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Abstract

In many cases the optimal open-loop policy to influence agents who solve dynamic
problems is time-inconsistent. We show how to construct a time-consistent open-loop pol-
icy rule. We also consider an additional restriction under which the time-consistent open-
loop policy is stationary. We use examples to illustrate the properties of these tax rules.
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1 Introduction

When non-strategic agents with rational expectations solve dynamic optimization problems,
and a government (or some other “leader”) attempts to influence the agents’ decisions, the
government’s optimal program is often time-inconsistent. However, the possibility that the
optimal program is time-consistent is more general than is widely believed. We extend results
in Xie (1997) by developing a simple means of testing whether a given open-loop policy rule,
such as a linear income tax, is time-consistent. This approach also identifies the (possibly
non-linear) form of the policy that ensures time-consistency, for a wide class of utility and
production functions. Alternatively, given a particular functional form for the government’s
policy rule, we can select utility and production functions for which that policy rule is time-
consistent. The condition for consistency of the tax policies is intuitive: fiteeteof the tax on

the agent’s present discounted value of future utility must be independent of the level of capital
(wealth). We then identify atationarytime-consistent policy rule that is subgame perfect.

2 The model

Our model is standard in the literature on optimal taxation in continuous time (see Xie (1997)
and Chamley (1986)). A representative agent chooses a consumption trajgttanyorder

to maximize the present discounted value of utility. The agent’s wealth (capital stokik) is
which yields the instantaneous outpik(t)). The tax rule isg(k,t), so after-tax income is
f(k(t)) — g(k,t) and investment is"glt( = f(k(t)) — g(k,t) — c(t). The government pays for the
flow of a public goodG(t), using taxes, without borrowing, $6(t) = g(k,t). The utility of
consumption igJ(c) and the utility derived from the public good Y§G); both functions are
concave. The agent’s optimization problem is

maxe, [ € [U(c)) + V(G()] dt
0

subject to‘(‘j—'t‘ = f(k(t)) — g(k, t) — c(t), with kg, g(k,t), G(t) given.

(1)

The agent behaves asafjgregatetax collection, and thus the provision of the public good, is
given. In view of the (assumed) separability of the instantaneoudipay@®can ignore the term
V(G(t)) in studying the agent’s control problem.

We adopt the following assumptions.

Assumption 1 The levels of consumption and the provision of the public good in the open-loop
equilibrium are strictly positive.



Assumption 2 The feasible set of open-loop policy rules does not enable the government to
achieve the first best outcome.

Assumption 3 The government’s tax policy is multiplicatively separablé, t = b(k)r(t) for
some functions(®) andr(t).

Assumption 1 rules out uninteresting complications caused by corner solutions. Assumption
2 states that the tax rule does not give the government enough leverage to achieve the first best
outcome, and thus eliminates a trivial reason for time consistency. This assumption rules out a
poll tax. Assumption 3 allows us to concentrate on interesting special cases: a linear income
tax (b(k) = f(k)); a linear capital taxk{(k) = k); and a nonlinear income or capital tdxK) + K,
b(k) # f(k)). (A subsequent footnote explains how our major result changes when we drop
Assumption 3.) Fixing the functioh(k) does not restrict the government’s ability to raise tax
revenue for a given level &, because the government is able to chadte

We use the following:

Definition 1 Conditional on fixed k), a tax policy i§k)z(t) is time consistent if and only if the
trajectoryr(t) that is optimal at time & 0 remains optimal at every* 0 along the equilibrium
trajectory.

If the agent believes that the government will adhere to the announced p@kt) and
behaves optimally given this belief, then the government has no incentive to deviate from the
time dependent part of the policy(t).

The qualifier “conditional on fixedb(k)” in Definition 1 means that the policy is “condi-
tionally time-consistent”. Most discussions of time consistency implicitly contain this kind of
conditionality. For example, Xie finds the time-consistent policy conditional on the use of a
linear income taxk(k) = f(k)). Since a major point of our paper is to show that we can always
find a time-consistent policy by the appropriate choicéo(@, it is important that we make
this conditionality explicit. Hereafter we use the terms “time-consistent” and “conditionally
time-consistent” interchangeably. A time consistent policy is not necessarily subgame perfect.

3 The time-consistent tax policy

We assume that the necessary conditions to the agent’s control problem provide a solution to
that problem. Given the concavity &f(c), the necessary conditions areffsuient if f(k) —

7(t)b(k) is concave. The function(t)b(k) is endogenous; we can check concavity after finding

a candidate solution.



