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Abstract

In many cases the optimal open-loop policy to influence agents who solve dynamic

problems is time-inconsistent. We show how to construct a time-consistent open-loop pol-

icy rule. We also consider an additional restriction under which the time-consistent open-

loop policy is stationary. We use examples to illustrate the properties of these tax rules.
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1 Introduction

When non-strategic agents with rational expectations solve dynamic optimization problems,

and a government (or some other “leader”) attempts to influence the agents’ decisions, the

government’s optimal program is often time-inconsistent. However, the possibility that the

optimal program is time-consistent is more general than is widely believed. We extend results

in Xie (1997) by developing a simple means of testing whether a given open-loop policy rule,

such as a linear income tax, is time-consistent. This approach also identifies the (possibly

non-linear) form of the policy that ensures time-consistency, for a wide class of utility and

production functions. Alternatively, given a particular functional form for the government’s

policy rule, we can select utility and production functions for which that policy rule is time-

consistent. The condition for consistency of the tax policies is intuitive: the effect of the tax on

the agent’s present discounted value of future utility must be independent of the level of capital

(wealth). We then identify astationarytime-consistent policy rule that is subgame perfect.

2 The model

Our model is standard in the literature on optimal taxation in continuous time (see Xie (1997)

and Chamley (1986)). A representative agent chooses a consumption trajectoryc(t) in order

to maximize the present discounted value of utility. The agent’s wealth (capital stock) isk(t)

which yields the instantaneous outputf (k(t)). The tax rule isg(k, t), so after-tax income is

f (k(t)) − g(k, t) and investment isdk
dt = f (k(t)) − g(k, t) − c(t). The government pays for the

flow of a public good,G(t), using taxes, without borrowing, soG(t) = g(k, t). The utility of

consumption isU(c) and the utility derived from the public good isV(G); both functions are

concave. The agent’s optimization problem is

max{c(t)}

∞∫
0

e−ρt [U(c(t)) + V(G(t))] dt

subject todk
dt = f (k(t)) − g(k, t) − c(t), with k0, g(k, t), G(t) given.

(1)

The agent behaves as ifaggregatetax collection, and thus the provision of the public good, is

given. In view of the (assumed) separability of the instantaneous payoff, we can ignore the term

V(G(t)) in studying the agent’s control problem.

We adopt the following assumptions.

Assumption 1 The levels of consumption and the provision of the public good in the open-loop

equilibrium are strictly positive.
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Assumption 2 The feasible set of open-loop policy rules does not enable the government to

achieve the first best outcome.

Assumption 3 The government’s tax policy is multiplicatively separable: g(k, t) = b(k)τ(t) for

some functions b(k) andτ(t).

Assumption 1 rules out uninteresting complications caused by corner solutions. Assumption

2 states that the tax rule does not give the government enough leverage to achieve the first best

outcome, and thus eliminates a trivial reason for time consistency. This assumption rules out a

poll tax. Assumption 3 allows us to concentrate on interesting special cases: a linear income

tax (b(k) = f (k)); a linear capital tax (b(k) = k); and a nonlinear income or capital tax (b(k) , k,

b(k) , f (k)). (A subsequent footnote explains how our major result changes when we drop

Assumption 3.) Fixing the functionb(k) does not restrict the government’s ability to raise tax

revenue for a given level ofk, because the government is able to chooseτ(t).

We use the following:

Definition 1 Conditional on fixed b(k), a tax policy b(k)τ(t) is time consistent if and only if the

trajectoryτ(t) that is optimal at time t= 0 remains optimal at every t≥ 0 along the equilibrium

trajectory.

If the agent believes that the government will adhere to the announced policyb(k)τ(t) and

behaves optimally given this belief, then the government has no incentive to deviate from the

time dependent part of the policy,τ(t).

The qualifier “conditional on fixedb(k)” in Definition 1 means that the policy is “condi-

tionally time-consistent”. Most discussions of time consistency implicitly contain this kind of

conditionality. For example, Xie finds the time-consistent policy conditional on the use of a

linear income tax (b(k) = f (k)). Since a major point of our paper is to show that we can always

find a time-consistent policy by the appropriate choice ofb(k), it is important that we make

this conditionality explicit. Hereafter we use the terms “time-consistent” and “conditionally

time-consistent” interchangeably. A time consistent policy is not necessarily subgame perfect.

