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DIFFERENTIAL COMPLEXES, HELMHOLTZ

DECOMPOSITIONS, AND DECOUPLING OF MIXED METHODS

LONG CHEN AND XUEHAI HUANG∗

Abstract. A framework to systematically construct differential complex and

Helmholtz decompositions is developed. The Helmholtz decomposition is used
to decouple the mixed formulation of high order elliptic equations into combi-

nation of Poisson-type and Stokes-type equations. By finding the underlying

complex, this decomposition is applied in the discretization level to design fast
solvers for solving the linear algebraic system. It can be also applied in the con-

tinuous level first and then discretize the decoupled formulation, which leads

to a natural superconvergence between the Galerkin projection and the decou-
pled approximation. Examples include but not limit to: biharmonic equation,

triharmonic equation, fourth order curl equation, HHJ mixed method for plate

problem, and Reissner-Mindlin plate model etc. As a by-product, Helmholtz
decompositions for many dual spaces are obtained.

1. Introduction

Differential complexes and corresponding Helmholtz decomposition play the fun-
damental role in the design and analysis of mixed finite element methods. Among
many others, the de Rham complex for Hodge Laplacian and the elasticity complex
for linear elasticity are two successful examples [6, 7].

A direct and useful result of a differential complex is the Helmholtz decomposi-
tion. With the decomposition, the kernel spaces of differential operators involved
in the complex are characterized clearly. The explicit expression of the kernel space
can be used to develop fast solvers, see, for example, [43, 5, 44, 25, 26]. Helmholtz
decomposition is also a key tool to construct the a posteriori error estimator of
nonconforming and mixed finite element methods [1, 21, 22, 24, 46].

In this paper we shall develop a framework to systematically construct differ-
ential complex and Helmholtz decompositions. Based on a commutative diagram
involving the complex, we shall present a standard mixed formulation and use the
corresponding Helmholtz decomposition to decouple the mixed formulation into
combination of Poisson-type and Stokes-type equations. As a by-product, we obtain
Helmholtz decompositions for many dual spaces, such asH−1(div,Ω), H−1(Ω;Rn),
H−1(div div,Ω;S), H−1(curl,Ω), H−2(rot rot,Ω;S) and so on.
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2 LONG CHEN AND XUEHAI HUANG∗

More precisely, our method is based on the following commutative diagram

(1.1)

X
JX // X ′

P
d− // Σ

d //

⋃
V ′

Σ̃

ΠΣ

OO

V

JV

OO

ΠVoo

,

where the isomorphisms JX and JV are inverse of the Riesz representations, and
the rest linear operators are all continuous but not necessarily isomorphic. A stable
Helmholtz decomposition can be derived from (1.1)

(1.2) Σ = d−P ⊕ΠΣΠV V.

An abstract two-term mixed formulation based on the commutative diagram (1.1)
is: given g ∈ Σ′ and f ∈ V ′, find (σ, u) ∈ Σ× V such that

(σ, τ)X′ + 〈dτ, u〉 = 〈g, τ〉 ∀ τ ∈ Σ,(1.3)

〈dσ, v〉 = 〈f, v〉 ∀ v ∈ V.(1.4)

To discretize the inner product (σ, τ)X′ , we introduce φ = J−1
X σ ∈ X and obtain

an equivalent but unfolded three-term formulation: find (φ, u, σ) ∈ X×V ×Σ such
that

(φ, ψ)X − 〈σ, d′v + ψ〉 = −〈f, v〉 ∀ (ψ, v) ∈ X × V,(1.5)

〈d′u+ φ, τ〉 = 〈g, τ〉 ∀ τ ∈ Σ.(1.6)

Applying the Helmholtz decomposition (1.2) to the unfolded formulation (1.5)-
(1.6), we obtain a decoupled formulation: find w, u ∈ V , φ ∈ X, and p ∈ P/ ker d−

such that

(w, v)V = 〈f, v〉 ∀ v ∈ V,(1.7)

(φ, ψ)X − 〈d−p, ψ〉 = 〈ΠΣΠV w,ψ〉 ∀ ψ ∈ X,(1.8)

〈d−q, φ〉 = 〈g, d−q〉 ∀ q ∈ P/ ker d−,(1.9)

(u, χ)V = 〈g − φ,ΠΣΠV χ〉 ∀ χ ∈ V.(1.10)

The middle system (1.8)-(1.9) of (φ, p) is now a Stokes-type system.
By finding the underlying complex, we can apply this decomposition in the

discretization level to design fast solvers for solving the linear algebraic system.
For example, we can solve

• the biharmonic equation discretized by conforming or non-conforming ele-
ments by two Poisson solvers and one Stokes solver;
• the HHJ method for plate problem by two Poisson solvers and one linear

elasticity solver;
• the fourth order curl equation by solving two Maxwell equations and one

Stokes equation;
• the triharmonic equation by solving two biharmonic equations and one

tensorial Stokes equation.

We can also apply the decomposition in the continuous level first and then dis-
cretize the decoupled formulation. Compared to the original formulation, it is much
easier to construct conforming finite element spaces for the decoupled formulation.
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We shall show a natural superconvergence between the Galerkin projection and the
decoupled approximation.

It should be mentioned that such decoupling is known for Reissner-Mindlin
plate model [19] and recently is discovered for HHJ formulation of Kirchhoff plate
model [49]. Similar results can be also found for biharmonic equations [45, 47] and
the fourth order curl equation [62]. Our framework unifies those results and will
lead to many more especial differential complexes for high order elliptic equations.
Along this way, we can decouple the higher order partial differential equation into
lower order ones, which makes the discretization easier. In addition, the structure
revealed in our work will also play an important role in the a posterior error analysis
which will be explored somewhere else.

We are confident that the abstract framework of Helmholtz decomposition, mixed
method and its decomposition based on the commutative diagram developed in this
paper will play a vital role in designing robust and convergent discrete method, the
fast solver, and the optimal adaptive algorithm for partial differential equations.

The rest of this paper is organized as follows. In Section 2, we establish the
abstract Helmholtz decomposition based on the commutative diagram and give
several examples. The abstract mixed formulation and its decomposition based on
the Helmholtz decomposition are present in Section 3. In Section 4, the discrete
mixed method based on the commutative diagram and its decomposition are ad-
vised and analyzed. In Section 5, we discretize the decoupled formulation directly
illustrated by two examples. Throughout this paper, we use “. · · · ” to mean that
“≤ C · · · ”, where C is a generic positive constant independent of meshsize h, which
may take different values at different appearances. And a h b means a . b and
b . a.

2. Abstract Helmholtz Decompositions

2.1. Framework. We start from a short exact sequence

(2.1) W̃
d̃2

GGGGGGA Ṽ
d̃1

GGGGGGA Ũ ,

and a bounded linear operator d1 : U → V . Here capital letters represent Banach

spaces and d̃i (i = 1, 2) are bounded linear operators. The sequence (2.1) is exact
meaning that

ker(d̃1) = img(d̃2).

Let IV : V → Ṽ be a bounded linear operator, and JU : U → Ũ be an isomorphism
satisfying the assumption:

(2.2) d̃1IV d1u = JUu for all u ∈ U.

That is we have a commutative diagram

(2.3)

W̃
d̃2 // Ṽ

d̃1 // Ũ

V

IV

OO

U

JU

OO

d1oo

.

Then we have an abstract Helmholtz decomposition as follows.
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Theorem 2.1. Suppose we have a short exact sequence (2.1). Assume the com-
mutative diagram (2.3) holds with all the linear operators being bounded and JU :

U → Ũ being an isomorphism. Then we have a stable Helmholtz decomposition

Ṽ = d̃2W̃ ⊕ IV d1U.

More precisely for any ṽ ∈ Ṽ , there exist w̃ ∈ W̃/ ker d̃2 and u ∈ U such that

ṽ = d̃2w̃ + IV d1u,(2.4)

‖w̃‖
W̃

+ ‖u‖U . ‖ṽ‖Ṽ .(2.5)

Proof. Let u = J−1
U d̃1ṽ, then it follows from (2.2)

d̃1(ṽ − IV d1u) = d̃1ṽ − JUu = d̃1ṽ − d̃1ṽ = 0.

Due to the exactness, there exists w̃ ∈ W̃/ ker d̃2 such that

ṽ − IV d1u = d̃2w̃,

which implies the decomposition (2.4).
By the definition of u,

(2.6) ‖u‖U = ‖J−1
U d̃1ṽ‖U . ‖d̃1ṽ‖Ũ . ‖ṽ‖Ṽ .

Since d̃2W̃ = ker d̃1 is a closed subspace of Ṽ , we get by open mapping theorem

that d̃2 is an isomorphism from W̃/ ker d̃2 onto d̃2W̃ , which means

‖w̃‖
W̃
. ‖d̃2w̃‖Ṽ ∀ w̃ ∈ W̃/ ker d̃2.

Hence it holds from (2.6)

‖w̃‖
W̃
.‖d̃2w̃‖Ṽ = ‖ṽ − IV d1u‖Ṽ ≤ ‖ṽ‖Ṽ + ‖IV d1u‖Ṽ
.‖ṽ‖Ṽ + ‖d1u‖V . ‖ṽ‖Ṽ + ‖u‖U . ‖ṽ‖Ṽ .

We acquire (2.5) from (2.6) and the last inequality.
At last, we show that the Helmholtz decomposition is a direct sum. For any

ṽ ∈ d̃2W̃ ∩ IV d1U , there exist w̃ ∈ W̃ and u ∈ U such that ṽ = d̃2w̃ = IV d1u. By
(2.2) and the exactness of (2.1),

JUu = d̃1IV d1u = d̃1d̃2w̃ = 0.

Since JU is an isomorphism, we have u = 0, which indicates ṽ = 0. �

Let W be a Banach space and d2 : V →W be a bounded linear operator. If the
following exact sequence

(2.7) U
d1

GGGGGGA V
d2

GGGGGGAW

holds, we have d1U = ker(d2) and obtain another form of decomposition

Ṽ = d̃2W̃ ⊕ IV ker(d2).

In Theorem 2.1, the decomposition is a direct sum but not necessarily orthogonal.
Indeed in the proof we do not use the inner product structure. We now explore the
orthogonality for Hilbert complexes. In what follows, we always denote by 〈·, ·〉 the
duality pairing and (·, ·) the L2 inner product.
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We can apply Theorem 2.1 to the dual complex of (2.7)

(2.8) U ′
d′1

DGGGGGG V ′
d′2

DGGGGGGW ′,

where X ′ is the dual space of a linear space X and T ′ : Y ′ → X ′ is the dual of a
linear operator T : X → Y defined as

〈T ′g, x〉 := 〈g, Tx〉.

Assume the range d2V of d2 is closed in W , then the dual complex (2.8) is also
exact if the complex (2.7) is exact (cf. [57, Remark 2.15]). When X is a Hilbert
space with an inner product (·, ·)X and X ′ is the continuous dual of X, by Riesz
representation theorem, we have an isomorphism JX : X → X ′: for any w ∈ X,
define JXw ∈ X ′ as

(2.9) 〈JXw, v〉 = (w, v)X ∀ v ∈ X.

The induced inner product and norm for any w′, v′ ∈ X ′ are given by

(w′, v′)X′ := (J−1
X w′, J−1

X v′)X = 〈J−1
X w′, v′〉 = 〈w′, J−1

X v′〉,(2.10)

‖w′‖X′ := ‖J−1
X w′‖X .

With X̃ (X = U, V,W ) and d̃i (i = 1, 2) replaced by X ′ (X = U, V,W ) and
d′i (i = 1, 2), the assumption (2.2) becomes

(2.11) d′1JV d1u = JUu for all u ∈ U,

and the commutative diagram is

(2.12)

W ′
d′2 // V ′

d′1 // U ′

V

JV

OO

U

JU

OO

d1oo

.

Corollary 2.2. Let U, V,W be Hilbert spaces. Assume the Hilbert complex (2.7)
is exact with d2V being closed in W and bounded linear operators di(i = 1, 2), and
the commutative diagram (2.12) holds with (inverse) Riesz representations JV and
JU , then we have the (·, ·)V ′-orthogonal Helmholtz decomposition

V ′ = d′2W
′ ⊕⊥ JV d1U.

