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Abstract

In this paper, we propose a new effective estimator for a class of semiparametric

mixture models where one component has known distribution with possibly unknown

parameters while the other component density and the mixing proportion are unknown.

Such semiparametric mixture models have been often used in multiple hypothesis test-

ing and the sequential clustering algorithm. The proposed estimator is based on the

minimum profile Hellinger distance (MPHD), and its theoretical properties are investi-

gated. In addition, we use simulation studies to illustrate the finite sample performance

of the MPHD estimator and compare it with some other existing approaches. The em-

pirical studies demonstrate that the new method outperforms existing estimators when

data are generated under contamination and works comparably to existing estimators

when data are not contaminated. Applications to two real data sets are also provided

to illustrate the effectiveness of the new methodology.

Key words: Semiparametric mixture models; Minimum profile Hellinger distance; Semi-

parametric EM algorithm.
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1 Introduction

The two-component mixture model considered in this paper is defined by

h(x) = πf0(x; ξ) + (1− π)f(x− µ), x ∈ R, (1.1)

where f0(x; ξ) is a known probability density function (pdf) with possibly unknown param-

eter ξ, f is an unknown pdf with non-null location parameter µ ∈ R, and π is the unknown

mixing proportion.

Bordes et al. (2006) studied a special case when ξ is assumed to be known, i.e., the first

component density is completely known and model (1.1) becomes

h(x) = πf0(x) + (1− π)f(x− µ), x ∈ R. (1.2)

Model (1.2) is motivated by multiple hypothesis testing to detect differentially expressed

genes under two or more conditions in microarray data. For this purpose, we build a test

statistic for each gene. The test statistics can be considered as coming from a mixture of two

distributions: the known distribution f0 under null hypothesis, and the other distribution

f(· − µ), the unknown distribution of the test statistics under the alternative hypothesis.

Please see Section 4 for such an application on multiple hypothesis testing.

Song et al. (2010) studied another special case of model (1.1),

h(x) = πφσ(x) + (1− π)f(x), x ∈ R, (1.3)

where φσ is a normal density with mean 0 and unknown standard deviation σ and f(x)

is an unknown density. Model (1.3) was motivated by a sequential clustering algorithm

(Song and Nicolae, 2009), which works by finding a local center of a cluster first, and then

identifying whether an object belongs to that cluster or not. If we assume that the objects

belonging to the cluster come from a normal distribution with known mean (such as zero)
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and unknown variance σ2 and that the objects not belonging to the cluster come from an

unknown distribution f , then identifying the points in the cluster is equivalent to estimating

the mixing proportion in model (1.3).

Bordes et al. (2006) proposed to estimate model (1.2) based on symmetrization of the

unknown distribution f and proved the consistency of their estimator. However, the asymp-

totic distribution of their estimator has not been provided. Song et al. (2010) also proposed

an EM-type estimator and a maximizing π−type estimator (inspired by the constraints im-

posed to achieve identifiability of the parameters and Swanepoel’s approach (Swanepoel,

1999)) to estimate model (1.3) without providing any asymptotic properties.

In this article, we propose a new estimation procedure for the unified model (1.1) based

on minimum profile Hellinger distance (MPHD) (***, 2011). We will investigate the theo-

retical properties of the proposed MPHD estimator for the semiparametric mixture model,

such as existence, consistency, and asymptotic normality. A simple and effective algorithm

is also given to compute the proposed estimator. Using simulation studies, we illustrate

the effectiveness of the MPHD estimator and compare it with the estimators suggested by

Bordes et al. (2006) and Song et al. (2010). Compared to the existing methods (Bordes

et al., 2006; Song et al. 2010), the new method can be applied to the more general model

(1.1). In addition, the MPHD estimator works competitively under semiparametric model

assumptions, while it is more robust than the existing methods when data are contaminated.

Donoho and Liu (1988) have shown that the class of minimum distance estimators has

automatic robustness properties over neighborhoods of the true model based on the distance

functional defining the estimator. However, minimum distance estimators typically obtain

this robustness at the expense of not being optimal at the true model. Beran (1977) has

suggested the use of the minimum Hellinger distance (MHD) estimator which has certain

robustness properties and is asymptotically efficient at the true model. For a comparison

between MHD estimators, MLEs, and other minimum distance type estimators, and the

balance between robustness and efficiency of estimators, see Lindsay (1994).
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There are other well-known robust approaches within the mixture model-based clustering

literature. Garćıa-Escudero et al. (2003) proposed exploratory graphical tools based on

trimming for detecting main clusters in a given dataset, where the trimming is obtained

by resorting to trimmed k-means methodology. Garćıa-Escudero et al. (2008) introduced a

new method for performing clustering with the aim of fitting clusters with different scatters

and weights. Garćıa-Escudero et al. (2010) reviewed different robust clustering approaches

in the literature, emphasizing on methods based on trimming which try to discard most

outlying data when carrying out the clustering process. A more recent work by Punzo and

McNicholas (2013) introduced a family of fourteen parsimonious mixtures of contaminated

Gaussian distributions models within the general model-based classification framework.

The rest of the article is organized as follows. In Section 2, we introduce the proposed

MPHD estimator and discuss its asymptotic properties. Section 3 presents simulation results

for comparing the new estimation with some existing methods. Applications to two real data

sets are also provided in Section 4 to illustrate the effectiveness of the proposed methodology.

A discussion section ends the paper.

2 MPHD Estimation

2.1 Introduction of MPHD estimator

In this section, we develop a MPHD estimator for model (1.1). Let

H = {hθ,f (x) = πf0(x; ξ) + (1− π)f(x− µ) : θ ∈ Θ, f ∈ F}, (2.1)

where

Θ = {θ = (π, ξ, µ) : π ∈ (0, 1), ξ ∈ R, µ ∈ R} ,

F = {f : f ≥ 0,

∫
f(x)dx = 1}
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be the functional space for the semiparametric model (1.1). In practice, the parameter space

of ξ depends on its interpretation. For example, if ξ is the standard deviation of f0, then

the parameter space of ξ will be R+. For model (1.2), ξ is known and thus the parameter

space of ξ is a singleton and, as a result, θ = (π, µ).

Let ‖·‖ denote the L2(v)-norm. For any g1, g2 ∈ L2(v), the Hellinger distance between

them is defined as

dH(g1, g2) =
∥∥∥g1/2

1 − g1/2
2

∥∥∥ . (2.2)

Suppose a sample X1, X2, ..., Xn is from a population with density function hθ,f ∈ H . We

propose to estimate θ and f by minimizing the Hellinger distance

∥∥∥h1/2
t,l − ĥ

1/2
n

∥∥∥ (2.3)

over all t ∈ Θ and l ∈ F , where ĥn is an appropriate nonparametric density estimator of

hθ,f . Note that the above objective function (2.3) contains both the parametric component

t and the nonparametric component l. Here, we propose to use the profile idea to implement

the calculation.

