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Abstract 
The Process-Oriented Dataflow System (PODS) is an execution model that combines the von 
Neumann and dataflow models of computation to gain the benefits of each. Central to PODS is 
the concept of array distribution and its effects on partitioning and mapping of processes. 

In PODS arrays are partitioned by simply assigning consecutive elements to each processing 
element (PE) equally. Since PODS uses single assignment, there will be only one producer of 
each element. This producing PE owns that element and will perform the necessary computations 
to assign it. Using this approach the filling loop is distributed across the PEs. This simple 
partitioning and mapping scheme provides excellent results for executing scientific code on MIMD 
machines. In this way PODS allows MIMD machines to exploit vector and data parallelism easily 
while still providing the flexibility of MIMD over SIMD for multi-user systems. 

In this paper, the classic matrix multiply algorithm, with 1024 data points, is executed on a 
PODS simulator and the results are presented and discussed. Matrix multiply is a good example 
because it has several interesting properties: there are multiple code-blocks; a new array must be 
dynamically allocated and distributed; there is a loop-carried dependency in the innermost loop; the 
two input arrays have different access patterns; and the sizes of the input arrays are not known at 
compile time. Matrix multiply also forms the basis for many important scientific algorithms 
such as: LU decomposition, convolution, and the Fast-Fourier Transform. 
The results show that PODS is comparable to both Iannucci's Hybrid Architecture and MIT's 
TTDA in terms of overhead and instruction power. They also show that PODS easily distributes 
the work load evenly across the PEs. The key result is that PODS can scale matrix multiply in a 
near linear fashion until there is little or no work to be performed for each PE. Then overhead and 
message passing become a major component of the execution time. With larger problems (e.g., 
~16k data points) this limit would be reached at around 256 PEs. 

Keywords: single assignJllent, dataflow, multiprocessor, scientific 
programming, matrix multiply 
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graphs into communicating processes, however, were too simplistic, concentrating on only 

functional parallelism. In scientific code, most parallelism comes from loops iterating over 

large data structures (i.e., data parallelism). We have addressed this issue in subsequent 

studies [Bic90, BNR89a, BNR89b] by showing that, for languages based on the single­

assignment principles (declarative languages), a simple automatic partitioning of arrays 

exposes significant parallelism that can be exploited at run-time. 

Based on those studies and these reported herein, we describe an approach to 

automatically transform Id Nouveau programs into sets of processes communicating with 

one another through messages and accessing a global address space containing distributed 

data structures. The performance of this approach when executing the matrix multiply 

algorithm is examined to show how the most common scientific code would operate. 

Matrix multiply forms the basis for many important scientific algorithms such as LU 

decomposition, convolution, and Fast-Fourier transforms. The paper is organized as 

follows. Section 2 examines the PODS execution model and architecture. Section 3 

explains dataflow graph partitioning and mapping in PODS, and introduces the matrix 

multiply example. Section 4 discusses the simulator and the simulation results for matrix 

multiply. Finally, Sections 5 and 6 present the conclusions and references, respectively. 

2. The Process-Oriented Dataflow System 

2 .1. Dataflow and Hybrid Architectures 

Since Dennis first described the first dataflow execution model [Den75], many 

architecture designers have attempted to apply the model to real systems. Dataflow is 

attractive because all parallelism in a program is exposed for potential concurrent execution. 

In spite of the elegance of the model, dataflow is not widely used after more than twenty 

years of research. The focus has instead turned to the evolution of modern systems by 

extending them with dataflow techniques. The results of research in this area include 
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hybrid systems using large-grain or macro dataflow [Bab84, B&E87, DFL89, Ian88, 

Kap86, L&G86, S&H87]. 

Iannucci [lan88] has reported on a hybrid dataflow Ivon Neumann architecture. 

This approach is similar to PODS in its use of Id Nouveau as the input language and split­

phased structure access. However the Iannucci approach uses a finer grain scheduling 

approach, called scheduling quanta (SQ). An SQ of two to three instructions is desirable 

for lannucci's approach, and each iteration of a loop is a new SQ. In PODS, however, the 

natural decomposition of the program is used and SPs are allowed to run-in-place, thus 

reducing overhead. Another difference is in data structure distribution. There is no 

mechanism for spreading iterations of a single loop across process in Iannucci's approach. 

Combining data structure distribution with loop distribution is a central goal in PODS. 

