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ABSTRACT OF THE DISSERTATION

Preventing the Memory Errors in the Large-Scale C/C++ Software

by

Yizhuo Zhai

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2023

Professor Zhiyun Qian, Co-Chairperson
Professor Srikanth V. Krishnamurthy, Co-Chairperson

The C and C++ programming languages are highly valued for their flexibility in

low-level memory management and exceptional performance. They are widely used in various

applications, including Linux Kernel, Google Chrome, Microsoft Windows, and Firefox.

However, this emphasis on performance comes at the cost of memory safety, resulting

in various memory errors, such as use-after-free, use-before-initialization (UBI) and type

confusion, etc. These bugs not only impact system reliability but also pose significant

security risks, potentially allowing attackers to gain control over the entire system. While the

security impacts they bring are harmful, there lacks the efficient and effective approaches to

detect them in the large scale software. In this dissertation, we would explains the challenges

towards this topic and try to explore new approaches to tackle them. More specifically,

we focus on two types of memory errors, use before initialization(UBI) and type confusion.

In this dissertation, we (1) address that precise UBI analysis needs path-sensitive analysis

and the current approaches either generate too many false positives or cannot scale to the

large scale software. (2) studied the long presence of the bug once it merged into the Linux

viii



kernel, and proposed the incremental approaches called IncreLux to detect UBI bugs for new

kernel commits. IncreLux is able to analyzing individual commit within minutes and thus

avoid the buggy code merging into the kernel upstream. (3) analyzed some type confusion

vulnerabilities and patches for Chome, as well as the popular sanitizers’ approach to mitigate

type confusion bugs. One insight is that the developers encoded the type information to

some fields of the data structure. Before type castings, developers already added some type

checks by looking at those fields. Therefore, by collecting developers’ check, we could reduce

sanitizer’s instrumentation if such type check is already performed. This aids in enhancing

the efficiency of preventing type confusion bugs.
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Chapter 1

Introduction

Software written in C/C++ is prone to memory errors, which in turn, pose security

threats to the system and expose a significant attack surface to external threats. Importantly,

even the trusted computing base, such as the OS kernel, may also contain memory errors

that could allow attackers to gain control of the entire system and render all protection

schemes futile.

To better mitigate the threats, the prevailing approach is to identify memory errors

before the software release. Current state-of-art approaches include compiler time static

analysis and run time dynamic analysis. Static analysis seeks to validate the correctness

of memory usage with out executing the program. While dynamic approaches aim to

place monitors within the program and ensure certain security property during execution.

However, when these approaches are employed to large scale software, their limitations

become apparent.
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Static analysis validates every potential path from the program’s entry point.

Considering the millions of lines of code in a single software, path explosion renders the

approach impractical during the development cycle. Dynamic analysis places the monitors

into the software, and check the certain properties when program execute of the security

critical operations. However, introducing these additional checks unavoidably burdens the

software.

In summary, directly apply these state-of-art approaches to large software remains

a challenge, and there is a pressing need to enhance their efficiency and effectiveness.

1.1 Problem Statement and Challenges

This thesis seeks to overcome the limitations of previous static and dynamic

approaches in preventing memory errors in the large scale software by designing and

implementing novel frameworks.

We first targeted at the use-before-initialization(UBI) bugs, a new emerged attack

vector in software. Previously, the uninitialized use of a variable was considered undefined

behaviors. However the exploit of CVE-2010-2963 demonstrated that these types of memory

errors pose security threats to the system. Therefore, it becomes crucial to ensure that

variables are appropriately initialized before each use. Simply zeroing out memory is not a

viable solution, as the default value assigned to the variable may not be correct. Therefore,

the most effective approach remains the detection of uninitialized use, reporting it to

developers, and asking them to determine the appropriate value. Since UBI errors occur

in specific pathways, the adoption of path-sensitive analysis becomes necessary. However,
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applying path-sensitive analysis to every variable proves impractical for software with

extensive code bases. In response, we developed and implemented UbiTect, a tool that

employed a two-phase analysis. First, static analysis is applied to generate warnings for

potential uninitialized variables. Subsequently, symbolic execution is employed to conduct a

more precise analysis. To assess the efficacy of UbiTect, we utilized Linux kernel v4.14 as

our evaluation benchmark. It takes one week to finish the whole kernel. Remarkably, we

identified 118 previously undisclosed bugs through this evaluation process. Following email

correspondence with the maintainers, we successfully verified 52 of these bugs.

During the evaluation of theUbiTect system, we recognized that one-week analysis

time posed challenges in integrating the tool into the software development cycle of the

target, i.e. linux kernel which releases new versions weekly. Moreover, when buggy code is

introduced, it remains in the system for an extended period, creating a long vulnerability

time window. It is advisable to subject new code to comprehensive checks before merging it

into the code base. We observed that between different versions, only a small portion of the

code is modified. Therefore, we could reuse the previous results, and conduct delta analysis

to the new version. Based on this observation, we designed and implemented IncreLux,

which is an incremental framework to detect the UBI bugs across versions. It conducts the

one time whole program analysis and stores the intermediate information for each functions.

Then it could analyze the new code and maintaining the same security guarantees as the

whole kernel analysis. We evaluate IncreLux from v4.14 to v4.16, and performs per patch

analysis, the results show the significant speedup and we have new bugs confirmed by kernel

community.
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The second type of bug we address is type confusion, which occurs when a variable

is allocated as one type but subsequently used as a different, incompatible type, resulting

in memory errors. As the compiler based static check is not sufficient, dynamic sanitizer

approaches are more popular and widely used. These approaches involve instrumenting extra

type-checking functions into the program, albeit at the expense of introducing considerable

overhead. However, an insightful observation is that, developers already embed information

into classes and validate these fields before casting, thereby ensuring the correctness of the

casting process. This proactive measure by developers diminishes the necessity for certain

security check instrumentation typically employed by sanitizers. Building upon this obser-

vation, we conceived and implemented T-Prunify. T-Prunify employs static analysis

to gather the type information that developers have encoded into the code, subsequently

pinpointing their checks. Once these checks have been identified, and if deemed sufficient,

we can then judiciously remove redundant type checks that developers had inserted. To

assess the efficacy of T-Prunify, we conducted evaluations on Chromium and achieved

notable speedup improvements.

1.2 Thesis Contributions

In summary, this thesis contributes the following technical advancements to the

field of security research:

1. Necessity of Detecting UBI Bugs We emphasize that for comprehensive mitigation

of UBI bugs in the system, zeroing the variable is not the primary solution; rather, a

more secure approach involves detecting and reporting these issues to developers.
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2. New Two-Phase Approach We tackle the precision-versus-scalability dilemma

in detecting UBI bugs, which often hinders the use of static analysis in large-scale

software. To resolve this issue, we introduce a two-phase approach combining static

analysis and symbolic execution.

3. New Delta Analysis Framework We design and implement an innovative summary-

based incremental static bug detection framework for efficient delta analysis.

4. New Overhead Reduction Approach In our quest to mitigate type confusion, we

explore various methods and conclude that developers’ checks are the most efficient.

Building on this insight, we develop an approach to extract this information, ultimately

reducing redundant runtime monitors in dynamic analysis.

5. Open Source We will open source all analysis tool developed in this thesis for further

adoption.
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Chapter 2

UBITect: a precise and scalable

method to detect

use-before-initialization bugs in

Linux kernel

2.1 Introduction

Linux kernels provide a secure foundation upon which services for user applications

can be built. However, security vulnerabilities existing inside kernel code violate the security

guarantees that it intends to provide. Among such vulnerabilities, use-before-initialization

(UBI) is an emerging threat. A recent report from a Microsoft security team shows that

the number of patched UBI bugs is similar to the number of patched use-after-free bugs
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[117]. UBI bugs open up significant security threats against the operating system: they

could enable attackers to take control over the entire system [7,44,108,185], leak sensitive

information [105,115], and can be exploited using automated means [108].

Both static analysis and dynamic analysis have been applied to detect UBI bugs.

Modern compilers provide the -Wuninitialized option to facilitate the detection of UBI

bugs at compile time. Unfortunately, due to its limited analysis scope (i.e., intra-procedural),

this cannot detect UBI bugs that involve multiple functions. In practice, many UBI bugs do

occur inter-procedurally. For example, objects can be allocated in one function, initialized

in another function, and used in a third function. Static symbolic execution like that in

Clang static analyzer (CSA) [148], can perform more accurate analysis, but due to the path

explosion, its ability to perform inter-module holistic program analysis is limited. Dynamic

analysis used in MemorySanitizer [139] and kmemcheck [151] can also detect UBI bugs, but

their limited code coverage means that they will miss many bugs.

Zeroing the allocated object is a popular mitigation strategy for UBI bugs. For

example, PaX’s STACKLEAK plugin [129] forces the initialization of kernel stacks during context

switches between the kernel and user space. UniSan [105] forces the initialization of memory

objects that may be uninitialized and may leave the kernel space (e.g., copy-to-user).

SafeInit [115] does so for all stack and heap variables. However, we point out that forced

initialization can only be used to mitigate information leaks, but not other types

of UBI bugs. The reason is that, the value 0 used for initialization may violate a program’s

semantics and lead to undefined behaviors. For instance, initializing a pointer to NULL is

sufficient towards preventing information leaks, but dereferencing a NULL-pointer results in a
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different type of vulnerability viz., CWE-476 [11] (which is not desirable in OS kernels). For

normal data, a few patches we submitted were also rejected due to incorrect initialization

values. Based on this observation, we conclude that a better way to mitigate UBI bugs is to

warn developers and let them decide upon the correct initialization values.

There are two particular challenges for reporting UBI bugs to developers. First,

the Linux kernel has about 27.8 million lines of code and so, the analysis must be scalable.

Second, most UBI bugs are path-sensitive, meaning that they can only be triggered if

there is a feasible path between the allocation site and the use site, along which the involved

variable will not be initialized. Because of these, UBI bugs are uniquely challenging to

comprehensively discover and require inter-procedural path-sensitive analysis. We are not

aware of any such analysis scaling to the whole kernel.

Flow-sensitive static analysis and symbolic execution are two state-of-art solutions

that can help towards discovering UBI bugs. Our evaluations show that the former method

scales well but generates too many warnings to inspect manually. Moreover, there are lots of

false positives in those warnings. Symbolic execution reports fewer false positives but suffers

from path explosion.

In this work, we seek to address the aforementioned two challenges, and design

a tool suitable for reporting UBI bugs for manual inspection and fixing. To this end, we

have developed UbiTect, a tool that combines flow-sensitive type qualifier inference and

symbolic execution to find UBI bugs in the Linux kernel. In the first stage, UbiTect uses

a soundy [109] flow-sensitive, field-sensitive and context-sensitive inter-procedural analysis

to find potential UBI bugs. For each potential bug, this step also generates a guidance
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for path exploration, so as to avoid paths that will never reach the use site or paths that

will initialize the involved variable. In the second stage, UbiTect uses under-constrained

symbolic execution [132] to find a feasible path according to the guidance. If a path is found,

UbiTect will report the bug together with the corresponding path to make the manual

inspection and fix easier.

We perform a thorough evaluation of UbiTect on Linux v4.14 under allyesconfig,

which includes 16,163 files with 616,893 functions. UbiTect reported 190 bugs, among

which 78 bugs were deemed by us as true positives, yielding a false positive rate of 59%.

Among true positives, we found that the corresponding code of 9 bugs have been removed

from the mainline kernel due to feature updates and 11 bugs were already fixed in the

mainline. We submitted patches for the remaining 58 bugs and 37 were confirmed and

applied by kernel maintainers. In addition, based on these bugs, we apply some intuitive

heuristics and uncover 15 more bugs, thereby confirming 52 bugs in total. Details are

provided in the evaluation of this chapter.

Contributions In this paper, our contributions are as follows:

• Design. We design UbiTect, which combines scalable type qualifier inference with

symbolic execution to perform scalable and precise detection of Use-before-Initialization

bugs in the Linux kernel.

• Implementation. We implement UbiTect on the LLVM 7.0.0 compiler toolchain and

KLEE with 13,446 LoC. The tool is open sourced [13].

• Results. UbiTect found 78 bugs in the v4.14 Linux kernel, where 11 were already fixed.
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We report the rest of the bugs to the Linux community and 37 were confirmed by Linux

maintainers.

2.2 Use-before-Initialization Bugs

In this section, we highlight the severity of UBI bugs and the challenges in detection.

2.2.1 From UBI to Arbitrary Code Execution

The first example is a bug that was found in the queue manag function (simplified

in Figure 2.1) and patched in revision 1a92b2b. The root cause for this bug is that the

pointer backlog (line 14) is only initialized (line 16) when (cpg->eng st == ENGINE IDLE).

Although this case is simple, it highlights the severity of the security impact of

UBI bugs. The variable backlog belongs to the type structure crypto async request, which

contains a function pointer complete (line 8). When backlog is left uninitialized, it could

point to an arbitrary memory location depending on what value was stored at that address

(&backlog) before, and backlog->complete could also point to arbitrary code. Since backlog

is allocated on the kernel stack, by utilizing stack spray [108], an attacker can control backlog

and thus, the function pointer (backlog->complete). Consequently, when this function is

invoked at line 19, the attacker can achieve arbitrary code execution.

In addition to control-flow hijacking attacks, an attacker can also launch arbitrary

reads and writes by overlapping attacker-controlled data with uninitialized pointers (e.g.,

CVE-2010-2963 [44]). Moreover, if a critical decision variable (e.g., authenticated) is

uninitialized, an attacker can bypass security checks and induce other unexpected control
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1 /* file: drivers/crypto/mv_cesa.c

2 * uninteresting code lines are omitted

3 */

4 typedef void (*crypto_completion_t)(

5 struct crypto_async_request *req, int err);

6

7 struct crypto_async_request {

8 crypto_completion_t complete;

9 };

10

11 static int queue_manag(void *data)

12 {

13 /* backlog is defined without initialization */

14 struct crypto_async_request *backlog;

15 if (cpg->eng_st == ENGINE_IDLE)

16 backlog = crypto_get_backlog(&cpg->queue);

17 if (backlog)

18 /* uninitialized pointer dereferenced! */

19 backlog->complete(backlog, -EINPROGRESS);

20 return 0;

21 }

Figure 2.1: This code snippet shows a UBI bug in the Linux kernel. The variable backlog is

not initialized if (cpg->eng st != ENGINE IDLE). It allows arbitrary code execution once an attacker

exploits the bug to control the value left on the kernel stack.
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flows. A subsequent research effort has shown that such attacks are practical and can be

constructed in an automated manner [108].

2.2.2 Challenges in Detecting UBI Bugs

The key challenge in detecting UBI bugs is the need for high-precision analysis

(to reduce false positives), which can conflict with our goal of scaling up the analysis to

the entire Linux kernel. Figure 2.2 depicts a good example: function vmw translate mob ptr

takes three input arguments and an output argument *vmw bo p, which is supposed to be

initialized at line 16. Under normal circumstances (i.e., the lookup succeeds), *vmw bo p

will be initialized. However, when the callee enters an error related return path (line 15),

*vmw bo p is left unchanged.

Need for Inter-procedural Analysis A conservative intra-procedural analysis can

require that all the variables must be initialized at all levels (e.g., both the pointer and the

data the pointer points to), when passed to a callee. However, since the callee may not

access all input arguments (e.g., when an error is returned at line 15), this requirement is too

restrictive and will generate too many false positives. Therefore, an inter-procedural analysis

is necessary. Moreover, since *vmw bo p is left unchanged upon an error return, whether the

actual argument is uninitialized or initialized depends on the calling context (i.e., whether

the caller has already initialized it). Hence, a context-sensitive inter-procedural analysis

is preferable. Similarly, since the callee may not access all the fields of an argument (e.g.,

sw context), performing a field-sensitive analysis is preferable.
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1 /* file: drivers/gpu/drm/vmwgfx/vmwgfx_execbuf.c

2 * uninteresting code lines are omitted

3 */

4 static int vmw_translate_mob_ptr(

5 struct vmw_private *dev_priv,

6 struct vmw_sw_context *sw_context,

7 SVGAMobId *id,

8 struct vmw_dma_buffer **vmw_bo_p)

9 {

10 struct vmw_dma_buffer *vmw_bo;// = NULL;

11 uint32_t handle = *id;

12 int ret = vmw_user_dmabuf_lookup(

13 sw_context->fp->tfile, handle, &vmw_bo);

14 if (unlikely(ret != 0))

15 return -EINVAL;

16 *vmw_bo_p = vmw_bo;

17 return 0;

18 }

Figure 2.2: An inter-procedural UBI bug in the Linux kernel. Argument vmw bo p may remain

uninitialized during error return.
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Needs for Path-Sensitive Analysis Another interesting part of this example is that

the local variable (vmw bo) is not initialized at first (line 10), and may not be initialized if

the call to the function vmw user dmabuf lookup fails (line 12). However, since

vmw translate mob ptr() checks the return value to detect the error (line 14-15), the unini-

tialized value will not reach a use (line 16). Thus, in essence, having a data-flow between

where the variable is uninitialized and used, is a necessary condition for UBI bugs but is

not sufficient (i.e., , the corresponding execution path must be feasible). Unfortunately, no

path-sensitive analysis (e.g., dynamic analysis) can scale to cover all the paths in the kernel.

As a practical compromise, UbiTect uses under-constrained symbolic execution to verify

the feasibility of a potential buggy path.

2.3 Overview

In this section, we show how UbiTect combines type qualifier inference and

symbolic execution to detect UBI bugs. Figure 2.3 illustrates the workflow of UbiTect and

we will explain each component in the following content. The design of the type inference

will be presented more formally in subsection 2.4.2.

2.3.1 Pre-processing

To make the analysis easier, UbiTect first compiles Linux source code to its

LLVM Intermediate representation (IR). To improve the scalability of the type inference,

UbiTect adopts the bottom-up style inter-procedural analysis. To support the bottom-up

style analysis, the second step is to build the call graph of the whole code base so as to (1)
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Figure 2.3: The workflow of UbiTect, ”QI”:Qualifier Inference, ”QR”:qualifier requirements,

”QU”: qualifier updates

resolve indirect call targets, (2) build the dependency tree between caller and callee(s), and

(3) find potential recursive chains.