3 The time-consistent tax policy

We assume that the necessary conditions to the agent’s control problem provide a solution to

that problem. Given the concavity ofU(c), the necessary conditions are sufficient if f (k) −

τ(t)b(k) is concave. The functionτ(t)b(k) is endogenous; we can check concavity after finding

a candidate solution.
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Ignoring the functionV(G(t)), we write the current value of the agent’s payoff as the func-

tion J(k, t). This function solves the Bellman equation (where subscripts denote partial deriva-

tives):

ρJ(k, t) = max
c
{U(c) + Jk(k, t)( f (k) − b(k)τ(t) − c)} + Jt(k, t). (2)

The first order condition to equation (2) implies that optimal consumption at a point in time

depends only on the shadow value of capitalJk(k, t).

The standard approach to finding the government’s open loop tax policy is to maximize
∞∫
0

e−ρt[U(c(t)) +V(G(t))]dt with respect to the tax policy{τ(t)}t=∞t=0 , imposing the necessary con-

ditions to the agent’s optimization problem (1).1 One necessary condition is the equation of

motion for the costate variable for the statek. Denote this costate variable asq(t). Assuming

differentiability of the value function, we haveJk ≡ q. Xie uses the following:

Definition 2 The costate variable q is “uncontrollable” if and only if its value at time t is

independent of current and future government actions{τ(s)}∞s=t.

Since consumption at a point in time depends only on the costate variable, consumption is

uncontrollable if and only if the costate variable is uncontrollable.

Xie’s Proposition 1 states that the open-loop linear income tax (g(k, t) = f (k)τ(t)) is time

consistent only ifq is uncontrollable. We have a slightly more general result. (The Appendix

contains proofs that are not included in the text.)

Lemma 1 Suppose that Assumptions 1-3 hold. The open-loop tax policy is time consistent if

and only if consumption is uncontrollable.

Using this lemma we obtain:

Proposition 1 Under Assumptions 1-3, the government’s open-loop policy is time-consistent

if and only if the agent’s value function is additively separable in the state variable and time:

J(k, t) =W(k) + Z(t) for some functions W(k) and Z(t).

Proposition 1 implies that time consistency of an open-loop policy requires the functionb(k) to

be proportional to the reciprocal of the shadow value of capital:

Corollary 1 Suppose that the agent’s value function is additively separable in the state vari-

able and time. Then there exists a constantα such that

Wk(k)b(k) = α. (3)

1Simaan and Cruz (1973) were among the first to use this method of solving Stackelberg differential games.
In addition to the examples cited in Xie (1997), applications include Oudiz and Sachs (1984), Miller and Salmon
(1985), and (Long and Shimomura 2000).
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Proof. ¿From Proposition 1, the optimal consumption rule is a function only ofk. Sub-

stituting this optimal rule,c = c∗(k), into equation (2) and usingJ(k, t) = W(k) + Z(t) from

Proposition 1, we write the agent’s maximized Bellman equation as

ρ (W(k) + Z(t)) = U(c∗(k)) +Wk(k)
[
f (k) − τ(t)b(k) − c∗(k)

]
+ Zt(t). (4)

The additive separability ofJ(k, t) requires that the right side of equation (4) must also be

additively separable for any admissibleτ(t). This requirement implies equation (3) withα

equal to a constant.

The left side of equation (4) is the present discounted value of future utility, expressed as

an annuity with discount rateρ. The reduction in the value of this annuity (i.e., the reduction

in the value of the agent’s program), caused by the tax, isWk(k) [τ(t)b(k)]. Equation (3) means

that this effect of the tax is independent of the value ofk. The agent views a time-consistent tax

like a lump sum reduction in the dollar value of future utility, equal toατ(t)
ρ

.

The previous results lead to the following necessary and sufficient condition for time con-

sistency.