Finally Iannucci's model required a special purpose architecture capable of fast context 

switching among very small SQs. PODS tries to generate SPs large enough to produce 

good computation-communication ratios on available distributed memory multiprocessors. 

Certainly PODS would benefit from a tailored architecture, but the model itself is not 

restricted to such. 

In [GH89], Goldberg and Hudak presented Alfalfa, a system similar at a high level 

to PODS. They have implemented the ALFL functional programming language and run­

time system on an Intel iPSC hypercube using what they call serial combina,tors. Serial 

combinators are similar to PODS SPs in that they are sequential threads that execute on a 

von Neumann processor. The run-time system handles thread creation and distribution. 

The main focus of their work is the study of the effects of dynamic scheduling (diffusion 

scheduling) of parallel threads of execution. They show that diffusion scheduling works 

well in many cases, however, they have not addressed the problem of distributing large 

data structures such as arrays. This is illustrated through the relatively poor performance 

achieved with the matrix multiply algorithm. 
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3 . 1. Data and Functional Parallelism 

In PODS one objective is to exploit data parallelism efficiently without losing 

functional parallelism. On distributed memory machines this can be difficult to achieve. 

By using the above heuristics and the single-assignment principle, data parallelism and 

functional parallelism can co-exist in distributed memory. In most scientific code the data 

parallelism is greater than the functional parallelism. The Translator/Partitioner understands 

this and optimizes its transformations to exploit data parallelism. Currently, functional 

parallelism is exploited by randomly distributing functional code-blocks, but future 
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versions of the Translator/Partitioner may use more intelligent techniques. 

Code-blocks are one kind of high-level object manipulated by PODS. Two others 

are scalars and arrays. Scalars are essentially abstractions representing communication 

channels (implemented as tagged tokens). Operations over arrays provide data parallelism 

and the execution of functional code blocks provides functional parallelism. 

3 .1.1. Scalars 

For scalar variables no explicit partitioning or mapping is necessary-a scalar is 

produced locally and then automatically sent in the form of a tagged token to the consuming 

PE by matching the tag with the corresponding remote operator. In the case that the token 

is sent to the same SP that produced it, no actual routing is done-the token is simply 

stored directly in the destination instruction's operand list. Thus, during the sections of 

code where an SP does no external communication, the SP instructions are nearly identical 

to typical von Neumann instructions. This allows PODS to use well-known optimization 

techniques on large portions of the code within SPs. 

3.1. 2. Arrays 

For arrays, we exploit the single-assignment principle of I-structures [ANP89]. 

This guarantees that only one instruction will write to an array element-it is the producer 

of that data. We use this fact by attempting to map each array element onto the same PE as 

its producer instruction. This distributes data across all of the PEs participating in the 

computation. 

When an array is allocated, the allocating PE broadcasts a message telling each PE 

to reserve an appropriate amount of local memory. Since each PE knows the size of the 

newly allocated array (from the message), it can determine what its area-of-responsibility 

for that array is. As a result, each PE derives a boundary'table for the array. The boundary 

table will be used later to control a range generator that generates only those loop indices 

needed by each PE. The boundary table is a simple list of ranges of elements that the PE is 
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3. 3. Partitioning Arrays and Loops 

As discussed earlier, each array is divided into pages of fixed size that are 

distributed across the PEs. The loop body accessing array elements is identical for each 

PE, so a copy of the loop body code is distributed to each PE. The loop body code uses 

local data (the boundary table) to produce the data for its array partition. More precisely, 

the partitioning of a loop takes place as follows: 

• Partition data by segmenting each array into pages of some fixed 

size. These pages are then sequentially grouped together into 

what are called superpages, one superpage per PE. 

• Partition loop control by assigning to each PE the responsibility 

for updating the elements in all the array pages it contains in its 

local memory. 

In ideal circumstances all data is written to locally, but in some cases program 

structure leads to inevitable remote data writes. Still, each PE is assigned a set of data that 

no other PE is expected to write. Note that it is not always possible to determine which 

element is being updated by an assignment statement at compile time. Consider the loop 

below: 

DO 10 K = 1,N 
A(F(K)) = B(G(K)) 

10 CONTINUE 

The functions F and G make it impossible to determine which element a given K will 

correspond to at compile time. In this case each PE must calculate F(K) for all values of K 

to determine whether an element of A is inside its area of responsibility. It should also be 

noted that arrays are single assignment and that the F(K) must be well behaved (one-to-

one) over the range of K, otherwise a single assignment run-time error will occur. 