2.3.2 Type Qualifier Inference

Type qualifiers have been used in previous works to detect security bugs. For

example, Johnson and Wagner [87] introduced two qualifiers kernel and user to track the

provenance of pointers (i.e., whether their values are controlled by user space) and find

unsafe dereferences of user-supplied pointers. In this work, we adopt the flow-sensitive type

qualifier inference [65] to detect UBI bugs.
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From a high level, we introduce two new qualifiers: init and uninit, where init ⪯

uninit (i.e., init is a subtype of uninit); and defines the subtype relations between qualified

types (e.g., init int ⪯ uninit int). Besides the trivial check that an expression of uninit

cannot be assigned to a location of init, UbiTect adds additional checks/assertions to

detect use of initialized variables:

• Only expressions of init type can be dereferenced; and

• Only expressions of init type can be used in conditional branches.

UbiTect only considers those two assertions that capture UBI bugs with security

implications here and ignore other types of uses of such variables. For example, adding two

uninitialized variables reflects an uninitialized usage, but is not security-critical.

Since the IR generated by the compiler does not contain any qualifier, UbiTect

performs automated inference to assign a qualifier for every variable at every program

point within a function, including its argument(s) and return value(s). If UbiTect can

successfully infer all the qualifiers, then the analyzed function is free of UBI bugs. Otherwise

we find potential UBI bug(s) and the corresponding guidance will be generated and passed to

UbiTect’s symbolic execution engine. We will first explain how UbiTect infers qualifiers

within a function and generates function summaries; then we will describe how inter-

procedural qualifier inference works.

Intra-procedural Qualifier Inference. The intra-procedural qualifier inference is done

as follows. (1) UbiTect assigns each expression (LLVM value) with a symbolic type κ. (2)

Along different types of expressions, UbiTect generates subtyping constraints according to

rules in subsection 2.4.2. (3) When encountering the security critical operations listed above,
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UbiTect enforces that the corresponding expression has the concrete qualifier init. (4)

UbiTect resolves the symbolic types into concrete qualified types by solving the constraints.

Take aa splitn fqname in Figure 2.4 as an example. At the entry of the function

(line 6), ns name and ns len are assigned with two symbolic types κ1 const char κ2 ∗ κ3∗ and

κ4 size t κ5∗. Because ns name (%2) and ns len (%3) in basic block (BB) %7 are dereferenced

as pointers, the qualifier of the pointer should be init. UbiTect can then resolve their

qualified types at least to be uninit const char uninit ∗ init∗ (initialized pointer to

uninitialized pointer to uninitialized constant char) and uninit size t init∗ (initialized

pointer to uninitialized integer).

Function Summaries Generations. After intra-procedural qualifier inference, UbiTect

generates function summaries (FS) for every function. Each function summary includes (1)

qualifier requirements (QR) over the input arguments for the target function to be invoked

without triggering UBI bugs, (2) qualifier updates (QU) for in and out parameters, and (3)

qualifier of the return value.

Here, we continue using aa splitn fqname as an example and focus on how we

generate qualifier requirement and qualifier updates for the input arguments ns name and

ns len. Let us assume that the actual argument types are κ1 const char κ2 ∗ init∗ and

κ4 size t init∗, where κi is symbolic (i.e., either init or uninit). By assigning the constant

integer to *ns name (line 10) and *ns len (line 11), their qualified types will be updated to

κ1 const char init ∗ init∗ and init size t init∗. However, when the control flow merges at

basic block %8 before returning, because these two variables are not written-to in the other

branch (when name == NULL), the updates to the qualifier when aa splitn fqname returns
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will be decided by the least-upper bound of κ2 and init (i.e., κ2 ∨ init), as well as κ4 and

init.

To enable context-sensitive inter-procedural analysis, we keep κ2 and κ4 as symbolic

as “updates to the parameters” in the function summary, and calculate the actual updates

according to the calling context.

Inter-procedural Qualifier Inference. After we derive the summary of aa splitn fqname,

we can proceed to analyze aa fqlookupn profile. The arguments &ns name (%4) and &ns len

(%5) point to memory objects allocated on the stack and thus, the qualified types are

uninit char uninit ∗ init∗ and uninit size t init∗. Their qualified types are compatible

with the QR generated above. After invocation, according to the QU, their types remain

the same because when κ2 = uninit, uninit ∨ init = uninit.

When processing the if statement on line 22, UbiTect enforces that the expres-

sion used as the branch condition has a qualifier init. However, in aa fqlookupn profile,

this subtyping constraint cannot be satisfied because the qualified type of ns name (%7) is

uninit char uninit∗. Due to this conflict, the inference module outputs a potential UBI

bug on line 22 (BB %3) of aa fqlookupn profile.

Guidance for Symbolic Execution. To mitigate the path explosion problem, UbiTect

generates a guidance for the symbolic execution engine (SE). The guidance includes an

avoidlist and a mustlist of basic blocks. A basic block is inserted into the avoidlist when (1)

the involved variable is initialized or (2) the basic blocks can never lead to the use site. A

basic block is inserted into the mustlist when (1) the involved variable becomes uninitialized
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1 /* file: security/apparmor/policy.c

2 * uninteresting code lines are omitted

3 */

4 const char *aa_splitn_fqname( const char *fqname, size_t n,

5 const char **ns_name, size_t *ns_len) {

6 const char *name = skipn_spaces(fqname, n);

7 if (!name)

8 return NULL; //*ns_name is not initialized

9 *ns_name = NULL;

10 *ns_len = 0;

11 /* populate *ns_name */

12 return name;

13 }

14 int aa_fqlookupn_profile(struct aa_label *base,const char *fqname, size_t n) {

15 const char *name, *ns_name;

16 size_t ns_len;

17 name = aa_splitn_fqname(fqname, n,

18 &ns_name, &ns_len);

19 if (ns_name) { // UBI!

20 //ns = aa_lookupn_ns(labels_ns(base),

21 //ns_name, ns_len);

22 }

23 return 0;

24 }

Figure 2.4: An inter-procedural UBI bug in the apparmor module.
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Figure 2.5: LLVM IR for function aa splitn fqname with control-flow graph for Figure 2.4.
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Figure 2.6: LLVM IR for function aa fqlookupn profile with control-flow graph for Figure 2.4.
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or (2) the uninitialized variable is used. For the UBI bug detected above, UbiTect passes

SE a avoidlist containing %7 where the variable is initialized and a mustlist containing %3

where UBI happens.

2.3.3 Symbolic Execution

After getting the guidance, UbiTect uses under constrained symbolic execution

to search for a feasible path (i.e., whose symbolic path constraints can be satisfied) from the

allocation site (i.e., the entry of aa fqlookupn profile) to the problematic use site %3, while

avoiding %7. If a feasible path is found (e.g., BB %3,%4,%8,%3), UbiTect outputs a report

for manual inspection, together with the path.

2.4 UbiTect Design

This section describes the design details of UbiTect, including points-to and

aliasing analysis, the formalization of the type inference, and the symbolic execution engine.

2.4.1 Points-to and Aliasing Analysis

As a precursor to flow-sensitive qualifier inference [65], UbiTect performs a flow-

sensitive and field-sensitive intra-procedural points-to analysis; specifically, towards this it

applies standard data-flow analysis. For each statement, a points-to map is maintained and

updated according to the control-flow. This allows UbiTect to have different points-to sets

for the same pointer at different program points (i.e., flow-sensitive).
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Because type casting is common in the Linux kernel, the points-to map tracks

all variables and (field-extended) objects regardless of whether their types are pointers or

not. This allows UbiTect to handle (i) casting between pointers and integers and (ii)

integer-based pointer arithmetic. UbiTect also handles two types of castings that are

especially troublesome for points-to analysis: container of and casting from a void pointer.

When handling such cases, UbiTect dynamically extends the allocated object size (i.e.,

number of fields in a struct type), if the destination type contains more fields than the

original object. Since such castings usually happen on function arguments, this procedure

enables more precise function summaries which will be explained in subsection 2.4.3.

2.4.2 Qualifier Inference

Our qualifier inference component is an extension of the flow-sensitive analysis by

Foster et al. [65], and the inference rules for basic expressions are the same. In addition,

we consider pair types which model the fields inside a C struct type and present their

corresponding type inference rules. Providing separate qualifiers for elements of pairs

(i.e., struct fields) is important as struct is used extensively in the Linux kernel. More

importantly, pointers to struct are often passed between kernel functions, and whether a

field of a struct is or is not initialized is independent of the states of the other fields in the

struct.

Given a program in LLVM IR, we present a type qualifier inference system to

infer a qualifier (either init or uninit) for each register variable (i.e., LLVM expression)

and each field that belongs to an allocated memory object. We perform the inference

function-by-function in a bottom-up fashion. If we can successfully infer all the qualifiers
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along with the data flow, then the analyzed function is correct; otherwise we find potential

UBI bug(s).

While we neither elaborate nor contribute to the sophisticated theory behind type

qualifiers here, we try to keep the narrative self-contained by describing the notations and

concepts applied in the reference rules. Interested readers can refer to [65] for further details.

We retain the standard qualifier notation from Foster et al. [65], and only present the type

inference rules for pair expressions; the full set of inference rules is available to the interested

reader in the appendix and supplementary material [12].

The subtyping relation between the two qualifiers is straightforward: init ⪯ uninit

(i.e., init is a subtype of uninit), meaning that a variable of init t could be valid wherever

uninit t is expected, but not vice versa. Defining the subtyping relations for qualified types,

and in particular qualified reference types, is subtle. Considering the primitive type int , its

subtyping relation of qualified int is:

Q ⪯ Q′

Q int ⪯ Q′ int

This means that if qualifier Q ⪯ Q′, then Q int is a subtype of Q′ int , For instance, init int

is a subtype of uninit int . When it comes to references, the rule is more complicated. The

following rule defines the subtyping relation between qualified references.

Q ⪯ Q′

Q ref (τ) ⪯ Q′ ref (τ)

Specifically, it requires that the type of the (τ) to which the references point, be the same.
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Syntax

Our qualifier inference is performed on LLVM IR after the alias analysis. For

simplicity of the discussion, we use the following abstract syntax following the one used in

Foster et al. [65], instead of the full LLVM IR syntax.

e := x | n | λL x : t. e | e1 e2 |

| refρ e | !e | e1 := e2

| ⟨e1, e2⟩ | fst(e) | snd(e)

| fst(e1) := e2 | snd(e1) := e2 |

| assert(e,Q) | check(e,Q)

t := α | int | ref (ρ) | t→L t′ | ⟨t1, t2⟩

L := {ρ, .., ρ}

In the grammar defined above, an expression e can take a form of a variable x, a constant

integer n, a function λL x : t. e with argument x of type t, effect set L and body e. The

effect set, L, stands for the set of abstract locations ρ that the function accesses, which

is calculated as part of our alias analysis. A type t is either a type variable α, an integer

type int , a reference ref (ρ) (to the abstract location ρ), a function type t →L t′ (that is

decorated with its effects L) or a pair type ⟨t1, t2⟩. The expression e1 e2 is the application

of function e1 to argument e2. The reference creation expression refρ e (decorated with the

abstract location ρ) allocates memory to store the value e. The expression !e dereferences

the reference e. The expression e1 := e2 assigns the value of e2 to the location e1 points

to. The expression ⟨e1, e2⟩ is the pair of e1 and e2. The expressions fst(e) and snd(e) are

the first and second elements of the pair e, respectively. The expressions fst(e1) := e2 and
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snd(e1) := e2 assign the value of e2 to the first and the second elements of the location that

e1 points to, respectively.

Note that, following the style of Foster et al. [65], we use explicit qualifiers to

both annotate and check the initialization status of expressions. The expression assert(e,Q)

annotates the expression e with the qualifier Q, which is used to manually annotate types

(e.g., the from argument of copy to user). The expression check(e,Q) requires the top-level

qualifier of e to be at most Q. We automatically insert the check(e, init) expressions by a

simple program transformation before every security critical use to enforce the safety of

the operations. Specifically, we consider a pointer dereference (!e) to be security critical; a

similar connotation applies when e is used as the predicate of a conditional branch.

Qualified Types and Type Stores

Given the subtyping relations, we now define the qualified types.

τ := Q σ

Q := κ | init | uninit

σ := int | ref (ρ) | (C, τ)→ (C ′, τ ′) | ⟨τ1, τ2⟩

C := ϵ | Assign(C, ρ : τ) | ...

η := 0 | 1 | ω

The qualified types τ can have qualifiers at different levels. Q can be a qualifier variable κ or

a constant qualifier init or uninit. The flow-sensitive analysis associates a ground store C

to each program point that is a vector that associates abstract locations to qualified types.

Thus, function types are now extended to (C, τ) → (C ′, τ ′) where C is the store that the

function is invoked in and C ′ is the store when the function returns.
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To track when strong/weak updates should be performed, each location in a store C

also has an associated linearity η that can take three values: 0 for unallocated locations, 1 for

linear locations (i.e., only point-to a single abstract location and thus, admits strong updates),

and ω for non-linear locations (i.e., can point-to multiple different abstract locations and

thus, only admits weak updates). An abstract location is linear if the type system finds

that it corresponds to a single concrete location in every execution. An update that changes

the qualifier of a location is called a strong update; otherwise, it is called a weak update.

Strong updates can be applied to only linear locations. The three linearities form a lattice

0 < 1 < ω. Addition on linearities is as follows: 0 + x = x, 1 + 1 = ω, and ω + x = ω. The

type inference system tracks the linearity of locations to allow strong updates for only the

linear locations.

Since a store C maps from each abstract location ρi to a type τi and a linearity ηi,

we write C(ρ) as the type of ρ in C and Clin(ρ) as the linearity of ρ in C. Store variables

are denoted as ϵ. We use the following store constructor to represent the store after an

assignment expression as a function of the store before it.

Assign(C, ρ′ : τ)(ρ) =

τ ′ where τ ⪯ τ ′ if ρ = ρ′ ∧ Clin(ρ) ̸= ω

τ ⊔ C(ρ) if ρ = ρ′ ∧ Clin(ρ) = ω

C(ρ) otherwise

Assign(C, ρ′ : τ)lin(ρ) = Clin(ρ)

Assign(C, ρ : τ) overrides C by mapping ρ to a type τ ′ such that τ ⪯ τ ′. (in our approach, τ ′

can be any super-type of τ .) The condition τ ⪯ τ ′ permits the assignment of a subtype τ of

resulting type τ ′ to ρ. If ρ is linear, then its type in Assign(C, ρ : τ) results in τ ′; otherwise
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Int⪯

Q ⪯ Q′

Q int ⪯ Q′ int

Ref⪯

Q ⪯ Q′

Q ref (ρ) ⪯ Q′ ref (ρ)

Fun⪯

Q ⪯ Q′ τ2 ⪯ τ1 τ ′1 ⪯ τ ′2 C2 ⪯ C1 C ′
1 ⪯ C ′

2

Q (C1, τ1)→L (C ′
1, τ

′
1) ⪯ Q′ (C2, τ2)→L (C ′

2, τ
′
2)

Store⪯

τi ⪯ τ ′i ηi ⪯ η′i i = 1..n

{ρη1

1 : τ1, ..., ρ
ηn
n : τ1} ⪯ {ρ

η′
1

1 : τ ′1, ..., ρ
η′
n

1 : τ ′n}
Pair⪯

Q ⪯ Q′ τ1 ⪯ τ ′1 τ1 ⪯ τ ′2

Q ⟨τ1, τ2⟩ ⪯ Q′ ⟨τ ′1, τ ′2⟩

Figure 2.7: Store subtyping.

its type is conservatively determined as the least-upper bound of τ and its previous type

C(ρ).

The type inference system generates subtyping constraints between stores. We

define store subtyping in Figure 2.7 and would explain them one by one. These constraints

among stores subsequently give rise to constraints between linearities and types, which

in turn lead to constraints between qualifiers and linearities. The rule Int⪯ requires a

corresponding subtyping relation for the qualifiers associated with the type int . Similarly, the

rule Ref⪯ requires the same subtyping relation between qualifiers and additionally requires

the equality of the two locations. For the rule Fun⪯, we necessitate the subtyping relation

between top-level qualifiers and implement contra-variance for the argument and input store,

as well as co-variance for the return value and output store. Finally, the rule Store⪯

requires both subtyping and stronger linearity for corresponding locations. The rule Pair⪯
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Pair

Γ, C ⊢ e1 : τ1, C
′ Γ, C ′ ⊢ e2 : τ2, C

′′ κ fresh

Γ, C ⊢ ⟨e1, e2⟩ : init ⟨τ1, τ2⟩, C ′′

Fst

Γ, C ⊢ e : Q ⟨τ1, τ2⟩, C ′

Γ, C ⊢ fst(e) : τ1, C
′

FstAssign

Γ, C ⊢ e1 : Q ref (ρ), C ′

Γ, C ′ ⊢ e2 : τ1, C
′′ κ ⟨α1, α2⟩ ⪯ C ′′(ρ) τ1 ⪯ α1 κ, α1, α2 fresh

Γ, C ⊢ fst(e1) := e2 : τ1, Assign(C ′′, ρ : ⟨τ1, snd(C ′′(ρ))⟩)

Figure 2.8: Type inference rules for the pair expressions (C struct fields).

requires subtyping between the top-level qualifiers, and also subtyping for corresponding

elements of the two pair type.

Type Inference System

A type inference system consists a set of rules which define the preconditions

for each expression (with the analyzed function) to be executed safely without UBI. Such

preconditions will impose subtyping constraints between each expression. Anchored by the

(automatically inserted) check(e, init) and (manually inserted) assert(e, init) expressions, we

can infer the qualifiers of the remaining expressions. Again, if the constraints are satisfiable,

the analyzed function is free from UBI bugs and the inference can succeed; otherwise there

may exist UBI bug(s) and the conflicting constraint(s) will reveal the reason.

Because the main difference between our system and the one described in Foster et

al. [65], is the field-sensitivity, we only present the rules for the pair expressions in this

Section (as shown in Figure 2.8). The complete set of rules can be found in the appendix

and supplementary material [12]. The judgments are of the form Γ, C ⊢ e : τ, C ′ that is read
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as: in the type environment Γ and store C, evaluating e yields a result of type τ and a new

store C ′.

The rule Pair type-checks the expressions e1 and e2 in order and results in an

initialized pair type. The rule Fst checks that the expression e is of a pair type and types

fst(e) as the first element of the pair type. The qualifier Q of the pair type is unconstrained;

qualifiers are only checked by the check expressions discussed above. The rule FstAssign

checks that the expression e1 is of a reference type ref (ρ), the post-store C ′′ (after checking

e1 and e2) maps the reference ρ to a supertype of a pair type κ ⟨α1, α2⟩, and the type

τ1 of e2 is a subtype of α1. The resulting store remaps ρ to a new pair type where the

first element is the type of τ1 and the second element is unchanged. We elide the rules for

snd that are similar to the rules for fst. The constraints generated by the new rules Pair,

Fst and FstAssign are type and store subtyping constraints that were also generated

by the basic rules. Further, by the rule Pair⪯, subtyping constraints between pair types

are decomposed into subtyping constraints between qualifier and simpler types that are

inductively decomposed into constraints between qualifiers and linearities. Thus, the added

inference rules do not increase the complexity of the generated constraints.