Proposition 2 Under Assumptions 1-3, the government’s open-loop policy is time-consistent if

and only if

U′
([
ρ − fk(k)

bk(k)

]
b(k) + f (k)

)
b(k) = α. (5)

The proof of this proposition shows that the agent’s consumption rule is

c∗(k) =

(
ρ − fk(k)

bk(k)

)
b(k) + f (k). (6)

We refer to equation (5) as theconsistency constraint,since the government’s optimal pro-

gram is time-consistent if and only if it holds.2 Proposition 2 extends Xie’s Proposition 3 in two

respects. First, it shows that the possibility of time consistency is very general. Given primitive

functionsU and f , we can constructb to obtain a time-consistent tax. Xie restrictsb(k) ≡ f (k),

i.e. he assumes that the government must use a linear income tax. Second, our Proposition 2 is

a necessary and sufficient condition, rather than only a sufficient condition.

Given the utility and production functions, the consistency constraint is an ordinary differ-

ential equation (ODE). The solution to this ODE depends on two parameters,α and a constant

of integration that determines the boundary condition to equation (5). Denote this constant

2We mentioned that Assumption 3 is unnecessarily restrictive. Additive separability of the value function only
requiresg(k, t) = x(k) + b(k)τ(t) for some functionx(k) (rather thang(k, t) = b(k)τ(t) as Assumption 3 maintains).
We can repeat the steps used to derive equation (5) to obtain the consistency constraint for the more general tax
rule.
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of integration byγ. The set of time-consistent rules is the two-parameter family of functions

b(k;α, γ); when there is no ambiguity, we suppress the argumentsα andγ.

4 Stationarity

If the functionb(k) satisfies the time consistency constraint, then for values ofk along the opti-

mal trajectorythe government has no incentive to revise the optimal time dependent component

of the taxτ(t) announced at time 0. If for some reason the statek departs from the equilibrium

path, the government might want to change the original open-loop policyτ(t). In that case, the

optimal open-loop policy is not subgame perfect.

However, if for all initial conditions the optimal functionτ(t) announced at time 0 is a

constant that is independent of the initial condition, (i.e., if the policy is stationary) then the

policy is obviously subgame perfect. The following proposition provides a restriction involving

the primitive functionsU, V, and f and the tax policyb that is necessary and sufficient for

the optimalτ to be a constant. We assume that the steady state is independent of the initial

condition.

Proposition 3 Suppose that b(k) satisfies equation(5) (so that the tax is time consistent) and

that c= c∗(k) satisfies equation(6) (so that the agent behaves optimally). The government takes

b(k) and c∗(k) as given and chooses the time dependent component of the taxτ(t), in order to

solve

max{τ(t)}
∞∫
0

e−ρt (U(c∗(k)) + V(τb(k))) dt

subject todk
dt = f (k(t)) − τ(t)b(k) − c∗(k), k0 given.

(7)

The optimal trajectoryτ∗ (t) is a constantτ (independent of the initial condition) if and only if

there exists aτ such that the following equation holds identically in k:

(ρ + η) V′ =
(
f ′ + η

)
U′ −

(
ρ − f ′ + τb′

)
τbV′′ (8)

where

η = −

(
U′b′

U′′b
+ f ′

)
. (9)

We refer to equation (8) as the stationarity constraint.

We showed above that given the primitive functionsU and f , the set of time-consistent pol-

icy rulesb(k) is a two-parameter family of functions that depend onα andγ. If the government

is required to use a time-consistent policy, then at time 0 it is able to chooseα andγ and the

open-loop trajectoryτ(t) to maximize its payoff. If we also impose the requirement that the
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policy is stationary, then the policy ruleb(k) must satisfy equation (8). In general, there is no

guarantee that there exist functionsb(k) andc∗(k) that satisfy equations (5), (6), and (8). The

next section uses examples to show that such functions exist in some cases.

It might appear that when imposing the stationarity constraint we obtain an additional de-

gree of freedom, the parameterτ. That is, it might appear that in selecting a stationary time-

consistent policy the government is able to choose three parameters,α,γ andτ. This interpreta-

tion is incorrect. Without loss of generality, we can normalize by settingτ = 1. The government

has only two free parameters,α andγ.