For any density function g and t, define functional f(t, g) as

f(t, g) = arg minl∈F

∥∥∥h1/2
t,l − g

1/2
∥∥∥ (2.4)

and then define the profile Hellinger distance as

dPH(t, g) = ‖h1/2
t,f(t,g) − g

1/2‖. (2.5)

Now the MPHD functional T (g) is defined as

T (g) = arg mint∈ΘdPH(t, g) = arg mint∈Θ

∥∥∥h1/2
t,f(t,g) − g

1/2
∥∥∥ . (2.6)
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Given the sample X1, X2, ..., Xn, one can construct an appropriate nonparametric density

estimator of hθ,f , say ĥn, and then the proposed MPHD estimator of θ is given by T (ĥn).

In the examples of Sections 3 and 4, we use the kernel density estimator for ĥn and the

bandwidth h is chosen based on Botev et al. (2010).

2.2 Algorithm

In this section, we propose the following two-step algorithm to calculate the MPHD esti-

mator. Suppose the initial estimates of θ = (π, ξ, µ) and f are θ(0) = (π(0), ξ(0), µ(0)) and

f (0).

Step 1: Given π(k), ξ(k) and µ(k), find f (k+1) which minimizes

∥∥∥[π(k)f0(·; ξ(k)) + (1− π(k))f (k+1)(· − µ(k))]1/2 − ĥ1/2
n (·)

∥∥∥ .
Similar to *** (2011), we obtain that

f (k+1)(x− µ(k)) =


α

1− π(k)
ĥn(x)− π(k)

1− π(k)
f0(x; ξ(k)), if x ∈M ,

0, if x ∈MC ,

where M = {x : αĥn(x) ≥ π(k)f0(x; ξ(k))} and α = sup
0<α≤1

{π(k)
∫
M
f0(x; ξ(k))dx+

(1− π(k)) ≥ α
∫
M
ĥn(x)dx}.

Step 2: Given fixed f (k+1), find π(k+1), ξ(k+1), and µ(k+1) which minimize

∥∥∥[π(k+1)f0(·; ξ(k+1)) + (1− π(k+1))f (k+1)(· − µ(k+1))]1/2 − ĥ1/2
n (·)

∥∥∥ . (2.7)

Then go back to Step 1.
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Each of the above two steps monotonically decreases the objective function (2.3) until

convergence. In Step 1, if f(·) is assumed to be symmetric, then we can further symmetrize

f (k+1)(·) as

f̃ (k+1)(x) =
f (k+1)(x) + f (k+1)(−x)

2
.

Note that there is no closed form for (2.7) in Step 2 and thus some numerical algorithms,

such as the Newton-Raphson algorithm, is needed to minimize (2.7). In our examples, we

used the “fminsearch” function in Matlab to find the minimizer numerically. “fminsearch”

function uses the Nelder-Mead simplex algorithm as described in Lagarias et al. (1998).

2.3 Asymptotic results

Note that θ and f in the semiparametric mixture model (1.1) are not generally identifiable

without any assumptions for f . Bordes et al. (2006) showed that model (1.2) is not generally

identifiable if we do not put any restrictions on the unknown density f , but identifiability

can be achieved under some sufficient conditions. One of these conditions is that f(·) is

symmetric about 0. Under these conditions, Bordes et al. (2006) proposed an elegant

estimation procedure based on the symmetry of f . Song et al. (2010) also addressed the non-

identifiability problem and noticed that model (1.3) is not generally identifiable. However,

due to the additional unknown parameter σ in the first component, Song et al. (2010)

mentioned that it is hard to find the conditions to avoid unidentifiability of model (1.3)

and proposed using simulation studies to check the performance of the proposed estimators.

Please refer to Bordes et al. (2006) and Song et al. (2010) for detailed discussions on the

identifiability of model (1.1).

Next, we discuss some asymptotic properties of the proposed MPHD estimator. Here, for

simplicity of explanation, we will only consider model (1.2) for which Bordes et al. (2006) has

proved identifiability. However, we conjecture that all the results presented in this section

also apply to the unified model (1.1) when it is identifiable. But this is beyond the scope
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of the article and requires more research to find the identifiable conditions for the general

model (1.1).

The next theorem gives results on the existence and uniqueness of the proposed estimator,

and the continuity of the functional defined in (2.6), which is in line with Theorem 1 of Beran

(1977).

Theorem 2.1. With T defined by (2.6), if model (1.2) is identifiable, then we have

(i) For every hθ,f ∈H , there exists T (hθ,f ) ∈ Θ satisfying (2.6);

(ii) T (hθ,f ) = θ uniquely for any θ ∈ Θ;

(iii) T (hn)→ T (hθ,f ) for any sequences {hn}n∈N such that
∥∥∥h1/2

n − h1/2

θ,f

∥∥∥→ 0 and

sup
t∈Θ

∥∥∥ht,f(t,hn) − ht,f(t,hθ,f
)

∥∥∥→ 0

as n→∞.

Remark 3.1. Without the global identifiability of model (1.2), the local identifiability of

model (1.2) proved by Bordes et al. (2006) tells that there exists one solution that has the

asymptotic properties presented in Theorem 2.1.

Define a kernel density estimator based on X1, X2, ..., Xn as

ĥn(x) =
1

ncnsn

n∑
i=1

K

(
x−Xi

cnsn

)
, (2.8)

where {cn} is a sequence of constants (bandwidths) converging to zero at an appropriate rate

and sn is a robust scale statistic. Under further conditions on the kernel density estimator

defined in (2.8), the consistency of the MPHD estimator is established in the next theorem.

Theorem 2.2. Suppose that

(i) The kernel function K(·) is absolutely continuous and bounded with compact support.
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(ii) limn→∞ cn = 0, limn→∞ n
1/2cn =∞.

(iii) The model (1.2) is identifiable and hθ,f is uniformly continuous.

Then ‖ĥ1/2
n − h1/2

θ,f
‖ p→ 0 as n→∞, and therefore T (ĥn)

p→ T (hθ,f ) as n→∞.

Define the map θ 7→ sθ,g as sθ,g = h
1/2

θ,f(θ,g)
, and suppose that for θ ∈ Θ there exists

a 2 × 1 vector ṡθ,g with components in L2 and a 2 × 2 matrix s̈θ,g with components in L2

such that for every 2 × 1 real vector e of unit Euclidean length and for every scalar α in a

neighborhood of zero,

sθ+αe,g
(x) = sθ,g(x) + αeT ṡθ,g(x) + αeTuα,g(x), (2.9)

ṡθ+αe,g
(x) = ṡθ,g(x) + αs̈θ,g(x)e+ αvα,g(x)e, (2.10)

where uα,g(x) is 2× 1, vα,g(x) is 2× 2, and the components of uα,g and vα,g tend to zero in

L2 as α→ 0.

The next theorem shows that the MPHD estimator has an asymptotic normal distribu-

tion.

Theorem 2.3. Suppose that

(i) Model (1.2) is identifiable.

(ii) The conditions in Theorem 2.2 hold.