2.4.3 Inter-Procedural Analysis

Given a function F in the call graph, after applying the type inference to each

callee function separately, the summaries generated for all of these are used in the analysis of

the caller function F . The function summary is represented as (1) the qualifier requirements

for the input arguments (of the function), (2) the qualifier of returned value, and (3) the

updates to in and out arguments. The requirements specify the weakest qualifiers for the
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formal arguments that are necessary for the function to be invoked safely without triggering

any UBI bug. This means that if the actual arguments have weaker qualifiers, UBI bug(s)

may occur. The updates record the qualifiers of outputs, which in the C language, are output

pointer arguments. To support context-sensitive inter-procedural analysis, the updates and

return value are polymorphic, i.e., based on the qualifiers of the actual arguments from the

callers, the qualifiers of the outputs may change.

As shown in subsection 2.4.2, a qualified function could be represented in the format

of Q (C, τ)→L (C ′, τ ′) where Q is the qualifier of the function object itself, C maps locations

ρ to their types τ before the function is called, τ is the parameter type, C ′ maps locations ρ

to their (possibly) updated types τ after the function is called, τ ′ is the return type, and L

is the set of locations accessed by the function. The concept is further exemplified by the

following example:

init ([ρ 7→ uninit int , ρ′ 7→ init int ], ref (ρ))

→{ρ,ρ′}

([ρ 7→ init int , ρ′ 7→ init int ], init int)

It represents an (initialized) function that starts with a pre-store where ρ is uninitialized

and ρ′ is initialized. The input is the reference for ρ, and the function accesses both ρ and ρ′.

The function initializes ρ and leaves ρ′ initialized. This function is summarized as follows –

no initialization requirements for its parameter and one update: update parameter ρ to

initialized.
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Calculating and Using Summaries

Requirements over input arguments can be directly fetched from the inference

result. While updates are a little complicated, they are calculated as follows. For any pointer

argument, UbiTect maintains a copy of the alias set of its abstract location at both the

entry and exit of the function. If the alias set changes, then the corresponding argument

is updated during the execution, and the output qualifier is the least-upper bound of the

qualifiers of all variables from the alias set at the exit of the function. If the points-to set

still contains the initial value from the alias set at the entry of the function, then its qualifier

is kept as symbolic, so as to support polymorphism. For a concrete example, please refer

to section 2.3.

The qualifier of the return value is handled similarly: if it depends on the qualifier

of the input value(s), UbiTect keeps them as symbolic so that the return value can have

the appropriate qualifier based on the calling context.

Using function summaries, the implementation of context-sensitive inter-procedural

analysis is straightforward.

• Inference constraints: Each actual argument must be a subtype of the corresponding

formal argument (i.e., requirements). Adding this constraint allows us to (1) check if the

callee can be safely invoked (if not, type inference over the current function will fail). and

(2) automatically propagate the requirements from the callee to the caller, in case the

caller passes its argument(s) to the callee.

• Apply updates: After the invocation of a function, the qualifiers of values inside the

points-to set of pointer type argument(s) are updated according to the updates. Further,
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the qualifier of the value used to receive the return value is the same as the qualifier of

the return value.

• Indirect calls: For indirect calls, the actual arguments have to satisfy the requirements of

all possible call targets, and the updates are conservatively calculated as the least-upper

bound of all updates.

Special Cases

There are some nuances that are associated with summary-based inter-procedural

analysis; here, we describe two that we belive are important.

Heap Objects Because our points-to analysis is intra-procedural, it cannot track aliases

created or removed outside the current function. More importantly, the concurrent nature

of the kernel also makes it hard to precisely reason about the qualifier for heap data. For

example, thread A stores an initialized data to heap address addrh; however, when A tries

to load from the same address, the data may no longer be initialized because a concurrent

thread B could have written an uninitialized data to the same address. To handle this, we

(1) track the provenance of memory objects; any object that is not allocated in the current

scope is conservatively considered to be a heap object (i.e., globally visible); and (2) enforce

a conservative rule for writing to heap objects: the variable has to be fully initialized (i.e.,

with qualifier init); if the variable is of pointer type, we also require that the data it points

to are initialized. By doing so, we can safely assume all data loaded from heap are also

initialized but false positives are introduced because of this strategy.
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Recursion After building the call graph, we observed recursions among functions calls.

Fixed point analysis is adopted to handle such recursions. Specifically, a function in the

circular dependency graph is randomly picked to start the qualifier analysis. For callees

whose summaries are not available, the subtyping constraints are temporarily ignored. As

a result, an imprecise summary of the associated function is constructed by the first-time

analysis. Then UbiTect moves on to analyze its callers using this imprecise summary.

Following the dependency circle, the function is analyzed again. Because this time the

summaries of its callees will be available, despite being imprecise, a new summary would be

generated. This process is repeated until there are no changes to the summaries.

2.4.4 Symbolic Execution

Up to this point, the type qualifier inference reported all the suspicious UBI

locations. Next, UbiTect uses under-constrained symbolic execution to find true positives.

For each potential bug output by the static analysis module, the symbolic execution

(SE) module first links all the bitcode files related to the bug. It then starts searching for a

feasible path from the beginning of the function where the involved variable is allocated.

During the exploration, the SE module will prune paths that include any basic block in

the avoidlist or paths that do not include all basic blocks in the mustlist. In this way, type

qualifier inference reduces the searching space for SE and makes it more scalable.

Because we explore a partial path, covering only the portion between initialization

sits and use sites, rather than the entire execution path from entry of the kernel (e.g., system

call) to the point of use, some false positives may still pass through the filter. Similarly, false

positives caused by an imprecise call graph (i.e., indirect call targets) will not be filtered.
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However, in our desgin, we take precautions to prevent the incorrect exclusion of any true

positives.

Finally, despite the use of under-constrained symbolic execution and guided path

exploration, due to path explosion and complex path constraints, the tool may still take a

long time and/or a large amount of memory to verify a warning. To handle the large volume

of warnings from the static analysis, we rank the remaining warnings by “the time taken to

find a feasible path between the uninitialization site and the use site”. Our observations are

(1) bug reports with a feasible path are much easier for developers to verify and (2) the less

complex the path is, the sooner symbolic execution will find it.

2.5 Implementation

UbiTect is built upon the LLVM compiler infrastructure. We adopt the whole

kernel analysis infrastructure from KINT [158] and modify it to match the bottom-up analysis.

Points-to analysis is based on the structure analysis code from [5] while under-constrained

symbolic execution stands on KLEE [39]. Overall, 13,446 LoC are added, the distributions

of which are shown in Table 2.1.

We manually summarize 26 functions from three major categories. (the reasons for

doing so are provided within the discussion pertaining to each category):

• LLVM intrinsics and assembly functions: We do not have access to intrinsic functions such

as memset and memcpy, as well as functions implemented entirely in assembly. Consequently,

in these instances, we are not able to construct summaries through automatic inference

and rely on manual effort.

35



Table 2.1: LoC for different analysis of UbiTect.

Analysis Line of Code

Call Graph 708

Points-To 1,652

Alias 375

Qualifier Inference 4,460

Utility Functions 3,412

Symbolic Execution 2,839

Total 13, 446

• Heap allocation functions: For reasons discussed earlier, we manually summarize typical

kernel heap allocation functions, including the kmalloc series and the kmem cache alloc

series. Since these functions accept flag GFP ZERO, which will initialize the allocated

memory, we set the initial qualifier for the allocated object according to this flag. Because

our points-to analysis is field-sensitive (instead of byte-sensitive) and the allocation size

to these functions are in bytes, to determine the type of allocated object, we will follow

the def-use chain of the returned address and check for a bitcast operation. If we cannot

find one, we treat the object as having a single field (i.e., void type).

• Security related functions: As mentioned in section 2.2, we can use qualifiers to explicitly

express security policies we want to enforce. For example, copy to user() copies the

kernel data to the user space. To avoid information leakage because of uninitialized data,

we manually create a summary for this function, requiring the source object to be fully

initialized.
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2.6 Evaluation

Our experiments are systematically performed with the objective of answering the

following research questions:

• RQ1: Can UbiTect detect previously known bugs?

• RQ2: Can UbiTect detect new bugs?

• RQ3: Compared with UbiTect, how do other open sourced static analyzers perform for

finding UBI bugs in the Linux kernel?

Experimental Setup. To answer these three questions, we first gathered eight previously

patched Linux kernel UBI bugs studied in [108] and validate our tool. Then, we apply

UbiTect to the x86 64 Linux kernel, version 4.14, with allyesconfig. It was tested on

machines with Intel(R) Xeon(R) E5-2695v4 processors and 256GB RAM. The operating

system is the 64 bit Ubuntu 16.04 LTS.

Data Availability. Linux kernel is an open sourced project. We will also open source

UbiTect for aiding the reproducibility of the experimental results.

2.6.1 Detecting Known UBI Bugs

To answer RQ1, we evaluate UbiTect in terms of finding eight previously patched

Linux kernel UBI bugs studied in [108]. Table 2.2 shows the results i.e., UbiTect can detect

all of them. Two of these bugs can be detected by intra-procedural analysis but the rest

require inter-procedural analysis.
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Table 2.2: Evaluation I: UBI bugs patched since 2013. All of the uninitialized variables are located

on stack. UbiTect can successfully detect all of them.

Commit or CVE No Type UbiTect

bde6f9d intra-procedural Yes

1a92b2b intra-procedural Yes

8134233 inter-procedural Yes

c94a3d4 inter-procedural Yes

da5efff inter-procedural Yes

CVE 2010-2963 inter-procedural Yes

7814657 inter-procedural Yes

6fd4b15 inter-procedural Yes

2.6.2 Detecting New UBI Bugs

It took UbiTect about a week to fully analyze the entire Linux kernel with

616,893 functions. Specifically, it took 7 and 205 days of CPU time for qualifier inference and

symbolic execution (SE), respectively. After qualifier inference, for each function, generated

warnings were immediately fed into SE, which ran on more than 30 CPU cores, on average

(and was complete in a week of real time). The qualifier inference component generated

147,643 potential uninitialized use of stack variables. Each warning represents a unique use

of an uninitialized variable, meaning that repeated accesses to the same uninitialized

variable in different statements and accesses to different fields of the same object

are considered as different warnings. Since our modeling of heap variables is very conservative

and the number of warnings for stack variables is already large enough, we exclude the

warnings relating to writing uninitialized values to heap variables.

38



UbiTect’s under-constrained symbolic execution (SE) components filtered 4,150

warnings as false positives because it was unable to find a feasible path based on the guidance.

1,190 cases could not be handled by our SE component due to a mixture of 32-bit and 64-bit

pointers. We then manually inspected 190 bugs where our SE component can find a feasible

path within 2 minutes. 6 of the 190 bugs are due to the use of uninitialized function pointers,

125 are due to use of uninitialized data pointers, and 59 are related to use of uninitialized

data (that affect control flow). Our manual analysis confirmed 78 of them as true positives,

yielding a false positive rate of 59%. We interpret a reported bug as a false positive if the

path returned by SE is infeasible, or if the variable is actually already initialized along the

path.

To confirm our manual inspection results with kernel maintainers, we tried to

create patches for the 78 true positive cases. During this process, we found that the buggy

code of 9 cases have been removed in the mainline due to feature updates and 11 are already

fixed in the mainline. We also found that many bugs were related to missing checks over the

return value [103] of the function regmap read(). Further (manual) checks over the remaining

callers led to an additional 60 bugs. We submitted patches for all the unfixed 118 cases

to Linux developers. 52 bugs have been confirmed, 35 cases were categorized as “will not

happen in reality,” and the remaining 31 are still in process (we are awaiting feedback). The

detailed list of the confirmed bugs is shown in Table 2.3. We point out here that among the

52 bugs, 37 of them were reported automatically while 15 are identified from the additional

manual check. In fact, if we extend the time and memory limitations for symbolic execution,

we expect that these cases can be reported automatically as well.
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For 112 warnings we deemed as false positives, we also analyzed the root causes.The

major ones include (1) Incomplete black and whitelist (39 cases): this happens when the path

crosses multiple functions. (2) Imprecise indirect call resolution (26 cases): this happens the

indirect call target is infeasible or incorrect. (3) LLVM optimization (16 cases): this happens

wherein LLVM converts a struct with two u32 types, directly to a u64 type; this optimization

makes certain function summaries inaccurate. (4) The limitations of under-constrained

symbolic execution: we treat input arguments as unconstrained symbolic values; however,

in reality, such unconstrained inputs are impossible according to the program logic (e.g.,

constraints incurred outside the scope of the symbolic execution which requires additional

domain knowledge). and (5) Assembly code (10 cases).

2.6.3 Sensitivity and Precision

We showcase how different sensitivity levels affect UbiTect’s qualifier inference.

First, we use a simple syntax analysis as the baseline, where we check for stack variables

that are not initialized immediately after their declaration. This baseline flagged 1,373,174

abstract locations (expanded to be field-sensitive) out of 2,179,399 as not being initialized

when declared. If we add flow-sensitive analysis (but without inter-procedural analysis), the

number of warnings was 10,267,357.

This number is higher than the baseline in line with what one might expect, because

this is on the basis of uses (i.e., different uses will be considered as different warnings) instead

of declarations. If we add inter-procedural analysis but without context-sensitivity, the

number of warnings was 242,934. After adding context-sensitivity to the analysis, UbiTect’s

static analysis component reported 147,644 warnings. Again, because each warning from
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static analysis is based on a unique use instead of per variable, the reduction rate is actually

higher than 90%.

2.6.4 Comparison with other Static Analyzers

To answer RQ3, we compare UbiTect with two open sourced tools which are

able to detect UBI bugs. We first compare the performance of UbiTect with that of

cppcheck [113]. Both UbiTect and cppcheck need the access to the source code and do

not need manual annotations. While UbiTect’s static analysis is inter-procedural and

reports the warnings at the use site, cppcheck’s analysis is only intra-procedural and reports

the warning when the uninitialized variable is read. We ran the cppcheck on the whole

Linux kernel, version 4.14. It reported 191 UBI bugs, from which 164 bugs were within

our analysis scope (i.e., code enabled by allyesconfig). Among the overlapped 164 bugs,

only 2 are true positives (i.e., a much higher false positive rate of 98%). From these 2 true

positives, UbiTect catches only one via its static analysis component; the other is missed by

UbiTect because the use site is not explicitly marked by us. Specifically, the uninitialized

value is leaked through the network layer but we only explicitly marked copy to user()

to detect potential leaks. 29 false positives are shared between UbiTect’s static analysis

and cppcheck. The remaining 131 false positives were correctly filtered by UbiTect’s

inter-procedure static analysis.

Opposite to the cppcheck’s lightweight and imprecise analysis, the Clang Static

Analyzer (CSA) is another open source tool which applies the expensive and precise symbolic

execution to catch UBI bugs. As with any symbolic execution, it is hard to scale to large
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Table 2.3: Evaluation II: New bugs detected by UbiTect. The Line No. column gives the place

where uninitialized uses happens. The last column: A-Patch Applied; C-Confirmed by developers

No. Sub-System Module Variable Line No. Patch

1 iommu/amd iommu.c unmap size 1523 A

2 asoc/rt565 rt5651.c ret 1759 A

3 asoc/rt274 rt274.c buf 364 A

4 asoc/rt275 rt274.c val 1133 A

5 net/stmmac dwmac-sun8i.c val 646 A

6 clk/gemini clk-gemini.c val 320 C

7 iio/adc meson saradc.c regval 286 C

8 iio/adc meson saradc.c regval 313 C

9 iio/adc meson saradc.c val 454 C

10 iio/adc meson saradc.c regval 631 C

11 iio/adc meson saradc.c regval 789 C

12 regulator pfuze100-regulator.c val 635 A

13 drm/bridge sii902x.c status 122 C

14 iio/trigger stm32-timer-trigger.c ccer 136 C

15 iio/trigger stm32-timer-trigger.c cr1 140 C

16 iio/trigger stm32-timer-trigger.c ccer 168 C

17 iio/trigger stm32-timer-trigger.c cr1 173 C

18 iio/trigger stm32-timer-trigger.c cr1 222 C

19 iio/trigger stm32-timer-trigger.c psc 224 C

20 iio/trigger stm32-timer-trigger.c arr 225 C

21 iio/trigger stm32-timer-trigger.c dat 411 C

22 iio/trigger stm32-timer-trigger.c dat 454 C

23 media atmel-isc.c isc intsr 1255 C

24 media atmel-isc.c isc intmask 1255 C

25 mfd fsl-imx25-tsadc.c status 40 C

26 mfd ti am335x tscadc.c reg 58 C

27 net/ethernet hns mdio.c reg value 165 A

28 clk/axi-clkgen clk-axi-clkgen.c d 314 C

29 power/supply max17042 battery.c read value 485 C

30 power/supply max17042 battery.c vfSoc 667 C

31 power/supply max17042 battery.c vfSoc 682 C

32 pwm pwm-stm32-lp.c val 163 C

33 pwm pwm-stm32-lp.c prd 163 C

34 power/supply max17042 battery.c full cap0 681 C

35 power/supply max17042 battery.c val 1082 C

36 power/supply rt5033 battery.c val 33 C

37 iio/adc bcm iproc adc.c intr status 161 C

38 iio/adc bcm iproc adc.c intr mask 162 C

39 iio/adc bcm iproc adc.c intr status 187 C

40 iio/adc bcm iproc adc.c ch intr status 194 C

41 iio/adc bcm iproc adc.c channel status 201 C

42 iio/adc bcm iproc adc.c val check 299 C

43 pwm pwm-stm32.c psc 100 C

44 pwm pwm-stm32.c arr 100 C

45 pwm pwm-stm32.c ccer 295 C

46 pwm pwm-stm32.c ccer 312 C

47 regulator ltc3589.c irqstat 419 C

48 regulator max8907-regulator.c val 303 A

49 media pvrusb2-hdw.c qctrl.flags 793 A

50 x86/hpet hpet.c msg.f2 503 C

51 staging/ddk750 ddk750 chip.c pll.OD 58 C

52 power/supply max17042 battery.c val 837 C
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programs due to the path explosion problem. Therefore, CSA only performs inter-procedural

analysis within a module. Unfortunately, even without inter-module whole program analysis,

it is difficult to scale CSA to all the source code files in Linux kernel. Alternatively, we

ran CSA over the 78 files in which our true positives were located. CSA took about 1.5

hours (96m 8.171s) to finish (had it performed inter-module analysis, the time is likely to

blow up much more). Because our analysis was performed over 16,163 files in total, at this

speed, CSA will run for ≈ 13 days to finish analyzing the entire kernel. Within the 78 files,

CSA reported only 22 uninitialized variables. 3 were false positives that were filtered by

UbiTect. 2 were not reported by UbiTect due to complex assembly which are hard to

verify. For the remaining 17 true positives, 12 were within the 78 bugs UbiTect reported

in subsection 2.6.2, while the remaining 5 can be verified by UbiTect’s SE component with

longer times (more than 2 minutes). The majority of the true positives found by UbiTect

were not found by CSA; the main reason is that these bugs fundamentally require analysis

across multiple modules.