As a simple example of this partitioning method, suppose we have a multiprocessor 

with 4 PEs. Using a page size of 32 elements, and 3 arrays A, B, and C, each of size 100. 
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PE 0, 1, and 2 will each contain a single page of each array. PE 3 will contain a partial 

page (4 elements) of each array. Consider the following loop: 

DO 10 I = 1,100 
10 A(I) = B(lOl-I) + C(I) 

All four processors begin executing simultaneously-PE 0 fills A(l..32), PE 1 fills 

A(33 .. 64), PE 2 fills A(65 .. 96), and PE 3 fills A(97 .. 100). Note that for most of the loop, 

each processor must access elements of array B that lie on a different processor than the 

executing processor. Each one of these remote accesses requires a transfer of data from the 

producing PE to the consuming PE, an operation that is relatively expensive on all current 

distributed memory multiprocessors. It will never be possible to remove the need for 

remote accesses from distributed computations, so we are instead using a technique to 

diminish their effect on the overall computation time-remote access caching. 

Remote access caching takes advantage of the fact that in PODS single-assignment 

enforcement ensures that no array element will be written multiple times. As a result, PEs 

may cache data that have been recently accessed without actively maintaining cache 

coherency. In the partitioning scheme defined earlier, each PE stores a portion of each 

array, with each portion consisting of fixed size pages. With remote access caching, 

reference to a remote array element causes retrieval of the entire page containing that 

element. The remote page is then stored locally and checked first in future references to 

that page. Due to locality of reference in many algorithms, it is likely that the same PE will 

need elements from that page in the near future, so potentially many remote accesses may 

be avoided. If the next requested element was not available at the time the page was 

originally cached, then another remote access transfering the same page (updated with the 

requested element) will be required. The performance enhancement achieved through 

remote access caching is detailed in [BNR89a]. 
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program there may be other activities going on at the same time that would then be able to 

use the execution unit during these idle periods. 

Number of PEs Average EU Standard Mean EU Busy Standard 
Utilization Deviation Period (g_sec) Deviation 

1 1.00 0.001 2,349.67 0.00 
2 1.00 0.002 322.36 4.17 
4 0.96 0.002 235.65 1.90 
8 0.82 0.001 205.35 0.76 
16 0.69 0.001 191.71 1.61 
32 0.51 0.001 181.13 0.06 
64 0.46 0.001 175.39 0.41 
TABLE B. AVERAGE EXECUTION UNIT UTILIZATION AND BUSY PERIOD. 

4. 4. Comparisons 

4. 4 .1. Hybrid Architecture 

Iannucci used a dynamic instruction count comparison for his hybrid approach 

against the Tagged-Token Dataflow Architecture (TIDA) [A&N87]. One of his 

benchmarks was a lOxlO matrix multiply. Iannucci noted that TTDA instruction were 

strictly more powerful than hybrid instruction because of forking, yet the instruction counts 

were comparable to first order. Below is a table that includes PODS instruction counts for 

a 64 PE system (most overhead) running a 10.:. 0 Matrix Multiply, as well as the hybrid 

and ITDA counts. 

Iannucci stated that the reason comparable numbers of hybrid and TIDA 

instructions were executed was because the hybrid architecture exploited the sequential 

nature of programs to reduce overhead. We agree completely, and the fact that PODS 

instructions are on the same level as hybrid instructions and require even fewer instructions 

(even on a 64 PE system) indicates that PODS requires less overhead than either system 

when executing matrix multiply-like algorithms. 
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PE 0, 1, and 2 will each contain a single page of each array. PE 3 will contain a partial 

page (4 elements) of each array. Consider the following loop: 
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remote access caching is detailed in [BNR89a]. 
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3. 4. Mapping Subcompact Processes 

SPs may be mapped in either of two ways: (1) via a simple hash function for 

functional code-blocks, or (2) via array distribution and range generators for loops. Array 

distribution controls a majority of the mapping and provides the bulk of the parallelism in 

scientific code. The hash function used to distribute functional code-blocks is: 

I,(SPi+Ii) mod N 

where SPi =a subcompact process ID, Ii= an iteration number, and N =total number of 

PEs. The subscript i refers to the stack of contexts leading to the current context. 

This function provides a fairly random distribution, which in turn tends to generate 

a balanced work load (as we demonstrate later). Given more information, a more complex 

and possibly better distribution function may be used, but the simple approach achieves 

acceptable results without wasting interconnect bandwidth in order to maintain global state 

information. 

