare. Without more infor-
mation differentiating word and nonword bigrams, the infant
would be considerably better off simply assuming that all syl-
lables are monosyllabic words.

0.6+

0.4 —&— Completeness
1 —O— Precision

0.0
0 0.2 0.4 0.6 0.8 1

Proportion of "not-a-word" guesses

Figure 2: Results for guessing, shown by types (i.e. not fre-
quency weighted).

Next, we consider the possibility that infants cluster syl-
lables in natural speech primarily on the basis of frequency.
This has a certain intuitive appeal-one might imagine that,
upon hearing a given pair of syllables many times, this pair
might come to be considered a linguistic unit. The following
decision rule was evaluated: if a bigram appeared x or more
times in the corpus, it was considered to be a word. Figure 3
shows the results over types (i.e. displayed are the number of
different words found, not weighted by their frequency of oc-
currence). Clearly, many common bigrams are not bisyllabic
words; in fact, even if we admit only the bigrams that occur
50 or more times (which is true of 108 bigrams), there are
still more than twice as many nonwords as words. Examples
of hits include very frequent words like “baby,” “doing,” and
“very.” But a frequency criterion false-alarms to sequences
like “good girl,” “is it,” “that’s right,” and “we put.”

—&— Completeness |
—0— Precision

P T 1T 1T 7T 1T 171
all 2 5§ 101520253035404550

Criterial Frequency

Figure 3: Results for frequency criterion, by types.

The experimental results of Aslin, Saffran, and Newport



(1998), however, show that infants’ clustering of syllables is
not mediated only by frequency. In that study, the frequency
of occurrence of words and nonwords in an artificial language
was controlled, and differed only in the conditional proba-
bilities with which syllables followed one another. Eight-
month-olds discriminated word and nonword lists, demon-
strating sensitivity to conditional probabilities independent of
frequency. These results suggest that infants do not simply
assume that common bisyllables are words. Given the statis-
tics of the language, this is fortuitous; as shown above, such a
mechanism would usually be wrong.

Subsequent analyses consider decision rules based on con-
ditional probability metrics. In Figure 4, precision and com-
pleteness scores are shown for decision rules using a mu-
tual information threshold; when the threshold was equaled
or surpassed, the bigram was considered a word. As Figure 4
demonstrates, performance using mutual information was bet-
ter than performance using frequency. However, even the best
precision scores were never above about 45%. Similar results
were obtained using predictive and reverse transitional prob-
ability.

104
0.8-
0‘6-‘-
0.4
0.2-
S o O Y T O (R S T T |
all0 2 4 5 6 78 9101214
Criterial mutual information
Figure 4: Mutal information criterion with all words

counted. Results by types.

However, this analysis included many words of very low
frequency. The clustering mechanism that is operating here is
likely to be one of implicit memory (Saffran et al., 1997). Im-
plicit learning of sequential stimuli typically involves consid-
erable repetition of the training materials. Thus, it seems rea-
sonable to suppose that the learning mechanism would only
make assumptions about bigrams after several exposures to
them. Exactly how many exposures we would expect the sys-
tem to require is not clear; in the subsequent analyses we
will examine the degree to which simple decision rules detect
words that occurred 5 or more times in the corpus. (The re-
sults are similar if we exclude only the bigrams occurring 1-
2 times, 1-3 times, etc.) Because (as in any natural corpus)
a large proportion of the types occurred infrequently, even a
small frequency criterion excludes many types. In the present
corpus, a frequency criterion of 5 excludes 32% of the bigram
tokens, and excludes 84% of the bigram types; at the same
time, this criterion excludes only 11% of the bisyllabic word
tokens, and 61% of the bisyllabic word types. Of the 761 bi-
syllabic words in the corpus, 299 meet the frequency criterion.
The following analyses consider whether conditional proba-
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bility information can help identify the 299 most common bi-
syllabic words, out of the 1676 most common bigrams. (Note
that this is still a nontrivial task, because word types make up
less than 18% of the common bigram types.)

| N T G i SN e R Bl AR |
all0 2 4 56 7 8 9101214

Criterial mutual information
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Figure 5: Mutual information criterion with frequency thresh-
olds of 5 and 10.

Figure 5 shows precision and completeness results using
mutual information and a frequency criterion of 5 (solid lines).
The dashed line shows precision scores when a frequency cri-
terionof 10is applied. Two results are evident here. First, pre-
cision is quite high: in the higher mutual information range,
precision varies from about 60% to 80%. Where the lines
cross, both precision and completeness are above 60%. Sec-
ond, precision is only marginally improved by increasing the
frequency criterion to 10 occurrences. This small improve-
ment is offset by substantial decreases in completeness (not
shown here), reflecting the fact that only 170 bisyllabic words
occurred 10 times or more.

Although performance is much better than chance, even in
the best case the decision rule makes many errors. An analysis
of the false alarms, however, suggests that many of the errors
are not pernicious ones: often the “false alarms™ are instances
in which the decision rule groups together two syllables from a
trisyllabic word. Figure 6 shows the proportion of false alarms
that are clusters of syllables that form 2/3 of a trisyllabic word,
over a range of mutual information criteria.

At the higher mutual information criteria, the proportion
of “false alarms” within trisyllabic words is quite high—over
50% in some cases. In some of these, there are two “false
alarms” within a trisyllable. For example, at a mutual in-
formation threshold of 7, the decision rule clusters “kanga”
and “garoo.” If all false alarms that actually cluster bigrams
within trisyllabic words are counted as hits, rather than false
alarms, precision at the higher thresholds reaches 85%-90%.
Some persistent errors remain: among them are “I'm so(rry),”
“much fun,” and “(pe)ter pi(per).” However, in spite of these
errors, it is clear that infants computing conditional probabil-
ities are likely to group together syllables that belong within
words.