In UbiTect, we take the best of both qualifier inference and symbolic execution.

We apply the expensive and precise symbolic execution only selectively under the guidance

of qualifier inference, e.g., to go across the boundary of modules (files) and to focus on a

subset of all the program paths. This allowed us to discover more vulnerabilities than pure

symbolic execution (i.e., more scalable) with better accuracy than pure static analysis (i.e.,

less false positives).
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2.6.5 Threats to Validity

There are three major threats to the validity of our evaluation. First, although the

theoretical foundation of type inference is sound, compromises made during the design could

affect the soundness of our analysis results and hence, our static analysis component may

miss some bugs. Such compromises include imprecise modeling of assembly code, undefined

behaviors (e.g., out-of-bound memory access), and data structure padding. The second

threat is potential bugs in our prototype implementation. We have used previously known

UBI bugs to test our prototype, but the test set is small and thus, could not cover all corner

cases. Finally, classifying bugs reported by UbiTect was done by the authors. As we are

not Linux kernel maintainers, we could have made mistakes on whether a reported bug is a

true positive or false positive. We tried to mitigate this threat by reporting the bugs that

we believe were true positives to the kernel maintainers, but we did not hear back for all the

cases.

2.7 Related Work

Mitigating UBI Bugs. Automated mitigation of UBI bugs is pioneered by PaX’s STACKLEAK

plugins [129], which forces the initialization of kernel stacks during context switches between

the kernel and user space; STRUCTLEAK optimizes STACKLEAK by only initializing objects that

may be exposed to user space. Two recent related works are SafeInit [115] and UniSan [105].

SafeInit [115] is a compiler extension that initializes all allocated memory to zero. However,

this blind initialization strategy is often undesired and can mask the real bug. According to

our interaction with kernel developers, it is actually believed that in many cases the right
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approach is to leave a variable uninitialized when it is first created. The reasoning is that

the real initial value will be computed dynamically later anyway; assigning zero or some

arbitrary value is not only unnecessary but can also mask a real bug where the desired

(correct) initialization procedure fails and the variable gets used subsequently. The correct

way to fix such bugs is to make sure that the use-before-initialization path is eliminated (e.g.,

by properly checking for the absence of initialization and returning). UniSan [105] detects

and zeros uninitialized data that can leak from the kernel space. So, it only eliminates

information leakage resulting from uninitialized reads. This work attempts to detect all use-

before-initialization bugs. For instance, an uninitialized function pointer may be dereferenced

in the kernel to cause arbitrary code execution as discussed earlier. At this stage, UBI bugs

still need to be patched manually case by case, and we believe that the identification of such

bugs with UbiTect is a necessary first step.

Static Detection of Kernel Bugs. With the increasing popularity of LLVM, many

LLVM-based static analysis tools have been developed to find bugs in the Linux kernel

source. KINT [158] put together a number of static analysis techniques such as taint and

range analysis to discover integer overflow vulnerabilities in the Linux kernel. Juxta [118]

detects semantic bugs in Linux file systems by finding deviant behaviors in different file

system implementations [60]. Dr. Checker [109] is a static taint analysis engine that can be

used to find taint-style vulnerabilities in the Linux kernel. K-Miner [67] performs context-

sensitive value-flow analysis to identify memory-corruption vulnerabilities. Deadline [167]

and Check-it-Again [157] detect a special type of time-of-check-to-time-of-use (TOCTTOU)

bugs due to lack of re-checks. CRIX [103] detects missing security checks in the Linux kernel.
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PeX [183] detects missing permission checks. To our knowledge, no analysis has attempted

to discover the increasing number of UBI bugs.

Type Qualifiers. Type qualifiers have been shown to be a powerful way to represent

invariants in programs. A type qualifier is general and expressive enough to conduct a

variety of security analysis and bug finding tasks, including the popular taint analysis [83].

Some examples of applying type systems for bug finding include finding user/kernel pointer

bugs [87], format string vulnerabilities [137], integer-overflow-to-buffer-overflow [179], null

pointer deference bugs [80], lock/unlock bugs and file descriptor bugs [65].
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Chapter 3

Progressive Scrutiny: Incremental

Detection of UBI bugs in the Linux

Kernel

3.1 Introduction

The Linux kernel has a fast paced evolution cycle, with 10 new commits on average,

every hour. A new stable version is released about every two months [19]. While these

updates provide new features and bug fixes, they can also introduce new bugs and security

vulnerabilities.

Due to the rapid development cycle, developers usually do not have time to

conduct thorough security checks before committing new code. Unfortunately, once a bug is

introduced, it can take a long time to catch the bug and fix it, especially for downstream
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distributions [90, 98, 181,184]. For example, Cook [90] reported that the average lifetime of

kernel bugs in Ubuntu (according to CVE tracker) from 2011 through 2016, is 3.3 years for

critical bugs and 6.4 years for high-severity bugs. This provides ample time for adversaries

to discover and exploit the vulnerabilities in the wild [6, 9, 15,21,111].

To alleviate the aforementioned security risks in the Linux kernel, both dynamic

testing and static analysis have been applied. Dynamic testing, and fuzzing specifically [45,

76, 85, 94, 126, 128,134, 138,152, 166], is currently the most popular and effective approach to

find bugs in the Linux kernel. With the state-of-the-art kernel fuzzer Syzkaller and the help of

various sanitizers [69–71], thousands of bugs have been discovered in the past 4 years using the

continuous fuzzing platform maintained by Google [72]. With regards to static analysis, many

tools have been developed specifically for the Linux kernel, including commercial ones such

as Coverity [46] and academic ones as in [35,59,67,99,104,110,143,156,158,163,167,170,177].

In practice, fuzzing is much more popular because it generates no false positives by design.

Static analysis tools, on the other hand, often generate too many false positives in the

pursue of soundness (i.e., no false negatives). To mitigate this problem, modern kernel static

analyzers usually leverage more precise (field-, flow-, and context-sensitive) whole kernel

analysis to reduce false positives.

One distinctive advantage of static analysis over dynamic testing is the code

coverage—it does not require a concrete input to exercise the code to be analyzed. Therefore,

static analysis has better potential to identify bugs in newly introduced code, where a

corresponding input to trigger the code is usually missing. Unfortunately, to maintain decent

precision, whole-kernel static analysis is often too expensive to be integrated into the rapid
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Linux kernel development cycle. For example, the state-of-the-art soundy static analysis

tool Dr. Checker [110] needs minutes to analyze just a single driver (already with significant

simplifications of the analysis). The state-of-the-art summary-based bottom-up analysis tool

UBITect [177] needs a week to fully analyze the kernel. This makes them ill-suited for tight

integration with the development cycle, as new commits and kernel versions arrive much

more quickly than what the analysis can handle.

Given that the Linux kernel is huge and the changes are often localized in small

pockets of the codebase, it is an ideal target to apply the kernel static analysis incremen-

tally [131], on the changed portion only. Such an incremental analysis could dramatically

reduce the analysis time, but without compromising the precision or the impact of the new

changes on the whole kernel. This can bring several benefits for both kernel developers

and maintainers. First, it enables a much quicker turnaround time for each analysis (e.g.,

applied before every minor version release and even in between), allowing (an otherwise

infeasible) a precise and expensive static analysis to be integrated into the development

cycle. Second, it enables quick validations of newly proposed patches. Currently, after a new

patch is proposed, the kernel community heavily relies on manual inspection from peers (e.g.,

e-mail exchanges with maintainers for feedback) to spot potential bugs, which is both time

consuming and error prone (as it is hard to reason about how the patch would affect other

kernel components beyond the local scope). With an automated, whole kernel incremental

analysis, a much more timely feedback can be provided, even before the patch is officially

merged into the development branch. Third, because incremental analysis is based on static

analysis, it provides an exhaustive coverage unlike what dynamic testing can offer.

49



Even though incremental analysis was conceptualized nearly 25 years ago [154]

and has been applied recently in industry [46, 77], to the best of our knowledge, there is no

publicly available tool that can be applied directly to the Linux kernel. In addition, few

technical details are documented regarding the inner workings of [46, 77]. In this project,

we develop a whole kernel incremental analysis framework, which we name IncreLux.

IncreLux is flow-sensitive, field-sensitive, context-sensitive, and partially path-sensitive.

Our choice is motivated by the publicly-available repository for “clean-slate” analysis of

UBI bugs that was recently made available, and the relative difficulty of discovering such

bugs in Linux [177]. Incrementalizing such an analysis poses particular challenges due to the

scale and complexity of the kernel and the need for highly-precise analysis to reduce false

positives. To facilitate the reproduction of results and further research, we open sourced our

framework at https://github.com/seclab-ucr/IncreLux.

In this paper, we make the following contributions.

• Design of incremental analysis. We design IncreLux which is an efficient and

scalable tool to incrementally detect and track the evolution of use-before-initialization

bugs in the Linux kernel. We document in detail how to turn a bottom-up summary-

based static analysis into an incremental version.

• Path-sensitive analysis of UBI bugs. Due to the nature of UBI bugs being

manifested only along certain paths, path-sensitive analysis is essential for a precise

analysis. We show an effective technique for integrating path-sensitive symbolic

execution into our incremental analysis that maintains scalability and empirically does

not lead to missed warnings.
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• Measurement and evaluation. Via evaluations of IncreLux on the Linux kernel,

we show that compared to the clean slate analysis which took one week to complete, it

takes a significantly shorter time (depending on the situation, hundreds to thousands

of times faster), detecting almost all the bugs that the clean slate approach would

have found. In addition, we showcase the opportunity to catch bugs as soon as they

are introduced, and timely confirmation on correct bug fixes.

3.2 Background

In this section, we provide some brief background relevant to our work. First,

we describe the workings of the rapid Linux kernel development cycle, which is the main

motivation for our incremental analysis. Then, we describe the general concept of a bottom-

up, summary-based static analysis, as well as prior work that does a whole-kernel clean-slate

static analysis for detecting UBI bugs; this will lay the foundation for the design of our

incremental analysis.

3.2.1 Linux Kernel Development

The Linux kernel is composed by tens of thousands of contributors around the

world and has been customized for different usage scenarios. Thus, there are various actively-

maintained kernel branches. Ubuntu and RedHat are two popular downstream distributions

for desktops and servers. The Android Open Source Project (AOSP) also adopts the Linux

kernel with some additional kernel features (e.g., the binder inter-process communication

mechanism) and customized drivers. All such Linux distributions inherit code from the
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Linux upstream versions, including the Linux mainline and Linux stable / long-term-support

(LTS) branches.

In our work, we focus on the Linux mainline [20] and stable versions. To be clear,

there is a single Linux mainline branch where new features and bug fixes are continuously

being added, while there are multiple Linux stable versions that are forked from the mainline

and maintained separately. Typically, once a Linux stable branch is forked, no new features

are added and only the necessary bug fixes are applied, hence the name “stable.” Long-term

support (LTS) branches are special stable branches that are maintained for much longer

times. Mainline and stable versions adhere to the following versioning convention:

Major Versions. Major versions correspond to the Linux mainline. The version

numbers are usually represented by x.y (e.g., Linux 4.4). A new version (e.g., 4.5) is released

roughly every two months. Compared to the immediately previous version, both new features

and bug fixes (typically consisting of at least thousands of commits) could be present in the

new version. It is critical to monitor the mainline branch because it contains all the features

which are the main source of bug introduction.

Minor Versions. The Linux stable branches inherit the major version from the

mainline and add a minor version (e.g., 4.4.12). From one minor version to the next (e.g.,

4.4.13), only applicable bug fixes (as opposed to new features) from the mainline will be

backported. These minor versions are important because downstream Linux distributions

such as Ubuntu follow these stable or LTS branches (porting almost all patches). It is

important to check whether patches applied to stable branches indeed fix a bug.
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Release Candidates. Release candidates refer to the candidates for the next

major version in Linux mainline; each candidate has a suffix to the major version to indicate

which release candidate it is, e.g., 4.4-rc1. The release candidates are released every week,

representing intermediate states between major versions, which should also be analyzed.

3.2.2 Bottom Up, Summary-based Static Analysis

Scalability is often a challenge in performing static analysis on large codebases,

especially the Linux kernel. Many static analysis tools for the kernel like Dr. Checker [110]

are top-down. They start the analysis from an entry function (e.g., syscall entry), following

its callees level-by-level. This means that many functions would have to be re-analyzed

if they are invoked more than once. Bottom-up, summary-based analysis can avoid such

redundant analysis of the same function. At a high level, it works by first building some

program dependencies such as the call graph. Then the tool starts by analyzing the leaf

functions (with no callees) and storing the analysis results for the function into a summary.

Summaries are computed once and reused when analyzing all callers.

A few bottom-up static analysis tools have been developed in the literature, e.g.,

for Java [133, 174] and C [41, 124, 165, 177]. Some have been shown to be successfully

applied to the Linux kernel [41, 165, 177]. Typically such analyses need to decide what

kind of information to record in the summary, e.g., points-to information [124], locking

behaviors [165], and data flow [41,177].
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3.2.3 UBITect: Summary-based Analysis for Detecting UBI Bugs

The Use-before-Initialization (UBI) bug is a kind of memory error caused by the

use of uninitialized variables [16]. A use of an uninitialized variable is an undefined behavior.

Importantly, UBI bugs in the Linux kernel can introduce serious security threats such

as opening the door for arbitrary code execution [44] and information leakage [106, 116].

Previous work [107] has shown that UBI bugs are exploitable in an automated way, making

their detection critical. To mitigate such threats, the Linux kernel added the INIT STACK ALL

option to set uninitialized variables to a unified value viz., either zero or 0xAA. However,

Zhai et al. [177] argue that this method cannot fully eliminate such threats and since the

correct initialization value is hard to infer, the best solution is detection and case-by-case

patching. Based on this observation, they developed and open sourced UBITect, a clean-slate

bottom-up, summary-based analysis. UBITect combines flow-sensitive static analysis and

path-sensitive symbolic execution to perform a precise and scalable analysis for the Linux

kernel.

Specifically, it constructs the global call graph for the whole kernel, i.e., the tool

not only accounts for direct calls but also resolves UBI bugs that may carry over across

indirect call relations. Based on this call graph, UBITect analyzes the leaf functions first;

once these functions are analyzed, it summarizes the initialization and use behaviors of each

of the arguments and return values of these functions.

The function summary primarily records two types of information, which serves

as the contracts between the caller and the callee: 1) Requirements on the inputs (i.e.,

arguments) for the callee to be invoked safely. For example, in the context of detecting UBI
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bugs, the requirements of memcpy specify that all arguments (two pointers and the size) must

be initialized; otherwise a UBI could happen. 2) Updates to outputs (including the return

value and output arguments) after the invocation of the callee, with regards to the inputs.

For example, in UBI bug detection, the updates of memset specify that the memory object

point-to by the destination pointer will be initialized after the invocation; and the updates

of memcpy specify that the memory object point-to by the destination pointer would have

the same initialization status as the memory object point-to by the source pointer. These

summaries are then provided to the callers of these leaf functions and the process continues,

i.e., at each step, after all the callee functions are analyzed, the caller function uses these

summaries to obtain the analysis result (instead of re-analyzing the callee functions again).

In addition, warnings about potential UBI bugs, and some additional guidance for symbolic

execution to assess the warnings, are generated during this process. Symbolic execution

is then used to attempt to find a feasible path corresponding to each warning, leveraging

the extra guidance to avoid exploration of certain irrelevant paths. A bug is reported if

and when such a path is discovered. The symbolic execution step is necessary to filter false

positives, because in the kernel, variable initialization and uses are often performed under

correlated path conditions that the baseline analysis does not track.

An Example. Now we would like to present some necessary details with a simplified

example in Figure 3.1. This example is taken from a real kernel UBI bug. There are two

functions stm32 dfsdm irq() and regmap read() in this example, and stm32 dfsdm irq() calls

regmap read(). UBITect will start its analysis from regmap read(), and then generate the

summary shown in Table 3.1. The summary contains primarily two types of information
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for each variable: requirements and updates. The requirements describe what states are

expected from the caller in order for the function to ensure no UBI bugs, whereas the

updates describe the state updates of the variables after the function finishes executing.

Variable reg and val are used in the if statement and the pointer dereferences respectively;

therefore, to be free of UBI bugs, the requirements for these two arguments are init,

meaning that callers should always pass in initialized variables. Regarding the updates,

there are no assignments to reg and val, so their initialization status after the execution

of regmap read() will remain the same. For the object val obj pointed to by val, it is

initialized in only one branch but is left uninitialized in another branch (i.e., the error

branch); therefore, after the caller calls regmap read(), it is possible that the variable

keeps the same initialization status as before. Therefore, to be conservative, the summary

records there is no update to its initialization status. Finally, since regmap read() returns

a constant, either 0 or -EINVAL, the update of the return value is init. At the same

time, since the branch *var = some init number would make the object of var to become

initialized, UBITect adds this branch into the avoidlist of var obj so that the symbolic

execution later will avoid exploring this branch (when confirming a potential UBI bug).

After having the summary for function regmap read(), UBITect would analyze the caller

(i.e., stm32 dfsdm irq()), when analyzing the function call at line 10 and line 11, instead of

going into regmap read(), the caller would look at the function summary in Table 3.1. Using

status as an example (int en shares the same analysis step), the input &status corresponds

to val, and status corresponds to val obj in the function summary, respectively. The

requirement for val is init and IncreLux would check this before the function call; &status
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Table 3.1: Function summary for function regmap read().