That is for any v′ ∈ V ′, there exist w′ ∈W ′/ ker d′2 and u ∈ U such that

v′ = d′2w
′ + JV d1u,(2.13)

‖v′‖2V ′ = ‖d′2w′‖2V ′ + ‖JV d1u‖2V ′ .(2.14)

Proof. We need only to verify the orthogonality which can be done as follows

(d′2w
′, JV d1u)V ′ = 〈d′2w′, d1u〉 = 〈w′, d2d1u〉 = 0.

�

Remark 2.3. A direct proof of Corollary 2.2 is given as follows. Noting that
ker(d′1) is closed, we have the orthogonal decomposition

V ′ = ker(d′1)⊕⊥ ker(d′1)⊥.
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Since d1U is closed in V , ker(d′1)o = d1U where ker(d′1)o the annihilator of ker(d′1).
It is obvious that ker(d′1)⊥ = JV ker(d′1)o. Hence

V ′ = ker(d′1)⊕⊥ JV d1U.

By the exactness of the dual complex (2.8), we get ker(d′1) = d′2W
′, which ends the

proof. �

Consider a special case when V is a dense subspace of a larger space Y endowed
with the inner product (·, ·)Y . In most places in this paper, Y is the L2 space for
scalar or vector functions with (·, ·)Y = (·, ·) being the L2-inner product. We can
equip V with the graph norm

(w, v)V := (w, v)Y + (d2w, d2v)W .

Or we can start from Y and define V as the subspace of Y with ‖ · ‖V < ∞. By
identifying Y ′ with Y , we have the rigged Hilbert space [17, 33]

V ⊂ Y ⊂ V ′.

We obtain from the definition of JV that for any u ∈ U and v ∈ V

〈JV d1u, v〉 = (d1u, v)V = (d1u, v)Y + (d2d1u, d2v)W = (d1u, v)Y .

Thus JV is just identity operator on d1U . If we choose JU = d′1d1, in order to
satisfy the assumption (2.11), we need to verify

(2.15) d′1d1 : U → U ′

is an isomorphism which is equivalent to

(2.16) ‖u‖U . ‖d1u‖V ∀u ∈ U.

Such Poincaré type inequality holds for examples considered in this paper.
We shall present examples in the sequel. Let Ω ⊂ Rn, n = 2, 3, be a bounded

Lipschitz domain. Denote by T the space of all n×n tensors and S the space of all
symmetric n×n tensors. We use standard notation for Sobolev spaces and boldface
letters for vector valued spaces. When we want to emphasize the spatial dimension,
we include Rn into the notation of spaces.

Recall the de Rham complexes in two dimensions

0 GGGA H1
0 (Ω)

curl
GGGGGGGGAH0(div,Ω)

div
GGGGGGGA L2(Ω) GGGA R,(2.17)

R GGGA H1(Ω)
curl

GGGGGGGGAH(div,Ω)
div

GGGGGGGA L2(Ω) GGGA 0,(2.18)

0 GGGA Hs+2
0 (Ω)

curl
GGGGGGGGAHs+1

0 (Ω;R2)
div

GGGGGGGA Hs
0(Ω) GGGA R,(2.19)

R GGGA Hs+2(Ω)
curl

GGGGGGGGAHs+1(Ω;R2)
div

GGGGGGGA Hs(Ω) GGGA 0,(2.20)
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and the de Rham complexes in three dimensions

0GGGAH1
0 (Ω)

grad
GGGGGGGGAH0(curl,Ω)

curl
GGGGGGGGAH0(div,Ω)

div
GGGGGGGAL2(Ω)GGGAR,(2.21)

RGGGAH1(Ω)
grad

GGGGGGGGAH(curl,Ω)
curl

GGGGGGGGAH(div,Ω)
div

GGGGGGGAL2(Ω)GGGA0,(2.22)

0GGGAHs+3
0 (Ω)

grad
GGGGGGGGAHs+2

0 (Ω;R3)
curl

GGGGGGGGAHs+1
0 (Ω;R3)

div
GGGGGGGAHs

0(Ω)GGGAR,

(2.23)

RGGGAHs+3(Ω)
grad

GGGGGGGGAHs+2(Ω;R3)
curl

GGGGGGGGAHs+1(Ω;R3)
div

GGGGGGGAHs(Ω)GGGA0,

(2.24)

with s ∈ R. When Ω is simply connected with connected boundary, the L2 de
Rham complexes (2.17)-(2.18) and (2.21)-(2.22) are exact [37, 6, 7], the complexes
(2.20) and (2.24) are exact if s is an integer, and the complexes (2.19) and (2.23) are
exact if s is a nonnegative integer [57, 32]. When Ω is a bounded domain starlike
with respect to a ball, the complexes (2.20) and (2.24) are exact for any s ∈ R, and
the complexes (2.19) and (2.23) are exact if s is nonnegative and s − 1

2 is not an
integer [32, p. 301]. Hereafter, we always assume the bounded Lipschitz domain Ω
is always simply connected with connected boundary in this paper.

2.2. Helmholtz decomposition of L2 functions. Splitting ∆ = div I grad, we
construct the commutative diagram

H1(Ω)
curl // L2(Ω;Rn)

div // H−1(Ω)

L2(Ω;Rn)

I

OO

H1
0 (Ω)

∆

OO

gradoo

,

where H1(Ω) means H1(Ω) for n = 2 and H1(Ω;R3) for n = 3. By the exact
sequences (2.20) and (2.24) with s = −1, the complex

(2.25) H1(Ω)
curl

GGGGGGGGA L2(Ω;Rn)
div

GGGGGGGA H−1(Ω) GGGA 0

is exact. It’s trivial that all the linear operators in the commutative diagram are
bounded and the operator ∆ : H1

0 (Ω)→ H−1(Ω) is an isomorphism.
Applying Theorem 2.1, we get the standard L2-orthogonal Helmholtz decompo-

sition (cf. [37, 23])

L2(Ω;Rn) = ∇H1
0 (Ω)⊕⊥ curl H1(Ω).

The orthogonality can be checked as in the proof of Corollary 2.2. In fact, we also
have the following L2-orthogonal Helmholtz decomposition (cf. [37, Theorem 3.2
and Corollary 3.4 in Chapter I])

L2(Ω;Rn) = ∇H1
0 (Ω)⊕⊥ curl H(curl,Ω).
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2.3. Helmholtz decomposition of H−1(div) space. Define

H−1(div,Ω) := {φ ∈H−1(Ω;Rn) : divφ ∈ H−1(Ω)},

with norm

‖φ‖2H−1(div) := ‖φ‖2−1 + ‖divφ‖2−1

Lemma 2.4. Assume that the bounded Lipschitz domain Ω ⊂ Rn is simply con-
nected with connected boundary. The following complex

L2(Ω)
curl

GGGGGGGGAH−1(div,Ω)
div

GGGGGGGA H−1(Ω) GGGA 0

is exact, where L2(Ω) means L2(Ω) for n = 2 and L2(Ω;R3) for n = 3.

Proof. It has been proved that ker(div) = img(curl) in [19, Proposition 2.3] for
n = 2 and [57, Corollary 2.31] for n = 3. By the exact sequence (2.25), it holds
divL2(Ω;Rn) = H−1(Ω), which together with L2(Ω;Rn) ⊂ H−1(div,Ω) indicates
divH−1(div,Ω) = H−1(Ω). �

With this exact sequence, we build up the commutative diagram

(2.26)

L2(Ω)
curl // H−1(div,Ω)

div // H−1(Ω)

H0(curl,Ω)

I

OO

H1
0 (Ω)

∆

OO

gradoo

.

By Theorem 2.1, We obtain the Helmholtz decomposition (cf. [19, Proposition 2.3]
for two dimensional version)

(2.27) H−1(div,Ω) = ∇H1
0 (Ω)⊕⊥ curl L2(Ω).

As we mentioned early that JH(curl) is just identity operator on ∇H1
0 (Ω), thus the

decomposition (2.27) is orthogonal in the inner product (·, ·)J−1
H(curl)

.

Lemma 2.5. Assume that the bounded Lipschitz domain Ω ⊂ Rn is simply con-
nected with connected boundary. We have

(2.28) (H0(curl,Ω))′ = H−1(div,Ω).

Proof. The proof of H−1(div,Ω) ⊂ (H0(curl,Ω))′ can be found in [15, p. 338]
for n = 2. We can prove it for n = 3 in a similar way by using the Helmholtz
decomposition (2.27).

On the other hand, for each φ ∈ (H0(curl,Ω))′, let ϕ ∈ H0(curl,Ω) be the
solution of

(ϕ,ψ) + (curlϕ, curlψ) = 〈φ,ψ〉 ∀ ψ ∈H0(curl,Ω).

Then it holds

φ = ϕ+ curl curlϕ.

Obviously φ ∈H−1(Ω;Rn), and

divφ = divϕ ∈ H−1(Ω).

Thus φ ∈H−1(div,Ω). Therefore (H0(curl,Ω))′ ⊂H−1(div,Ω). �
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2.4. Helmholtz decomposition of H−1 functionals. By the exact sequences
(2.19) and (2.23) with s = 0, the complex

(2.29) H2
0(Ω)

curl
GGGGGGGGAH1

0(Ω;Rn)
div

GGGGGGGA L2
0(Ω) GGGA 0

is exact, where H2
0(Ω) means H2

0 (Ω) for n = 2 and H2
0(Ω;R3) for n = 3. Based on

this exact sequence, we set up the commutative diagram

L2
0(Ω)

grad // H−1(Ω;Rn)
curl // H−2(Ω)

H1
0(Ω;Rn)

∆

OO

H2
0(Ω)

∆2

OO

curloo

.

is the dual complex of the exact sequence (2.29). Applying Corollary 2.2, we then
acquire the H−1-orthogonal decomposition of H−1 (c.f. [55, Lemma 2.4])

H−1(Ω;Rn) = ∇L2
0(Ω)⊕⊥ ∆(curlH2

0(Ω)).

2.5. Helmholtz decomposition of H−1(curl) space. Define

H ′(curl,Ω) := {φ ∈H−1(Ω;R3) : curlφ ∈ (H0(curl,Ω))′},

with graph norm

‖φ‖2H′(curl) := ‖φ‖2−1 + ‖ curlφ‖2(H0(curl,Ω))′ .

Due to (2.28), it holds

H ′(curl,Ω) = {φ ∈H−1(Ω;R3) : curlφ ∈H−1(Ω;R3)} =: H−1(curl,Ω).

Following [27], we introduce the space

Kc
0 := {φ ∈H0(curl,Ω) : divφ = 0} = H0(curl,Ω) ∩ curlH1(Ω;R3).

The operator curl : Kc
0 → curlH0(curl,Ω) is an isomorphism (cf. [57, section 2.4]).

Then (curl ·, curl ·) defines an inner product on Kc
0 and (curl curl)−1 : (Kc

0)′ → Kc
0

is an isomorphism due to the Poincaré inequality (2.16) holding on Kc
0 (cf. [57,

section 2.4]). Given a f ∈ (Kc
0)′, find u ∈ Kc

0 such that curl curlu = f in (Kc
0)′ is

the Maxwell’s equation with divergence free constraint.
Noting that curlKc

0 = curlH0(curl,Ω), we get the following exact sequence from
the de Rham complex (2.21)

0GGGAKc
0

curl
GGGGGGGGAH0(div,Ω)

div
GGGGGGGAL2

0(Ω)GGGA0.

Since H ′(curl,Ω) = H−1(curl,Ω) and Kc
0 ⊂H0(curl,Ω), we have

curlH−1(curl,Ω) = curlH ′(curl,Ω) ⊂ (H0(curl,Ω))′ ⊂ (Kc
0)′.

Lemma 2.6. Assume that the bounded Lipschitz domain Ω ⊂ R3 is simply con-
nected with connected boundary. The following complex

0GGGAL2
0(Ω)

grad
GGGGGGGGAH−1(curl,Ω)

curl
GGGGGGGGA (Kc

0)′ GGGA 0

is exact.
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Proof. For any φ ∈ ker(curl), it means that φ ∈ H−1(Ω;R3) and curlφ = 0.
Then by (2.24) with s = −3, there exists v ∈ L2

0(Ω) satisfying φ = ∇v. Hence
ker(curl) ⊂ img(grad).