(iii) The map θ 7→ sθ,g satisfies (2.9) and (2.10) with continuous gradient vector ṡθ,g and

continuous Hessian matrix s̈θ,g in the sense that ‖ṡθn,gn
− ṡθ,g‖ → 0 and ‖s̈θn,gn

−

s̈θ,g‖ → 0 whenever θn → θ and ‖g1/2
n − g1/2‖ → 0 as n→∞.

(iv) < s̈θ,hθ,f

, h
1/2

θ,f
> is invertible.
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Then, with T defined in (2.6) for model (1.2), the asymptotic distribution of n1/2(T (ĥn) −

T (hθ,f )) is N(0,Σ) with variance matrix Σ defined by

Σ =< s̈θ,hθ,f

, h
1/2

θ,f
>−1< ṡθ,hθ,f

, ṡTθ,hθ,f

>< s̈θ,hθ,f

, h
1/2

θ,f
>−1 .

3 Simulation Studies

In this section, we investigate the finite sample performance of the proposed MPHD estimator

and compare it to Maximizing-π type estimator (Song et al., 2010), EM-type estimator (Song

et al., 2010), and Symmetrization estimator (Bordes et al., 2006) under both model (1.2)

and model (1.3).

Model (1.3) that Song et al. (2010) considered does not have a location parameter in the

second component. However, we can equivalently replace f(x) with f(x− µ), where µ ∈ R

is a location parameter. Throughout this section, we will consider this equivalent form of

(1.3). Under this model, after we have π̂ and σ̂, we can simply estimate µ by

µ̂ =

∑n
i=1 (1− Ẑi)Xi∑n
i=1 (1− Ẑi)

, (3.1)

where

Ẑi =
2π̂φσ̂(Xi)

π̂φσ̂(Xi) + ĥ(Xi)
.

We first compare the performance of different estimators under model (1.2). Suppose

(X1, . . . , Xn) are generated from one of the following five cases:

Case I: X ∼ 0.3N(0, 1) + 0.7N(1.5, 1)⇒ (π, µ) = (0.3, 1.5),

Case II: X ∼ 0.3N(0, 1) + 0.7N(3, 1)⇒ (π, µ) = (0.3, 3),

Case III: X ∼ 0.3N(0, 1) + 0.7U(2, 4)⇒ (π, µ) = (0.3, 3),
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Case IV: X ∼ 0.7N(0, 4) + 0.3N(3, 1)⇒ (π, µ) = (0.7, 3),

Case V: X ∼ 0.85N(0, 4) + 0.15N(3, 1)⇒ (π, µ) = (0.85, 3).

Figure 1: Density plots of: (a) Case I; (b) Case II; (c) Case III; (d) Case IV and (e) Case V.

Figure 1 shows the density plots of the five cases. Cases I, II, and III are the models used

by Song et al. (2010) to show the performance of their Maximizing-π type and EM-type

estimators. Case I represents the situation when two components are close and Case II

represents the situation when two components are apart. Cases IV and V are suggested by

Bordes et al. (2006) to show the performance of their semiparametric EM algorithm. In

addition, we also consider the corresponding contaminated models by adding 2% outliers

from U(10, 20) to the above five models.

Tables 1, 2 and 3 report the bias and MSE of the parameter estimates of (π, µ) for the

four methods when n = 100, n = 250 and n = 1000, respectively, based on 200 repetitions.

Tables 4, 5 and 6 report the respective results for n = 100, n = 250 and n = 1000 when the
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data are under 2% contamination from U(10, 20). The best values are highlighted in bold.

From the six tables, we can see that the MPHD estimator has better overall performance

than the Maximizing-π type, the EM-type, and the Symmetrization estimators, especially

when sample size is large. When the sample is not contaminated by outliers, the MPHD esti-

mator and the Symmetrization estimator are very competitive and perform better than other

estimators. When the sample is contaminated by outliers, the MPHD estimator performs

much better and therefore is more robust than the other three methods. We also observe

that when the sample is contaminated by outliers, among the Maximizing-π type, the EM-

type, and the Symmetrization estimators, the EM-type estimator tends to give better mixing

proportion estimates than the other two.

Table 1: Bias (MSE) of point estimates for model (1.2) over 200 repetitions with n = 100

Case TRUE MPHD Maximizing π-type EM-type Symmetrization

I π : 0.3 -0.092(0.030) 0.057(0.011) 0.271(0.078) 0.003(0.009)

µ : 1.5 -0.113(0.118) 0.196(0.070) 0.465(0.239) 0.020(0.026)

II π : 0.3 -0.014(0.003) -0.052(0.005) 0.027(0.003) -0.002(0.003)

µ : 3 -0.000(0.021) -0.123(0.038) 0.020(0.017) -0.009(0.025)

III π : 0.3 -0.046(0.005) -0.108(0.014) -0.045(0.005) 0.001(0.003)

µ : 3 -0.008(0.004) -0.341(0.138) -0.212(0.058) -0.002(0.006)

IV π : 0.7 -0.044(0.015) -0.131(0.025) 0.086(0.010) -0.089(0.028)

µ : 3 0.173(0.247) -0.697(0.659) -0.053(0.177) -0.326(0.465)

V π : 0.85 -0.094(0.041) -0.147(0.030) 0.039(0.003) -0.106(0.024)

µ : 3 0.109(1.145) -1.375(2.298) -0.697(1.136) -0.742(1.184)

Next, we also evaluate how the MPHD estimator performs under model (1.3), where the

variance σ2 is assumed to be unknown, and compare it with other methods using the same

five cases as in Tables 1-6. Tables 7, 8, and 9 report the bias and MSE of the parameter

estimates for n = 100, n = 250 and n = 1000, respectively, when there are no contaminations.

Based on these three tables, we can see that when there are no contaminations, the MPHD
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Table 2: Bias (MSE) of point estimates for model (1.2) over 200 repetitions with n = 250

Case TRUE MPHD Maximizing π-type EM-type Symmetrization

I π : 0.3 -0.090(0.028) 0.028(0.005) 0.269(0.074) -0.080(0.021)

µ : 1.5 -0.110(0.084) 0.162(0.041) 0.472(0.231) -0.107(0.060)

II π : 0.3 -0.009(0.001) -0.058(0.005) 0.034(0.002) -0.001(0.001)

µ : 3 0.007(0.007) -0.118(0.027) 0.057(0.009) -0.004(0.009)

III π : 0.3 -0.041(0.003) -0.071(0.006) -0.016(0.001) -0.001(0.001)

µ : 3 -0.001(0.001) -0.188(0.043) -0.082(0.010) -0.001(0.002)

IV π : 0.7 -0.009(0.003) -0.108(0.018) 0.102(0.012) -0.017(0.009)

µ : 3 0.131(0.067) -0.618(0.501) 0.063(0.069) -0.095(0.159)

V π : 0.85 -0.040(0.014) -0.121(0.021) 0.052(0.003) -0.041(0.011)

µ : 3 0.217(0.444) -1.134(1.503) -0.323(0.349) -0.345(0.625)

estimator and the Symmetrization estimator perform better than the Maximizing-π type

estimator and the EM-type estimator. Tables 10, 11, and 12 report the results when models

are under 2% contamination from U(10, 20) for n = 100, n = 250, and n = 1000, respectively.