Argument Requirements Updates

reg init no

val init no

val obj no no

regmap read ret n/a init

is an initialized variable, as it is the stack address and is therefore deemed to have met

the requirements. The variable status would share the same status as there is no update

for it; therefore, status remains uninitialized after the function call. Then, status is used

in the if statement (line 13) after an and operation, and so IncreLux reports a UBI bug

here and pinpoints the uninitialized variable status. The warning contains the bitcode

drivers/iio/adc/stm32-dfsdm-adc.c, the function stm32 dfsdm irq that declared status,

the id of the bug driversiioadcstm32-dfsdm-adc.bc stm32 dfsdm irq %status$obj$and$2, the

basic block for the use (line 13), and the avoidlist containing the basicblock in line 25.

After the warnings are generated, the symbolic execution would search for a feasible

path from the declaration basic block of status (the block of line 8) to its (uninitialized)

use. During the exploration, it would avoid the basic blocks (line 25) which initialize the

variable. In this example, the feasible path exists if reg is equal to zero. After finding the

feasible path, the symbolic execution would report it as a true bug, and generate a detailed

report containing the input and the path to trigger the bug. The bug report retains the

information from the original warning (see the end of the previous paragraph). The same

process would apply to int en as well.
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1 /* A simplified buggy code from

2 * drivers/iio/adc/stm32-dfsdm-adc.c

3 * uninteresting code lines are ommited

4 */

5 static irqreturn_t stm32_dfsdm_irq(int irq, void *arg)

6 {

7 struct stm32_dfsdm_adc *adc = arg;

8 unsigned int status, int_en;

9

10 regmap_read(DFSDM_ISR(adc->fl_id), &status);

11 regmap_read(DFSDM_CR2(adc->fl_id), &int_en);

12

13 if (status & DFSDM_ISR_ROVRF_MASK) {

14 if (int_en & DFSDM_CR2_ROVRIE_MASK)

15 //do sth here.

16 }

17

18 return IRQ_HANDLED;

19 }

20 int regmap_read(unsigned int reg, unsigned int *val)

21 {

22 if (reg)

23 return -EINVAL;

24

25 *val = some_init_number;

26 return 0;

27 }

Figure 3.1: A piece of buggy code that adapted from a real UBI bug in the Linux kernel.
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As shown by the authors of UBITect and verified by us, it takes over a week to do

the whole kernel analysis to cover all the functions compiled in an allyes config. Motivated by

the observation that function summaries are reusable, we posit that we can avoid analyzing

the same function not only within a specific version, but across Linux releases as well. In

particular, we can run the whole kernel analysis once as a clean-slate baseline, and then

focus on analyzing only those functions that got changed. Based on this idea, we develop an

incremental analysis to significantly reduce the analysis time of evolving Linux versions to

detect bugs.

3.3 Design of IncreLux

In this section, we present the design of our tool for an incremental analysis of

the Linux kernel. We begin with an example to motivate the design. Then, we discuss the

challenges that arise in conducting this incremental analysis. Subsequently, we describe

specific design choices we make to address these challenges.

3.3.1 Motivating example

Prior to delving into the details of IncreLux, we present a motivating example of a

bug that was introduced in Linux v4.16-rc1. Compared with v4.15, v4.16-rc1 added a function

mlx5e params calculate tx min inline(), with 11 lines of code in total. Figure 3.2 depicts

the details of the bug. The variable min inline mode will be left uninitialized if a query func-

tion mlx5 query nic vport min inline() inside the function mlx5 query min inline() fails.

However, both the function mlx5 query nic vport min inline() and the caller function
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mlx5e params calculate tx min inline() use this variable directly without any return value

check.

To detect this bug, an interprocedual holistic program analysis is necessary as

there are three functions involved. For the prior work UBITect to catch this bug in v4.16-rc1

(the major version immediately after v4.15), it would need to construct the global call

graph, and beginning with the leaf functions, generate summaries and continue the analysis

upwards to the callers. Based on the function summary of mlx5 query min inline(), the

caller could infer that the variable min inline mode might be uninitialized and upon the

use on line 9, generate a warning and begin a check using symbolic execution for verifying

the path feasibility. The observation here is that the functions mlx5 query min inline(),

mlx5 query nic vport min inline() and other low level functions are unchanged from version

v4.15. Therefore, if we still have the function summaries for these, then we can significantly ex-

pedite the analysis by analyzing only the new added function mlx5e params calculate tx min

inline(). This observation motivates us to reuse function summaries not only in analyzing

a single kernel version (as what UBITect did), but across Linux versions that have a large

overlap in code. After obtaining summaries from the clean-slate whole program analysis

(WPA), when analyzing a new version of the Linux kernel code, we reuse summaries aggres-

sively, only re-analyzing code that is affected by any modifications. Progressively, as new

versions are released, we can in this way, incrementally analyze only code changes in each

subsequent version.
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1 /* drivers/net/ethernet/mellanox/mlx5/core/en_common.c

2 * uninteresting code lines are ommited*/

3 + u8 mlx5e_params_calculate_tx_min_inline( struct mlx5_core_dev *mdev)

4 + {

5 + u8 min_inline_mode;

6 +

7 + mlx5_query_min_inline(mdev, &min_inline_mode);

8 + if (min_inline_mode == MLX5_INLINE_MODE_NONE)

9 + //do something here

10 + return min_inline_mode;

11 + }

12 /* drivers/net/ethernet/mellanox/mlx5/core/vport.c*/

13 void mlx5_query_min_inline(struct mlx5_core_dev *mdev, u8 *min_inline_mode)

14 {

15 switch (MLX5_CAP_ETH(mdev, wqe_inline_mode)) {

16 case MLX5_CAP_INLINE_MODE_VPORT_CONTEXT:

17 mlx5_query_nic_vport_min_inline(mdev, 0, min_inline_mode);

18 break;

19 }

20 }

21 int mlx5_query_nic_vport_min_inline( struct mlx5_core_dev *mdev, u16 vport, u8 *min_inline)

22 {

23 u32 out[MLX5_ST_SZ_DW( query_nic_vport_context_out)] = {0};

24 int err;

25 err = mlx5_query_nic_vport_context(mdev, v port, out, sizeof(out));

26 if (!err)

27 *min_inline = MLX5_GET( query_nic_vport_context_out, out,

28 nic_vport_context.min_wqe_inline_mode);

29 return err;

30 }

Figure 3.2: A use before initialization bug introduced in v4.16-rc1. Lines with the + sign indicate

those that are added because of the new function that was introduced.
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3.3.2 Considerations

In designing IncreLux, we need to consider the following three points: Consider-

ation 1: Correctness compared to the whole-program analysis. Incremental analysis should

yield the same result as if each version were analyzed from scratch. Otherwise, the incre-

mental analysis may miss critical bugs. Correctness boils down to how we determine which

part of the program can be safely skipped during incremental analysis. First, all modified

code and newly added functions should be analyzed. Functions must also be re-analyzed if

their analysis results depend on a function whose summary has changed. Finally, symbolic

execution should be re-run for warnings that may have been impacted by code changes.

Consideration 2: Function summary design and re-analysis scope. As mentioned

above, when a function summary changes, we need to re-analyze any function whose analysis

results depend on the summary. Therefore, what to include in a function summary have

important implications on scalability and accuracy. In UBITect, function summaries contain

information limited to how the caller/callee may directly interact with each other based

on arguments and return values; so, a change to the summary only affects callers of the

function. Technically, the summary could also include other dependencies, such as indirect

interactions through global states (e.g., global variables). For example, the modification

of a global variable (e.g., from initialized to uninitialized) in one function can potentially

affect many subsequently invoked functions — not only callees but also functions invoked

from a different concurrent syscall. Capturing such dependencies can lead to more accurate

results; but on the other hand, this can potentially lead to a much larger “radius of changes”

and make the incremental analysis less scalable. We note that the goal of our incremental
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analysis is not to improve the accuracy of the underlying static analysis, but to ensure that

the analysis results will be identical to the clean-slate analysis. Therefore, the task for our

incremental is not to re-design the summary used by the underlying analysis, but to make

sure all code that needs to be re-analyzed will be included. Fortunately, as a summary-based

bottom-up analysis already needs to calculate the dependencies between functions, we can

just reuse the same dependency graph to calculate the re-analysis scope. For example, our

prototype re-uses the same call-graph analysis of UBITect to identify the scope of functions

that need to be re-analyzed.

Consideration 3: Extensibility. Even though we focus on UBI bugs, we aim for

a framework design that can be extended with relative ease to catch other types of bugs.

Indeed, we make the observation that the UBI bugs are fundamentally bugs that can be

discovered by data flow analysis. In fact, it can be viewed as a taint analysis problem, where

an uninitialized variable can be considered as a taint source, and any use of the tainted

variable can be considered the sink (e.g., arithmetic operation, loop bound or deference of

a tainted pointer). Therefore, we note that the summary used in UBITect can be easily

adapted to store taint information representing other semantic information (e.g., inputs

from userspace [87, 110]). Using Dr. Checker’s loop bounds checker [110] as an example. It

checks if userspace data is used as loop bounds, which may lead to out-of-bound accesses

(i.e., buffer overflows). To do so, Dr. Checker defines all user inputs from syscalls as tainted

variables; then along with the top-down data-flow analysis, it propagates the taint tag

to other variables to identify the use of any tainted variable as loop bound. To fit it in

a bottom-up style analysis, we can reuse the same semantics of tainted (userspace data)
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and untained (non-userspace data). Then in the function summary, we can require that if

an input of the function will affect a loop bound, then the caller must pass an untainted

argument for safe invocation. For updates, UBITect’s current summary (subsection 3.2.3)

already includes how inputs would affect the outputs (i.e., the taint propagation from inputs

to the outputs). For instance, if the function includes a statement retvalue = input0;, then

we will record in the function summary as “the tainted status of retvalue will be changed

to whatever the taint status input0 is.”

3.3.3 System Overview

Having described key design considerations, we next provide an overview of

IncreLux with a high-level workflow depicted in Figure 4.4. In particular, the work-

flow includes a few pre-processing steps followed by the main incremental analysis.

Figure 3.3: Upon obtaining a new version, IncreLux leverages function summaries that were

previously computed (in a clean slate version or a prior incremental analysis) to do an expedited

incremental analysis. First, warnings relating to potential UBI bugs are generated and then under-

constrained symbolic execution is applied to find a potential feasible path to triger the bug.
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We assume that function summaries have already been computed for some previous

kernel version via a whole-program analysis. When a new kernel version needs to be analyzed,

we first perform a simple diff with the previous version to figure out which functions have

been changed. Second, we perform a dependency analysis to calculate the dependency

graph between functions. Specific to detecting UBI bugs, we perform a global call graph

analysis on the new kernel version (including indirect call resolution). Note that we have

not attempted to perform the call graph analysis incrementally as the call graph analysis is

relatively inexpensive anyways. We also compute strongly connected components (SCC) of

the call graph [177] so that we can be ready for fixed point analysis. Finally, we proceed

to the actual incremental analysis which will be described next. This step combines the

static analysis and the under-constrained symbolic execution(UCSE), the different bugs set

between the previous version and the current version would be generated.

3.3.4 Bottom-up, Summary-based Incremental Analysis

We use a typical worklist algorithm to perform the bottom-up summary-based

incremental analysis (Algorithm 1). Specifically, the inputs include the call graph(CG), the

old version code (OC), the new version code(NC) and all the function summaries for the

old code (OldSum). OC and NC represent the source codes of the two kernel versions in their

entirety. The analysis first initializes the worklist with modified/new functions (DiffSet).

For each function in the worklist, IncreLux computes a new summary (newFSum) for it.

If the new summary differs from that of the previous version ((OldFSum)), or the previous

summary does not exist, IncreLux then adds all the callers of the current function to

the worklist for further analysis. The process terminates when the worklist is empty. The
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algorithm produces two sets of outputs viz., the new function summaries newFSumSet which

replace the old summaries, and the set of warnings WS. The rules to generate the warings

are the same as in [177] (subsection 3.2.3) for consistency.

In the pseudocode, get diff functions() is used to automatically extract the set

of functions differing in the old and new versions. After extracting these diff functions,

IncreLux computes a bottom-up analysis ordering using get order(), based on a topological

sort of the call graph. The results are stored in SCCs. Each item in SCCs is a set of functions;

if there is more than one function in the set, then each of the functions can reach the others

in the set via a call chain. If there is only one function in the set, it could be a recursive

function or a function that is not involved in any loop in the callgraph. Note that these sets

are ordered in a bottom-up style, i.e., the function sets that are close to the leaves appear

before functions that are closer to the root.

After IncreLux computes the order in which the functions are to be analyzed,

starting from the modified functions in DiffSet, it follows the callgraph and conducts the

bottom-up analysis. If the summary of a modified function is changed, then all its callers

are reanalyzed, and iteratively IncreLux checks if their summaries change and so on. Note

that we will perform a fixed point analysis for each SCC, which means that sometimes the

same function can be analyzed multiple times until their summaries converge. Once no more

summary changes are left, we go back and start from the next function in DiffSet. After all

functions in DiffSet are processed, we can be sure that all necessary functions have been

re-analyzed, and all the function summary changes should have been collected completely.
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Algorithm 1 Input data : CG: Callgraph

Input data : OC: Old version code

Input data : NC: New version code

Input data : OldSum: Old Function Summary

Output data : newFSumSet: New Function Summary

Output data : WS: Warning Set

DiffSet=get diff functions(OC, NC)

SCCs=get order(CG)

for SC ∈ SCCs do worklist ← ∅

for func ∈ SC do

if func in DiffSet then

worklist.push(func)

end if

end for

while is not empty(worklist) do

func = worklist.front()

worklist.remove(func)

oldFSum = get old sum(OC, func)

(warnings, newFSum) = analyze funcs(func)

WS.append(warnings)

newFSumSet.append(newFSum)

if not equal(oldFSum, newFSum) then
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callerSet ←get callers(func)

for caller ∈ callerSet do

if caller /∈ worklist and caller ∈ SC then

worklist.push(caller)

continue

end if

if caller /∈ worklist then

DiffSet.push(caller)

end if

end for

end if

end while

end for

Tracking Warnings Changes. After the above steps, warnings are generated automatically.

We retain the rules for generating warnings from [177] for consistency. Furthermore, since

we are now analyzing multiple versions of kernels, we now need to track the warnings across

versions. We place warnings in three categories:

1. Disappearing– these disappear in the new version.

2. Remaining – these remain across the old and the new versions.

3. New – these are introduced in the new version.

We will describe in §section 3.4, how the categorization is performed.
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Under-Constrained Symbolic Execution (UCSE). As mentioned before, UBITect

applies under constrained symbolic execution on the reported warnings to confirm whether

there is a feasible path that leads to the potential bug. The bug is reported only if UCSE

finds a feasible path. Otherwise, the warning is filtered.

In the original UBITect, symbolic execution is applied to all the warnings reported.

However, IncreLux applies symbolic execution to only new warnings or those existing

warnings whose associated functions are re-analyzed. A function is associated with a warning

if it is a transitive caller or callee of the function containing the warning’s variable declaration;

these are the functions that could possibly affect path feasibility. If all these associated

functions are unchanged, then the path feasibility of the warning cannot change. However, if

some associated function has been changed (diffed), even if its summary remains the same,

we conservatively run symbolic execution for the warning again, in case the path feasibility

is influenced.

Note that here we do not consider the influence of global states. In theory, if the

newer kernel version gives a global variable a different value, it could affect the warning if the

global variable is used somewhere along the path. Nevertheless, since our symbolic execution

is under-constrained, by design, we do not capture the constraints for global variables that

are modified outside of the scope of our analysis.

There is an additional issue regarding whether IncreLux’s UCSE component

yields the same results as what is obtained by running the process from scratch (clean-slate).

Due to the non-determinisms in KLEE (e.g., path scheduling), IncreLux cannot fully

guarantee identical results. However, we argue that this is not a fundamental limitation of
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IncreLux as the same non-determinisms would also affect two different runs of the same

clean-slate analysis. Moreover, we show in our evaluation (section 3.5) that in practice this

case is very rare.

3.4 Implementation

In this section, we describe the implementation of IncreLux. We implement

IncreLux on top of UBITect, which was developed based on LLVM-7.0.0. We ported it

to LLVM-9.0.0, which has a better support of Linux kernel (e.g., supporting asm goto).

The main functionality we added includes the diff function extraction, function summary

adaptation, logic to reuse function summaries from previous versions, and logic for under-

constrained symbolic execution on warnings. We use KLEE as our symbolic execution engine,

and the boost library to serialize the function summaries to the disk. We will describe a few

aspects to help explain some of the details left out in the design section.

Compiling kernel source code. To generate the IR bitcode files from the Linux

source code, we use -O0 optimization level while enabling debug information (-g). This

stemp ensures that we have the necessary source location and variable name information

required for identifying bugs. In addition, the unoptimized LLVM IR is generally easier to

analyze compared to -O1 and -O2.

Indirect Call Resolution. There are generally three types of indirect call

resolution techniques that are widely used for static analysis of the Linux kernel: the pointer

analysis from KINT [158], the type-based analysis from Unisan [106], and a hybrid of these

two methods used in multi-layer type-based analysis [102]. We chose the points-to based
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algorithm from [158]. This is because the other two type-based methods lead to a large

number indirect call targets, which causes a significant bloating of some strongly connected

components, leading to much longer analysis time. The downside of using the points-based

algorithm is the potential to overlook valid indirect call targets. We plan to investigate

approaches that allow us to leverage the type-based methods and yet still maintaining the

ability to break the strongly connected components (we suspect they should have been much

smaller).

Diff Function Extraction.. There are two possible sources for function changes. The first

is from direct modifications in the source code; these changes can be caught easily by the

diff tool. Another source of changes is addition or deletion of entire files, typically reflected

in a change to some Makefile. Both types of changes are fully supported by IncreLux.

UBI warning detector.. Given that we currently support only the UBI bugs, we follow the

same rules that were used in UBITect [177] to detect UBI bugs, i.e., any use of variables that

are uninitialized. No changes are needed in the incremental analysis because the analysis

follows largely the same procedure except that it ignores the vast majority of unchanged

functions. However, as mentioned earlier in §section 3.3, it is possible to add additional

taint-style bug detectors, e.g., integer overflow, which we leave as future work.