For any φ ∈ (Kc
0)′, by the fact that (curl curl)−1 : (Kc

0)′ → Kc
0 is an isomorphism,

let ϕ = curl((curl curl)−1φ). It is easy to check that ϕ ∈H−1(curl,Ω) and curlϕ =
φ. Therefore img(curl) = (Kc

0)′. �

Then we construct the commutative diagram

L2
0(Ω)

grad // H−1(curl,Ω)
curl // (Kc

0)′

H0(div,Ω)

I

OO

Kc
0

curl curl

OO

curloo

.

Using Theorem 2.1, it holds the stable Helmholtz decomposition

(2.30) H−1(curl,Ω) = ∇L2
0(Ω)⊕ curlKc

0 = ∇L2
0(Ω)⊕ curlH0(curl,Ω).

By Helmholtz decomposition (2.30) and the similar argument used in the proof of
Lemma 2.5, we can prove that

(H0(div,Ω))′ = H−1(curl,Ω),

if Ω ⊂ R3 is simply connected with connected boundary.

2.6. Helmholtz decomposition of symmetric tensors: HHJ complex. Let

H−1(div div,Ω;S) := {τ ∈ L2(Ω; S) : div divτ ∈ H−1(Ω)},
H(div div,Ω;S) := {τ ∈ L2(Ω; S) : div divτ ∈ L2(Ω)}.

We introduce the symmetric curl operator ∇s ×φ :=
(
curlφ+ (curlφ)T

)
/2. And

recall the Hellan-Herrmann-Johnson (HHJ) exact sequence (cf. [26, Lemma 2.2])

(2.31) H1(Ω;R2)
∇s×

GGGGGGGGGAH−1(div div,Ω; S)
div div

GGGGGGGGGGGA H−1(Ω).

Given a scalar function v, we can embed it into the symmetric tensor space as
π(v) = vIn×n. Since ∆v = div divπ(v), we have the commutative diagram in two
dimensions (cf. [49])

H1(Ω;R2)
∇s× // H−1(div div,Ω;S)

div div// H−1(Ω)

H1
0(Ω; S)

I

OO

H1
0 (Ω)

∆

OO

πoo

.

According to Theorem 2.1, we thus recover the Hemholtz decomposition in [49,
Theorem 3.1]

(2.32) H−1(div div,Ω;S) = ∇s ×H1(Ω;R2)⊕ πH1
0 (Ω).
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Then we build up the commutative diagram

H1(Ω;R2)
∇s× // L2(Ω;S)

div div// H−2(Ω)

L2(Ω;S)

I

OO

H2
0 (Ω)

∆2

OO

∇2
oo

.

Due to this commutative diagram and the exact sequence (2.31), the following
complex is exact:

(2.33) H1(Ω;R2)
∇s×

GGGGGGGGGA L2(Ω;S)
div div

GGGGGGGGGGGA H−2(Ω) GGGA 0.

By Theorem 2.1, we have the L2-orthogonal Helmholtz decomposition obtained
in [46, Lemma 3.1]

L2(Ω;S) = ∇s ×H1(Ω;R2)⊕⊥∇2H2
0 (Ω).

Similarly, smoothness of the symmetric tensor can be further increased to

H1(Ω;R2)
∇s× // H(div div,Ω;S)

div div// L2(Ω)

H1
0 (Ω; S)

I

OO

L2(Ω)

I

OO

π∆−1
oo

,

which leads to the Helmholtz decomposition

H(div div,Ω;S) = ∇s ×H1(Ω;R2)⊕ π∆−1L2(Ω).

2.7. Helmholtz decomposition of symmetric tensors: linear elasticity. Let
C be the elasticity tensor and A = C−1 be the compliance tensor. Recall that the
symmetric gradient ε(u) = (∇u+ (∇u)T )/2. Construct the commutative diagram

H1(Ω;R2)
ε // L2(Ω;S)

rot rot // H−2(Ω)

L2(Ω;S)

CI

OO

H2
0 (Ω)

rot rot(Ccurl curl)

OO

curl curloo

.

The Hilbert complex on the top is exact since it is just the rotation of the exact
sequence (2.33). Then by Theorem 2.1 we have a Helmholtz-type decomposition

(2.34) L2(Ω,S) = εH1(Ω;R2)⊕⊥ Ccurl curlH2
0 (Ω),

and the decomposition (2.34) is orthogonal in the weighted L2-inner product (·, ·)C−1 =
(·, ·)A.

We can relax the smoothness of symmetric tensors by considering

H−2(rot rot,Ω;S) := {τ ∈H−1(Ω;S) : rot rotτ ∈ H−2(Ω)}

with graph norm

‖τ‖2H−2(rot rot) := ‖τ‖2−1 + ‖ rot rotτ‖2−2.
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Lemma 2.7. Assume that the bounded Lipschitz domain Ω ⊂ R2 is simply con-
nected. Then the complex

(2.35) L2(Ω;R2)
ε

GGGGGAH−2(rot rot,Ω;S)
rot rot

GGGGGGGGGGGA H−2(Ω) GGGA 0

is exact.

Proof. It’s trivial that (2.35) is a complex. Next we show the exactness. For any
τ ∈ ker(rot rot), by the rotated version of the exact sequence (2.20) with s = −3,

there exists v ∈ H−1(Ω) satisfying rotτ = ∇v. Since ∇v = rot

(
0 v
−v 0

)
, we have

rot

(
τ −

(
0 v
−v 0

))
= 0.

Thus τ =

(
0 v
−v 0

)
+ ∇φ with φ ∈ L2(Ω;R2), which means τ = ε(φ). Hence

ker(rot rot) ⊂ img(ε).
For any v ∈ H−2(Ω), by the rotated version of the exact sequence (2.20) with

s = −2, there exists φ ∈ H−1(Ω;R2) satisfying v = rotφ. Again, φ = rotτ with
τ ∈ L2(Ω,M). Then it holds v = rot rotτ . Note that rot rotτ = rot rot symτ
where symτ = (τ + τT )/2. Hence v = rot rot symτ , which implies img(rot rot) =
H−2(Ω). �

With complex (2.35) and the fact that ∆2 = rot rotIcurl curl, we have the
commutative diagram

L2(Ω;R2)
ε // H−2(rot rot,Ω;S)

rot rot // H−2(Ω)

H0(div,Ω;S)

I

OO

H2
0 (Ω)

∆2

OO

curl curloo

which leads to a Helmholtz decomposition

(2.36) H−2(rot rot,Ω;S) = εL2(Ω;R2)⊕ curl curlH2
0 (Ω).

By Helmholtz decomposition (2.36) and the similar argument used in the proof
of Lemma 2.5, we can prove that

(H0(div,Ω;S))′ = H−2(rot rot,Ω;S),

if Ω ⊂ R2 is simply connected.
More differential complex and Helmholtz decompositions can be obtained and

some of them will be discussed along with mixed formulations of elliptic systems.

3. Abstract Mixed Formulation and Its Decomposition

In this section we present an abstract mixed formulation and use a Helmholtz
decomposition to decouple the saddle point system into several elliptic problems.
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3.1. Framework. Assume we have the exact sequence

(3.1) P
d−

GGGGGGA Σ
d

GGGGGA V ′,

and the commutative diagram

(3.2)

X
JX // X ′

P
d− // Σ

d //

⋃
V ′

Σ̃

ΠΣ

OO

V

JV

OO

ΠVoo

,

where the isomorphisms JX and JV are given by (2.9), i.e., the inverse of the Riesz
representation operator, and the rest linear operators are all continuous but not
necessarily isomorphic. By Theorem 2.1, we have a stable Helmholtz decomposition

(3.3) Σ = d−P ⊕ΠΣΠV V.

We emphasize that we do not need to know neither the short exact sequence at the

bottom nor the space Σ̃ in a very precise form (i.e. Σ̃ can be reasonably enlarged
to include the image space ΠV V ).

3.1.1. Two-term formulation. An abstract mixed formulation based on the com-
mutative diagram (3.2) is: given g ∈ Σ′ and f ∈ V ′, find (σ, u) ∈ Σ × V such
that

(σ, τ)X′ + 〈dτ, u〉 = 〈g, τ〉 ∀ τ ∈ Σ,(3.4)

〈dσ, v〉 = 〈f, v〉 ∀ v ∈ V.(3.5)

The operator system for the mixed formulation (3.4)-(3.5) is

I ′AX′Iσ + d′u = g in Σ′,

dσ = f in V ′.

Here I is the injection operator from Σ into X ′, and AX′ : X ′ → X means the
operator induced by the bilinear form (·, ·)X′ , i.e.

〈AX′τ, ς〉 = (τ, ς)X′ ∀ τ, ς ∈ X ′.

Remark 3.1. The bilinear form (·, ·)X′ is not necessary to be an inner product
unless we intend to involve X and JX in the mixed formulation. We only assume
(·, ·)X′ is positive semidefinite and symmetric. �

To show the well-posedness of the mixed formulation (3.4)-(3.5), we assume the
following norm equivalence

(3.6) ‖τ‖2Σ h ‖τ‖2X′ + ‖dτ‖2V ′ ∀ τ ∈ Σ.

This norm equivalence is usually trivial, and it holds apparently for all the examples
in this paper.

Theorem 3.2. Assume the exact sequence (3.1), the commutative diagram (3.2)
and the norm equivalence (3.6) hold, then the mixed formulation (3.4)-(3.5) is
uniquely solvable. Moreover, we have the stability result

‖σ‖Σ + ‖u‖V . ‖g‖Σ′ + ‖f‖V ′ .
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Proof. It is trivial that the bilinear forms in the mixed formulation (3.4)-(3.5) are
continuous due to (3.6). Using (3.6) again, it is also obvious that

‖τ‖Σ . ‖τ‖X′ + ‖dτ‖V ′ = ‖τ‖X′ ∀ τ ∈ ker d.

By Babuška-Brezzi theory (cf. [9, 18, 13]), it suffices to prove the inf-sup condition

(3.7) ‖v‖V . sup
τ∈Σ

〈dτ, v〉
‖τ‖Σ

∀ v ∈ V.

For each v ∈ V , let τ = ΠΣΠV v. It is apparent that

‖τ‖Σ = ‖ΠΣΠV v‖Σ . ‖v‖V .
Then making use of the commutative diagram (3.2) and (2.9), it follows

〈dτ, v〉 = 〈dΠΣΠV v, v〉 = 〈JV v, v〉 = ‖v‖2V .
Hence we have

‖v‖V ‖τ‖Σ . ‖v‖2V = 〈dτ, v〉,
which means the inf-sup condition (3.7). �

3.1.2. Unfolded three-term formulation. We derive an equivalent three-term formu-
lation of the mixed formulation (3.4)-(3.5) when X ′ is a Sobolev space of negative
order. To this end, we assume the bilinear form (·, ·)X′ is the corresponding inner
product of X ′.

Let φ = J−1
X σ ∈ X. By (2.10), we can rewrite (3.4) as

〈τ, φ〉+ 〈dτ, u〉 = 〈g, τ〉 ∀ τ ∈ Σ.

Noting that σ = JXφ, it follows from (2.9)

〈σ, ψ〉 = 〈JXφ, ψ〉 = (φ, ψ)X ∀ ψ ∈ X.
Therefore the mixed formulation (3.4)-(3.5) is equivalent to an unfolded three-term
formulation: find (φ, u, σ) ∈ X × V × Σ such that

(φ, ψ)X − 〈σ, d′v + ψ〉 = −〈f, v〉+ 〈gX , ψ〉 ∀ (ψ, v) ∈ X × V,(3.8)

〈d′u+ φ, τ〉 = 〈g, τ〉 ∀ τ ∈ Σ,(3.9)

with gX = 0. It is interesting to note that the variable σ can be formally interpreted
as the Lagrange multiplier to impose the constraint φ = −d′u in Σ′ if g = 0.

According to Theorem 3.2, we immediately obtain the well-posedness of the
mixed formulation (3.8)-(3.9). The well-posedness of the mixed formulation (3.8)-
(3.9) for general gX ∈ X ′ is given as follows.