Array distribution driven mapping is more complex. As noted above, the PODS 

Translator/Partitioner inserts instructions into the code-blocks to distribute a loop. In the 

case of matrix multiply, the loop that should be distributed is the j-loop. Different parts of 

the same loop will execute on different PEs (e.g., i = l,j = 10 may ~ecute on a different 

PE than i = l,j = 345). The mapping depends on how the C array is distributed since C is 

the master array of the loop, i.e., it is the array being filled. The function of the range 

generator is to produce only those indices for which its PE is responsible, see Appendix B. 

Figure D illustrates the distribution of SPs across four PEs. The curved lines 

represent broadcasts, the straight lines represent execution time, and the bold lines 

correspond to the comments on the right-hand side of the figure. For this example assume 

the matrix multiply starts out on PE 2. There SP 0 begins execution, and encounters the 

"ALLOCATE C" instruction. This instruction initiates a broadcast message to the other 

PEs. Upon receipt of this message, each PE allocates its portion of the array. Next, SP 0 
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generates and broadcasts the first value for i. Note that SP 0 does not have a range 

generator, thus it will generate all i-inclices. 

Each remote PE that receives an activating token (value 0) instantiates SP 1. SP 1 

does have a range generator, so it will process only those indices for which the current PE 

is responsible. Thus a number of PEs quickly execute essentially empty SPs because they 

have no elements for which they are responsible when i is 0. In this case, PE 3 is the only 

PE with operations to perform when i is 0. PE 3 executes SP 1, which spawns the k-loop 

locally (the fact that the loop is local was determined at compile time). The k-loop is a 

simple loop that generates a vector dot product and returns the result to its parent SP. The 

}-loop may now continue with the} values for which it is responsible when i is 0. 

In parallel with the execution of the first iteration of the i-loop, the original SP 0 

continues generating and broadcasting successive values for i . This will cause new ready 

SPs to queue up in remote PEs. As other SPs block waiting for tokens, these new SPs 

will be selected for execution by the scheduler. 

Once the k-loop starts, it will access remote pages from different PEs as necessary. 

This is where the existence of the remote access cache becomes important-a large number 

of reads will access the local array cache rather than causing a remote read. 
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strictly more powerful than hybrid instruction because of forking, yet the instruction counts 

were comparable to first order. Below is a table that includes PODS instruction counts for 

a 64 PE system (most overhead) running a 10.'. 0 Matrix Multiply, as well as the hybrid 

and ITDA counts. 

Iannucci stated that the reason comparable numbers of hybrid and TIDA 

instructions were executed was because the hybrid architecture exploited the sequential 

nature of programs to reduce overhead. We agree completely, and the fact that PODS 

instructions are on the same level as hybrid instructions and require even fewer instructions 

(even on a 64 PE system) indicates that PODS requires less overhead than either system 

when executing matrix multiply-like algorithms. 
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Hybrid Instructions ITDA Instructions PODS Instructions 

23,569 20,118 16,467 
TABLE C. DYNAMIC INSTRUCTION COUNTS FOR lOXlO MATRIX MULTIPLY. 

4.4.2. Alfalfa 

The Alfalfa system [GH89] -is mainly concerned with different dynamic scheduling 

techniques and does not address the problem of distributing large data structures, such as 

arrays. They achieve some impressive results for problems involving little to no data 

communication, however, for matrix multiply, they see poor speedup results. They claim 

that this is due to the slow message passing time of the iPSC, but our system shows that a 

data cache combined with simple scheduling can help overcome the long latencies 

associated with accessing remote data. 

5 • Conclusions 

PODS is a new execution model based on the concept of macro-data.flow. As such, 

the benefits of data.flow can be realized on a typical loosely-coupled MI:rvID computer. By 

simulating such a machine, we have shown that the model shows much promise for the 

efficient execution of declarative programs. In addition, the use of declarative 

programming languages will greatly reduce the development time for programs since the 

programmer will be released from explicitly managing parallelism. 

The mechanism for distributing arrays in PODS not only allows for larger arrays 

than normally available in such machines, but it also takes advantage of locality of reference 

by keeping recently used parts of remote data in a cache. Matrix multiply is used as a 

demonstrative example and is used as a performance measure. Matrix multiply is a good 

measure because it has several interesting properties: 

• there are multiple code-blocks 

• a new array must be dynamically allocated and distributed 
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•there is a loop-carried dependency in the innermost loop 

•the two input arrays, A and B, have different access patterns 

• the sizes of the input arrays are not known at compile time 

Matrix multiply also forms the basis for many important scientific algorithms such as: LU 

decomposition, convolution, and the Fast-Fourier Transform. 