5 Examples with logarithmic utility

We use an example with logarithmic utility to illustrate the relation between the time-consistent

policy and the production functionf (k). We then show how the stationarity requirement reduces

the set of time-consistent policies.

For U(c) = ln c, equation (5) can be written

db
dk
= αb

−ρ + d f
dk

α f − b
. (10)

Equation (10) illustrates that (given the utility function) we can treat either the production func-

tion f (k) or the tax functionb(k) as primitive; using (10) to solve for the other function, we

obtain a time-consistent tax.

Substituting equation (10) into equation (6) we obtain

c =
ρ − d f

dk

α
(
−ρ + d f

dk

) (α f − b) + f =
b
α
. (11)

Thus, under logarithmic utility the use of a time consistent tax implies thatc = b
α
.3 The govern-

ment chooses the constantα. The relation betweenb andc does not depend on the production

function f (k). The time-consistency constraint does not restrict the ratio between public and

private expenditures, since the government is able to choose the functionτ(t).

Suppose that we take the production function as primitive4 and moreover we assume that

3In the case whereU(c) = c1−σ

1−σ , 0 < σ < 1, we can show that if the tax rule satisfies the consistency condition,

then the consumption rule isc = α−
1
σ b

1
σ . This result reduces to equation (11) asσ → 1 (i.e. for logarithmic

utility). Suppose, in addition, thatf (k) = kθ. In the case whereθ = σ it is straightforward to show thatb(k) = f (k)
satisfies the consistency condition, as Xie’s Proposition 2 states. Forθ , σ we can solve the consistency condition
numerically to obtain time-consistent tax rules.

4As noted above, we can also take the tax function as primitive. An earlier version of this paper shows that the
linear income tax (b(k) ≡ f (k)) is time consistent if and only if the production function is affine; the linear capital
tax (b(k) ≡ k) is time consistent if and only iff (k) = kµ ln k+ kγ, with µ ≡ 1−αρ

α
andα ≥ 1

ρ
.
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production is linear:f (k) = Ak, A > 0. In this case, inspection of equation (10) confirms that

the affine tax is a particular solution; i.e. the linear tax is time consistent. The linear wealth tax

in this case isb = αρK, and the corresponding income tax isb = αρ

A Ak. The general solution to

the ODE givesb(k) as an implicit function ofk. We can invert that implicit function to writek

as an explicit function ofb:

k =
b
αρ
+ γb

A
−ρ+A . (12)

Any tax rule that solves this implicit equation is time consistent. Some of these taxes may

give the regulator a higher payoff than the linear tax. Provided thatτ(t) > 0, convexity ofb(k)

insures that the necessary conditions to the agent’s problem are sufficient to give an optimum.

Convexity ofb(k) holds if and only ifγ ≤ 0.5

We now consider the stationary time-consistent policy for the case whereU(c) = ln c and

V(G) = ln(G) = ln(b). The last equality uses the budget constraintG = τb(k) and the normal-

izationτ = 1. Using the definition ofη, (equation (9) and equation (11) we have

η =
cdb

dk

b
−

d f
dk
=

db
dk − α

d f
dk

α
.

Using this expression and equation (11), equation (8) simplifies to

db
dk
=

db
dk

c− b
αc
=

db
dk

b− αb
αb

=
db
dk

1− α
α

. (13)

Sincedb
dk , 0 equation (13) implies thatα = 1

2.

For logarithmic utility, the time-consistent stationary tax is a solution to equation (10) with

α = 1
2. The stationarity constraint removes one degree of freedom from the government, by

pinning down the value ofα. The government still has one degree of freedom: it chooses the

boundary condition to the ODE (10); i.e., the government chooses the parameterγ.

We noted that the time consistency constraint does not restrict the equilibrium ratio of public

and private expenditures. The stationarity constraint, however, implies that consumption of the

private good is twice the level of consumption of the public good. This result does not depend on

the production function or on the particular time-consistent stationary tax that the government

uses.