Theorem 3.3. Assume the exact sequence (3.1), the commutative diagram (3.2)
and the norm equivalence (3.6) hold, then the unfolded mixed formulation (3.8)-
(3.9) is uniquely solvable. Moreover, we have the stability result

‖φ‖X + ‖σ‖Σ + ‖u‖V . ‖gX‖X′ + ‖g‖Σ′ + ‖f‖V ′ .
Proof. By (3.6), all the bilinear forms in the mixed formulation (3.8)-(3.9) are
obviously continuous. Let (ψ, v) ∈ X × V satisfy

〈τ, ψ〉+ 〈dτ, v〉 = 0 ∀ τ ∈ Σ.

Then ψ = −d′v. Due to (2.9) and the commutative diagram (3.2), we get

‖v‖2V =〈JV v, v〉 = 〈dΠΣΠV v, v〉 = 〈ΠΣΠV v, d
′v〉

≤‖ΠΣΠV v‖Σ‖d′v‖Σ′ . ‖v‖V ‖d′v‖Σ′ .
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Noting the fact that X ⊂ Σ′, we have

‖v‖V . ‖d′v‖X = ‖ψ‖X ,

which implies the coercivity on the kernel.
On the other hand, for any τ ∈ Σ it follows from (3.6) that

‖τ‖Σ . ‖τ‖X′ + ‖dτ‖V ′ = sup
ψ∈X

〈τ, ψ〉
‖ψ‖X

+ sup
v∈V

〈dτ, v〉
‖v‖V

. sup
ψ∈X,v∈V

〈τ, ψ〉+ 〈dτ, v〉
‖ψ‖X + ‖v‖V

,

which is just the inf-sup condition. Therefore the required result is guaranteed by
Babuška-Brezzi theory. �

3.1.3. Decoupled formulation. We decompose the mixed formulation (3.4)-(3.5) us-
ing the Helmholtz decomposition (3.3). Applying the Helmholtz decomposition (3.3)
to both the trial and test functions

σ = d−p+ ΠΣΠV w, τ = d−q + ΠΣΠV χ,

where p, q ∈ P/ ker d−, and w,χ ∈ V . Then substituting them into the mixed
formulation (3.4)-(3.5), we have

(d−p+ ΠΣΠV w,ΠΣΠV χ)X′ + 〈dΠΣΠV χ, u〉 = 〈g,ΠΣΠV χ〉,(3.10)

(d−p+ ΠΣΠV w, d
−q)X′ = 〈g, d−q〉,(3.11)

〈dΠΣΠV w, v〉 = 〈f, v〉,(3.12)

for any χ ∈ V , q ∈ P/ ker d− and v ∈ V . We obtain from the commutative diagram
(3.2) and (2.9) again

〈dΠΣΠV w, v〉 = 〈JV w, v〉 = (w, v)V , 〈dΠΣΠV χ, u〉 = (χ, u)V .

Therefore, the mixed formulation (3.10)-(3.12) is equivalent to (in backwards): find
w ∈ V , p ∈ P/ ker d−, and u ∈ V such that

(w, v)V = 〈f, v〉 ∀ v ∈ V,(3.13)

(d−p, d−q)X′ = 〈g, d−q〉 − (ΠΣΠV w, d
−q)X′ ∀ q ∈ P/ ker d−,(3.14)

(u, χ)V = 〈g,ΠΣΠV χ〉 − (σ,ΠΣΠV χ)X′ ∀ χ ∈ V,(3.15)

where σ = d−p+ ΠΣΠV w.

Remark 3.4. When the decomposition (3.3) is orthogonal with respect to (·, ·)X′
and g = 0, the second equation (3.14) will disappear. �

Applying the Helmholtz decomposition (3.3) to the unfolded formulation, the
uncoupled mixed formulation (3.8)-(3.9) is equivalent to find w, u ∈ V , φ ∈ X, and
p ∈ P/ ker d− such that

(w, v)V = 〈f, v〉 ∀ v ∈ V,(3.16)

(φ, ψ)X − 〈d−p, ψ〉 = 〈ΠΣΠV w,ψ〉 ∀ ψ ∈ X,(3.17)

〈d−q, φ〉 = 〈g, d−q〉 ∀ q ∈ P/ ker d−,(3.18)

(u, χ)V = 〈g − φ,ΠΣΠV χ〉 ∀ χ ∈ V.(3.19)

The middle system (3.17)-(3.18) of (φ, p) is now a Stokes-type system.
We summarize the former derivation as follows.
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Theorem 3.5. Assume the exact sequence (3.1), the commutative diagram (3.2)
and the norm equivalence (3.6) hold, then the mixed formulation (3.4)-(3.5) can be
decoupled as three elliptic equations (3.13)-(3.15) or four equations (3.16)-(3.19).

In the rest of this section, we shall apply our abstract framework to several
concrete examples.

3.2. HHJ mixed formulation. Based on the commutative diagram

L2(Ω;S)

H1(Ω;R2)
∇s× // H−1(div div,Ω;S)

div div//

⋃
H−1(Ω)

H1
0(Ω; S)

I

OO

H1
0 (Ω)

∆

OO

πoo

,

the mixed formulation is to find (σ, u) ∈H−1(div div,Ω;S)×H1
0 (Ω) such that

(σ, τ ) + 〈div divτ , u〉 = 0 ∀ τ ∈H−1(div div,Ω;S),(3.20)

〈div divσ, v〉 = 〈f, v〉 ∀ v ∈ H1
0 (Ω),(3.21)

where f ∈ H−1(Ω). This is just the Hellan-Herrmann-Johnson (HHJ) mixed for-
mulation [41, 42, 48]. According to Theorem 3.2, the HHJ mixed formulation is
well-posed.

Applying Helmholtz decomposition (2.32), the mixed formulation (3.20)-(3.21)
can be decoupled to find w ∈ H1

0 (Ω), p ∈ H1(Ω;R2)/RT 0 and u ∈ H1
0 (Ω) such

that

(∇w,∇v) = −〈f, v〉 ∀ v ∈ H1
0 (Ω),(3.22)

(∇s × p,∇s × q) = −(πw,∇s × q) ∀ q ∈H1(Ω;R2)/RT 0,(3.23)

(∇u,∇χ) = (σ,πχ) ∀ χ ∈ H1
0 (Ω),(3.24)

where σ = ∇s × p+ πw, and

RT 0 := span

{(
1
0

)
,

(
0
1

)
,x

}
.

The second equation is also equivalent to the linear elasticity problem

(ε(p⊥), ε(q⊥)) = −(πw, ε(q⊥)) ∀ q⊥ ∈H1(Ω;R2)/RM

where rigid motion space

RM := span

{(
1
0

)
,

(
0
1

)
,x⊥

}
.

Such decomposition is firstly obtained in [49]. The equivalence between the mixed
formulation (3.20)-(3.21) and formulation (3.22)-(3.24) can be extended to three
dimensions [57].
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3.3. Ciarlet-Raviart mixed formulation of biharmonic equation. Let

H−1(∆,Ω) := {v ∈ L2(Ω) : ∆v ∈ H−1(Ω)},
H0(∆,Ω) := {v ∈ L2(Ω) : ∆v = 0}.

Equip H−1(∆,Ω) with norm (cf. [11, 2, 65])

‖v‖2−1,∆ := ‖v‖20 + ‖∆v‖2−1.

Define π(v) = vI2×2. The following commutative diagram

L2(Ω)

H0(∆,Ω)
I // H−1(∆,Ω)

∆ //

⋃
H−1(Ω)

H1
0 (Ω)

I
OO

H1
0 (Ω)

∆
OO

Ioo

is apparent. And it’s also trivial that the complex

H0(∆,Ω)
I

GGGGGAH−1(∆,Ω)
∆

GGGGGAH−1(Ω)GGGA0.

is exact.
According to Theorem 2.1, we thus acquire the Hemholtz decomposition (cf. [65,

Lemma 3.1])

H−1(∆,Ω) = H0(∆,Ω)⊕H1
0 (Ω).

The mixed formulation is to find (σ, u) ∈ H−1(∆,Ω)×H1
0 (Ω) such that (cf. [11, 2,

65])

(σ, τ) + 〈∆τ, u〉 = 0 ∀ τ ∈ H−1(∆,Ω),(3.25)

〈∆σ, v〉 = 〈f, v〉 ∀ v ∈ H1
0 (Ω).(3.26)

Applying Theorems 3.2 and 3.5, this mixed formulation is well-posed, and can be
formally decoupled to find w ∈ H1

0 (Ω), p ∈ H0(∆,Ω) and u ∈ H1
0 (Ω) such that

(∇w,∇v) = −〈f, v〉 ∀ v ∈ H1
0 (Ω),

(p, q) = −(w, q) ∀ q ∈ H0(∆,Ω),

(∇u,∇χ) = (p+ w,χ) ∀ χ ∈ H1
0 (Ω).

The decoupled formulation is not easy to discretize since a finite element space of
H0(∆,Ω) seems difficult to construct. More details on H−1(∆,Ω) and H0(∆,Ω)
can be found in [65].

3.4. Biharmonic equation. We consider a two dimensional and rotated version
of (2.26). Apparently ∆ = rot I curl, thus we have the commutative diagram

(3.27)

H1
0(Ω;R2)

∆ // H−1(Ω;R2)

L2
0(Ω)

grad // H−1(rot,Ω)
rot //

⋃
H−1(Ω)

H0(div,Ω)

I

OO

H1
0 (Ω)

∆

OO

curloo

,
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where recall that

H−1(rot,Ω) := {φ ∈H−1(Ω;R2) : rotφ ∈ H−1(Ω)}
with norm

‖φ‖2H−1(rot) := ‖φ‖2−1 + ‖ rotφ‖2−1.

According to Theorem 2.1, we have the Helmholtz decomposition

(3.28) H−1(rot,Ω) = ∇L2
0(Ω)⊕ curlH1

0 (Ω).

The corresponding mixed formulation is to find (γ, u) ∈ H−1(rot,Ω) × H1
0 (Ω)

such that

(γ,β)−1 − 〈rotβ, u〉 = 0 ∀ β ∈H−1(rot,Ω),(3.29)

〈rotγ, v〉 = 〈f, v〉 ∀ v ∈ H1
0 (Ω),(3.30)

where f ∈ H−1(Ω) and (γ,β)−1 := −〈∆−1γ,β〉 = −〈γ,∆−1β〉.
By introducing variable φ = −∆−1γ ∈H1

0(Ω;R2), the unfolded formulation is:
find (γ, u,φ) ∈H−1(rot,Ω)×H1

0 (Ω)×H1
0(Ω;R2) such that

(∇φ,∇ψ) + 〈γ, curl v −ψ〉 = 〈f, v〉 ∀ (v,ψ) ∈ H1
0 (Ω)×H1

0(Ω;R2),

〈β, curlu− φ〉 = 0 ∀ β ∈H−1(rot,Ω).

which is just the rotation of problem (2.4) in [20].
The second equation implies φ = curlu, together with γ = −∆φ and rotγ = f ,

hence we conclude u satisfies the biharmonic equation

(3.31) ∆2u = rot ∆ curlu = rotγ = f,

with homogenous Dirichlet boundary condition.
The decoupled and unfolded formulation is: find w ∈ H1

0 (Ω), φ ∈ H1
0(Ω;R2),

p ∈ L2
0(Ω) and u ∈ H1

0 (Ω) such that

(curlw, curl v) = 〈f, v〉 ∀ v ∈ H1
0 (Ω),(3.32)

(∇φ,∇ψ) + (divψ, p) = (curlw,ψ) ∀ ψ ∈H1
0(Ω;R2),(3.33)

(divφ, q) = 0 ∀ q ∈ L2
0(Ω),(3.34)

(curlu, curlχ) = (φ, curlχ) ∀ χ ∈ H1
0 (Ω).(3.35)

Therefore we have shown that the biharmonic equation (3.31) is equivalent to two
Poisson equations and one Stokes equation [45, 47].

Such decoupling of the biharmonic equation in two dimensions can be generalized
in various ways. First, if we equip space H1

0(Ω;R2) with full norm ‖ · ‖1, we derive
the following system find w ∈ H1

0 (Ω), φ ∈ H1
0(Ω;R2), p ∈ L2

0(Ω) and u ∈ H1
0 (Ω)

such that

(curlw, curl v) = 〈f, v〉 ∀ v ∈ H1
0 (Ω),

(φ,ψ) + (∇φ,∇ψ) + (divψ, p) = (curlw,ψ) ∀ ψ ∈H1
0(Ω;R2),

(divφ, q) = 0 ∀ q ∈ L2
0(Ω),

(curlu, curlχ) = (φ, curlχ) ∀ χ ∈ H1
0 (Ω).