The results show that PODS is comparable to both the Hybrid Architecture and the 

TTDA in terms of overhead and instruction power. In addition, PODS is more capable of 

exploiting parallelism when large data structures must be shared among PEs than other 

similar systems, such as Alfalfa. The results also show that PODS distributes the work 

load evenly across the PEs. The key result is that PODS can scale matrix multiply in a near 

linear fashion until there is little or no work to be performed for each PE. Then overhead 

and message passing become a major component of the execution time. With larger 

problems (e.g., ~16k data points) this limit would be reached around 256 PEs. 

PODS thus allows MIMD machines to exploit vector and data parallelism simply 

while still providing the flexibility of MIMD over SIMD for multi-user systems. 
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Appendix A: Matrix Multiply in PODS 

The Id Noveau code below was used in these simulations. It was first compiled 

using the Sun Common Lisp based Id World, version number 4.1. This produced three 

different code-blocks for hypothetical GITA machine. These code-blocks were inserted 

into the PODS Translator/Partitioner, which translates the GIT A assembly code into PODS 

assembly code and partitions the code-blocks using the heuristics described earlier to 

generate the SPs below. 

%%% Matrix Multiply 
Def MM AB= { (11,ul), (12,u2) = 2D_bounds A; 

} ; 

C = i_matrix ((11,ul), (12,u2)); 
In 
{ For i <- 11 To ul Do 

{ For j <- 12 to u2 Do 
s = O; 
c [i, j] = 

{ For k <- 11 To ul Do 
Next s = s + A[i,k] * B[k,j]; 

Finally s 

} ; 
Finally C 

The files below are the exact inputs that were used to run matrix multiply on the 

simulator. The outer-most loop (i-loop) code is in MM-0, thej-loop is MM-1, and the k­

loop is MM-2. The assembly code is read as follows: (1) the instruction number, within 

the SP; (2) the instruction to be executed; (3) the number of arguments this instruction 

takes; ( 4) a list of the constant arguments to the instruction; (5) a list of local destinations 

(i.e., within this SP); (6) the routes by which this instruction communicates with other 

SPs; (7) an optional comment based on the Id World translation. Destination lists are 

surrounded by 11
[]

11
, route lists by 11

()
11

, and comments by 11 
{ } 

11
• 

To clarify this, consider instruction 9 in SP MM-0 below. This LE (less than or 

equal to) operation take two arguments, one of which is sticky (port 1). A sticky port is 

one that retains a value forever once the value arrives. Instruction 9 will send its result to 
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instruction 10, port 0. Instruction 9 has no routes and no comment. The reason an 

instruction may have two routes is due to the SWITCH instruction, which may need to 

route tokens using one routing list for a true condition and another for a false condition. 

There are no examples of this in matrix multiply, but it is common in other programs. 

MM-0 

* opcode #args args (value, port) de st [i, pJ route (t, f) {c} 
======================================================================================== 

0 PROMPT 0 -> [12, OJ (B} * 
1 PROMPT 0 -> (13, OJ [7, OJ [2, OJ [5, OJ [4, OJ [3, OJ (A} * 
2 UPPER_BOUND 2 (0.oo,1) -> [6, 2J [9, lJ [11,0J * 
3 LOWER BOUND 2 (1.00,1) -> [6, 3J [14,0J * 
4 UPPER BOUND 2 (1.00,1) -> [6, 4 J [15,0J * 
5 LOWER BOUND 2 (0 .OO, l) -> [6, 1 J (16,0J * 
6 ALLOCATE 5 (2 .oo, 0) -> [8, OJ * 
7 LOWER BOUND 2 (0.00, 1) -> [9, OJ [10,lJ * 
8 FORKJUMP 2 (1.00,1) -> [17, OJ * 
9 LE 2 (STKY, 1) -> [10, OJ * 