From these three tables, we can see that the MPHD estimator performs much better again

than the other three methods.

To see the comparison and difference better, we also plot in Figures 2-4 the results

reported in Tables 6 and 9. Figure 2 contains the MSE of point estimates of µ that are

presented in Table 9 for model (1.3) (σ unknown) and Figures 3 and 4 contain the MSEs

of point estimates of µ and π, respectively, that are presented in Table 6 for model (??) (σ

known), under 2% contamination from U(10, 20). From the three plots, we can see that all

four estimators perform well in cases II and III. The EM-type estimator performs poorly in

case I, and is the worst estimate of µ in cases IV and V when data are contaminated. The

Symmetrization estimator is sensitive to contamination, especially in cases IV and V, no

matter σ is known or not. Comparatively, the Maximizing-π type estimator is more robust,

but it does not perform well in cases IV and V when data are not under contamination.

However, the MPHD estimator performs well in all cases.
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Table 3: Bias (MSE) of point estimates for model (1.2) over 200 repetitions with n = 1000

Case TRUE MPHD Maximizing π-type EM-type Symmetrization

I π : 0.3 -0.009(0.005) -0.020(0.003) 0.263(0.069) -0.024(0.005)

µ : 1.5 0.003(0.016) 0.083(0.017) 0.459(0.213) -0.031(0.015)

II π : 0.3 -0.006(0.001) -0.055(0.004) 0.039(0.002) -0.003(0.001)

µ : 3 0.006(0.002) -0.083(0.016) 0.093(0.010) -0.002(0.002)

III π : 0.3 -0.028(0.001) -0.061(0.005) -0.004(0.001) 0.000(0.001)

µ : 3 -0.003(0.001) -0.153(0.029) -0.044(0.002) -0.002(0.001)

IV π : 0.7 -0.008(0.001) -0.115(0.020) 0.104(0.011) -0.007(0.001)

µ : 3 0.045(0.013) -0.554(0.400) 0.174(0.039) -0.030(0.017)

V π : 0.85 -0.007(0.001) -0.101(0.016) 0.061(0.004) -0.007(0.002)

µ : 3 0.172(0.063) -0.929(1.043) 0.019(0.067) -0.066(0.104)

4 Real Data Application

Example 1(Iris data). We illustrate the application of the new estimation procedure to the

sequential clustering algorithm using the Iris data, which is perhaps one of the best known

data sets in pattern recognition literature. Iris data was first introduced by Fisher (1936)

and is referenced frequently to this day. This data contains four attributes: sepal length

(in cm), sepal width (in cm), petal length (in cm), and petal width (in cm), and there are

3 classes of 50 instances each, where each class refers to a type of Iris plant. One class is

linearly separable from the other two and the latter are not linearly separable from each

other.

Assuming the class indicators are unknown, we want to recover the three clusters in the

data. After applying the search algorithm for centers of clusters by Song et al. (2010),

observation 8 is selected as the center of the first cluster. We adjust all observations by

subtracting observation 8 from each observation. As discussed by Song et al. (2010), the

proportion of observations that belong to a cluster can be considered as the mixing proportion

in the two-component semiparametric mixture model (1.3).
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Table 4: Bias (MSE) of point estimates for model (1.2), under 2% contamination from
U(10, 20), over 200 repetitions with n = 100

Case TRUE MPHD Maximizing π-type EM-type Symmetrization

I π : 0.3 -0.124(0.036) 0.060(0.010) 0.267(0.075) -0.063(0.014)

µ : 1.5 -0.163(0.128) 0.692(0.629) 1.079(1.348) -0.031(0.015)

II π : 0.3 -0.029(0.005) -0.055(0.006) 0.018(0.004) -0.300(0.090)

µ : 3 -0.011(0.046) 0.252(0.136) 0.398(0.228) -3.000(9.000)

III π : 0.3 -0.034(0.003) -0.108(0.015) -0.048(0.005) -0.032(0.004)

µ : 3 -0.011(0.004) -0.034(0.080) 0.104(0.091) -0.014(0.009)

IV π : 0.7 -0.054(0.020) -0.133(0.027) 0.081(0.009) -0.200(0.083)

µ : 3 0.152(0.389) 0.172(0.668) 1.141(2.123) -0.582(0.867)

V π : 0.85 -0.125(0.071) -0.158(0.033) 0.024(0.002) -0.217(0.080)

µ : 3 0.048(1.364) -0.007(1.314) 1.373(4.337) -0.910(1.444)

Principal component analysis shows that the first principal component accounts for

92.46% of the total variability, so it would seem that the Iris data tend to fall within a

one-dimensional subspace of the 4-dimensional sample space. Figure 5 is a histogram of the

first principal component. From the histogram, we can see that the first cluster is separated

from the rest of the data, with observation 8 (first principal component score equals -2.63) be-

ing the center of it. The first principal component loading vector is (0.36,−0.08, 0.86, 0.35),

which implies that the petal length contains most of the information. We apply each of the

four estimation methods discussed above to the first principal component. Note however

that the leading principal components are not necessary to have better clustering informa-

tion than other components. Some cautious are needed when using principal components in

clustering applications.

Similar to Song et al. (2010), in Table 13, we report the estimates of proportion based

on the first principal component. Noting that the true proportion is 1/3, we can see that the

MPHD and the Symmetrization estimators perform better than the other two estimators.

Example 2 (Breast cancer data). Next, we illustrate the application of the new estima-
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Table 5: Bias (MSE) of point estimates for model (1.2), under 2% contamination from
U(10, 20), over 200 repetitions with n = 250

Case TRUE MPHD Maximizing π-type EM-type Symmetrization

I π : 0.3 -0.090(0.026) 0.032(0.006) 0.263(0.071) -0.180(0.043)

µ : 1.5 -0.102(0.085) 0.613(0.434) 1.043(1.146) -0.224(0.081)

II π : 0.3 -0.019(0.001) -0.065(0.006) 0.027(0.002) -0.044(0.003)

µ : 3 -0.009(0.007) 0.213(0.076) 0.415(0.202) -0.044(0.012)

III π : 0.3 -0.021(0.001) -0.073(0.007) -0.015(0.001) -0.028(0.002)

µ : 3 -0.004(0.001) 0.119(0.043) 0.245(0.086) -0.011(0.003)

IV π : 0.7 -0.020(0.005) -0.122(0.021) 0.086(0.009) -0.302(0.164)

µ : 3 0.149(0.096) 0.162(0.296) 1.149(1.594) -0.746(1.137)

V π : 0.85 -0.053(0.025) -0.131(0.023) 0.034(0.002) -0.311(0.140)

µ : 3 0.220(0.513) 0.358(1.000) 1.859(4.597) -1.093(1.785)

tion procedure to multiple hypothesis testing using the breast cancer data from Hedenfalk

et al. (2001), who examined gene expressions in breast cancer tissues from women who were

carriers of the hereditary BRCA1 or BRCA2 gene mutations, predisposing to breast cancer.