Ignoring the functiorV(G(t)), we write the current value of the agent’s p#&yas the func-
tion J(k, t). This function solves the Bellman equation (where subscripts denote partial deriva-
tives):
pI(k, 1) = maxu(c) + Ji(k, )(f (k) — b(k)7(t) — ©)} + J(k, 1). 2)

The first order condition to equation (2) implies that optimal consumption at a point in time
depends only on the shadow value of capiigk, t).
The standard approach to finding the government’s open loop tax policy is to maximize

f e'[U(c(t)) + V(G(t))]dt with respect to the tax policyr(t)}i=y’, imposing the necessary con-
0

ditions to the agent’s optimization problem ¢1)One necessary condition is the equation of
motion for the costate variable for the stkteDenote this costate variable g&). Assuming
differentiability of the value function, we havg = g. Xie uses the following:

Definition 2 The costate variable g is “uncontrollable” if and only if its value at time t is
independent of current and future government actigs)}o ;.

Since consumption at a point in time depends only on the costate variable, consumption is
uncontrollable if and only if the costate variable is uncontrollable.

Xie’s Proposition 1 states that the open-loop linear incomegéx 1) = f(k)7(t)) is time
consistent only ifg is uncontrollable. We have a slightly more general result. (The Appendix
contains proofs that are not included in the text.)

Lemma 1 Suppose that Assumptions 1-3 hold. The open-loop tax policy is time consistent if
and only if consumption is uncontrollable.

Using this lemma we obtain:

Proposition 1 Under Assumptions 1-3, the government’s open-loop policy is time-consistent
if and only if the agent’s value function is additively separable in the state variable and time:
J(k,t) = W(k) + Z(t) for some functions \(K) and Zt).

Proposition 1 implies that time consistency of an open-loop policy requires the fub¢kioto
be proportional to the reciprocal of the shadow value of capital:

Corollary 1 Suppose that the agent’s value function is additively separable in the state vari-
able and time. Then there exists a constastch that

Wi(K)b(K) = a. 3)

1Simaan and Cruz (1973) were among the first to use this method of solving Stackelfenential games.
In addition to the examples cited in Xie (1997), applications include Oudiz and Sachs (1984), Miller and Salmon
(1985), and (Long and Shimomura 2000).




Proof. ¢From Proposition 1, the optimal consumption rule is a function onky &ub-
stituting this optimal rulec = c*(k), into equation (2) and using(k,t) = W(K) + Z(t) from
Proposition 1, we write the agent’s maximized Bellman equation as

p (W(K) + Z(1)) = U(c(K) + Wh(K) [ (K) — 7(t)b(K) — c*(K)] + Z(1). (4)

The additive separability od(k,t) requires that the right side of equation (4) must also be
additively separable for any admissibté&). This requirement implies equation (3) with
equal to a constantm

The left side of equation (4) is the present discounted value of future utility, expressed as
an annuity with discount rate. The reduction in the value of this annuity (i.e., the reduction
in the value of the agent’s program), caused by the taWj (&) [r(t)b(k)]. Equation (3) means
that this dfect of the tax is independent of the valuekofThe agent views a time-consistent tax
like a lump sum reduction in the dollar value of future utility, equaflyfgﬁ.

The previous results lead to the following necessary afiicgnt condition for time con-
sistency.

Proposition 2 Under Assumptions 1-3, the government’s open-loop policy is time-consistent if

and only if
AP~ fk(k) _
U ([—bk ® b(k) + f(Kk)|b(k) = a. (5)
The proof of this proposition shows that the agent’s consumption rule is
) p- fk(k))
c'(K) = [——=—|b(k) + f(K). 6
(k) (bk(k) (k) + £(K) (6)

We refer to equation (5) as tle®nsistency constraingince the government’s optimal pro-
gram is time-consistent if and only if it holdsProposition 2 extends Xie’s Proposition 3 in two
respects. First, it shows that the possibility of time consistency is very general. Given primitive
functionsU and f, we can construdt to obtain a time-consistent tax. Xie restrio(®) = f(k),
i.e. he assumes that the government must use a linear income tax. Second, our Proposition 2 is
a necessary and Sicient condition, rather than only afigient condition.

Given the utility and production functions, the consistency constraint is an ordinéey-di
ential equation (ODE). The solution to this ODE depends on two parametars] a constant
of integration that determines the boundary condition to equation (5). Denote this constant

2We mentioned that Assumption 3 is unnecessarily restrictive. Additive separability of the value function only
requiresg(k, t) = x(k) + b(k)r(t) for some functiorx(k) (rather tharg(k, t) = b(k)r(t) as Assumption 3 maintains).
We can repeat the steps used to derive equation (5) to obtain the consistency constraint for the more general tax
rule.



of integration byy. The set of time-consistent rules is the two-parameter family of functions
b(k; @, y); when there is no ambiguity, we suppress the argumeatsly.