This system is equivalent to the following fourth order elliptic problem with ho-
mogenous Dirichlet boundary condition

∆2u−∆u = f.
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Another direction is that the biharmonic equation (3.31) in three dimensions
is equivalent to find w ∈ H1

0 (Ω), φ ∈ H1
0(Ω;R3), p ∈ L2(Ω;R3)/∇H1(Ω) and

u ∈ H1
0 (Ω) such that

(∇w,∇v) = 〈f, v〉 ∀ v ∈ H1
0 (Ω),

(∇φ,∇ψ) + (curlψ,p) = (∇w,ψ) ∀ ψ ∈H1
0(Ω;R3),

(curlφ, q) = 0 ∀ q ∈ L2(Ω;R3)/∇H1(Ω),

(∇u,∇χ) = (φ,∇χ) ∀ χ ∈ H1
0 (Ω).

One more generalization to three dimensions will be discussed below.

3.5. Fourth order curl equation. By the commutative diagram

H1
0(Ω;R3)

∆ // H−1(Ω;R3)

L2
0(Ω)

grad // H−1(curl,Ω)
curl //

⋃
(Kc

0)′

H0(div,Ω)

I
OO

Kc
0

curl curl

OO

curloo

,

the corresponding mixed formulation is to find (γ,u) ∈ H−1(curl,Ω) × Kc
0 such

that

(γ,β)−1 − 〈curlβ,u〉 = 0 ∀ β ∈H−1(curl,Ω),(3.36)

〈curlγ,v〉 = (f ,v) ∀ v ∈ Kc
0,(3.37)

where f ∈ L2(Ω;R3) satisfying div f = 0.
By introducing variable φ and applying the Helmholtz decomposition (2.30)

φ = −∆−1γ = −∆−1(curlw +∇p) ∈H1
0(Ω;R3),

the decoupled and unfolded system is: find w ∈ Kc
0, φ ∈ H1

0(Ω;R3), p ∈ L2
0(Ω)

and u ∈ Kc
0 such that

(curlw, curlv) = (f ,v) ∀ v ∈ Kc
0,(3.38)

(∇φ,∇ψ) + (divψ, p) = (curlw,ψ) ∀ ψ ∈H1
0(Ω;R3),(3.39)

(divφ, q) = 0 ∀ q ∈ L2
0(Ω),(3.40)

(curlu, curlχ) = (φ, curlχ) ∀ χ ∈ Kc
0.(3.41)

According to (3.40)-(3.41), we have curlu = φ ∈H1
0(Ω;R3). Note that

(∇φ,∇ψ) = (curlφ, curlψ) + (divφ,divψ).

Thus we get from (3.39)

(curl curlu, curl curlv) = (curlw, curlv)

for any v ∈ Kc
0 satisfying curlv ∈ H1

0(Ω;R3). Combined with (3.38), formulation
(3.38)-(3.41) is equivalent to find u ∈H2

0(curl,Ω) such that

(curl curlu, curl curlv) = (f ,v) ∀ v ∈H2
0(curl,Ω),

where

H2
0(curl,Ω) := {v ∈ L2(Ω,R3) : curlv, curl curlv ∈ L2(Ω,R3),

div v = 0, and v × n = (∇× v)× n = 0}.
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This equivalence has been given recently in [62].
Therefore we can solve the four curl problem by solving two Maxwell’s equations

and one Stokes equation. The Maxwell’s equation with divergence-free constraint
can be further decoupled into one vector Poisson equation and one scalar Poisson
equation [27].

3.6. A strain-based mixed formulation for linear elasticity. Let

H−1(rotrot,Ω;S) := {τ ∈ L2(Ω; S) : rotrotτ ∈ H−1(Ω)}.

The rotated complex of the exact sequence (2.31)

(3.42) H1(Ω;R2)/RM
ε

GGGGGAH−1(rotrot,Ω;S)
rotrot

GGGGGGGGGGGA H−1(Ω)

is surely exact. Based on the commutative diagram

L2(Ω;S)

H1(Ω;R2)/RM
ε // H−1(rotrot,Ω;S)

rotrot //

⋃
H−1(Ω)

H1
0(Ω;S)

I

OO

H1
0 (Ω)

∆

OO

πoo

,

the mixed formulation is to find (σ, p) ∈H−1(rotrot,Ω;S)×H1
0 (Ω) such that

(Cσ, τ ) + 〈rotrotτ , p〉 = (f , τ ) ∀ τ ∈H−1(rotrot,Ω;S),(3.43)

〈rotrotσ, q〉 = 0 ∀ q ∈ H1
0 (Ω),(3.44)

where f ∈ L2(Ω;T).
The mixed formulation (3.43)-(3.44) is formally the rotation of the HHJ mixed

formulation (3.20)-(3.21). On the other side, by the exactness of the complex (3.42)
and (3.44), we have σ = ε(u) for some u ∈H1(Ω;R2)/RM . By substituting it into
(3.43), the mixed formulation (3.43)-(3.44) will be equivalent to the pure traction
problem of linear elasticity

(Cε(u), ε(v)) = (f , ε(v)) ∀ v ∈H1(Ω;R2)/RM .

If we treat (3.44) as a constraint condition (known as Saint Venant compatibility
condition) directly, then the mixed formulation (3.43)-(3.44) can be rewritten as
a primal formulation with only the strain tensor field σ as unknown, which was
studied recently in [29, 30, 58].

3.7. Triharmonic equation. In view of the commutative diagram

H1
0(Ω;S)

∆ // H−1(Ω; S)

L2(Ω;R2)
ε // H−2(rot rot,Ω;S)

rot rot //

⋃
H−2(Ω)

H0(div,Ω;S)

I

OO

H2
0 (Ω)

∆2

OO

curl curloo

,
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the corresponding mixed formulation is to find (γ, u) ∈H−2(rot rot,Ω;S)×H2
0 (Ω)

such that

(γ,β)−1 − 〈rot rotβ, u〉 = 0 ∀ β ∈H−2(rot rot,Ω;S),(3.45)

〈rot rotγ, v〉 = 〈f, v〉 ∀ v ∈ H2
0 (Ω),(3.46)

where f ∈ H−2(Ω).
By introducing variable and applying the Helmholtz decomposition (2.36)

φ = −∆−1γ = −∆−1(ε(p) + curl curlw) ∈H1
0(Ω;S),

the decoupled system is: find w ∈ H2
0 (Ω), φ ∈H1

0(Ω; S), p ∈ L2(Ω;R2)/RM and
u ∈ H2

0 (Ω) such that

(curl curlw, curl curl v) = 〈f, v〉 ∀ v ∈ H2
0 (Ω),(3.47)

(∇φ,∇ψ) + (divψ,p) = (curl curlw,ψ) ∀ ψ ∈H1
0(Ω;S),(3.48)

(divφ, q) = 0 ∀ q ∈ L2(Ω;R2)/RM ,(3.49)

(curl curlu, curl curlχ) = (φ, curl curlχ) ∀ χ ∈ H2
0 (Ω).(3.50)

Hence

(3.51) ∆3u = rot rot∆curl curlu = − rot rotγ = −f,

which is the triharmonic equation with homogeneous Dirichlet boundary condi-
tion. Hence we achieve that the triharmonic equation (3.51) is equivalent to two
biharmonic equations and one Stokes equation, c.f. (3.47)-(3.50).

Recursively applying the decomposition, we can decouple the m-th harmonic
equation ∆mu = f with homogenous Dirichlet boundary condition, i.e., u ∈ Hm

0 (Ω)
into a sequence of Poisson and Stokes equations.

3.8. Reissner-Mindlin plate. Let LE := −div(Cε) : H1
0(Ω;R2)→H−1(Ω;R2),

and define

‖γ‖2−1,LE
:=〈L−1

E γ,γ〉 ∀ γ ∈H−1(Ω;R2),

‖ψ‖21,LE
:=〈LEψ,ψ〉 = (Cε(ψ), ε(ψ)) ∀ ψ ∈H1

0(Ω;R2).

Then it holds for any γ ∈H−1(Ω;R2)

(3.52) ‖γ‖−1,LE
= ‖L−1

E γ‖1,LE
= sup
ψ∈H1

0(Ω;R2)

〈γ,ψ〉
‖ψ‖1,LE

.

We shall consider the interpolation of the following two differential complexes:

H1(Ω)/R
curl

GGGGGGGGA L2(Ω,R2)
div

GGGGGGGA H−1(Ω),(3.53)

L2
0(Ω)

curl
GGGGGGGGAH−1(div,Ω)

div
GGGGGGGA H−1(Ω)(3.54)
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to construct the commutative diagram

(3.55)

H1
0(Ω;R2)

LE // H−1(Ω;R2) ⊃ (H−1(Ω;R2) ∩ tL2(Ω;R2))

L2
0(Ω) ∩ t (H1(Ω)/R)

curl // H−1(div,Ω) ∩ tL2(Ω;R2)
div //

⋃
H−1(Ω)

H0(rot,Ω) + t−1L2(Ω;R2)

I

OO

H1
0 (Ω)

∆

OO

gradoo

.

Here 0 < t . 1 is the thickness of the plate.
The intersection space H−1(Ω;R2) ∩ tL2(Ω;R2) is algebraically equivalent to

L2(Ω;R2) but equipped with the squared norm [4]

‖γ‖2−1,LE
+ t2‖γ‖20,

the space L2
0(Ω) ∩ t (H1(Ω)/R) in the second line is equipped with

‖v‖20 + t2‖v‖21,

the space H−1(div,Ω) ∩ tL2(Ω;R2) in the second line is equipped with

(3.56) ‖γ‖2−1,LE
+ ‖ div γ‖2−1 + t2‖γ‖20,

and the space H0(rot,Ω) + t−1L2(Ω;R2) at the bottom is equipped with

inf
γ = γ1 + γ2

γ1 ∈H0(rot,Ω),γ2 ∈ L2(Ω;R2)

‖γ1‖2H(rot,Ω) + t−2‖γ2‖20.

And by (2.28) and (L2(Ω;R2))′ = L2(Ω;R2), we have

(3.57)
(
H0(rot,Ω) + t−1L2(Ω;R2)

)′
= H−1(div,Ω) ∩ tL2(Ω;R2)

For a quick introduction on the intersection and summation of Hilbert spaces, in
particular a proof of (3.57), we refer to [55, § 2.2].

The two-term mixed formulation is to find (γ, w) ∈H−1(div,Ω)∩ tL2(Ω;R2) ×
H1

0 (Ω) such that

(L−1
E γ,β) + t2(γ,β)− (β,∇w) = 0 ∀ β ∈H−1(div,Ω) ∩ tL2(Ω;R2),(3.58)

(γ,∇v) = 〈f, v〉 ∀ v ∈ H1
0 (Ω),(3.59)

where f ∈ H−1(Ω). Again space H−1(div,Ω) ∩ tL2(Ω;R2) is algebraically equiva-
lent to L2(Ω;R2) but equipped with a non-standard norm (3.56).

Now let us verify the boundedness of operators in the commutative diagram
(3.55). The boundedness of the curl and div operators are simply combination of
those in (3.53)-(3.54). The boundedness of the embedding operator I : H−1(div,Ω)∩
tL2(Ω;R2) → H−1(Ω;R2) ∩ tL2(Ω;R2) is trivial. For any γ1 ∈ H0(rot,Ω) and
γ2 ∈ L

2(Ω;R2), it holds from (3.52)

‖γ1 + γ2‖2−1,LE
+ ‖ div(γ1 + γ2)‖2−1 + t2‖γ1 + γ2‖20

. ‖γ1 + γ2‖20

. ‖γ1‖2H(rot,Ω) + t−2‖γ2‖20,

which means I : H0(rot,Ω)+t−1L2(Ω;R2)→H−1(div,Ω)∩tL2(Ω;R2) is bounded.
The boundedness can be also derived from (3.57) as I is just the inverse of the Riesz
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representation which is obviously continuous. For any v ∈ H1
0 (Ω), by choosing

γ1 = ∇v, we have

inf
∇v = γ1 + γ2

γ1 ∈H0(rot,Ω),γ2 ∈ L2(Ω;R2)

‖γ1‖2H(rot,Ω) + t−2‖γ2‖20 ≤ ‖∇v‖2H(rot,Ω) = ‖∇v‖20,

thus grad : H1
0 (Ω)→H0(rot,Ω)+ t−1L2(Ω;R2) is bounded. As t . 1, we conclude

that all the continuity constants of these operators can be chosen to be uniformly
bounded to the parameter t. Therefore we obtain the well-posedness of (3.58)-(3.59)
and the stability constant is independent of t.