The breast cancer data was downloaded from

“http://research.nhgri.nih.gov/microarray/NEJM Supplement/” and contains gene expres-

sion ratios derived from the fluorescent intensity (proportional to the gene expression level)

from a tumor sample divided by the fluorescent intensity from a common reference sample

(MCF-10A cell line). The ratios were normalized (or calibrated) such that the majority of

the gene expression ratios from a pre-selected internal control gene set was around 1.0, but

no log-transformation was used. The data set consists of 3,226 genes on n1 = 7 BRCA1

arrays and n2 = 8 BRCA2 arrays. If any gene had one or more measurement exceeding 20,

then this gene was eliminated (Storey and Tibshirani, 2003). This left 3,170 genes. The

p-values were calculated based on permutation tests (Storey and Tibshirani, 2003). We then

transform the p-values via the probit transformation to z-score, given by zi = Φ−1(1 − pi)

(McLachlan and Wockner, 2010). Figure 6 displays the fitted densities, and Table 14 lists the
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Table 6: Bias (MSE) of point estimates for model (1.2), under 2% contamination from
U(10, 20), over 200 repetitions with n = 1000

Case TRUE MPHD Maximizing π-type EM-type Symmetrization

I π : 0.3 -0.460(0.007) -0.024(0.003) 0.255(0.065) -0.240(0.059)

µ : 1.5 -0.056(0.019) 0.509(0.284) 1.048(1.119) -0.313(0.103)

II π : 0.3 -0.014(0.001) -0.057(0.004) 0.032(0.001) -0.043(0.002)

µ : 3 0.001(0.002) 0.257(0.081) 0.444(0.204) -0.034(0.005)

III π : 0.3 -0.019(0.001) -0.066(0.005) -0.011(0.001) -0.035(0.002)

µ : 3 -0.001(0.001) 0.179(0.044) 0.299(0.096) -0.011(0.001)

IV π : 0.7 -0.019(0.001) -0.128(0.023) 0.089(0.008) -0.311(0.149)

µ : 3 0.067(0.013) 0.203(0.257) 1.252(1.628) -0.829(1.165)

V π : 0.85 -0.019(0.001) -0.112(0.018) 0.045(0.002) -0.347(0.134)

µ : 3 0.177(0.067) 0.574(0.836) 2.275(5.478) -1.466(2.329)

parameter estimates of the four methods discussed in the article. MPHD estimator shows

that among the 3170 genes examined, around 29% genes are differentially expressed between

those tumour types, which is close to the 33% from Storey and Tibshirani (2003) and 32.5%

from Langaas et al. (2005).

Let

τ̂0(zi) = π̂φσ̂(zi)/[π̂φσ̂(zi) + (1− π̂)f̂(zi − µ̂)]

be the classification probability that the ith gene is not differentially expressed. Then we

select all genes with τ̂0(zi) ≤ c to be differentially expressed. The threshold c can be selected

by controlling the false discovery rate (FDR, Benjamini and Hochberg, 1995). Based on

McLachlan et al. (2006), the FDR can be estimated by

F̂DR =
1

Nr

∑
i

τ̂0(zi)I[0,c0]τ̂0(zi),

where Nr =
∑

i I[0,c0]τ̂0(zi) is the total number of found differentially expressed genes and

IA(x) is the indicator function, which is one if x ∈ A and is zero otherwise. Table 15 reports
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Table 7: Bias (MSE) of point estimates for model (1.3) over 200 repetitions with n = 100.

Case TRUE MPHD Maximizing π-type EM-type Symmetrization

I π : 0.3 -0.058(0.021) 0.110(0.021) 0.302(0.097) -0.047(0.015)

σ : 1 0.052(0.045) 0.758(2.207) 0.143(0.042) -0.047(0.071)

µ : 1.5 -0.057(0.082) 0.098(0.095) 0.463(0.242) -0.055(0.061)

II π : 0.3 -0.008(0.004) 0.062(0.017) 0.082(0.014) -0.006(0.004)

σ : 1 0.095(0.041) 1.821(5.180) 0.331(0.252) 0.012(0.056)

µ : 3 -0.014(0.025) -0.341(0.216) 0.081(0.031) -0.032(0.030)

III π : 0.3 -0.051(0.005) 0.024(0.011) -0.042(0.006) -0.009(0.003)

σ : 1 -0.101(0.030) 2.258(6.708) -0.028(0.105) -0.031(0.045)

µ : 3 -0.021(0.005) -0.436(0.223) -0.187(0.049) -0.008(0.008)

IV π : 0.7 -0.014(0.011) -0.060(0.012) 0.114(0.016) -0.054(0.018)

σ : 2 0.101(0.047) 0.195(0.161) 0.120(0.034) 0.039(0.065)

µ : 3 0.100(0.201) -0.537(0.504) 0.019(0.175) -0.320(0.511)

V π : 0.85 -0.028(0.009) -0.076(0.014) 0.042(0.003) -0.159(0.078)

σ : 2 0.098(0.043) 0.179(0.100) -0.006(0.021) -0.118(0.247)

µ : 3 0.275(0.432) -1.080(1.719) -0.622(1.088) -0.845(1.717)

the number of selected differentially expressed genes (Nr) and the estimated false discovery

rate (FDR) for different threshold c values based on MPHD estimate. For comparison, we

also include the results of McLachlan and Wockner (2010), which assumes a two-component

mixture of heterogeneous normals (MLE) for zis.

5 Discussion

In this paper, we proposed a minimum profile Hellinger distance estimator for a class of

semiparametric mixture models and investigated its existence, consistency, and asymptotic

normality. Simulation study shows that the MPHD estimator outperforms existing estima-

tors when data are under contamination, while it performs competitively to other estimators

when there is no contamination.
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Table 8: Bias (MSE) of point estimates for model (1.3) over 200 repetitions with n = 250.