4 Stationarity

If the functionb(k) satisfies the time consistency constraint, then for valuésatdng the opti-

mal trajectorythe government has no incentive to revise the optimal time dependent component
of the taxz(t) announced at time 0. If for some reason the stateparts from the equilibrium

path, the government might want to change the original open-loop pdlicyin that case, the
optimal open-loop policy is not subgame perfect.

However, if for all initial conditions the optimal function(t) announced at time O is a
constant that is independent of the initial condition, (i.e., if the policy is stationary) then the
policy is obviously subgame perfect. The following proposition provides a restriction involving
the primitive functionsU, V, and f and the tax policyb that is necessary and f&gient for
the optimalr to be a constant. We assume that the steady state is independent of the initial
condition.

Proposition 3 Suppose that (k) satisfies equatiofb) (so that the tax is time consistent) and
that c= c*(k) satisfies equatio(6) (so that the agent behaves optimally). The government takes
b(k) and ¢ (k) as given and chooses the time dependent component of thé)taxr order to
solve .
maX.qy [ € (U(c* (k) + V(rb(k))) dt -
0

subject toﬂ—'t‘ = f(k(t)) — r(t)b(k) — c*(k), ko given.
The optimal trajectoryt* (t) is a constant (independent of the initial condition) if and only if
there exists a such that the following equation holds identically in k:

w+nV =(f"+nU" = (- ' +7b) bV’ (8)
where b
U/ / ,
n——(UNb+f). 9

We refer to equation (8) as the stationarity constraint.

We showed above that given the primitive functidhand f, the set of time-consistent pol-
icy rulesb(k) is a two-parameter family of functions that depenchaandy. If the government
is required to use a time-consistent policy, then at time O it is able to choasdy and the
open-loop trajectory(t) to maximize its payfi. If we also impose the requirement that the



policy is stationary, then the policy rul&k) must satisfy equation (8). In general, there is no
guarantee that there exist functido@&) andc*(k) that satisfy equations (5), (6), and (8). The
next section uses examples to show that such functions exist in some cases.

It might appear that when imposing the stationarity constraint we obtain an additional de-
gree of freedom, the parameter That is, it might appear that in selecting a stationary time-
consistent policy the government is able to choose three parameteas)dr. This interpreta-
tion is incorrect. Without loss of generality, we can normalize by settiagl. The government
has only two free parametersandy.

5 Examples with logarithmic utility

We use an example with logarithmic utility to illustrate the relation between the time-consistent
policy and the production functiof(k). We then show how the stationarity requirement reduces
the set of time-consistent policies.
ForU(c) = Inc, equation (5) can be written
db P+

ak =P

(10)

Equation (10) illustrates that (given the utility function) we can treat either the production func-
tion f(k) or the tax functiorb(k) as primitive; using (10) to solve for the other function, we
obtain a time-consistent tax.

Substituting equation (10) into equation (6) we obtain

c:—(af—b)+f:g. (11)

Thus, under logarithmic utility the use of a time consistent tax impliesc.‘cle-ag.3 The govern-
ment chooses the constant The relation betweeh andc does not depend on the production
function f(k). The time-consistency constraint does not restrict the ratio between public and
private expenditures, since the government is able to choose the funftjion

Suppose that we take the production function as prinfitared moreover we assume that

1-

3In the case wherd(c) = i_—o_ 0 < o < 1, we can show that if the tax rule satisfies the consistency condition,

then the consumption rule is= o~ =b>. This result reduces to equation (11)@s— 1 (i.e. for logarithmic
utility). Suppose, in addition, th&t(k) = k’. In the case where = o it is straightforward to show tha(k) = f (k)
satisfies the consistency condition, as Xie’s Proposition 2 state®. #orwe can solve the consistency condition
numerically to obtain time-consistent tax rules.