If we specialize further by choosing linear production,f (k) = Ak, the stationary time-

consistent tax is a solution to equation (12) withα = 1
2. Suppose, in addition, we assume that

government uses an affine tax, i.e. a tax of the formb = βk+φ. Substituting this expression into

5For γ = 0, b(k) is obviously monotonically increasing. Forγ < 0, b(k) is monotonically increasing for allk
if A < ρ. If γ < 0 and in additionA > ρ, thenb(k) is increasing provided thatk is less than a critical value. This
critical value can easily be obtained from equation (12).
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equation (10) and equating coefficients of powers ofk, we conclude thatφ = 0 andβ = ρ

2. Since

income equalsf (k) = Ak, the unique affine income tax isρ2A. This result reproduces equation

(23) in Xie. The result also shows (for logarithmic utility and linear production) that any affine

tax is linear: it never involves a lump sum tax/subsidy.

The linear tax does not enable the government to achieve the first best outcome. Under the

linear taxc = 2b = ρk, and under the first best outcomec = b = ρ

2k. Consequently we cannot

rule out the possibility that the government has a higher payoff if it uses one of the nonlinear

taxes that solve equation (12) withα = 1
2.

6 Appendix: proofs

Proof. (Lemma 1) The argument that establishes Xie’s Proposition 1 also demonstrates

the “only if” part of the claim in the more general case whereg(k, t) = b(k)τ(t), e.g. where

b(k) , f (k); we do not repeat the argument here. To establish the “if” part, note that in the

case where consumption is not controllable, the government has a control problem with one

state variable,k, the initial value of which is predetermined. (Whenqt = q(kt), i.e., whenq(t)

is independent ofτ(s), s ≥ t, the initial value ofq is not free.) The solution to this kind of

control problem satisfies the dynamic programming Principle of Optimality, and is thus time

consistent.

The proof of Proposition 1 requires an intermediate result. A perturbation of a “reference”

tax policy is:

τ(t) = τ∗(t) + ah(t)

whereτ∗(t) is the reference tax policy,h(t) is a continuously differentiable function of time

which represents a perturbation, anda is a scaling parameter for perturbation. Whena = 0

we obtain the reference policy. The value function of the consumer is now parameterized bya,

given the perturbation functionh(t) and the policy functionτ∗ (t). We write this value function

as J̃(kt, {τ(s)}∞s=t) to emphasize that the agent’s payoff depends on the future trajectory of taxes.

For a fixed tax trajectory{τ(s)}∞s=t the only exogenous time dependent change arises from the

change in the minimum value of the time dummy,s= t. Thus,J̃(kt, {τ(s)}∞s=t) ≡ J(kt, t). In other

words, the second argument in the functionJ(kt, t) “summarizes” the effect, on the agent’s

payoff, of the future sequence of taxes,{τ(s)}∞s=t. Using this notation we obtain:

Lemma 2 Suppose Assumptions 1-3 hold. The open-loop optimal tax policy is time consistent

if and only if
∂

∂a

∂J̃(kt, {τ(s)}∞s=t)

∂k
= 0 (14)
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for all admissibleτ∗ (t) and h(t).

Proof. By the first order condition to the Bellman equation (2), consumption equals

U′−1 (Jk), i.e. consumption depends only on the shadow value of capital. By the identity

J̃(kt, {τ(s)}∞s=t) ≡ J(kt, t), the shadow value of the state,Jk (and thus consumption) is uncon-

trollable if and only if equation (14) holds for all admissibleτ∗ (t) and h(t). By lemma 1,

equation (14) is therefore necessary and sufficient for time consistency.

Proof. (Proposition 1) We first establish the “only if” part of the proposition. From

lemma 2, time consistency implies equation (14), which implies that∂J̃(kt ,{τ(s)}∞s=t)
∂K = ψ(k) for

some functionψ(·). Taking the integral of both sides,

J̃ =
∫ k

ψ(k)dk+ Z(t) (15)

whereZ(t) is the constant of integration. The identitỹJ(kt, {τ(s)}∞s=t) ≡ J(kt, t) completes the

demonstration.

To establish the “if” part of the proposition we can simply note that equation (15) implies

equation (14), and then invoke lemma 2.

Proof. (Proposition 2) The proof of the sufficient part is an adaptation of Xie (Proposition

3 on page 419). Suppose that equation (5) is satisfied. It suffices to show that under this

condition, the consumption path is independent of the time dependent part of tax policy.