Case TRUE MPHD Maximizing π-type EM-type Symmetrization

I π : 0.3 -0.043(0.014) 0.064(0.006) 0.302(0.093) -0.048(0.015)

σ : 1 0.058(0.021) -0.101(0.075) 0.157(0.032) 0.020(0.033)

µ : 1.5 -0.064(0.051) 0.220(0.059) 0.421(0.186) -0.079(0.049)

II π : 0.3 -0.005(0.001) -0.028(0.003) 0.093(0.011) -0.002(0.001)

σ : 1 0.046(0.013) 0.330(0.912) 0.377(0.191) -0.001(0.021)

µ : 3 -0.005(0.010) -0.129(0.054) 0.121(0.022) -0.017(0.011)

III π : 0.3 -0.037(0.002) -0.043(0.004) 0.005(0.002) 0.002(0.001)

σ : 1 -0.061(0.013) 0.609(1.741) 0.163(0.100) 0.013(0.022)

µ : 3 -0.006(0.001) -0.233(0.085) -0.069(0.009) 0.001(0.002)

IV π : 0.7 -0.008(0.003) -0.068(0.009) 0.121(0.016) -0.014(0.007)

σ : 2 0.036(0.023) 0.023(0.035) 0.142(0.028) 0.009(0.032)

µ : 3 0.108(0.054) -0.437(0.269) 0.153(0.067) -0.070(0.140)

V π : 0.85 -0.014(0.003) -0.076(0.010) 0.060(0.004) -0.076(0.028)

σ : 2 0.093(0.027) 0.069(0.035) 0.046(0.011) 0.027(0.048)

µ : 3 0.115(0.205) -0.912(1.024) -0.222(0.266) -0.573(0.981)

We indicated two fields of application of the model. The first is microarray data analysis,

which is the initial motivation of introducing model (1.2) (see Bordes et al., 2006). The

second is sequential clustering algorithm, which is the initial motivation of introducing model

(1.3) (see Song et al., 2010). Two real data applications are also provided to illustrate the

effectiveness of the proposed methodology.

In this article, we only considered the asymptotic results for model (1.2), since its identi-

fiability property has been established by Bordes et al. (2006). When the first component of

the general model (1.1) has normal distribution, empirical studies demonstrated the success

of proposed MPHD estimator. We conjecture that the asymptotic results of MPHD also

apply to the more general model (1.1) when it is identifiable. However, it requires further

research to find sufficient conditions for the identifiability of model (1.1). In addition, more
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Table 9: Bias (MSE) of point estimates for model (1.3) over 200 repetitions with n = 1000.

Case TRUE MPHD Maximizing π-type EM-type Symmetrization

I π : 0.3 -0.019(0.005) 0.053(0.004) 0.301(0.091) -0.020(0.005)

σ : 1 0.040(0.008) -0.147(0.028) 0.177(0.034) 0.025(0.011)

µ : 1.5 -0.019(0.017) 0.236(0.059) 0.423(0.181) -0.024(0.018)

II π : 0.3 -0.001(0.001) -0.037(0.002) 0.099(0.010) 0.000(0.001)

σ : 1 0.017(0.003) -0.044(0.007) 0.407(0.176) -0.002(0.005)

µ : 3 0.009(0.002) -0.042(0.005) 0.151(0.025) 0.003(0.002)

III π : 0.3 -0.029(0.001) -0.047(0.003) 0.011(0.001) 0.001(0.001)

σ : 1 -0.051(0.005) -0.029(0.007) 0.177(0.044) 0.005(0.004)

µ : 3 -0.003(0.001) -0.122(0.017) -0.031(0.002) -0.001(0.001)

IV π : 0.7 -0.008(0.001) -0.069(0.006) 0.125(0.016) -0.004(0.001)

σ : 2 0.002(0.006) -0.051(0.013) 0.172(0.032) -0.001(0.006)

µ : 3 0.058(0.017) -0.346(0.153) 0.161(0.035) -0.018(0.015)

V π : 0.85 -0.003(0.001) -0.067(0.006) 0.072(0.005) -0.025(0.010)

σ : 2 0.053(0.009) -0.005(0.008) 0.087(0.010) 0.008(0.031)

µ : 3 0.099(0.042) -0.745(0.633) 0.135(0.060) -0.180(0.293)

work remains to be done on the application of MPHD estimation in regression settings such

as mixture of regression models.
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Table 10: Bias (MSE) of point estimates for model (1.3), under 2% contamination from
U(10, 20), over 200 repetitions with n = 100.

Case TRUE MPHD Maximizing π-type EM-type Symmetrization

I π : 0.3 -0.104(0.025) 0.102(0.018) 0.295(0.093) -0.132(0.031)

σ : 1 0.132(0.090) 0.680(1.919) 0.133(0.046) -0.213(0.150)

µ : 1.5 -0.148(0.088) 0.591(0.560) 1.115(1.507) -0.137(0.068)

II π : 0.3 -0.022(0.005) 0.051(0.016) 0.067(0.011) -0.062(0.010)

σ : 1 0.081(0.034) 1.755(5.036) 0.301(0.235) -0.244(0.121)

µ : 3 -0.025(0.036) 0.053(0.180) 0.467(0.323) -0.079(0.051)

III π : 0.3 -0.036(0.003) 0.019(0.012) -0.036(0.005) -0.046(0.006)

σ : 1 -0.061(0.019) 2.229(6.635) 0.025(0.102) -0.201(0.076)

µ : 3 -0.022(0.004) -0.116(0.114) 0.144(0.085) -0.034(0.009)

IV π : 0.7 -0.033(0.017) -0.066(0.013) 0.099(0.013) -0.110(0.033)

σ : 2 0.088(0.058) 0.184(0.147) 0.104(0.032) -0.152(0.110)

µ : 3 0.103(0.262) 0.449(0.928) 1.209(2.263) -0.226(0.354)

V π : 0.85 -0.045(0.023) -0.084(0.014) 0.024(0.002) -0.198(0.106)

σ : 2 0.145(0.082) 0.222(0.135) -0.013(0.027) -0.172(0.199)

µ : 3 0.379(2.637) 0.646(2.505) 1.235(3.351) -0.501(1.258)
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Table 11: Bias (MSE) of point estimates for model (1.3), under 2% contamination from
U(10, 20), over 200 repetitions with n = 250.

Case TRUE MPHD Maximizing π-type EM-type Symmetrization

I π : 0.3 -0.108(0.024) 0.060(0.006) 0.292(0.087) -0.164(0.038)

σ : 1 0.103(0.056) -0.015(0.184) 0.155(0.031) -0.216(0.116)

µ : 1.5 -0.145(0.070) 1.697(0.550) 1.085(1.277) -0.177(0.067)

II π : 0.3 -0.011(0.001) -0.033(0.003) 0.087(0.009) -0.049(0.005)

σ : 1 0.056(0.014) 0.306(0.843) 0.400(0.204) -0.195(0.062)

µ : 3 -0.011(0.012) 0.245(0.115) 0.525(0.316) -0.047(0.016)

III π : 0.3 -0.025(0.001) -0.073(0.008) -0.723(0.002) -0.042(0.003)

σ : 1 -0.057(0.012) 1.125(3.379) 0.081(0.055) -0.203(0.056)

µ : 3 -0.008(0.001) -0.068(0.060) 0.207(0.073) -0.029(0.004)

IV π : 0.7 -0.024(0.004) -0.089(0.012) 0.102(0.011) -0.077(0.013)

σ : 2 0.010(0.018) 0.035(0.041) 0.138(0.028) -0.213(0.078)

µ : 3 0.118(0.064) 0.406(0.435) 1.339(2.125) -0.032(0.084)

V π : 0.85 -0.027(0.006) -0.098(0.014) 0.037(0.002) -0.114(0.038)

σ : 2 0.052(0.029) 0.069(0.034) 0.041(0.010) -0.193(0.099)

µ : 3 0.215(0.228) 0.715(1.406) 1.963(4.889) -0.130(0.460)
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Table 12: Bias (MSE) of point estimates for model (1.3), under 2% contamination from
U(10, 20), over 200 repetitions with n = 1000.