4As noted above, we can also take the tax function as primitive. An earlier version of this paper shows that the
linear income taxlf(k) = f(k)) is time consistent if and only if the production function tfrse; the linear capital
tax (b(k) = K) is time consistent if and only if (k) = ku Ink + ky, with x = 2% anda > %}

@



production is linear:f(k) = Ak, A > 0. In this case, inspection of equation (10) confirms that
the dfine tax is a particular solution; i.e. the linear tax is time consistent. The linear wealth tax
in this case i = apK, and the corresponding income tavbis: £ Ak. The general solution to

the ODE gived(k) as an implicit function ok. We can invert that implicit function to writle

as an explicit function olb:

k=2 yba. (12)
ap

Any tax rule that solves this implicit equation is time consistent. Some of these taxes may
give the regulator a higher pafahan the linear tax. Provided thaft) > 0, convexity ofb(k)
insures that the necessary conditions to the agent’s problem féi@esu to give an optimum.
Convexity ofb(k) holds if and only ify < 0.°

We now consider the stationary time-consistent policy for the case vih@e= Inc and
V(G) = In(G) = In(b). The last equality uses the budget constr@int vb(k) and the normal-
izationt = 1. Using the definition of;, (equation (9) and equation (11) we have

db d d
Cax df @& ox

b dk  «a

o
—_

=

Using this expression and equation (11), equation (8) simplifies to

db_dbc-b _dbb-ob _dbl-a 13
dk dk ac dk ab dk «
Sinceg—ﬁ # 0 equation (13) implies that = %

For logarithmic utility, the time-consistent stationary tax is a solution to equation (10) with
a = % The stationarity constraint removes one degree of freedom from the government, by
pinning down the value ak. The government still has one degree of freedom: it chooses the
boundary condition to the ODE (10); i.e., the government chooses the parameter

We noted that the time consistency constraint does not restrict the equilibrium ratio of public
and private expenditures. The stationarity constraint, however, implies that consumption of the
private good is twice the level of consumption of the public good. This result does not depend on
the production function or on the particular time-consistent stationary tax that the government
uses.

If we specialize further by choosing linear productiditk) = Ak, the stationary time-
consistent tax is a solution to equation (12) with- % Suppose, in addition, we assume that
government uses affifane tax, i.e. a tax of the fortn = Sk+ ¢. Substituting this expression into

SFory = 0, b(K) is obviously monotonically increasing. Fer< 0, b(k) is monotonically increasing for ak
if A< p. If y <0 and in additionA > p, thenb(K) is increasing provided thtis less than a critical value. This
critical value can easily be obtained from equation (12).



equation (10) and equating dieients of powers ok, we conclude thap = 0 and8 = 5. Since
income equald (k) = Ak, the unique fiine income tax is;. This result reproduces equation
(23) in Xie. The result also shows (for logarithmic utility and linear production) that &inea
tax is linear: it never involves a lump sum taubsidy.
The linear tax does not enable the government to achieve the first best outcome. Under the
linear taxc = 2b = pk, and under the first best outcorne- b = §k. Consequently we cannot
rule out the possibility that the government has a higher fialyd uses one of the nonlinear
taxes that solve equation (12) with= %

6 Appendix: proofs

Proof. (Lemma 1) The argument that establishes Xie's Proposition 1 also demonstrates
the “only if” part of the claim in the more general case whgfe t) = b(k)z(t), e.g. where
b(k) # f(k); we do not repeat the argument here. To establish the “if” part, note that in the
case where consumption is not controllable, the government has a control problem with one
state variablek, the initial value of which is predetermined. (When= q(k), i.e., whenq(t)
is independent of(s), s > t, the initial value ofg is not free.) The solution to this kind of
control problem satisfies the dynamic programming Principle of Optimality, and is thus time
consistent.m

The proof of Proposition 1 requires an intermediate result. A perturbation of a “reference”
tax policy is:

7(t) = 7°(t) + ah(t)

wheret*(t) is the reference tax policy)(t) is a continuously dierentiable function of time
which represents a perturbation, aads a scaling parameter for perturbation. Wrees- 0

we obtain the reference policy. The value function of the consumer is now parameteriaed by
given the perturbation functiom(t) and the policy functiorr* (t). We write this value function
asJ(k, {1(9)}2;) to emphasize that the agent’s p#iydepends on the future trajectory of taxes.
For a fixed tax trajectoryr(s)}2; the only exogenous time dependent change arises from the
change in the minimum value of the time dumray; t. Thus,J(k;, {1(9}20) = I(ki, t). In other
words, the second argument in the functidk,t) “summarizes” the fect, on the agent’s
paydt, of the future sequence of tax¢s(s)}z;. Using this notation we obtain:

Lemma 2 Suppose Assumptions 1-3 hold. The open-loop optimal tax policy is time consistent
if and only if .
9 03(k (T(9}3) _
da ok B

0 (14)



for all admissibler* (t) and R(t).