Guided Symbolic Execution.. We have described how to apply symbolic execution in an

incremental fashion in §section 3.3, by avoiding re-execution on the cases where functions do

not change at all. Nevertheless, symbolic execution is extremely expensive as we can still

face the path explosion problem, especially when considering that the number of warnings

can be large as the static analysis is flow-sensitive only (instead of path-sensitive). Therefore,
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we choose to limit the time and memory usage of each warning to 10 minutes and 2GB. The

thresholds are decided empirically based on a small-scale experiments (sampled warnings)

with much loose limit (12 hours and 4 GB). Basically, the results of small-scale experiments

showed that 90% of the warnings finish within 10 minutes, consuming at most 2GB. Note

that UBITect used only a 2-min time limit which will yield fewer confirmed bugs according

to our analysis.

Bug Identification and Tracking Across Versions.. Given that there are often multiple

warnings associated with the same uninitialized variable, e.g., multiple uses of the same

uninitialized variable, we decide to group warnings that share the same associated variable

name (including the field name if the uninitialized variable is a part of a struct) into a

bug. Furthermore, given that we are interested in understanding the lifetime of a bug, we

simply consider bugs in two different kernel versions that share same variable name to be

the same bug. This is a reasonable approach become the exact warnings may look different

on different kernel versions, and yet they are highly likely sharing the same root cause of

failing to initialize the same variable.

3.5 Evaluations

To evaluate the efficacy of IncreLux and demonstrate the benefits of incremental

analysis, we perform a large-scale analysis from Linux kernel v4.15-rc1 mainline, progressively

to Linux v4.19, covering one year worth of development period. In addition, we analyzed

the stable version (a long-term-support version) of v4.14.y that spans over three years, and

v4.15.y that spans over three months. In total, we have analyzed 46 mainline and 28 stable

72



versions. To see how well the incremental analysis would work when the amount of changes

is significant, we also analyzed v5.4 using the base of v4.19, and v5.9 using the base of

v5.4. All kernel versions are analyzed using allyesconfig, i.e., most of the non-conflicting

configuration options are set to “yes” and the corresponding features will be analyzed. Then,

we present the results from applying IncreLux, including the speed improvement, new

bug discovery, patch confirmation, and equivalence analysis (i.e., to check if the results

are consistent between incremental and whole-program analysis). We conduct our static

analysis on a server with Intel Xeon E5-2697v3 CPU and 157G RAM, 160G swapping,

running Ubuntu 20.04. All experiments use the -O0 optimization level to compile the kernel

to LLVM IR. The symbolic execution experiments were run on a machine with Intel Xeon

CPU E5-2698v4 CPU cores and 256G RAM.

3.5.1 Evaluation Scope

In accordance with the Linux kernel development guide [93], once a stable version

(i.e., denoted by a new major version such as v4.14) is released, a two-week window called

the “merge window” is open for the next stable version. During these two weeks, all feature

changes and bug fixes are allowed to be submitted to the code base. Once this two-week

window elapses, a series of release candidate (with suffix -rc and a number) are published

weekly to stabilize the version. Starting from rc1, only regression fixes or entirely new

drivers can be added. Once the kernel is sufficiently stable, a new stable version is released

and the two-week “merge window” is opened again for the next stable version. Due to this

development process, the first release candidate (rc1) usually has significantly more code

changes than later release candidates. For example, there are 23,941 functions modified
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or newly added in v4.15-rc1 compared to v4.14, but only 719 functions in the subsequent

v4.15-rc2.

As mentioned in §section 3.2, once a stable version (identified by the major version

number such as 4.14) is released, it is forked into an independent branch for maintenance

(identified by minor version number such as 4.14.1). Each minor version consists of relatively

small number of bug fixes only (no feature additions). For example, on average, 102 functions

are modified or added to the v4.15 branch between two consecutive minor versions.

3.5.2 Speed Improvement Analysis

Incremental Analysis for the Mainline Versions.. Table 3.2 shows the key experimental

results for the mainline analysis. Due to space constraints, we leave the results for v4.17-rc1

to v4.19 to chapter 5, which are consistent with the results in earlier versions.

As mentioned, typically, rc1 releases contain a large number of changes, as they

include changes from the “merge window” where new features are accepted [2]. Despite the

large number of changes we still see an almost 3× speed up in analyzing the rc1 versions as

compared to the initial exhaustive analysis. For versions with fewer changes the speed ups

are much more dramatic, ranging from 31× to 937×.

For the experiment that “stress tests” our incremental analysis with major changes

from v4.19 to v5.4 and from v5.4 to v5.9. Compared to the 106.75 hours baseline clean-slate

analysis time, the incremental analysis from v4.19 to v5.4 took 97.9 hours, and from v5.4

to v5.9 took 99.65 hours. The results indicate that incremental analysis does not yield

benefits when changes are significant. This is expected because the version gaps represent

a whole year worth of development effort, with 90K functions modified (compared to the
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625K functions in total in v4.14). Consequently, IncreLux re-analyzed 205,327 functions

for v5.4, and 197,413 functions for v5.9. We suggest doing the clean slate analysis for such

big changes.

We note that as the distance between versions increases, the number of functions

that are to be analyzed grows, and the benefits of INCRELUX diminish; our expectation

is that INCRELUX will be applied over nearby versions so that a continuous process of

analysis and bug finding is viable.

Incremental Analysis for Stable Versions.. Table 3.3 and Table 3.4 show the incremental

analysis results for stable v4.14 and v4.15 kernel versions, respectively. As v4.14 is a long-

term-support branch and has more than 200 minor versions released, we sampled and only

ran incremental analysis for every 20 minor versions. For v4.15 we analyzed all the minor

versions till the end of the branch (i.e., v4.15.18). For these kernel versions, we again see

impressive analysis speedups. In fact, for the v4.15 versions, since the number of changes in

each version is quite small, we see enormous speedups (up to 2,260×), and we display the

analysis time in Table 3.4 in seconds rather than hours.

Relations between the number of functions reanalyzed and the time

that the incremental analysis incurs. To confirm the factors which affect the analysis

time, we draw the relations between the number of functions analyzed and the analysis time

in Figure 3.4. As we can see, the accumulated analysis time is proportional to the number

of analyzed functions.
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Figure 3.4: The incremental results for different versions.

Incremental Analysis for Each Patch. Our incremental analysis can serve

as a valuable tool to perform regression check for individual commits. This functionality

proves particularly beneficial for individual developers who might be submitting commits to

get quick feedback on whether their changes might introduce new UBI bugs, or fix existing

ones (if they are submitting patches), without having to wait for the much slower feedback

from peers or the automated fuzz testing results. Specifically, we extract a few patches that

fixes UBI bugs reported in prior work [177]. We performed the incremental analysis for

each patch (using its immediate predecessor commit as the baseline), and the results are

shown in Table 3.5. Incremental analysis demonstrates its ability to rapidly complete the

verification process for each patch, showing the successful resolution of the targeted bug

without introducing new UBI (Unintended Behavioral Issues) concerns. Except for one patch

that took 32.46s to finish, other patches were checked within 5.46s, and the average time
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for checking was ∼5.01s. We posit that this near-instantaneous feedback holds significant

potential for enhancing the efficiency of kernel development.

To summarize, our experiments show that IncreLux yields substantial speedups

in a variety of scenarios. Even in the case of an rc1 release with more than 20k function

changes, IncreLux runs faster than an exhaustive analysis. When dealing with changes

that affect a smaller number of functions, the incremental analysis can run in minutes or

even seconds. This efficiency of analysis enables new possibilities, like immediate testing of

patches before merging.

3.5.3 Time Breakdown

In Figure 3.5, we took the analysis results from v4.14 to v4.15-rc1 as an example

to show the time breakdown of our incremental static analysis. The first step is to construct

the call graph, which takes a few minutes — we currently do not attempt to incrementally

construct the call graph as it is not a bottleneck. For each function, IncreLux follows the

same analysis step in [177]: points-to analysis, alias set generation, qualifier inference, and

the summary generation. We see that the most time costly phase is the alias set generation

(14.42 hours), followed by the points-to analysis (6.13 hours), the qualifier analysis and

function summary generation take a small portion of the incremental analysis, 4.07 hours

and 0.05 hours, respectively. IncreLux also took an additional 3.48 hours to generate bug

reports and serialize function summaries to the disk.

Finally, in addition to the time breakdown for different phases, we also look at the

variations across analyzing different functions. We find that 31,926 out of 42,548 functions
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(75%) are analyzed within 1s (for four phases combined), while 40,888 functions (96%) can

be finished within 10s, only 3 functions take more than 1,000 seconds to finish where the

most time consuming functions took 1 hour to finish. We did not calculate the time for

symbolic execution here as we impose a time budget for each warning.

Figure 3.5: The time distributions for different analysis phase along the incremental analysis from

v4.14 to v4.15-rc1.

3.5.4 Correctness/Equivalence Analysis

A key requirement of incremental analysis is that it yields the same results as

the clean-slate whole-program analysis (WPA). Towards evaluating this requirement, we

perform the WPA for Linux v4.14.20 and v4.15 and then compare the bugs reported with

those reported by IncreLux. The results show that the same warning sets are obtained

i.e., IncreLux is able to obtain the same results as the WPA. However, in the warning

validation phase, due to KLEE’s non-determinisms (e.g., path scheduling), the bug set

varies slightly after the symbolic execution. For example, with v4.15, 634 warning from

IncreLux are confirmed as bugs, while 635 warning from WPA are confirmed. In particular,
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all of the 634 bugs from IncreLux were present in the results from WPA (leaving 1 bug

being different). This is an insignificant difference. Given the speedup that IncreLux

provides, we believe that this is a very compelling result. More importantly, we note that

the non-determinisms in KLEE does not only affect IncreLux—even two difference runs

of the WPA could generate different results. To mitigate the non-determinism, one could

provision more resources or develop better heuristics for pruning the path exploration.

3.5.5 Bug Finding Results

Reported warnings. We first present the results of new UBI bugs found as we analyze the

mainline version from v4.14 to v4.19. Since UBITect has been applied on v.4.14 already, we

look at only the new ones found by the incremental analysis. Given that the analysis results

can come out extremely fast, we can catch the bugs when they are introduced in candidate

release versions and prevent them from slipping through the production versions. In our

evaluation, we randomly sample 44 bugs reported by IncreLux, and find 22 true positives,

all of which, turned out to have been introduced in the first release candidates. 5 of the 22

true positives are dismissed by maintainers, as the conditions to trigger the bug cannot be

satisfied in reality (e.g., a failure of PCI config read). For the rest 17 cases, we found that 7

are fixed later on in mainline; and 10 bugs are still unpatched by the time of our reporting.

We have reported all unpatched bugs to the maintainers; 5 have been confirmed; but the

remaining 5 are still awaiting maintainers’ responses. The bugs are listed in Table 3.6.

False Positives and False Negatives. 22 out of 44 reported bugs (50%) turn out to

be false positives. Our manual inspection revealed that 14 are caused by the incomplete
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guidance generated by the static analysis, 7 are caused by imprecise indirect call analysis

(missing indirect call), and 1 due to the approximation of array. To evaluate the false

negatives, we need to obtain another set of UBI bugs with ground truth. First, we use the

keywords “uninit” and “Uninit” to find commits in the mainline that are patches for UBI

bugs. Following the fixes tags label in the commit message [20], we locate the bug-introducing

commit. We then select bugs that were introduced between v4.15-rc1 to v4.19 and involve

stack variables for evaluating false negatives. Overall, we find 12 UBI bugs, among which

our detector successfully found 9 bugs. 2 false negatives are caused by the imprecision of

indirect call analysis, and 1 needs heap modeling.

Security Impact. We attempted to understand the security impacts for the 17 bugs that

are not dismissed by Linux kernel maintainers. This turns out to be a non-trivial task

as the danger of uninitialized uses heavily depends on the semantics of the variable. We

consider a few conditions: (1) whether the uninitialized variable can cause control flow to

diverge (e.g., used in an if condition); if so, does it cause additional memory operations such

as free() to occur, which can likely lead to memory corruption. (2) whether the variable

represents the size of objects; if so, it may cause out-of-bounds access. (3) whether the

uninitialized variable will propagate to userspace, e.g., through copy to user() or logging to

userspace-accessible places. Note that we did not confirm the impact through end-to-end

verification (e.g., fuzzing), which we believe would be beyond the scope of the paper. Rather,

we aim to obtain a rough estimate on how dangerous these bugs might be. Overall, we find 8

of these could potentially lead to memory corruption, 1 could cause the information leakage,

3 could cause the hardware configuration corruption, and 5 are benign.
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3.5.6 Patch Identification Results

Reported Patches. IncreLux can help developers reason about whether their patches

are indeed working as intended. Specifically, in this evaluation, we choose to evaluate

whether IncreLux is capable of finding patches for the confirmed UBI bugs discovered by

IncreLux. This includes bugs discovered from the baseline analysis on v4.14, as well as

the incremental analysis up to v4.19. This leaves us 74 confirmed UBI bugs. Note that

their patches may or may not appear in the range of v4.14 to v4.19. It turns out only 2 are

patched within this range, and IncreLux correctly identified exactly the change that fixed

the problem.

False Positives and False Negatives. Note that we do not claim the analysis for patch

identification is sound or complete. Therefore, in principle, IncreLux could report a commit

earlier than the actual bug-fixing commit as the patch, due to false positives in the analysis.

In the evaluation, we do not find any such case. Similarly, IncreLux could miss real

bug-fixing commits, due to false negatives. In this evaluation, we do not find this case either.

We believe that IncreLux will typically be quite accurate in identifying the correct patch

for UBI bugs that it was originally able to detect, due to its use of precise symbolic execution

to reason about path feasibility before and after the patch.

Bug Lifetime and Case Study.. As mentioned, there are two bugs whose corresponding

patches are correctly identified by IncreLux. Out of the two, one bug was introduced

before v4.14 (but captured by our baseline analysis of v4.14). For the other one, it was

introduced in v4.15-rc1 and fixed in v4.16-rc1 with a lifetime of about ten weeks. The bug
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1 /* drivers/media/i2c/imx274.c

2 * uninteresting code lines are omitted */

3 static int imx274_regmap_util_write_table_8 ()

4 {

5 int err;

6 if (range_count == 1)

7 err = regmap_write(regmap,

8 range_start, range_vals[0]);

9 else if (range_count > 1)

10 err = regmap_bulk_write(regmap, range_start,

11 &range_vals[0],

12 range_count);

13 + else

14 + err = 0;

15 if (err) {

16 return err;

17 }

18 }

Figure 3.6: The patch that fixed the previous bug; this bug was introduced in v4.15-rc1 and the

patch was applied in v4.16-rc1. By continuously tracking the bug, IncreLux could find both the

bug upon introduction, and the time of the bug disapperance. If we use this patch as the input for

the incremental analysis, the disapperance of the bug indicates that this commit was related to a

bug fix.

82



had unfortunately slipped through the stable release of v4.15. Below we use this bug as a

case study to demonstrate how IncreLux identifies the bug-introducing commit and the

corresponding bug-fixing commit.

This bug was introduced in v4.15-rc1 with the addition of the imx274 module, which

is a V4L2 driver for the Sony imx274 CMOS sensor. Function imx274 regmap util write table 8()

is supposed to write some values to some hardware resister; if the write fails, it should

notify the caller by assigning the return value to an otherwise uninitialized local vari-

able err. In Figure 3.6, we show that clearly without the patch, there is one branch

where err will not be initialized and yet used in a conditional statement at line 15, which

can potentially lead to logic errors in the kernel. This UBI bug is relatively easy to

capture, as there exists one feasible path that triggers the uninitialized use. Further-

more, IncreLux detects this bug easily through incremental analysis because the function

regmap write() and regmap bulk write() are already defined and analyzed before the v4.15-

rc1. IncreLux simply reuses their summaries. Similarly, when the patch is applied, we can

also reuse the summaries of regmap write() and regmap bulk write(), and simply re-analyze

iimx274 regmap util write table 8(). Clearly, the patch has caused err to become initial-

ized in all branches before the use at line 15. We can therefore quickly confirm that the

patch is indeed effective.
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3.6 Related Work

3.6.1 Bug Detection Tools for the Linux Kernel

Static Analysis Tools for the Linux Kernel. A variety of tools have been proposed

to unearth bugs in the Linux kernel, some target specific types of bug, others are more

general or extendable. KINT [158] is a static analysis tool designed for detecting integer

overflow bugs in the Linux kernel. K-Miner [67] performs an inter-procedural analysis to

detect memory-corruption vulnerabilities. UniSan [106] adopts byte-level data-flow analysis

to detect information leakage caused by uninitialized variables. UBITect [177] uses type-

qualifier inference to detect use-before-initialization (UBI) bugs on the stack. It mitigate

the false positive problem by using under-constrained symbolic execution to find a feasible

bug-triggering path for human inspection. Similar strategy (i.e., using symbolic execution to

reduce false positives) has also been adopted by DEADLINE [167], which detects double-fetch

bugs, a type of time-of-check-to-time-of-use (TOCTTOU) bug that is caused by fetching

the same data from the user-space twice; and KUBO [99], which detects undefined behavior

bugs. LRSan [156] aims to find a broader spectrum of TOCTTOU bugs that can bypass

kernel security checks. CRIX [104] detects insufficient handling of erroneous states in the

Linux kernel (e.g., forgetting to check if kmalloc returns NULL). K-MELD [59] detects kernel

memory leak bugs through precise ownership analysis.

Because error handling paths are usually less tested, several tools have been

developed to find bugs in error handling paths. Juxta [119] finds semantic bugs in Linux file

systems by cross-checking paths that handle the same type of errors. RID [112] and [143]

detect reference count bugs using consistency checks across error handling paths. EeCatch
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[127] aims to detect error handling code that causes the kernel to enter a state that is even

worse than the error itself. HERO [163] finds bugs in error return paths that perform cleanup

operations in an incorrect order, redundantly, or inadequately.

Coverity [46] is a commercial product (and thus incurs cost) that is able to perform

incremental static analysis. Beyond its inner working being opaque, it seems to have the

following limitations: a) It seems that it does not use underconstrained SE to automatically

filter warnings and thus, is not able to precisely confirm whether a warning leads to a true

positive in an automated way [46]. b) It also appears that it leaves some expectations on

customers [43] to annotate the code to mark false positives – these warnings are later

suppressed. The danger of this is that, these warnings may turn into true positives when

other code is altered, and suppressing them could potentially hide the bug. More importantly,

if developers do not annotate the code, the warnings related to false positives could reappear

and may need to be re-analyzed. In addition to being fully transparent, IncreLux does not

have these possible limitations.