Case TRUE MPHD Maximizing π-type EM-type Symmetrization

I π : 0.3 -0.083(0.015) 0.049(0.003) 0.291(0.085) -0.211(0.051)

σ : 1 0.099(0.026) -0.128(0.022) 0.178(0.033) -0.096(0.050)

µ : 1.5 -0.116(0.039) 0.706(0.515) 1.068(1.162) -0.258(0.085)

II π : 0.3 -0.012(0.001) -0.042(0.002) 0.092(0.009) -0.05(0.003)

σ : 1 0.025(0.003) -0.031(0.007) 0.422(0.189) -0.199(0.045)

µ : 3 -0.008(0.002) 0.299(0.099) 0.537(0.297) -0.047(0.005)

III π : 0.3 -0.021(0.001) -0.053(0.003) 0.004(0.001) -0.042(0.002)

σ : 1 -0.040(0.004) -0.033(0.006) 0.185(0.050) -0.194(0.042)

µ : 3 -0.004(0.001) 0.208(0.049) 0.302(0.099) -0.02(0.001)

IV π : 0.7 -0.017(0.001) -0.079(0.008) 0.110(0.012) -0.059(0.004)

σ : 2 -0.019(0.004) -0.045(0.013) 0.178(0.034) -0.187(0.042)

µ : 3 0.094(0.020) 0.493(0.324) 1.386(2.005) 0.024(0.012)

V π : 0.85 -0.019(0.001) -0.081(0.008) 0.053(0.003) -0.070(0.008)

σ : 2 0.013(0.004) -0.008(0.007) 0.083(0.009) -0.167(0.034)

µ : 3 0.193(0.064) 0.909(1.093) 2.559(6.866) 0.038(0.068)

Table 13: Estimates of first principal component in Iris data.

Variable True Value MPHD Maximizing π-type EM-type Symmetrization

π 0.3000 0.3195 0.3986 0.2896 0.3266

σ 0.2208 0.2457 4.0000 0.1629 0.2055

µ 3.9469 3.9526 2.6240 3.6979 3.9077

Table 14: Parameter estimates for the Breast Cancer data.

Variable MPHD Maximizing π-type EM-type Symmetrization

π 0.7109 0.6456 0.8365 0.5027

σ 1.0272 1 1.1441 1.0773

µ 1.8027 1.6756 1.9366 1.0765
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Figure 2: MSE of point estimates of µ of model (1.3) over 200 repetitions with n = 1000.

Table 15: Estimated FDR for various levels of the threshold c applied to the posterior
probability of nondifferentially expression for the breast cancer data.

MLE MPHD

c Nr F̂DR Nr F̂DR

0.1 143 0.06 179 0.052

0.2 338 0.11 320 0.093

0.3 539 0.16 477 0.144

0.4 743 0.21 624 0.193

0.5 976 0.27 780 0.244
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Figure 3: MSE of point estimates of µ of model (1.2), under 2% contamination from
U(10, 20), over 200 repetitions with n = 1000.
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Figure 4: MSE of point estimates of π of model (1.2), under 2% contamination from
U(10, 20), over 200 repetitions with n = 1000.
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Figure 5: Histogram of the first principal component in the Iris data.

Figure 6: Breast cancer data: plot of fitted two-component mixture model with theoretical
N(0, 1) null and non-null component (weighted respectively by π̂ and (1 − π̂)) imposed on
histogram of z-score.
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Appendix

The proofs of Theorems 2.1, 2.2, and 2.3 are presented in this section.

Proof of Theorem 2.1.

The method of proof is similar to that of Theorem 2.1 of Beran (1977).

(i) Let d(t) =

∥∥∥∥h1/2
t,f(t,hθ,f

) − h
1/2

θ,f

∥∥∥∥. For any sequence {tn : tn ∈ Θ, tn → t as n→∞},

|d2(tn)− d2(t)| =
∣∣∣∣∫ (h

1/2
tn,f(tn,hθ,f

)(x)− h1/2

θ,f
(x))2dx−

∫
(h

1/2
t,f(t,hθ,f

)(x)− h1/2

θ,f
(x))2dx

∣∣∣∣
= 2

∣∣∣∣∫ (h
1/2
tn,f(tn,hθ,f

)(x)− h1/2
t,f(t,hθ,f

)(x))h
1/2

θ,f
(x)dx

∣∣∣∣
≤ 2

∥∥∥∥h1/2
tn,f(tn,hθ,f

) − h
1/2
t,f(t,hθ,f

)

∥∥∥∥ .
Since

∫
htn,f(tn,hθ,f

)(x)dx =
∫
ht,f(t,hθ,f

)(x)dx = 1, we have

∥∥∥∥h1/2
tn,f(tn,hθ,f

) − h
1/2
t,f(t,hθ,f

)

∥∥∥∥2

=

∫ [
h

1/2
tn,f(tn,hθ,f

)(x)− h1/2
t,f(t,hθ,f

)(x)

]2

dx

≤
∫ ∣∣∣ht,f(t,hθ,f

)(x)− htn,f(tn,hθ,f
)(x)

∣∣∣ dx = 2

∫ [
ht,f(t,hθ,f

)(x)− htn,f(tn,hθ,f
)(x)

]+

dx.

Also, [ht,f(t,hθ,f
)(x) − htn,f(tn,hθ,f

)(x)]+ ≤ ht,f(t,hθ,f
)(x), and ht,f(t,hθ,f

)(x) is continuous in t

for every x. Thus, by the Dominated Convergence Theorem, ‖h1/2
tn,f(tn,hθ,f

)−h
1/2
t,f(t,hθ,f

)‖ → 0

as n→∞. So, d(tn)→ d(t) as n→∞, i.e., d is continuous on Θ and achieves a minimum

for t ∈ Θ.

(ii) By assumption, hθ,f is identifiable. Immediately, we have T (hθ,f ) = θ uniquely.

(iii) Let dn(t) = ‖h1/2
t,f(t,hn) − h

1/2
n ‖ and d(t) = ‖h1/2

t,f(t,hθ,f
) − h

1/2

θ,f
‖. By Minkowski’s
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inequality,

|dn(t)− d(t)| =

∣∣∣∣∣
[∫

(h
1/2
t,f(t,hn)(x)− h1/2

n (x))2dx

]1/2

−
[∫

(h
1/2
t,f(t,hθ,f

)(x)− h1/2

θ,f
(x))2dx

]1/2
∣∣∣∣∣

≤

{∫ [
h

1/2
t,f(t,hn)(x)− h1/2

n (x)− h1/2
t,f(t,hθ,f

)(x) + h
1/2

θ,f
(x)

]2

dx

}1/2

≤

{
2

∫ [
h

1/2
t,f(t,hn)(x)− h1/2

t,f(t,hθ,f
)(x)

]2

dx+ 2

∫ [
h1/2
n (x)− h1/2

θ,f
(x)
]2

dx

}1/2

Consequently,

sup
t∈Θ
|dn(t)−d(t)| ≤

{
2 sup
t∈Θ

∫ [
h

1/2
t,f(t,hn)(x)− h1/2

t,f(t,hθ,f
)(x)

]2

dx+ 2

∫ [
h1/2
n (x)− h1/2

θ,f
(x)
]2

dx

}1/2

,

(5.1)

and the right hand side of (5.1) goes to zero as n → ∞ by assumptions. Then with θ0 =

T (hθ,f ) and θn = T (hn), we have dn(θ0)→ d(θ0) and dn(θn)− d(θn)→ 0 as n→∞.