Proof. By the first order condition to the Bellman equation (2), consumption equals
U~1(Jy), i.e. consumption depends only on the shadow value of capital. By the identity
J(k, {7(9)}2,) = J(k 1), the shadow value of the staté, (and thus consumption) is uncon-
trollable if and only if equation (14) holds for all admissihte(t) and h(t). By lemma 1,
equation (14) is therefore necessary anicient for time consistencym

Proof.  (Proposition 1) We first establish the “only if” part of the proposition. From
lemma 2, time consistency implies equation (14), which implies %5\4‘;((3)—}3‘) = (k) for
some functiony(-). Taking the integral of both sides,

J= f k Y(K)dk + Z(t) (15)

whereZ(t) is the constant of integration. The identiik, {r(9)}2,) = J(k.t) completes the
demonstration.

To establish the “if” part of the proposition we can simply note that equation (15) implies
equation (14), and then invoke lemmag.

Proof. (Proposition 2) The proof of the sfiicient part is an adaptation of Xie (Proposition
3 on page 419). Suppose that equation (5) is satisfied. flices to show that under this
condition, the consumption path is independent of the time dependent part of tax policy.

Consider the consumption plan given by equation (6). We can verify that this consumption
plan satisfies the first order conditions for the agent’s control problem and the transversality
condition. (This verification uses the same steps as Xie’s proof.) Moreover this consumption
planis independent of the time dependent part of tax palt{ty,and therefore is uncontrollable.

The necessary part follows from Corollary 1. Using (3) in (4) we obtain an equation for
W(K)

pW(K) = U(c*(K)) + Wi(K) [(K) - c*(K)] . (16)

Equations (3) and (16) hold identically. Weff@irentiate them with respect kao obtain

Wkkb + kak =0 (17)
pPWe = Wi (f - c) + Wik (18)

Using (17) and (18) we can solve for the optimal consumptionei{ld to obtain equation
(6). Finally, using the first order conditidd’(c) = W and equations (3) and (6) we obtain
equation (5).m



We use a lemma to establish Proposition 3. Denbfiek;) as the open-loop representation
of the solution to the problem (7), and denaté(k) as the feedback representation of the
solution to this problem. We assume that the steady state to this prdiffersindependent of
the initial condition. The proof of Proposition 3 uses the following lemma:

Lemma 3 Given a time-consistent policy rul¢k), the optimal°(t), is a constant (independent
of the initial condition) for all initial conditions k# k**if and only if the feedback form of the
policy, (k) is independent of k.

Proof. Taking as given the parametatsandy, equations (6) and (5) determine the
functionsc(k; @, y) andb(k; @, y). Given these functions, the government solves an autonomous
control problem. The value of its program is a functi®(k; a,y) that satisfies the Bellman
equation

pS(K) = max{U(c(K)) + V(rb(k)) + Si(k) (f (k) — c(k) — 7b(k))} - (19)

The solution to the government’s stationary control problem is a policy«iil&). Using
this function and the agent’s control rule, we can solve the equatio%ftor obtaink®(t; ko),
the equilibrium value of the state at timhe (“€” denotes equilibrium) Substitutinkf(t; ko) into
the government's policy rule, we obtain the open-loop representation of the pdlitky) =
7 (K&(t; ko). Sinceky # kS8, %e # 0 along the optimal trajectory. Thereforé(t, ko) is a
constant if and only it "°(k) is independent of. m

Proof. (Proposition 3) In view of Lemma 3 we need to show that the feedback form of
the government’s control rule/°(k) is independent of. We begin with some notation, for the
purpose of simplifying the derivations. Use equation (6) to write

p—F
f-c=- . 2
C ™ b (20)
Define q .
_d(p-F
n= dk( ™ b). (21)
With this notation we have
f'—c =-n. (22)

Differentiating both sides of equation (5) with respedt,tosing the definition (21), implies
Ub +U”[n+ f]b=0.

Rearranging this expression gives equation (9).

10



We now proceed with the main argument. Using equation (20), we rewrite the government
problem (19) as
p—F
b/

pS:max{U+V—S’[ +7

b} . (23)

The first order condition to (23) is
V'(th(k)) = S'(K). (24)

Equation (24) implicitly defines the optimal tax rulék). Substituting this tax rule into equation
(24) and taking the derivative of both sides, we obtain

S” = V" (tb + br)). (25)

Substituting the optimal tax rukgk) into (23) we obtain the maximized Bellman equation.
We take the derivative with respect koof both sides of the maximized Bellman equation to
obtain ,

pS' =Uc+V1b -S'(n+1b)-5" (p ;,f b+ rb) : (26)

We then use equations (22) to eliminateand equations (24) and (25) to elimin&eandS”

from equation (26). The resulting equation and the identity) = 0 are both satisfied if and
only if equation (8) holds identically ik. =

11
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