By introducing variable θ = L−1
E γ ∈ H

1
0(Ω;R2), the mixed formulation (3.58)-

(3.59) will be equivalent to the unfolded three-term formulation: find (γ,θ, w) ∈
H−1(div,Ω) ∩ tL2(Ω;R2)×H1

0(Ω;R2)×H1
0 (Ω) such that (cf. [19, 20])

(Cε(θ), ε(ψ)) + (γ,∇v −ψ) = 〈f, v〉 ∀ (ψ, v) ∈H1
0(Ω;R2)×H1

0 (Ω),(3.60)

(β,∇w − θ)− t2(γ,β) = 0 ∀ β ∈H−1(div,Ω) ∩ tL2(Ω;R2).(3.61)

Applying the Helmholtz decomposition γ = curl p + ∇r where p ∈ L2
0(Ω) ∩

t (H1(Ω)/R) and r ∈ H1
0 (Ω), the mixed formulation (3.60)-(3.61) can be further

decoupled to find r ∈ H1
0 (Ω), θ ∈ H1

0(Ω;R2), p ∈ L2
0(Ω) ∩ t (H1(Ω)/R) and w ∈

H1
0 (Ω) such that (cf. [19, (2.10)-(2.13)])

(∇r,∇v) = 〈f, v〉,(3.62)

(Cε(θ), ε(ψ))− (curl p,ψ) = (∇r,ψ),(3.63)

(curl q,θ) + t2(curl p, curl q) = 0,(3.64)

(∇w,∇s) = (θ,∇s) + t2〈f, v〉,(3.65)

for any v ∈ H1
0 (Ω), ψ ∈H1

0(Ω;R2), q ∈ L2
0(Ω) ∩ t (H1(Ω)/R) and s ∈ H1

0 (Ω).

4. Discrete Mixed Method and Its Decomposition

In this section, we will develop discrete mixed methods based on a commutative
diagram. Denote by Th a partition of domain Ω. All discrete spaces in this paper
are defined on Th. For a generic finite dimensional space Vh, we can always identify
V ′h as Vh using the Riesz representation of L2-inner product. In other words, in
implementation, we do not see the dual space but just vector space RdimVh . This
oversimplification is, somehow, misleading in the error analysis. We shall reveal the
importance of a discrete V ′h norm in the error analysis.

4.1. Setting. For a finite dimensional Hilbert space Vh ⊂ L2(Ω), we use the Riesz
representation of L2 inner product to define an isomorphism Qh : V ′h → Vh as

(Qhv
′
h, wh) = 〈v′h, wh〉 ∀ v′h ∈ V ′h, wh ∈ Vh.

The L2(Ω) is the so-called ‘pivot’ space. In the continuous level, a continuous
functional v′ ∈ V ′ may not be a continuous linear functional in L2-norm and thus
the Riesz representation operator of L2-inner product is unbounded. While in
the discrete level, such mapping is always well defined by inverting a square mass
matrix. The domain of Qh is still algebraically equal to Vh, but the imagine is a
realization of V ′h. To emphasize the difference, we shall denote Qh(V ′h) by V Th and
usually equip it with a norm of V ′h.
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Suppose Vh is equipped with inner product (·, ·)Vh
. Define JVh

: Vh → V Th as

(JVh
vh, wh) = (vh, wh)Vh

∀ wh ∈ Vh.
Then it holds

‖JVh
vh‖V ′h = sup

wh∈Vh

(JVh
vh, wh)

‖wh‖Vh

= sup
wh∈Vh

(vh, wh)Vh

‖wh‖Vh

= ‖vh‖Vh
∀ vh ∈ Vh.

Hence JVh
is an isomorphism if we equip the range space V Th with ‖ · ‖V ′h norm not

‖ · ‖Vh
norm. The definition of JVh

is slightly different with (2.9). Indeed it is a
composition of

Vh
J

GGGGGA V ′h

Qh
GGGGGGGA V Th = Vh.

Here J is the inverse of Riesz isomorphic from Vh onto V ′h, i.e.

〈Jvh, wh〉 = (vh, wh)Vh
∀ vh, wh ∈ Vh.

Assume we have the discrete commutative diagram

(4.1)

Xh

JXh // XT
h

Ph
d−h // Σh

dh //

⋃
V Th

Σ̃h

ΠΣh

OO

Vh

JVh

OO

ΠVhoo

,

that is the complex in the middle is exact, and

(4.2) dhΠΣh
ΠVh

vh = JVh
vh for all vh ∈ Vh.

Note that (4.2) implies dh is surjective. At the top JXh
: Xh → XT

h is defined
similarly as JVh

.
All the operators in the commutative diagram (4.1) are continuous. Applying

Theorem 2.1, we acquire a stable Helmholtz decomposition

(4.3) Σh = d−h Ph ⊕ΠΣh
ΠVh

Vh.

That is for any τh ∈ Σh, there exist qh ∈ Ph/ ker d−h and vh ∈ Vh such that

τh = d−h qh ⊕ΠΣh
ΠVh

vh,

‖τh‖Σh
h ‖d−h qh‖Σh

+ ‖vh‖Vh
.

4.2. Two-term discretization. The two-term mixed formulation is suitable when
(·, ·)X′h = (·, ·)X′ which will be assumed in this subsection. A simple example for

(·, ·)X′ is the L2 inner product or a weighted version, e.g., (·, ·)C, which might be
only positive semidefinite.

A discrete mixed method associated with mixed formulation (3.4)-(3.5) is to find
(σh, uh) ∈ Σh × Vh such that

(σh, τh)X′ + (dhτh, uh) = (g, τh) ∀ τh ∈ Σh,(4.4)

(dhσh, vh) = (f, vh) ∀ vh ∈ Vh,(4.5)

where f, g ∈ L2(Ω).
We also assume the discrete norm equivalence

(4.6) ‖τh‖2Σh
h ‖τh‖2X′ + ‖dhτh‖2V ′h ∀ τh ∈ Σh.
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Let (σ, u) be the solution to (3.4)-(3.5) and smooth enough. We assume the consis-
tency of discrete mixed method (4.4)-(4.5): there exists σI ∈ Σh an interpolation
of σ, and uI ∈ Vh an interpolation of u satisfying

(σ, τh)X′ + (dhτh, uI) = (g, τh) ∀ τh ∈ Σh,(4.7)

(dhσI , vh) = (f, vh) ∀ vh ∈ Vh.(4.8)

Applying the Helmholtz decomposition (4.3), we have

σh = d−h ph + ΠΣh
ΠVh

wh, τh = d−h qh + ΠΣh
ΠVh

χh,

where ph, qh ∈ Ph/ ker d−h , and wh, χh ∈ Vh, then the discrete mixed method (4.4)-

(4.5) can be decoupled as follows: find wh ∈ Vh, ph ∈ Ph/ ker d−h and uh ∈ Vh such
that

(wh, vh)Vh
= (f, vh) ∀ vh ∈ Vh,(4.9)

(d−h ph, d
−
h qh)X′ = (g, d−h qh)− (ΠΣh

ΠVh
wh, d

−
h qh)X′ ∀ qh ∈ Ph/ ker d−h ,(4.10)

(uh, χh)Vh
= (g,ΠΣh

ΠVh
χh)− (σh,ΠΣh

ΠVh
χh)X′ ∀ χh ∈ Vh.(4.11)

We now present error analysis based on the commutative diagram and the con-
sistency equations.

Theorem 4.1. Assume both the discrete commutative diagram (4.1) and the dis-
crete norm equivalence (4.6) hold. Then the discrete mixed method (4.4)-(4.5) is
uniquely solvable and can be decoupled into the discrete method (4.9)-(4.11). More-
over, when the consistency (4.7)-(4.8) hold, we have

‖σ − σh‖X′ + ‖σI − σh‖Σh
+ ‖uI − uh‖Vh

.‖σ − σI‖X′ ,
‖σ − σh‖Σh

.‖σ − σI‖X′ + ‖σ − σI‖Σh
,

‖u− uh‖Vh
.‖σ − σI‖X′ + ‖u− uI‖Vh

.

Proof. The following stability can be proved using the arguments in Theorem 3.2:
for any (σ̃h, ũh) ∈ Σh × Vh,

(4.12) ‖σ̃h‖Σh
+ ‖ũh‖Vh

. sup
(τh,vh)∈Σh×Vh

(σ̃h, τh)X′ + (dhτh, ũh) + (dhσ̃h, vh)

‖τh‖Σh
+ ‖vh‖Vh

.

Subtracting (4.4)-(4.5) from (4.7)-(4.8), we derive the error equation

(σ − σh, τh)X′ + (dhτh, uI − uh) + (dh(σI − σh), vh) = 0 ∀ τh ∈ Σh, vh ∈ Vh.
Rewriting it, we get

(σI − σh, τh)X′ + (dhτh, uI − uh) + (dh(σI − σh), vh) = (σI − σ, τh)X′ ,

for any τh ∈ Σh and vh ∈ Vh.
Then taking σ̃h = σI − σh and ũh = uI − uh in the inf-sup condition (4.12), we

obtain from (4.6)

‖σI − σh‖Σh
+ ‖uI − uh‖Vh

. sup
(τh,vh)∈Σh×Vh

(σI − σ, τh)X′

‖τh‖Σh
+ ‖vh‖Vh

. ‖σ − σI‖X′ ,

which together with the triangle inequality ends the proof. �

Then to obtain optimal order of convergence, it suffices to construct (σI , uI) with
desirable approximation property. Note that, due to the existence of σI , the error
estimate of σ is irrelevant of that of u which is in the spirit of Falk and Osborn [36].
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4.3. HHJ mixed finite element. For each K ∈ Th, denote by nK = (n1, n2)T

the unit outward normal to ∂K and write tK := (t1, t2)T = (−n2, n1)T , a unit
vector tangent to ∂K. Without causing any confusion, we will abbreviate nK and
tK as n and t respectively for simplicity. Let Eh be the union of all edges of the
triangulation Th and E ih the union of all interior edges of the triangulation Th. For
a second order tensor-valued function τ , set

Mn(τ ) := nT τn, Mnt(τ ) := tT τn,

on each edge e ∈ Eh. The corresponding finite element spaces are given by

Σ :=
{
τ ∈ L2(Ω;S) : τ |K ∈H1(K;S) ∀K ∈ Th and [Mn(τ )]|EI = 0

}
,

V :=
{
v ∈ H1

0 (Ω) : v|K ∈ H2(K) ∀K ∈ Th
}
,

P h :=
{
qh ∈H

1(Ω;R2) : qh|K ∈ P k(K;R2) ∀K ∈ Th
}
,

Σh :=
{
τh ∈ L2(Ω;S) : τh|K ∈ P k−1(K;S) ∀K ∈ Th and [Mn(τh)]|EI = 0

}
,

Vh :=
{
v ∈ H1

0 (Ω) : vh|K ∈ Pk(K) ∀K ∈ Th
}

with integer k ≥ 1.
Define discrete differential operator (div div)h : Σ→ Vh as

((div div)hτ , vh) = −(divhτ ,∇vh) +
∑
K∈Th

∫
∂K

Mnt(τ )∂tvh ds ∀ vh ∈ Vh.

and ∆h : H1
0 (Ω)→ Vh as

(∆hv, wh) = −(∇v,∇wh) ∀ wh ∈ Vh.
For any element K ∈ Th, define interpolation ΠK : H1(K,S)→ P k−1(K,S) in the
following way (cf. [10, 36, 31, 13]): given τ ∈ H1(K,S), for any element K ∈ Th
and any edge e of K,∫

e

Mn ((τ −ΠKτ )|K)µds = 0 ∀ µ ∈ Pk−1(e),∫
K

(τ −ΠKτ ) : ς dx = 0 ∀ ς ∈ P k−2(K, S).