Bug detection frameworks for the Linux Kernel. Dr.Checker [110] is a framework

for detecting bugs in Linux drivers; it is extendable to detect different taint-style bugs

such as integer overflow and out-of-bound memory access caused by untrusted user-space

input. SUTURE [180] summarizes the taint results for each syscall interface (i.e., entry

points) where it still employs a top-down analysis within each entry. The goal is to efficiently

enumerate cross-entry taint flows, and identify bugs that only manifest across syscall

invocations. CQUAL [66] is a type qualifier framework which is able to detect kernel bugs

following user customized type system. Several papers also leverage type qualifier inference
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to find various bugs in the Linux kernel [177,179]. Some frameworks [22,32,91,125,176] also

use intra-procedural analysis to analyze Linux.

Dynamic Analysis Tools for the Linux Kernel. Dynamic analysis is a widely used

approach to catch bugs in the Linux kernel at runtime. This encompasses various techniques,

including hypervisor-based detection and fuzzing. Since the hypervisor can effectively

monitor the guest OS kernel, it can be used to dynamically catch bugs in the kernel. For

example, bochspwn-reloaded [88] is capable of uncovering memory disclosure bugs in the

Linux kernel through the tracking of sensitive locations, which uses a dynamic taint analysis

and shadow memory.

Fuzzing finds bugs in the Linux kernel by repeatedly feeding system calls and other

input dimensions like files and devices with mutated inputs. The state-of-the-art off-the-shelf

kernel fuzzer is Syzkaller [152], which has been used by Google to perform continuous fuzzing

for all versions of the Linux kernel [72]. Many research prototypes have also been developed

to improve kernel fuzzing. IMF [76] tries to infer syscall dependencies from real-world

applications. MoonShine [126] tries to improve the quality of initial seeds by “distilling”

seeds from syscall traces of real-world applications. HFL [94] combines kernel fuzzing with

symbolic execution. Difuze [45] uses static analysis to help construct well-formatted inputs

to fuzz kernel drivers. Razzer [85] also uses static analysis to guide the discovery of kernel

data-races. KRace [166] uses dynamic data-flow in addition to code coverage to fuzz data

race bugs in the file systems. Janus [169] improve file system fuzzing by mutating both

the syscalls and the on-disk file system. PeriScope [138] focuses on fuzzing the hardware

interface of the kernel.
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The fundamental limitation of all dynamic analysis tools is that they cannot find

bugs in code that is not exercised during testing. Unfortunately, even with all recent

advances in fuzzing, the code coverage of fuzzers is still very limited. As a static analysis

tool, IncreLux can find bugs in all the compiled code.

3.6.2 Incremental Analysis and Regression Test

Relatively little attention has been paid to incremental analysis of the Linux kernel.

Facebook Infer [77] is a static analysis framework that supports incremental analysis for

various bug types. Interestingly, according to our testing of the UBI bugs at the time of

writing, it appears the support is not very robust. One problem is that it is overly aggressive in

reporting errors under the default mode: PULSE UNINITIALIZED VALUE, leading to potential

false positives. For example, it disallows uninitialized arguments passed to a function

call, as well as uninitialized return values. It is possible that an uninitialized argument

becomes initialized in a callee (it is quite common in Linux kernel). Unfortunately, under

the latent mode: PULSE UNINITIALIZED VALUE LATENT where INFER tries to mitigate such

false positives, we find that it may miss UBI bugs, leading to false negatives. We investigated

the reason and it appears that INFER’s requirement on function parameters is incompletely.

We document such examples in our project repository [26]. One other interesting feature

of INFER is that its summary is built per path in a function, which is precise in nature

but also challenging to scale up to complex programs. This is in contrast with IncreLux’s

design where the summary is built per function, which is much more scalable; and we achieve

precision with a follow-up symbolic execution instead.
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Furthermore, Infer does not use fixed point analysis for recursive functions, and

it does the bottom-up analysis with a random starting point in the SCC, which can lead

to non-determinism in the results [3]. Finally, applying it to the kernel may face other

challenges like complex pointer arithmetic in the kernel (e.g., the container of macro).

And its incremental analysis inherits all those limitations. Conc-iSE [74] designs a symbolic

execution algorithm to help generate new test cases for concurrent code affected by new

changes. Due to the path exploration problems, inter-procedural symbolic execution cannot

scale to the whole Linux kernel. Based on our experience, even with under-constrained

symbolic execution, our tool has to frequently tradeoff precision (i.e., by making a variable

under-constrained) for scalability. Regression verification [68] is another related concept

that focuses on code changes. It aims is to check for software regression and make sure

that an old function still works in the new version. To efficiently verify the absence of

regressions, partition-based regression verification [37] divides the program input space into

units of verification (differential partitions), allowing for gradual checking. None of these

approaches perform incremental analysis to discover bugs in the Linux kernel, which poses

new challenges because of scale, its rapid evolution, indirect calls, and complex function

relationships (e.g., recursion).

3.6.3 Security patches

Maintainers of large software receive numerous bug reports and proposed patches

everyday. They need to manually inspect these proposed commits and prioritize the security

patches to be applied. This process is time-consuming and thus, there is a lot of work which

targets differentiating security patches from normal bug fixes. The first approach towards
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this is based on leveraging commit messages; for example, supervised and unsupervised

learning techniques [48,73,186] classify security vulnerabilities and general bugs based on

commit message text. There exist other statistical approaches [160] that also heavily rely on

bug messages. However, not all bug reports are properly written with necessary annotations

relating to security information. We point out here that in fact, the kernel actually requires

developers to add a fix tag to indicate if the patch is a bug fix. However, many independent

developers are still not aware of this requirement. The second approach is leveraging static

analysis and symbolic execution [161] to automatically differentiate security patches from

the normal code commits. This approach compares the constraints from the unpatched

version and the patched version; then, with some bug modeling, [161] can automatically

identify security patches and even infer the type of the security vulnerability associated

with a patch. As shown in section 3.5, IncreLux can very quickly verify if a patch adds or

removes UBI bugs.

3.7 Discussion

IncreLux uses a principled way to conduct an incremental analysis for the Linux

kernel. In pursuit of enhanced scalability and reduced turnaround time, IncreLux uses

function summaries to avoid analyzing functions that are not affected by new code changes.

Our evaluation over individual patches suggests that IncreLux might be useful in checking

for individual commits before merging them to the mainline. Although our evaluations have

been conducted on the allyes configuration, it’s worth noting that this approach remains

adaptable for use with other configurations as well.
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While extremely effective in achieving its goals, IncreLux does have some limita-

tions on UBI bug detection. However, we note that all these limitation are inherited from

the underlying analysis UBITect [177]. First, it only tracks uninitialized stack variables, as

opposed to uninitialized global state variables (i.e., heap or global variables). This turns

out to be a minor issue as the majority of UBI bugs we find are indeed due to uninitialized

stack variables. We have verified this by sampling 51 UBI bugs through keyword search, i.e.,

“uninit” and “Uninit” from minor versions of v4.14.y and v4.15.y. Only 9 of them are not

uninitialized stack variables. Second, we also do not track how an uninitialized stack variable

may propagate to global states which then encounter uses. From analyzing the above 42

uninitialized stack variables, we find that only 5 did propagate to global states. Third, it

only detects UBI bugs in a single thread and does not yet handle bugs that span multiple

threads. In summary, we believe that IncreLux is a significant step in enabling the timely

analysis of bugs in the Linux kernel and leave these open problems to future research.

3.8 Conclusions

In this paper, we design and implement IncreLux, a framework for principled

incremental analysis of the Linux kernel. IncreLux is effective across both mainline and

stable versions, and provides an effective progressive way to detect bugs with dramatic

speed ups compared to today’s expensive whole-kernel analysis that needs to be performed

each time a new Linux kernel version is released. This speed up aids developers in quickly

identifying bugs before merges can happen, thereby enabling much safer Linux kernel version

releases. By tracking bug lifetimes across Linux versions, IncreLux is able to identify bugs
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that potentially are hard to exploit (since they have remained for long) and newer bugs

that need more immediate attention. The same feature also allows IncreLux to effectively

disambiguate bug fixes from other normal commits. Our evaluations of IncreLux over a

fairly large set of Linux versions show that IncreLux dramatically reduces the analysis

time towards detecting bugs (a factor of nearly a 1000× speed up at times). Furthermore,

we show that it is able to achieve almost perfect accuracy in terms of conclusions that it

draws via its incremental analysis of a new version, in comparison to a holistic clean slate

analysis of the same version. We also point out some future directions that can further

expand and improve the capabilities of IncreLux.
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Table 3.2: Incremental analysis results for mainline versions v4.14 to v4.16. Please refer to the

appendix for the full table from v4.14 to v5.9. T(h).: Total analysis time in hours. SU.: Speedup

compared to exhaustive analysis of v4.14. FM.: Number of functions modified compared to the

immediate. predecessor. FR.: Number of functions (re-)analyzed in this version. Warn.: Number

of Warnings reported in the current version. Disappearing.: Number of warnings that disappear

in the current version (compared with the last analyzed version). Equal.: Number of warnings

that remain in the current version compared to the immediate previous analyzed version. New.:

Number of warnings newly introduced in the current version compared with the last analyzed version.

SE-New.: New bugs confirmed by SE that are introduced in the new version.

versions T(h) SU FM FR Warn Disappearing Remaining New SE-New

v4.14 106.75 N/A N/A 629862 103616 N/A N/A N/A 622

v4.15-rc1 28.26 3.78 23941 42548 21190 4325 99291 4979 69

v4.15-rc2 2.91 36.74 719 2617 2190 422 103848 211 0

v4.15-rc3 2.27 47.04 656 3084 1937 301 103758 238 0

v4.15-rc4 1.13 94.52 332 1268 718 116 103880 70 0

v4.15-rc5 1.28 83.31 329 1793 1339 207 103743 331 0

v4.15-rc6 1.15 92.6 273 1761 1282 96 103978 96 0

v4.15-rc7 0.43 248.74 101 403 263 21 104053 27 0

v4.15-rc8 1.33 80.15 243 1707 1305 114 103966 151 0

v4.15-rc9 0.63 169.82 217 1031 696 49 104068 48 0

v4.15 0.13 800.63 122 262 215 36 104080 48 2

v4.16-rc1 26.77 3.99 21251 52151 26922 4240 99888 4742 55

v4.16-rc2 0.24 453.72 220 521 342 10 104620 25 0

v4.16-rc3 0.7 151.6 434 1012 713 136 104509 77 1

v4.16-rc4 3.39 31.48 278 7398 3446 502 104084 509 4

v4.16-rc5 0.76 141.23 422 979 598 80 104513 76 0

v4.16-rc6 0.26 415.01 144 401 279 15 104574 27 0

v4.16-rc7 0.93 115.2 498 1543 819 107 104494 190 2

v4.16 0.33 318.92 183 535 278 18 104666 15 0

v4.17rc1-v4.19 ... ... ... ... ... ... ... ... ...

v5.4 97.9 1.09 99370 205327 158018 43762 69652 88366 N/A

v5.9 99.65 1.07 91741 197413 152746 40720 85425 67321 N/A
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Table 3.3: The incremental analysis result of v4.14 stable, we sampled every 20 versions.

versions T(h) SU FM FR Warn Disappearing Remaining New SE-New

V4.14 106h45min N/A N/A 629862 103616 N/A N/A N/A 622

v4.14.20 3.93 27.18 2123 2519 1358 235 103381 257 12

v4.14.40 5.92 18.02 2079 3289 2334 350 103288 230 2

v4.14.60 5.25 20.33 2096 3033 2079 384 103134 351 4

v4.14.80 6.43 16.6 1879 3934 3021 726 102759 470 6

v4.14.100 9.67 11.04 1812 6029 3222 462 102767 340 3

v4.14.120 3.35 31.86 1894 2700 6026 195 102912 235 2

v4.14.140 4.91 21.75 1565 2843 3079 534 107213 1249 0

v4.14.160 7.29 14.65 2354 4824 3042 1091 107371 463 2

v4.14.180 8.05 13.26 2336 3798 3289 1907 105927 641 0

v4.14.200 5.73 18.63 1773 3841 3218 1098 105470 385 0

v4.14.220 3.31 32.29 1221 2252 1343 250 105605 123 1
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Table 3.4: The incremental analysis result of stable v4.15.

versions T(s) SU FM FR Warn Disappearing Remaining New SE-New

v4.14 106.75h N/A N/A 629862 103616 N/A N/A N/A 622

v4.15rc1-

v4.15-rc9

... ... ... ... ... ... ... ... ...

v4.15 468 800.63 122 262 215 36 104080 48 2

v4.15.1 559 687.48 56 100 61 6 104122 4 1

v4.15.2 622 617.85 73 93 47 6 104120 24 0

v4.15.3 170 2260.6 29 77 33 2 104142 2 1

v4.15.4 4864 79.01 268 804 492 46 104098 40 1

v4.15.5 2121 181.19 157 301 205 63 104075 23 0

v4.15.6 947 405.81 55 184 179 13 104085 11 0

v4.15.7 1007 381.63 65 119 131 20 104076 59 2

v4.15.8 8151 47.15 146 1136 1056 260 103875 158 0

v4.15.9 613 626.92 22 80 118 15 104018 13 0

v4.15.10 3866 99.41 175 663 247 18 104013 18 3

v4.15.11 11760 32.68 122 4482 2941 168 103863 147 0

v4.15.12 939 409.27 62 130 69 2 104008 1 0

v4.15.13 2592 148.26 86 540 243 11 103998 15 0

v4.15.14 855 449.47 109 253 189 4 104009 5 0

v4.15.15 1787 215.05 52 377 81 11 104003 9 0

v4.15.16 522 736.21 73 98 73 5 104007 8 1

v4.15.17 2934 130.98 180 630 815 146 103869 95 1

v4.15.18 920 417.72 72 150 109 23 103941 16 2
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Table 3.5: The incremental analysis for patches from UBITect. T(s).: Time in seconds. FM.:

Number of functions modified compared to predecessor. FR.: Number of function (re-)analyzed

after the patch.

commit # T(s) FM FR

4674686d6c897 32.46 1 12

0fb68ce02ae73 0.31 1 1

e20bfeb0b7d80 1.01 1 1

4a8191aa9e057 5.46 1 4

8c3590de0a378 0.64 1 3

e33b4325e60e1 2.17 1 3

1252b283141f0 0.85 1 1

53de429f4e88f 0.18 1 2

472b39c3d1bba 2.03 1 1
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Table 3.6: Bugs introduced in the new code, in the column of the Patch, E means that the patch

is not easy to draft; here, we e-mail the bug to the maintainer. A means that the patch that we

submitted was applied; C means that our bug was confirmed by the maintainers. F means that

the bug has been fixed in the latest version of the kernel by others. IL. stands for Information

Leakage. MC. stands for Memory Corruption. B. stands for Benign. HWCC. stands for

Hardware configuration corruptions.

Sub-System Module Variable Line

No.

Intro. Patch Impact

Input/hideep hideep.c unmask code 380 v4.15-rc1 A IL

atomisp atomisp-mt9m114.c retvalue 1552 v4.15-rc1 A MC

drm/nouveau ioctl.c type 269 v4.15-rc1 S B

media/imx274 imx274.c err 659 v4.15-rc1 F B

net/mlx25 en common.c min inline mode 180 v4.15-rc1 F B

net/mlx5e en dcbnl.c params→

tx min inline mode

989 v4.15-rc1 F B

xfs xfs bmap.c got.br startoff 4868 v4.15-rc1 E MC

xfs xfs bmap.c s 1521 v4.15-rc1 E MC

iio/adc stm32-dfsdm-adc.c status 866 v4.16-rc1 C MC

iio/adc stm32-dfsdm-adc.c int en 873 v4.16-rc1 C MC

iio/adc qcom-pm8xxx-

xoadc.c

ch 599 v4.16-rc1 F MC

net: mscc ocelot.c val 365 v4.18-rc1 F MC

media:

davinci vpfe

dm365 isif.bc format.pixelformat 234 v4.18-rc1 F HWCC

display dc link.c old downspread.raw 1259 v4.18-rc1 A HWCC

display dc link dp.c training rd interval 61 v4.18-rc1 F HWCC

net:mscc ocelot.c val 34 v4.18-rc1 E MC

scsi: sd sd.c sshdr.asc 2390 v4.19-rc1 E B
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Table 3.7: IncreLux detected 2 bug fixes in our data set.

Sub-System Module Variable Line No. Fixed

media/imx274 imx274.c err 659 v4.16-rc1

iommu/amd amd iommu.c unmap size 1524 v4.19-rc1

Table 3.8: The false negatives for bug finding and bug fixes for mainline

GroundTruth TP FN FN-iCall FN-Heap FN-Padding

Bug Finding 12 9 3 2 1 0

Bug Fixes 2 2 0 0 0 0

Table 3.9: The false positives for bug finding and bug fixes for mainline

Total TP FP TN FP-Guidance FN-iCall FN-Array

Bug Finding 44 22 22 N/A 14 7 1

Bug Fixes 2 2 0 72 N/A N/A N/A
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Chapter 4

Don’t Waste My Efforts: Pruning

Redundant Sanitizer Checks of

Developer-Implemented Type

Checks

4.1 Introduction

Type confusion [25] represent a critical category of software vulnerabilities, espe-

cially prevalent in weakly-typed programming languages such as C/C++. This kind of

vulnerabilities occur when the program allocates or initializes a resource, such as a pointer

or object using one type, but subsequently accesses that resource using a type that is

incompatible with the original type. When a program experiences type confusion, it can
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result in undesirable behaviors such as a system crash [49], information leakage [52], and

even dangerous arbitrary code execution [50].

To mitigate the threats introduced by type confusion vulnerabilities, both static and

dynamic analyses have been applied. For example, static type inference and pointer analysis

have been developed to determine if a type cast is safe [40]. However, static approaches

can generate a large number of false positives because of the inherent imprecision and

over-approximation in static analysis.

Besides static analysis, sanitizer-style runtime checks have also been proposed [57,

75,84,97,145,147]. The basic idea is simple. Instead of checking for type compatibility at

compile time, the sanitizer instruments the program and tracks the type of objects at runtime

in order to perform precise type checks. Clearly, such approaches are more precise than

static approaches, but are also more expensive as they incur runtime overhead. Although

these type confusion sanitizers are faster than C++’s built in dynamic cast, their runtime

overhead is still too high for deployment in production systems.