If θn 9 θ0, then there exists a subsequence {θm} ⊆ {θn} such that θm → θ′ 6= θ0,

implying that θ′ ∈ Θ and d(θm) → d(θ′) by the continuity of d. From the above result,

we have dm(θm)− dm(θ0)→ d(θ′)− d(θ0). By the definition of θm, dm(θm)− dm(θ0) ≤ 0,

and therefore, d(θ′)− d(θ0) ≤ 0. However, by the definition of θ0 and the uniqueness of it,

d(θ′) > d(θ0). This is a contradiction, and therefore θn → θ0.

Proof of Theorem 2.2.

Let Hn denote the empirical cdf of X1, X2, ..., Xn, which are assumed i.i.d. with density hθ,f

and cdf H. Let

h̃n(x) = (cnsn)−1

∫
K((cnsn)−1(x− y))dH(y). (5.2)

Let Bn(x) = n1/2[Hn(x)−H(x)], then

sup
x
|ĥn(x)− h̃n(x)| = sup

x
n−1/2(cnsn)−1

∣∣∣∣∫ K((cnsn)−1(x− y))dBn(y)

∣∣∣∣
≤ n−1/2(cnsn)−1 sup

x
|Bn(x)|

∫
|K ′(x)|dx p→ 0. (5.3)
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Suppose [a, b] is an interval that contains the support of K , then

sup
x
|h̃n(x)− hθ,f (x)| = sup

x

∣∣∣∣∫ K(t)hθ,f (x− cnsnt)dt− hθ,f (x)

∣∣∣∣
= sup

x

∣∣∣∣hθ,f (x− cnsnξ)∫ K(t)dt− hθ,f (x)

∣∣∣∣ , with ξ ∈ [a, b]

≤ sup
x

sup
t∈[a,b]

|hθ,f (x− cnsnt)− hθ,f (x)| p→ 0 (5.4)

From (5.3) and (5.4), we have

sup
x
|ĥn(x)− hθ,f (x)| p→ 0.

From an argument similar to the proof of Theorem 2.1, ‖ĥ1/2
n (x) − h

1/2

θ,f
(x)‖ p→ 0 and

supt∈Θ ‖ht,f(t,ĥn) − ht,f(t,hθ,f
)‖ → 0 as n → ∞. By Theorem 2.1, T (ĥn)

p→ T (hθ,f ) as

n→∞.

Proof of Theorem 2.3.

Let

D(θ, g) =

∫
ṡθ,g(x)g1/2(x)dx =< ṡθ,g, g

1/2 >, (5.5)

and it follows that D(T (hθ,f ), hθ,f ) = 0, D(T (ĥn), ĥn) = 0, and therefore

0 = D(T (ĥn), ĥn)−D(T (hθ,f ), hθ,f )

= [D(T (ĥn), ĥn)−D(T (hθ,f ), ĥn)] + [D(T (hθ,f ), ĥn)−D(T (hθ,f ), hθ,f )].

Since the map θ 7→ sθ,g satisfies (2.9) and (2.10), D(θ, g) is differentiable in θ with derivative

Ḋ(θ, g) =< s̈θ,g, g
1/2 >
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that is continuous in θ. Then,

D(T (ĥn), ĥn)−D(T (hθ,f ), ĥn) = (T (ĥn)− T (hθ,f ))Ḋ(T (hθ,f ), ĥn) + op(T (ĥn)− T (hθ,f )).

With θ = T (hθ,f ),

D(T (hθ,f ), ĥn)−D(T (hθ,f ), hθ,f ) =< ṡθ,ĥn , ĥ
1/2
n > − < ṡθ,hθ,f

, h
1/2

θ,f
>

=2 < ṡθ,hθ,f

, ĥ1/2
n − h

1/2

θ,f
> + < ṡθ,ĥn − ṡθ,hθ,f

, ĥ1/2
n − h

1/2

θ,f
> + < ṡθ,ĥn , h

1/2

θ,f
> − < ĥ1/2

n , ṡθ,hθ,f

>

=2 < ṡθ,hθ,f

, ĥ1/2
n − h

1/2

θ,f
> +[< ṡθ,ĥn , h

1/2

θ,f
> − < ĥ1/2

n , ṡθ,hθ,f

>]

+O(‖ṡθ,ĥn − ṡθ,hθ,f

‖ · ‖ĥ1/2
n − h

1/2

θ,f
‖)

=2 < ṡθ,hθ,f

, ĥ1/2
n − h

1/2

θ,f
> +op(‖ĥ1/2

n − h
1/2

θ,f
‖). (5.6)

Applying the algebraic identity

b1/2 − a1/2 = (b− a)/(2a1/2)− (b− a)2/[2a1/2(b1/2 + a1/2)2],

we have that

n1/2 < ṡθ,hθ,f

, ĥ1/2
n − h

1/2

θ,f
> = n1/2

∫
ṡθ,hθ,f

(x)
ĥn(x)− hθ,f (x)

2h
1/2

θ,f
(x)

dx+Rn

= n1/2

∫
ṡθ,hθ,f

(x)
ĥn(x)

2h
1/2

θ,f
(x)

dx+Rn

= n1/2 · 1

n

n∑
i=1

ṡθ,hθ,f

(Xi)

2h
1/2

θ,f
(Xi)

+ op(1) +Rn

with |Rn| ≤ n1/2
∫ |ṡθ,h

θ,f

(x)|

2h
3/2

θ,f
(x)

[ĥn(x) − hθ,f (x)]2dx
p→ 0. Since < s̈θ,hθ,f

, h
1/2

θ,f
> is assumed
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to be invertible, then

T (ĥn)− T (hθ,f ) = −
[
< s̈θ,hθ,f

, h
1/2

θ,f
>−1 +op(1)

] 1

n

n∑
i=1

ṡθ,hθ,f

(Xi)

h
1/2

θ,f
(Xi)

+ op(n
−1/2)

and therefore, the asymptotic distribution of n1/2(T (ĥn)−T (hθ,f )) is N(0,Σ) with variance

matrix Σ defined by

Σ =< s̈θ,hθ,f

, h
1/2

θ,f
>−1< ṡθ,hθ,f

, ṡTθ,hθ,f

>< s̈θ,hθ,f

, h
1/2

θ,f
>−1 .
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