The associated global interpolation operator Πh : Σ→ Σh is given by

(Πh)|K := ΠK for all K ∈ Th.
From the definition of Πh, it holds

(4.13) (div div)h(Πhτ ) = (div div)hτ ∀ τ ∈ Σ.

Define πhv = Πh(vI2×2), then it follows from (4.13), the definitions of (div div)h
and ∆h

(4.14) (div div)h(πhv) = (div div)h(vI2×2) = ∆hv ∀ v ∈ H1
0 (Ω).

Define IK : H2(K) → Pk(K) in the following way (cf. [10, 36, 31, 60]): given
w ∈ H2(K), any vertex a of K, and any edge e of K,

IKw(a) = w(a),∫
e

(w − IKw)v ds = 0 ∀ v ∈ Pk−2(e),∫
K

(w − IKw)v dx = 0 ∀ v ∈ Pk−3(K).
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The associated global interpolation operator Ih : V → Vh is given by

(Ih)|K := IK for all K ∈ Th.

We use the traditional H1 seminorm for Vh. The discrete H−1 norm is given by

‖v‖−1,h := sup
wh∈Vh

(v, wh)

|wh|1
∀ v ∈ L2(Ω).

Then we equip Σh with the following mesh-dependent norm (cf. [49])

‖τ‖2Σh
:= ‖τ‖20 + ‖(div div)hτ‖2−1,h,

which implies (4.6).

Lemma 4.2. We have commutative diagram for HHJ method

(4.15)

L2(Ω)

P h
∇s× // Σh

(div div)h //

⋃
V Th

Σh

I

OO

Vh

∆h

OO

πhoo

.

Proof. The complex in the middle has been proved to be exact in [26, 46]. The
commutation is just (4.14). All the operators I, (div div)h and ∆h are continuous
by definitions. The continuity of πh follows from (4.14). �

Then HHJ mixed method based on the commutative diagram (4.15) is to find
(σh, uh) ∈ Σh × Vh such that

(σh, τh) + ((div div)hτh, uh) = 0 ∀ τh ∈ Σh,(4.16)

((div div)hσh, vh) = (f, vh) ∀ vh ∈ Vh.(4.17)

The well-posedness of HHJ mixed method (4.16)-(4.17) is covered by Theorem 4.1.
To carry out a priori error estimate, we choose σI = Πhσ and uI = Ihu to

verify the consistency (4.7)-(4.8). The consistency (4.7) holds as when the solution
(σ, u) is smooth enough [10, p. 1058],

(σ, τh) = −(∇2u, τh) = −((div div)hτh, Ihu).

Recall the following commuting diagram [26, Theorem 2.7]

Σ

Πh

��

divdiv // H−1(Ω)

Qh

��
Σh

(divdiv)h // V Th

,

which can be also verified from (4.13) directly. Therefore (4.8) holds with σI =
Πhσ. Consequently optimal order of convergence follows from Theorem 4.1 and
the interpolation error estimate [10, 36, 31, 60].

By the commutative diagram (4.15), we have the stable Helmholtz decomposi-
tion [49]

(4.18) Σh = ∇s × P h ⊕ πhVh.
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The HHJ mixed method (4.16)-(4.17) will be decoupled as: find wh ∈ Vh, ph ∈
P h/RM

rot and uh ∈ Vh such that

(∇wh,∇vh) = −(f, vh) ∀ vh ∈ Vh,
(∇s × ph,∇s × qh) = −(πhwh,∇s × qh) ∀ qh ∈ P h/RM

rot,

(∇uh,∇χh) = (σh,πhχh) ∀ χh ∈ Vh,

where σh = ∇s×ph+πhwh. Therefore we can solve the HHJ system by solving two
Poisson equations and one linear elasticity problem which is established recently
in [49].

4.4. Unfolded three-term discretization. When (·, ·)X′ is an inner product of
negative order, e.g. (·, ·)−1, it is better to use the unfolded three-term mixed for-
mulation to further discretize this inner product. In this subsection, we assume
Xh ⊂ X and (·, ·)Xh

= (·, ·)X . Since Σh ⊂ H−1 is less smooth, the differential op-
erator dh is usually understood in the weak sense. The space Vh is smooth enough
such that dTh the L2-adjoint of dh, i.e., (dTh vh, τh) := (vh, dhτh) is a conforming dis-
cretization of a continuous operator d′ : V → L2. We will thus shift the differential
operator to space Vh.

Let φh = J−1
Xh
σh ∈ Xh. Then the discrete mixed method (4.4)-(4.5) is equivalent

to an unfolded discrete three-term formulation: find (φh, uh, σh) ∈ Xh × Vh × Σh
such that

(φh, ψh)X − (σh, d
T
h vh + ψh) = −(f, vh) ∀ (ψh, vh) ∈ Xh × Vh,(4.19)

(dThuh + φh, τh) = (g, τh) ∀ τh ∈ Σh.(4.20)

Let (φ, u, σ) be the solution to (3.8)-(3.9). To formulate the consistency, we
will further assume Vh ⊂ V and dTh is a conforming discretization of a continous
operator d′ : V → L2, and (φ, u, σ) satisfies the consistency equation:

(φ, ψh)X − (σ, d′vh + ψh) = −(f, vh) ∀ (ψh, vh) ∈ Xh × Vh,(4.21)

(d′u+ φ, τh) = (g, τh) ∀ τh ∈ Σh.(4.22)

Applying the Helmholtz decomposition (4.3), the uncoupled discrete method
(4.19)-(4.20) is equivalent to find wh, uh ∈ Vh, φh ∈ Xh, and ph ∈ Ph/ ker d−h such
that

(wh, vh)Vh
= (f, vh) ∀ vh ∈ Vh,(4.23)

(φh, ψh)Xh
− (d−h ph, ψh) = (ΠΣh

ΠVh
wh, ψh) ∀ ψh ∈ Xh,(4.24)

(d−h qh, φh) = (g, d−h qh) ∀ qh ∈ Ph/ ker d−h ,(4.25)

(uh, χh)Vh
= (g − φh,ΠΣh

ΠVh
χh) ∀ χh ∈ Vh.(4.26)

We shall present an error analysis of the unfolded three-term formulation. Note
that since we use different consistency equations, the obtained error estimate is also
different with that in Theorem 4.1.

Theorem 4.3. Assume both the discrete commutative diagram (4.1) and the dis-
crete norm equivalence (4.6) hold, then the unfolded discrete method (4.19)-(4.20)
is uniquely solvable and can be decoupled into the discrete method (4.23)-(4.26).
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Moreover, when the consistency (4.21)-(4.22) hold, we have

‖φ− φh‖X + ‖σ − σh‖Σh
+ ‖u− uh‖Vh

. inf
ψh∈Xh

‖φ− ψh‖X + inf
τh∈Σh

‖σ − τh‖Σh
+ inf
vh∈Vh

‖u− vh‖Vh
.

Proof. The following stability can be proved using the arguments in Theorem 3.3:

for any (φ̃h, ũh, σ̃h) ∈ Xh × Vh × Σh,

‖φ̃h‖X + ‖ũh‖Vh
+ ‖σ̃h‖Σh

. sup
(ψ̃h,ṽh,τ̃h)∈Xh×Vh×Σh

(φ̃h, ψ̃h)X − (σ̃h, d
T
h ṽh + ψ̃h)− (dTh ũh + φ̃h, τ̃h)

‖ψ̃h‖X + ‖ṽh‖Vh
+ ‖τ̃h‖Σh

.(4.27)

Subtracting (4.19)-(4.20) from (4.21)-(4.22), we derive the error equation

(ψh − φh, ψ̃h)X − (τh − σh, dTh ṽh + ψ̃h) = (ψh − φ, ψ̃h)X − (τh − σ, dTh ṽh + ψ̃h),

(dTh (vh − uh) + ψh − φh, τ̃h) = (dTh (vh − u) + ψh − φ, τ̃h),

for any ψh, ψ̃h ∈ Xh, vh, ṽh ∈ Vh and τh, τ̃h ∈ Σh. On the other hand, thanks to
the discrete norm equivalence (4.6), we get

sup
ψ̃h∈Xh

(ψh − φ, ψ̃h)X − (τh − σ, ψ̃h)

‖ψ̃h‖X
. ‖φ− ψh‖X + ‖σ − τh‖Σh

,

sup
ṽh∈Vh

−(τh − σ, dTh ṽh)

‖ṽh‖Vh

. sup
ṽh∈Vh

‖σ − τh‖Σh
‖dTh ṽh‖Σ′h

‖ṽh‖Vh

. ‖σ − τh‖Σh
,

sup
τ̃h∈Σh

(dTh (vh − u) + ψh − φ, τ̃h)

‖τ̃h‖Σh

= sup
τ̃h∈Σh

(vh − u, dhτ̃h) + (ψh − φ, τ̃h)

‖τ̃h‖Σh

.‖u− vh‖Vh
+ ‖φ− ψh‖X .

Then we obtain from Theorem 3.3 and (4.27)

‖ψh− φh‖X + ‖vh− uh‖Vh
+ ‖τh− σh‖Σh

. ‖φ−ψh‖X + ‖u− vh‖Vh
+ ‖σ− τh‖Σh

.

Finally the required results will be derived by using the triangle inequality. �

4.5. Primal discrete methods for biharmonic equation. Suppose that we
have the following discrete Stokes complex in two dimensions

(4.28) 0 GGGA Vh
curlh

GGGGGGGGGA Σh

divh
GGGGGGGGA Ph GGGA 0,

which is exact. Here curlh and divh are elementwise counterparts of curl and div
with respect to Th since the discrete spaces may not be conforming to spaces in
Stokes complex (??). We also assume the discrete Poincaré inequality holds

(4.29) ‖τh‖0 . |τh|1,h ∀ τh ∈ Σh.

Denoted by rotwh = curlTh : ΣT
h → V Th and gradwh = divTh : PTh → ΣT

h the adjoints
of curlh and divh with respect to the L2-inner product, i.e.

(rotwh τh, vh) = (τh, curlh vh), (gradwh qh, τh) = (qh,divh τh),

for any τh ∈ Σh, vh ∈ Vh and qh ∈ Ph.
There are many discrete Stokes complexes in the literatures. For example, the fa-

mous Argyris element [3] with the conforming Stokes complex developed in [35], the
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H2 conforming element corresponding to Scott-Vogelius element for Stokes equation
in [59, 38], the Morley element [53, 50] with complex proved in [34], a quadrilat-
eral Morley element [56] with complex established in [63], Bogner-Fox-Schmit ele-
ment [14, 28] with complex proved in [8, 51], the modified Morley element [54] with
complex given in [52], a nonconforming Stokes complex in [39], and the singular
Zienkiewicz finite element [64, 28] with complex devised in [40].

We equip Ph with L2 norm, Vh with discrete H1 seminorm | · |1,h, and Σh

with discrete H(div,Ω) norm. Again the discrete norm equivalence (4.6) is trivial.
Define ∆h : Vh → Vh as

(∆hvh, wh) = −(∇hvh,∇hwh) ∀ wh ∈ Vh.

Lemma 4.4. Assume the discrete Stokes complex (4.28) is exact and the discrete
Poincaré inequality (4.29) holds. We then have the discrete commutative diagram

(4.30)

Σh
∆h // ΣT

h

PTh
gradw

h // ΣT
h

rotwh //

⋃
V Th

Σh

I

OO

Vh

∆h

OO

curlhoo

.

Here the spaces Σh,Σ
T
h in the top are equipped with discrete H1 and H−1 norms

respectively, ΣT
h in the middle is equipped with norm

‖τh‖H−1
h (roth) := sup

ςh∈Σh

(τh, ςh)

‖ςh‖Hh(divh)
,

and Σh in the bottom is equipped with discrete H(div) norm. Moreover, the Helmholtz
decomposition

ΣT
h = gradwh P

T
h ⊕ curlh Vh

is stable.

Proof. First we note that the middle complex is exact since it is just the adjoint
complex of the exact sequence (4.28). By the definitions of rotwh and ∆h, it holds
∆h = rotwh curlh. Hence diagram (4.30) is commutative.