10 SWITCH 5 (1.00,2) (11.00,3) (2.00,4) -> [18, OJ [19, OJ [21, OJ (I} * 
11 DIST LOPERATOR 1 (STKY, 0) -> (12,0) * 
12 DIST LOPERATOR 1 (STKY,O) -> (14, 0) * 
13 DIST LOPERATOR 1 (STKY,O) -> (15, 0) * 
14 DIST_LOPERATOR 1 (STKY,O) -> (10, 0) * 
15 DIST LOPERATOR 1 (STKY,O) -> (11, 0) * 
16 DIST LOPERATOR 1 (STKY, 0) -> (13, 0) * 
17 DIST=LOPERATOR 1 (STKY,O) -> (16, 0) * 
18 DIST_LOPERATOR 1 -> (1, 0) * 
19 PLUS 2 (1.00,1) -> [20, OJ {NEXT-I} * 
20 D 2 (-11. 00, 1) -> [9 1 OJ (10, lJ {I} * 
21 DINV 1 -> {SIGNAL} * 

In SP MM-0 the PROMPT instructions acquire the A and B matrices used in the 

matrix multiply. The UPPER_BOUND andLOWER_BOUND instructions access the 

matrix headers to initialize the loop boundaries. ALLOCATE then remotely distributes the 

C array and feeds a FORKJUMP operator. This FORKJUMP is necessary for the array 

manager to have a place to return the array identifier it just allocated. The LE, SWITCH, 

PLUS, D, and DINV are the standard dataflow operators. The new PODS operator is the 

DIST_LOPERA TOR, which performs the standard LOOP operator dataflow operations, 

but also sends its tokens to all PEs. This is how i is distributed. 

In SP MM-1 below, there is the local equivalent of the DIST_LOPERA TOR, the 

LOCAL_LOPERATOR, which sends its tokens only to itself. LOCAL_LOPERA TO Rs are 

only used where the operations have already been distributed, and more distribution would 

simply add to the network overhead without generating more parallelism. MM-1 also has 
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the code for the range generator inserted into it, from instruction 0 to 18. The range 

generator is explained more fully in Appendix B. 

MM-1 
0 INTERVAL_COUNT 1 (STKY,O) -> (1, 1) * 
1 LT 2 (0.00, 0) (STKY,1) -> (2, OJ * 
2 SWITCH 5 (0. oo, 1) (1.00,2) (29.00,3) (3.00,4)-> [3,0J [5,0J (8, 1 J (31, OJ * 
3 B_RANGE 3 (STKY, 1) (0.00,2) -> [4, lJ * 
4 GE 2 (STKY,O) -> (7,0) * 
5 E RANGE 3 (STKY, 1) (O.OO, 2) -> [6, OJ * 
6 GE 2 (STKY,1) -> (7' 1) * 
7 AND 2 -> (8, OJ * 
8 SWITCH 5 (1.00,2) (9.00,3) (3 .oo, 4) -> (9, OJ (10, OJ (16, lJ (17, OJ * 
9 E RANGE 3 (STKY,1) (1.00, 2) -> [11,lJ * 

10 B=RANGE 3 (STKY, 1) (1.00, 2) -> (11,0J (12, lJ * 
11 LE 2 (STKY, 1) -> (12, OJ (16, OJ * 
12 SWITCH 5 (1.00, 2) (4 .00,3) (3 .oo, 4) -> (13, lJ (15, OJ (19, lJ * 
13 LE 2 (STKY, 0) -> (14,0J * 
14 SWITCH 5 (STKY,l) (1.00, 2) (-3.00,3) (0.00,4)-> (11,0J (12, lJ * 
15 LE 2 (STKY,l) -> (16, OJ (19, OJ * 
16 SWITCH 5 (STKY,O) (STKY, 1) (3.00, 2) (1.00,3) (0.00,4)-> (17,0J * 
17 PLUS 2 (1.00, 1) -> (18,0J * 
18 FORKJUMP 2 (-17.00,1) -> (1, OJ (2, 1) * 
19 SWITCH 5 (1.00,2) (12.00,3) (3. 00, 4) -> (20,0J (26,0J [27,3J (31, OJ {J} * 
20 LOCAL LOPERATOR 1 -> (7' 0) * 
21 LOCAL LOPERATOR 1 (STKY,O) -> (2, 0) * 
22 LOCAL LOPERATOR 1 (STKY,O} -> (3, 0) * 
23 LOCAL LOPERATOR 1 (STKY,O) -> (4, 0) * 
24 LOCAL_LOPERATOR 1 (STKY,O) -> (5, 0) * 
25 LOCAL LOPERATOR 1 (STKY,O) -> (6, 0) * 
26 PLUS 2 (1.00, 1) -> (28, OJ {NEXT-J} * 
27 WRITE_ARRAY 4 (STKY, 1) (STKY, 2) -> {SIGNAL} * 
28 D 2 (-17.00,1) -> (11,0J (12,lJ {J} * 
29 GE 2 (STKY,O) -> (30,0J * 
30 SWITCH 5 (0.oo,1) (-11.00, 2) (-19. oo, 3)-> (19,0J * 
31 DINV 1 -> {SIGNAL} * 