Consider the consumption plan given by equation (6). We can verify that this consumption

plan satisfies the first order conditions for the agent’s control problem and the transversality

condition. (This verification uses the same steps as Xie’s proof.) Moreover this consumption

plan is independent of the time dependent part of tax policy,τ(t), and therefore is uncontrollable.

The necessary part follows from Corollary 1. Using (3) in (4) we obtain an equation for

W(k)

ρW(k) = U(c∗(k)) +Wk(k)
[
f (k) − c∗(k)

]
. (16)

Equations (3) and (16) hold identically. We differentiate them with respect tok to obtain

Wkkb+Wkbk = 0 (17)

ρWk = Wkk ( f − c) +Wk fk. (18)

Using (17) and (18) we can solve for the optimal consumption rulec∗(k) to obtain equation

(6). Finally, using the first order conditionU′(c) = Wk and equations (3) and (6) we obtain

equation (5).
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We use a lemma to establish Proposition 3. Denoteτo(t; k0) as the open-loop representation

of the solution to the problem (7), and denoteτ f b(k) as the feedback representation of the

solution to this problem. We assume that the steady state to this problem,kss, is independent of

the initial condition. The proof of Proposition 3 uses the following lemma:

Lemma 3 Given a time-consistent policy rule b(k), the optimalτo(t), is a constant (independent

of the initial condition) for all initial conditions k0 , kss if and only if the feedback form of the

policy,τ f b(k) is independent of k.

Proof. Taking as given the parametersα and γ, equations (6) and (5) determine the

functionsc(k;α, γ) andb(k;α, γ). Given these functions, the government solves an autonomous

control problem. The value of its program is a functionS(k;α, γ) that satisfies the Bellman

equation

ρS(k) = max
τ
{U(c(k)) + V(τb(k)) + Sk(k) ( f (k) − c(k) − τb(k))} . (19)

The solution to the government’s stationary control problem is a policy ruleτ f b(k). Using

this function and the agent’s control rule, we can solve the equation fordk
dt to obtainke(t; k0),

the equilibrium value of the state at timet. (“e” denotes equilibrium) Substitutingke(t; k0) into

the government’s policy rule, we obtain the open-loop representation of the policy,τo(t, k0) ≡

τ f b (ke(t; k0)). Sincek0 , kss, dke

dt , 0 along the optimal trajectory. Thereforeτo(t, k0) is a

constant if and only ifτ f b(k) is independent ofk.

Proof. (Proposition 3) In view of Lemma 3 we need to show that the feedback form of

the government’s control rule,τ f b(k) is independent ofk. We begin with some notation, for the

purpose of simplifying the derivations. Use equation (6) to write

f − c = −
ρ − f ′

b′
b. (20)

Define

η ≡
d
dk

(
ρ − f ′

b′
b

)
. (21)

With this notation we have

f ′ − c′ = −η. (22)

Differentiating both sides of equation (5) with respect tok, using the definition (21), implies

U′b′ + U′′
[
η + f ′

]
b = 0.

Rearranging this expression gives equation (9).
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We now proceed with the main argument. Using equation (20), we rewrite the government

problem (19) as

ρS = max
τ

{
U + V − S′

[
ρ − f ′

b′
+ τ

]
b

}
. (23)

The first order condition to (23) is

V′(τb(k)) = S′(k). (24)

Equation (24) implicitly defines the optimal tax ruleτ(k). Substituting this tax rule into equation

(24) and taking the derivative of both sides, we obtain

S′′ = V′′
(
τb′ + bτ′

)
. (25)

Substituting the optimal tax ruleτ(k) into (23) we obtain the maximized Bellman equation.

We take the derivative with respect tok of both sides of the maximized Bellman equation to

obtain

ρS′ = U′c′ + V′τb′ − S′(η + τb′) − S′′
(
ρ − f ′

b′
b+ τb

)
. (26)

We then use equations (22) to eliminatec′, and equations (24) and (25) to eliminateS′ andS′′

from equation (26). The resulting equation and the identityτ′(k) ≡ 0 are both satisfied if and

only if equation (8) holds identically ink.
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