Next we show that all the operators are continuous. The boundedness of rotwh :

ΣT
h → V Th and gradwh : PTh → ΣT

h is trivial by the definitions of the dual norms.
For any vh ∈ Vh, we have

‖ curlh vh‖Σh
= ‖ curlh vh‖0 . |vh|1,h.

Therefore curlh : Vh → Σh is continuous. �

The mixed finite element method based on the commutative diagram (4.30) is

to find (σh, uh) ∈ ΣT
h × Vh such that

(σh, τh)−1,h − (τh, curlh uh) = 0 ∀ τh ∈ ΣT
h ,(4.31)

(σh, curlh vh) = (f, vh) ∀ vh ∈ Vh.(4.32)

Here the space ΣT
h = Σh but is equipped with ‖ · ‖H−1

h (roth) norm and

(σh, τh)−1,h = (∇h∆
−1
h σh,∇h∆

−1
h τh) = −(∆−1

h σh, τh).
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The well-posedness of the mixed method (4.31)-(4.32) is covered by Theorem 4.1.
By (4.31), σh = −∆h curlh uh. Then substituting it into (4.32), we have the
conforming or nonconforming finite element method for the biharmonic

(4.33) (∇2
huh,∇2

hvh) = (f, vh) ∀ vh ∈ Vh.

On the other hand, let φh = −∆−1
h σh ∈ Σh. Then the mixed finite element

method (4.31)-(4.32) will be rewritten as: find φh ∈ Σh,σh ∈ ΣT
h , and uh ∈ Vh

such that

(σh, curlh vh) = (f, vh) ∀ vh ∈ Vh.
(∇hφh,∇hψh)− (σh,ψh) = 0 ∀ ψh ∈ Σh,

(φh, τh)− (τh, curlh uh) = 0 ∀ τh ∈ ΣT
h .

Here the space Σh in the middle and bottom are equipped with norms | · |1,h and
‖ · ‖H−1

h (roth) accordingly.

When Vh ∈ H1
0 (Ω) and Σh ∈ H1

0(Ω,R2), i.e., for a conforming discretization of
biharmonic equation, the a priori error estimate of this discrete method is covered
by Theorem 4.3.

Applying the Helmholtz decomposition σh = curlh wh − gradwh ph, the mixed
finite element method (4.31)-(4.32) is equivalent to find wh, uh ∈ Vh, φh ∈ Σh and
ph ∈ Ph such that

(curlh wh, curlh vh) = (f, vh) ∀ vh ∈ Vh.(4.34)

(∇hφh,∇hψh) + (divhψh, ph) = (curlh wh,ψh) ∀ ψh ∈ Σh,(4.35)

(divh φh, qh) = 0 ∀ qh ∈ Ph,(4.36)

(curlh uh, curlh χh) = (φh, curlh χh) ∀ χh ∈ Vh.(4.37)

Therefore several conforming or nonconforming finite element method (4.33) for
biharmonic equation can be decomposed into two discrete Poisson equations (4.34)-
(4.37) and one discrete Stokes equations (4.35)-(4.36).

Note that the error analysis cannot cover the non-conforming method. For ex-
ample, it is well known that discretization of the Poisson equation using Morley
element will not converge [61, 54]. In this scenario, the decoupling can be used
to design fast solvers for biharmonic equations [45, 47] since many fast solvers for
Poisson and Stokes equations are available.

5. Discretization Based on Decoupled Formulation

In this section, we will consider discretization based on the decoupled formula-
tion. That is we decouple first and then discretize while in Section 4 we discretize
and then decouple. By decoupling the fourth order equation into second order
equations, we can easily use conforming finite element spaces. Furthermore, we can
easily derive the superconvergence to Galerkin projection.
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5.1. Decoupled discretization of HHJ formulation. Let f ∈ L2(Ω), Vh ⊂
H1

0 (Ω) and P h ⊂ H1(Ω;R2). The discrete method based on formulation (3.22)-
(3.24) is to find wh ∈ Vh, ph ∈ P h/RM

rot and uh ∈ Vh such that

(∇wh,∇vh) = −(f, vh) ∀ vh ∈ Vh,(5.1)

(∇s × ph,∇s × qh) = −(πwh,∇s × qh) ∀ qh ∈ P h/RM
rot,(5.2)

(∇uh,∇χh) = (σh,πχh) ∀ χh ∈ Vh,(5.3)

where σh = ∇s × ph + πwh.
Define projection P cs

h : H1(Ω;R2)→ P h/RM
rot by

(∇s × P cs
h p,∇s × qh) = (∇s × p,∇s × qh).

Similarly, denote by P grad
h the H1 orthogonal projection onto Vh. Let

σ∗h := ∇s × P cs
h p+ πwh.

Lemma 5.1. Let (w,p, u) be the solution of HHJ mixed formulation (3.22)-(3.24)
and (wh,ph, uh) be the solution of (5.1)-(5.3). We then have the estimates

|w − wh|1 . inf
vh∈Vh

|w − vh|1,

‖∇s × (P cs
h p− ph)‖0 + ‖σ∗h − σh‖0 . ‖w − wh‖0,

|P grad
h u− uh|1 . ‖p− ph‖0 + ‖w − wh‖0.

Proof. Subtracting (5.1)-(5.3) from (3.22)-(3.24), we get the error equations

(∇(w − wh),∇vh) = 0 ∀ vh ∈ Vh,
(∇s × (P cs

h p− ph),∇s × qh) = (π(wh − w),∇s × qh) ∀ qh ∈ P h/RM
rot,

(∇(P grad
h u− uh),∇χh) = (σ − σh,πχh) ∀ χh ∈ Vh.

Then all the error estimates hold by standard argument. �

Furthermore, assume

(5.4) ‖w − wh‖0 . hδ|w − wh|1, ‖p− ph‖0 . hδ‖∇s × (p− ph)‖0,
where δ ∈ (1/2, 1] is the regularity constant depending on the shape of Ω. This
assumption can be proved by duality argument (cf. [28, 16]).

Theorem 5.2. Let (w,p, u) be the solution of HHJ mixed formulation (3.22)-(3.24)
and (wh,ph, uh) be the solution of (5.1)-(5.3). We then have the estimates

‖∇s × (p− ph)‖0 + ‖σ − σh‖0 . inf
qh∈P h

‖∇s × (p− qh)‖0 + inf
vh∈Vh

|w − vh|1,

|u− uh|1 . inf
vh∈Vh

|u− vh|1 + inf
qh∈P h

‖∇s × (p− qh)‖0 + inf
vh∈Vh

|w − vh|1.

Moreover if assumption (5.4) is true, we have the improved error estimates

(5.5) ‖∇s × (P cs
h p− ph)‖0 + ‖σ∗h − σh‖0 . hδ inf

vh∈Vh

|w − vh|1,

(5.6) |P grad
h u− uh|1 . hδ inf

qh∈P h

‖∇s × (p− qh)‖0 + hδ inf
vh∈Vh

|w − vh|1.

Proof. The first two error estimates can be derived from Lemma 5.1 and Poincaré
inequality. We can acquire (5.5)-(5.6) from Lemma 5.1 and (5.4). �

Remark 5.3. The error estimates (5.5)-(5.6) are superconvergent if we use equal
order finite element spaces for Vh and P h. �
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5.2. Decoupled discretization for biharmonic equation. In Section 4.5, we
show that the conforming or nonconforming finite element method (4.33) for bihar-
monic equation is decomposed as (4.34)-(4.37) based on the discrete Stokes com-
plex (4.28). Now we discretize formulation (3.32)-(3.35) using more general finite
element spaces without satisfying the discrete Stokes complex (4.28) [13, Subsec-
tion 10.4.5.1].

Let f ∈ L2(Ω), Vh ⊂ H1
0 (Ω), Xh ⊂ H1

0(Ω;R2) and Ph ⊂ L2(Ω). The discrete
method based on formulation (3.32)-(3.35) is to find wh, uh ∈ Vh, φh ∈ Xh and
ph ∈ Ph such that

(curlwh, curl vh) = (f, vh) ∀ vh ∈ Vh.(5.7)

(∇φh,∇ψh) + (divψh, ph) = (curlwh,ψh) ∀ ψh ∈Xh,(5.8)

(divφh, qh) = 0 ∀ qh ∈ Ph,(5.9)

(curluh, curlχh) = (φh, curlχh) ∀ χh ∈ Vh.(5.10)

We assume (Xh, Ph) is a stable finite element pair for Stokes equation (cf. [13,
12]), i.e. it holds the inf-sup condtion

(5.11) ‖qh‖0 . sup
ψh∈Σh

(divψh, qh)

|ψh|1
∀ qh ∈ Ph.

To analyze the discrete method (5.7)-(5.10), we rewrite it as a standard mixed finite
element method

a(φh, uh;ψh, vh) + b(ψh, vh; ph, wh) = (f, vh) ∀ (ψh, vh) ∈Xh × Vh,
b(φh, uh; qh, χh) = 0 ∀ (qh, χh) ∈ Ph × Vh,

where

a(φh, uh;ψh, vh) := (∇φh,∇ψh),

b(φh, uh; qh, χh) := (divφh, qh)− (φh, curlχh) + (curluh, curlχh).

Lemma 5.4. Assume the inf-sup condition (5.11), the following inf-sup condition
holds

(5.12) ‖qh‖0 + |χh|1 . sup
(ψh,vh)∈Σh×Vh

b(ψh, vh; qh, χh)

|ψh|1 + |vh|1
∀ (qh, χh) ∈ Ph × Vh.

Proof. It is easy to see that

|χh|1 = sup
vh∈Vh

(curl vh, curlχh)

|vh|1
≤ sup

(ψh,vh)∈Σh×Vh

b(ψh, vh; qh, χh)

|ψh|1 + |vh|1
.

It follows from (5.11) and Poincaré inequality

‖qh‖0 . sup
ψh∈Σh

(divψh, qh)

|ψh|1
= sup
ψh∈Σh

b(ψh, 0; qh, χh) + (ψh, curlχh)

|ψh|1

. |χh|1 + sup
(ψh,vh)∈Σh×Vh

b(ψh, vh; qh, χh)

|ψh|1 + |vh|1
.

Therefore the inf-sup condition (5.12) will be derived by combining the last two
inequalities. �



34 LONG CHEN AND XUEHAI HUANG∗

Theorem 5.5. Let (w,φ, p, u) be the solution of the mixed formulation (3.32)-
(3.35), and (wh,φh, ph, uh) ∈ Vh ×Xh × Ph × Vh be the solution of the discrete
method (5.7)-(5.10). Assume both Vh and Xh are H1 conforming, the inf-sup
condition (5.11) holds, and the discrete spaces are consistent with respect to the
mixed formulation (3.32)-(3.35), then

‖w − wh‖1 + ‖φ− φh‖1 + ‖p− ph‖0 + ‖u− uh‖1(5.13)

. inf
χh∈Vh

‖w − χh‖1 + inf
ψh∈Xh

‖φ−ψh‖1 + inf
qh∈Ph

‖p− qh‖0 + inf
vh∈Vh

‖u− vh‖1.
(5.14)

Moreover, if

(5.15) ‖φ− φh‖0 . hδ
(
‖φ− φh‖1 + inf

qh∈Ph

‖p− qh‖0
)
,

then
(5.16)

|P grad
h u− uh|1 . hδ

(
inf

χh∈Vh

‖w − χh‖1 + inf
ψh∈Xh

‖φ−ψh‖1 + inf
qh∈Ph

‖p− qh‖0
)
.

Proof. For any (ψh, vh) ∈ Σh × Vh satisfying

b(ψh, vh; qh, χh) = 0 ∀ (qh, χh) ∈ Ph × Vh,

we have

(ψh, curlχh) = (curl vh, curlχh) ∀ χh ∈ Vh,
which implies

|vh|1 ≤ ‖ψh‖0 . |ψh|1.
Thus

|ψh|21 + |vh|21 . |ψh|21 = a(ψh, vh;ψh, vh).

Combining the inf-sup condition (5.12), we will obtain the error estimate (5.13) by
standard mixed finite element method theory in [13]. And (5.16) can be derived
using the similar argument adopted in Section 5.1. �
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