SP MM-2 is a simple local loop which performs a reduction-like operation. There 

is a carried dependency in MM-2's loop that causes it to be run on one PE and not 

distributed. The LOCAL_LINV operator routes the sum (S) back to its parent SP which is 

on the same PE since it is a local operation. This route uses route list 9 which is loaded 

into every routing unit. 

MM-2 
0 LE 2 (STKY,1) -> (2, OJ (1, OJ * 
1 SWITCH 5 (1. oo, 2) (1.00,3) (3.00, 4) -> (3, 2J (5, lJ (4, OJ (10, OJ (TRIGGER} * 
2 SWITCH 5 (0.oo,1) (1.00, 2) (8 .00,3) (1.00,4)-> [7,0J (11,0J (S} * 
3 READ ARRAY 3 (STKY,O) (STKY,1) -> (6, OJ * 
4 PLUS 2 (1.00, 1) -> (8, OJ {NEXT-K} * 
5 READ_ARRAY 3 {STKY,O) (STKY, 2) -> (6, lJ * 
6 MULT 2 -> (7' lJ * 
7 PLUS 2 -> (9, OJ {NEXT-S} * 
8 D 2 (1.00, 1) -> [O, OJ (1, lJ {K) * 
9 D 2 (-9.00,1) -> (2, lJ {S} * 

10 DINV 1 -> * 
11 DINV 1 -> (12,0J * 
12 LOCAL_LINV 1 -> (9, 0) * 

The routing file below is the "program" that the routing unit follows for sending 

tokens to different SPs. Notice that route list 9, used by MM-2, sends the sum to MM-1, 
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instruction 27, port 0. Checking MM-1 we see that instruction 27 is the WRITE_ARRA Y 

instruction which is filling array C. 

DISPLAYING ROUTES 
f destinations (sp, inst, port) 

1 -> (1, 25, OJ (1, 27, 2) [l, 4, OJ (1, 6, 1) 
2 -> (2, O, OJ (2, 1, 1) 
3 -> (2, o, 1) 
4 -> (2, 5, OJ 
5 -> (2, 3, OJ 
6 -> (2, 3, 1 J 

-> (2, 5, 2] 
-> (1, 27, OJ 

10 -> (1, 13, OJ [l, 14, l] 
11 -> (1, 15, l] (1, 29, OJ 
12 -> (1, 22, OJ 
13 -> (1, 21, OJ 
14 -> (1, 23, OJ 
15 -> (1, 24, OJ 
16 -> (1, 27, 1) (1, O, OJ (1, 3, 1) (1, 5, l] (1, 9, lJ (1, 10, lJ 

Appendix B: Range Generators 

In this appendix, we explain the concept of range generators in detail. While it is 

not necessary for all to read this section, many readers may find it useful to understand 

how each PE restricts loop execution to its own portion of an array. 

B .1. Objective and Usage 

The objective of the range generator construct is to control which iterations of a 

distributed loop are to be executed by a given PE. A dataflow diagram which uses a 2-

dimensional range generator is shown below. The range generator takes in the array [A], 

the outer index value [i], and the current index UJ. From these it produces the next index 

for which this PE is responsible. The dataflow diagram below is a graphical representation 

of the simple filling code in the upper right hand comer. 
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1 50 1 10 
A= matrix(S0,10); 
for i = 1to50 

dim = 2 for j = 1 to 10 

A 

routed i 

B. 2. Boundary Table 

A[ij] = f(i,j); 

INNER LOOP SP 

return to 
outer scope 

Boundary tables are generated at allocation time and referenced by the range 

generator to determine the boundaries of its area of responsibility. In the figure below two 

types of boundary tables are shown, one for interleaved ranges and another for grouped 

ranges. In our experiments, grouped ranges were used because they generate fewer 

superpage boundaries. The example shown here is for PE #1 allocating a 6x300 array. 

The values bl and b2 are the beginning values for a given range interval in each of the two 

dimensions; similarly for el and e2. For different numbers of PEs (four in this example) 

different distributions are produced. The page size comes into play because pages are used 
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in caching and remote accesses. In this example the page size of 100 happens to split the 

interleaved ranges up into many intervals. 