How robust are these results? Changing the frequency
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Figure 6: Proportion of false alarm types that form part of a
trisyllabic word.

threshold does not have much impact on precision, as long as
bigrams of very low frequency are not included as possible
words. Furthermore, similar results are obtained when using
predictive and reverse transitional probability rather than mu-
tual information. Figure 7 shows precision and completeness
at probabilities ranging from 0 to 1, using a frequency crite-
rion of 5.

Another sort of decision rule compatible with current ex-
perimental results would not use an absolute thresholding
mechanism to cluster syllables. Rather, two syllables might
be grouped together if their conditional probabilities were
higher than those of the neighboring bigrams. Consider the
utterance ABCDEF, with each letter a syllable. Suppose
the mutual information values between syllables are as fol-
lows: A;BsCiDgEgF. On a “neighbor-comparison” rule,
BC would be grouped together, but DE would not, because
the value for DE does not exceed the value for EF. Several
varieties of this decision rule are possible. For example, a bi-
gram might have to exceed its neighbors by 1, or 2, or 6 (and
in this last case, BC would not be considered a word, because
the difference between 5 and 2 is less than 6). Rules of this sort
amount to attempts to find peaks in the mutual information
function across the sentence. Figure 8 shows results from this
decision rule. The x-axis represents the number of mutual in-
formation units by which a given bigram must be greater than
its neighbors, to be considered as a word. As the figure shows,
performance using such a rule is comparable to performance
using absolute thresholds.

These results suggest that a variety of decision rules, con-
ditional statistics, and threshold values might lead an infant to
correctly identify frequent bisyllabic words with a high suc-
cess rate. However, the current results must be qualified by
three important considerations. First, the syllabification algo-
rithm did not permit consonants to be resyllabified to adjacent
words. This sort of resyllabification does occur in English, al-
though it is not clear how often it occurs in speech to infants,
or under what circumstances. It is unlikely that all consonan-
tal codas preceding vowel onsets are resyllabified. For ex-
ample, upon hearing a sentence like “I like that one,” infants
probably do not group the /t/ of “that” with “one.” In the ab-
sence of amodel of resyllabification in infant-directed speech,
and without experimental data on infants’ assignment of con-
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Figure 7: Transitional probability used in decision rule.
Graph a, predictive probability; b, reverse probability.

sonants to syllables, this remains an open question. How-
ever, preliminary analyses based on a “worst-case scenario”
in which coda consonants are always resyllabified to the fol-
lowing syllable, if thereby creating a legal onset cluster, show
that the use of conditional statistics in decision rules still sub-
stantially improves performance. Under these conditions, as
expected, precision and completeness scores are lower; but
baselines produced by guessing or frequency criteria are also
lower. Thus, regardless of our particular assumptions about
the transparency of syllable boundaries, information about
words is still present in conditional statistics.

Second, the current corpus is idealized in the sense that it
assumes a fixed pronunciation for each orthographic word.
The truth was certainly messier, although without the record-
ings themselves we cannot attempt a precise reconstruction.
In principle, some of the variability in actual pronunciations
could be modeled using probabilistic rules (e.g. de Marcken,
1996), yielding a noisier (but more veracious) corpus. This
procedure would be particularly useful if more were known
aboutinfants’ compensation for the processes that lead to vari-
able realizations of words. Our implicit assumption in the cur-
rent work is that this compensation is perfect, but we recog-
nize that this is an idealization.

Third, it is possible that the structure of English favors the
success of decision rules of the sort employed here, and that
these decision rules would prove ineffective in the analysis of
other languages. This outcome would not necessarily indicate
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Figure 8: Results with decision rule based on comparison with
neighboring bigrams” mutual information values.

that infants do not perform computations like those we have
evaluated. It would indicate that if infants do, it will not lead
them to discover words.

The current results are not themselves a model of the infant
learner. Presumably infants do not store a corpus of the speech
they hear for several months, and then (implicitly) group to-
gether cohesive units. Rather, infants’ mental computations
occur incrementally over time, as more and more speech is
heard. A model of the infant learner would take this into ac-
count by simultaneously calculating conditional statistics and
applying decision rules; such a model is currently under de-
velopment. The analyses presented here suggest that such
a model would show that infants’ ability to cluster syllables
based on statistical characteristics would result in the identi-
fication of words more often than not, perhaps with very high
precision.

Several researchers have proposed that infants might use
prosodic information, such as lexical stress, to help identify
words in speech (e.g. Cutler, 1994; Gleitman, Gleitman, Lan-
dau, & Wanner, 1988). In fact, evidence from infant ex-
periments suggests that English-learning infants tend to ex-
tract (from continuous speech) words with strong-weak stress
patterns more readily than words with weak-strong patterns
(Newsome & Jusczyk, 1995). Because English content words
tend to begin with strong syllables, this tendency may well
help English-learning infants to discover words. Itis not clear
at present whether these tendencies hold for all infants (in
which case infants learning some other languages will be dis-
advantaged by this decision rule), or only for infants in certain
language environments (in which case an account of how this
prosodic knowledge is acquired will be necessary). In either
case, however, there is no reason to suppose that a prosodic
strategy and a statistical-learning strategy are incompatible.
Although prosodic cues to word boundaries vary with differ-
ent languages, it may be that statistical cues of the sort ex-
amined here are true of most languages. If so, statistical cues
might help “bootstrap" a prosodic (or any other) strategy. This
is obviously an important area for future cross-linguistic re-
search.
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