Interleaved Row Grouped Row 

range_id bl el b2 e2 range_id bl el b2 e2 

0 1 1 1 100 0 1 1 1 300 
1 2 2 100 200 1 2 2 1 200 
2 3 3 200 300 
3 5 5 1 100 
4 6 6 100 200 

Dim = 2, Size = 6x300, #PEs = 4, Page Size = 100, PE 1 

B. 3. Algorithm 

The algorithm for the range generator is fairly straight forward. It is important to 

note, however, that the general algorithm is parameterized. The algorithm shown here is 

for a simple ascending loop with a stepsize of one. For different stepsizes or directions, 

the range generator algorithm must be modified. However, the selection of algorithm can 

generally be done at compile time, so no more runtime overhead is used than necessary. 

The general algorithm functions by repeatedly extracting ranges from the array 

boundary table. While within the range, the generator produces indices for elements within 

that range. The generator also keeps the loop alive by sending a continue token to the loop 

switch until all ranges have been exhausted. 

Consider the boundary table from the grouped example above. If the index for the 

first dimension is 1 then the values 1-300 should be generated for the second dimension 

index. If the index is 2, then the values 1-200 should be generated for the second 

dimension index. 

1 set N to interval count 

2 set I to 0 

3 if I> N then goto 14 

4 read interval I 
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B. 2. Boundary Table 
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in caching and remote accesses. In this example the page size of 100 happens to split the 
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1 2 2 100 200 1 2 2 1 200 
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Dim= 2, Size= 6x300, #PEs = 4, Page Size= 100, PE 1 

B. 3. Algorithm 

The algorithm for the range generator is fairly straight forward. It is important to 

note, however, that the general algorithm is parameterized The algorithm shown here is 

for a simple ascending loop with a stepsize of one. For different stepsizes or directions, 

the range generator algorithm must be modified. However, the selection of algorithm can 

generally be done at compile time, so no more runtime overhead is used than necessary. 

The general algorithm functions by repeatedly extracting ranges from the array 

boundary table. While within the range, the generator produces indices for elements within 

that range. The generator also keeps the loop alive by sending a continue token to the loop 

switch until all ranges have been exhausted. 

Consider the boundary table from the grouped ~xample above. If the index for the 

first dimension is 1 then the values 1-300 should be generated for the second dimension 

index. If the index is 2, then the values 1-200 should be generated for the second 

dimension index. 

1 set N to interval count 

2 set I to 0 

3 if I > N then goto 14 
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B. 3. Algorithm 

The algorithm for the range generator is fairly straight forward. It is important to 

note, however, that the general algorithm is parameterized The algorithm shown here is 

for a simple ascending loop with a stepsize of one. For different stepsizes or directions, 

the range generator algorithm must be modified. However, the selection of algorithm can 

generally be done at compile time, so no more runtime overhead is used than necessary. 

The general algorithm functions by repeatedly extracting ranges from the array 

boundary table. While within the range, the generator prcxluces indices for elements within 

that range. The generator also keeps the loop alive by sending a continue token to the loop 

switch until all ranges have been exhausted. 

Consider the boundary table from the grouped ~xample above. If the index for the 
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index. If the index is 2, then the values 1-200 should be generated for the second 

dimension index. 
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3 if I> N then goto 14 

4 read interval I 
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5 increment I 

6 if index 1 is not in interval I then goto 3 

7 set J to start of interval I 

8 if J is not in interval I then goto 3 

9 if J is within loop bounds then set continue to TRUE else set continue to FALSE 

10 send J to loop body 

11 loop body 

12 if new_J is within loop bounds then set continue to TRUE else set continue to FALSE 

13 if continue then goto 11 else goto 8 (with J set to new_J) 

14 (continue with program) 

Alg_orithm for 2D Ascendin_g_ Ste_Qsize 1 Ran_g_e Generator 

In matrix multiply, the middle loop (MM-1) has the range generator code. The 

three new required operators are: INTERVAL_ COUNT (retrieve the number of range 

intervals for this array); and B_RANGE I E_RANGE (retrieve the beginning and ending 

values for the specified range interval). These two new operators simply read entries from 

the array header (generated at allocation time). The additional SWITCHs and tests are 

necessary to prevent different PEs from generating the same indices. With range 

generators, each PE has the same code; only the local boundary tables are different. 
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