One promising direction to reduce runtime overhead is to statically recognize safe

casts and avoid instrumentation selectively. For example, CaVer [97] and HexType [84] track

data flow via pointers from object allocation sites to cast sites; if the cast type is a supertype

of the allocation site type, then the corresponding runtime check can be eliminated. However,

as discussed in [40], static analyses are in general imprecise and will often make conservative

inferences, i.e., treating a safe type cast as potentially unsafe. For example, pointer analysis,

relied upon by CaVer [97], is a known hard problem in static analysis. As a result, many

unnecessary runtime checks cannot be eliminated.
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In this paper, we make the observation that pointer analysis is not the

only way to show a cast is safe. In particular, we find that developers often en-

code custom runtime type information (RTTI) directly into a structure or class, espe-

cially in complex C++ class hierarchies, to facilitate their own type checks. For exam-

ple, Chrome defines a class BasicShape and many classes inherit from this class, such as

BasicShapeCircle, BasicShapeEllipse and BasicShapePolygon. Those subclasses override a

virtual function GetType(), which returns enumeration constants kBasicShapeCircleType,

kBasicShapeEllipseType, and kBasicShapePolygonType respectively. In addition, we find that

before casting a pointer BasicShape *basic shape to a subclass, developers usually insert a

type check using GetType(), e.g., checking that basic shape->GetType() == kBasicShapeCircle

before casting to BasicShapeCircle. Such a check ensures the downcast is safe – often vol-

untarily inserted to avoid type confusion bugs [28,29,31].

Our key insight is to leverage these developer-implemented type checks to discover

opportunities to remove redundant sanitizer checks for type casts. Achieving this goal

requires addressing two key challenges. First, we must identify developer-encoded RTTI

and the corresponding type checks, and validate the correspondence between these checks

and the class hierarchy. Developer-written type checks may involve arbitrary logic and can

vary from one class hierarchy to another, and the source code does not explicitly identify

which logic serves as a type check. To this end, we conduct an exploratory investigation

of real-world programming conventions in Chrome, distilling them into several general

patterns. The most-common patterns encoded custom RTTI as a set of predefined values

(i.e., constants) in class definitions. By performing a class-hierarchy-wide static analysis,
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we could track the definitions and uses of such values and thereby automatically deduce

developer-inserted custom RTTI and type checks. Note that our analysis verifies the

correspondence between the custom RTTI and the type hierarchy – each class needs to take

a unique value, allowing it to be distinguished from others in the same hierarchy.

The second key challenge is to discover where a type cast is correctly guarded

by a custom type check, thereby proving the cast cannot fail and enabling the removal of

redundant sanitizer checks. We tackle this challenge by using a flow- and field-sensitive

intra-procedural analysis to track the refined type suggested by developer-implemented type

checks, validating if a downcast is always safe under all execution paths.

Based on the above insights, we implemented our techniques in an automated

solution called T-Prunify, that conducts static analyses for C++ programs to (1) extract

custom RTTI based on understanding and surveying diverse class hierarchies in popular

applications, (2) identify developer-implemented type checks based on the identified type

information, and (3) further validate the developer-implemented type checks. In addition,

T-Prunify also uses the results to prune unnecessary sanitizer checks. Our analysis is

designed to be sound with multiple verifications throughout the process and will conservatively

prune sanitizer checks only when the developer-implemented checks are deemed safe. We

evaluated our solution on the Chromium browser (the open-sourced version of Google

Chrome), one of the largest C++ programs, which is also known to be prone to type-

confusion vulnerabilities [50–55]. The results showed T-Prunify can prune a large number

of sanitizer checks safely and reduce the runtime performance overhead by 1.34× - 3.98×

compared to the state-of-the-art sanitizer-based solution with other forms of check pruning.
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In summary, our main contributions of this paper are:

• We identify developer-inserted custom runtime type checks as a previously-overlooked

source of opportunity to reduce the performance overhead of type confusion mitigation

techniques.

• We develop a custom solution to (1) automatically identify developer-implemented custom

runtime type checks and (2) leverage them to prove the safety of type casting in C++

programs.

• We develop T-Prunify that packages the insight into a fully-automated system, which

we plan to open source to facilitate further research in this direction.

• We evaluate T-Prunify against a state-of-the-art type sanitizer Hextype [84], and showed

that the relative runtime overhead reductions range from 25% to 75% when evaluating

Chrome under standard benchmarks.

4.2 Background and Motivation

In this section, we start with some basic background relevant to type confusion.

First, we describe the C++ type hierarchy, casting operations and type confusion vulnerabil-

ities. Then we illustrate, with examples, how previous type confusion checks are performed

statically or dynamically (including sanitizer checks executed at runtime), and why they are

inefficient. This will then motivate the design and implementation of T-Prunify.
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4.2.1 Type Casting in C++

C++ is an object-oriented programming language, which allows programmers to

define new types as classes. A class can inherit from multiple ancestor classes. Descendant

classes inherit members (methods and variables) from their ancestor(s) and can optionally

define additional members [140]. Generally speaking, upcasts (i.e., casting a pointer of a

derived class to a pointer of an ancestor class) are considered safe, because the memory scope

an ancestor pointer can access is strictly smaller than the memory scope of a descendent

class; however, downcasts (i.e., casting a pointer of an ancestor class to a pointer of a

descendent class) may introduce memory corruption vulnerabilities, when the underlying

allocated memory object has a smaller memory scope than the destination type demands.

Figure 4.1 illustrates such an example; the code allocates a pointer of the base class and

subsequently casts it to the derived class (which is always at least as big as the base class).

In this example, the derived class includes an additional field y, and accessing this field on

the improperly-casted Base pointer leads to an out-of-bounds memory access.

class Base {int x;};

class Derived : Base {int y;};

Base *base = new Base();

Derived *derived

derived = static_cast<Base*>(base); 

derived->y; //<-error

Base: x


Derived: y


base
derived

derived->y 
(Out of access scope of *base)

Figure 4.1: A code example and diagram of a type confusion problem where a base class is

incorrectly accessed using a pointer to a dereived class. The static cast results in type confusion and

accessing the field y is out of the access scope of type Base.
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C++ provides four built-in type casting operations, including reinterpret cast,

static cast, dynamic cast, and const cast, which we describe below:

reinterpret cast<dest>(src). is similar to an explicit cast in C, which allows conversion

between any two arbitrary types, regardless of their compatibility. Although this primitive

grants flexibility, the lack of safety checks can lead to type confusion bugs.

static cast<dest>(src). casts a pointer/object of src type to a pointer/object of the dst

type. Unlike reinterpret cast, static cast performs lightweight compile-time type checking

to avoid bad casting. Specifically, the compiler will verify whether the source class and the

destination class are within the same class hierarchy. However, it cannot detect an unsafe

downcast and thus, can still result in type confusion bugs.

dynamic cast<dest>(src). can avoid unsafe downcasts because it performs a runtime type

check to make sure the allocation type of the source object is actually compatible with the

destination type, using C++’s own runtime type information (RTTI). To perform a runtime

type check, dynamic cast first locates the RTTI of the source object from a pointer stored in

its virtual function table. The RTTI contains a null-terminated byte string of the mangled

type name as the type information of the current type, and one or more pointers to its

base classes’ RTTI. To check for type compatibility, dynamic cast recursively compares the

mangled name of all base classes of the source object with the mangled name of the destination

type. If a match is found, the casting is valid and dynamic cast returns a valid pointer;

otherwise a null pointer is returned. Since the type check involves slow string comparison and

possible recursive traversal of the base classes’ RTTI, using dynamic cast operators can be

90 times slower than using static cast [97]. Due to its performance overhead, dynamic cast
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is intentionally avoided in release builds of well-developed applications such as Chrome.

const cast<dest>(src). simply drops the const qualifier of the source object. Since it does

not actually modify the type itself, it is not of interest to us.

For backward compatibility, C++ compilers also support C-style explicit casts.

When encountered, the compiler will try the following sequence of casts one after another

until the program can be compiled without an error: (1) const cast, (2) static cast, and

(3) reinterpret cast.

class Base {ClassType type_; virtual void f();};

class Derived : Base {int y;};

class Derived2 : Derived {int z;}

Derived2 D2;

ClassType 
type_ vft_Base
int y

vft_Derived
int z

vft_Derived2 type_info*
*D2

VFT for Derived2 type_info for Derived2

type_info for Derived

type_info for Base

base *
*

base *
*

*
*

D2 : Derived2, 

Derived1, Base 

D2

Extra Object Management

obj

obj
ClassType type_ 

vft_Base
int y

vft_Derived
int z

vft_Derived2
D2

Address 

of D2 

(1) Code Example (2) dynamic_cast<> Lookup

(3) Sanitizer Lookup (4) Custom RTTI Lookup

Figure 4.2: The code example and three different methods for verifying the safety of a type cast.

4.2.2 Type Confusion Sanitizers

Type confusion sanitizers [75,84,97] aim to overcome two limitations of dynamic cast:

(1) its high runtime performance overhead and (2) its limited protection scope (i.e., it only

supports classes with virtual function tables. To reduce the runtime overhead, type confusion

sanitizers typically employ two optimizations. First, instead of storing the type information
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as a string, they store a unique hash (guaranteed at link time) of the mangled name, so

that a compatibility check can be done using an integer comparison instead of a string

comparison. Second, they compact all base classes’ type information into a single RTTI,

where the hash values are also sorted for faster binary search. To overcome the second

limitation, type confusion sanitizers store the RTTI of an object in a disjoint lookup table.

To perform runtime type checks, type confusion sanitizers first extract the type hierarchies

during compile time and emit RTTI that records all the compatible types of a class (i.e., all

ancestor classes, including itself). At runtime, after an object is allocated, type confusion

sanitizers associate the object with its RTTI (e.g., by using a hash table where the key is

the address of the object and the value is the RTTI entry). At the cast site, the sanitizer

retrieves the RTTI and looks for a matching hash value among all compatible types with

the destination type.

4.2.3 C++ Casting with Custom Run Time Type Information (RTTI)

Although designers of type confusion sanitizers have spent lots of effort trying

to reduce the runtime overhead, these sanitizers still introduce significant overhead. For

example, during our evaluation, a state-of-the-art type confusion sanitizer HexType [84] still

introduces a 10.2%− 65.7% overhead on Chromium benchmarks. A large portion of this

overhead comes from its lookup of RTTI. Specifically, to maintain binary compatibility, type

confusion sanitizers use decoupled RTTI (i.e., the RTTI of an object is stored disjointedly at

another memory location). As a result, they need extra steps to find the RTTI. In practice,

large C++ projects like the Chromium browser and the LLVM compiler frameworks prefer

developer-inserted custom RTTI and type checks to prevent type confusion vulnerabilities.
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Because such RTTI is tightly coupled with an object (e.g., as a member field or a special

virtual function), runtime type checking is much more efficient than both dynamic cast and

type confusion sanitizers. Figure 4.2 shows the differences between three different approaches

(dynamic cast, type confusion sanitizers, and developer-inserted RTTI) to verify the safety

of type casts.

In fact, during our investigation, we found that most of the type confusion vulnera-

bilities in the Chrome browser are fixed by inserting developer-implemented type checks

with custom RTTI [28, 29, 31]. This motivates us to develop T-Prunify. For instance,

CVE-2021-30561 [51] is a type confusion vulnerability in Chrome. It allows a remote attacker

to potentially exploit heap corruption via a crafted HTML page. Figure 4.3 shows the

vulnerabilities and the main patch. Inside function WasmJs::InstallConditionalFeatures(),

variable maybe webassembly is retrieved as a type of Object; it is then directly cast into a

JSObject and used later. However, the object retrieved could in fact be of types other than

JSObject, which causes a type confusion vulnerability. The patch fixed the bug by adding a

custom type check webassembly obj->IsJSObject() at line 15 to ensure that the type is of

JSObject before proceeding to the subsequent type cast.

4.3 Overview of T-Prunify

When developers have incorporated custom runtime type information (RTTI) into

their C++ classes and have implemented their own type checks before casting, our objective

is to pinpoint and eliminate unnecessary type confusion sanitizer checks. This streamlining

process reduces the overhead imposed by sanitizers.
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1 /* Main patch for CVE-2021-3056,

2 * * uninteresting code lines are ommited.

3 * */

4 void WasmJs::InstallConditionalFeatures(Isolate* isolate,

5 Handle<Context> context) {

6 - Handle<JSObject> webassembly = Handle<JSObject>::cast(

7 - maybe_webassembly.ToHandleChecked());

8 + Handle<Object> webassembly_obj;

9 + if (!maybe_webassembly.ToHandle(&webassembly_obj)) {

10 + // There is not {WebAssembly} object.

11 + // We just return without adding the

12 + // {Exception} constructor.

13 + return;

14 + }

15 + if (!webassembly_obj->IsJSObject()) {

16 + // The {WebAssembly} object is invalid.

17 + // As we cannot add the {Exception}

18 + // constructor, we just return.

19 + return;

20 + }

21 + Handle<JSObject> webassembly = Handle<JSObject>::cast(webassembly_obj);

22 }

Figure 4.3: The simplified patch for CVE-2021-30561
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To this end, we design and implement a lightweight static analysis tool named

T-Prunify to achieve this goal.Figure 4.4 depicts the workflow of T-Prunify. It consists

of two high-level components, which are briefly described below:

Input

Program Source 
Code

Custom Type Information Inference

Type 
Hierarchy

classclassclassclassclass

Type Info 0

Type Info 1

Type Info n
……

Database

Static Safe Casting VerificationOutput

Lightweight 
Instrumented Program

Classes

LLVM IR SanitizerControl Flow

Safe Cast 0

Safe Cast 1

Safe Cast n
……

Type Check 0

Type Check 1

Type Check n
……

Figure 4.4: Work flow of T-Prunify.

1. Custom Type Check Inference.. In this step, T-Prunify takes the source code of

the target program as input and attempts to recognize all the custom type checks inserted

by developers. To do so, we first infer custom runtime type information (RTTI) encoded by

developers by analyzing class definitions. The challenge lies in the lack of a unified standard

for encoding or annotating such custom type information, which can vary across modules and

class hierarchies in the program. Therefore, we need to have a comprehensive understanding

of the various patterns developers can choose to encode custom types. In our solution, we

perform an offline manual investigation of various class hierarchies in Chrome, and summarize

them into three common patterns. With these patterns, T-Prunify performs static analysis

to automatically recognize and validate custom RTTI in classes, and then stores them in a
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database. Based on the identified custom RTTI, we then recognize developer-implemented

type checks (e.g., in the form of if statements) as operations over the type information.

2. Static Safe Casting Verification.. Based on the identified custom type checks, we

then try to prove statically whether a downcast is always safe (i.e., the destination class is

always compatible with the class indicated by the type check under all execution paths).

The challenge is that type casts may not be performed immediately after a type check, and

furthermore the type check may not always be correct. To tackle this challenge, T-Prunify

employs an intra-procedural flow- and field-sensitive static analysis to track the refined type

suggested by developer-implemented type checks, and validate if a downcast will be safe.

Once T-Prunify determines a cast is safe, it will instruct a sanitizer to not insert another

redundant type check at compile time. In the end, the output is a hardened program that

enjoys the same level of security guarantee but with a much lower runtime overhead.

4.4 Custom Type Check Inference

As mentioned above, T-Prunify uses existing developer-inserted custom type

checks to eliminate type confusion sanitizer-induced checks. In this section, we describe how

to identify developer-inserted custom type checks.

4.4.1 Systematic Investigation

Developers can choose to explicitly encode the runtime type information (RTTI)

in a class definition directly. However, such encoding can be ad-hoc as it is entirely up to

the developers to design a scheme to differentiate types. To understand how custom RTTI
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CSSValue

-     const uint8_t class_type_;  // ClassType
+    explicit CSSValue(ClassType class_type) : class_type_(class_type) {} 
+    bool IsImageValue() const { return class_type == kImageClass; }        
+    bool IsShadowValue() const { return class_type == kShadowClass; }  
+    bool IsURIValue() const { return class_type == kURIClass; } 

CSSImageValue

+    CSSImageValue() : CSSValue(kImageClass){}

CSSShadowValue

+    CSSShadowValue() : CSSValue(kShadowClass){}

CSSURIValue

+    CSSURIValue() : CSSValue(kURIClass){}

Figure 4.5: An example in Category 1: type information is stored in a member field, which is

initialized with a different enumeration constant. Arrow indicates the inheritance relationship.

are commonly encoded, we conduct a manual investigation of over 100 Chrome hierarchies

and identified several common categories as follows.

Category 1: Custom RTTI encoded in a Base Class Field.. One way to store

type information in C++ is by using a field defined in the base class, which is initialized

to a different and unique value in each subclass according to its concrete type. Figure 4.5

shows part of the type hierarchy that class CSSValue belongs to. Class CSSValue defines

a private member called class type , which is initialized in the constructor. Three sub-

classes CSSImageValue, CSSShadowValue, and CSSURIValue initialize this member field through

their respective constructors with different values. In this example, the three values, e.g.,

kImageClass are unique enumeration constants. The base class CSSValue also defines three

utility functions for type checking IsImageValue(), IsShadowValue(), and IsURIValue().

Category 2: Custom RTTI as a Constant Without Fields.. Classes in this category

override a virtual method defined in the base class to return different constants to indicate
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BasicShape

+    virtual ShapeType GetType() const = 0;

BasicShapeEllipse
+  ShapeType GetType() const override { 
          return kBasicShapeEllipseType; 
  }

BasicShapePolygon
+  ShapeType GetType() const override { 
           return kBasicShapePolygonType; 
  }

BasicShapeCircle
+  ShapeType GetType() const override { 
            return kBasicShapeCircleType; 
  }

Figure 4.6: An example in Category 2: the type information returned by a virtual method is

overridden in each subclass to return a different enumeration constant.

the actual type of the object. Consider the class hierarchy of class BasicShape shown in

Figure 4.6, it defines a virtual method GetType(). Each subclass overrides this method

by returning a different enumeration constant that uniquely identifies its object type. For

example, the subclass BasicShapeCircle overrides GetType() inherited from the base class

to return kBasicShapeCircleType, which is unique to this subclass.

Category 3: Custom RTTI as a Type Check Function.. Classes in this category do

not use enumeration constants to indicate custom types; instead, they define custom type

check functions. Figure 4.7 illustrates such an example where a base class CanvasImageSource

defines a number of virtual methods, like IsVideoElement() and IsCanvasElement(), which

returns false by default. The two subclasses: HTMLVideoElement and HTMLCanvasElement each

override the corresponding type check method to return true. When the IsVideoElement()

method is called, it returns true only if the object is of class HTMLVideoElement. This method,

along with its return value true, serves as a way to uniquely identify the object type.
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CanvasImageSource
+    virtual bool IsVideoElement() const { return false; } 
+    virtual bool IsCanvasElement() const { return false; }

HTMLVideoElement
+    bool IsVideoElement() const override { return true; }

HTMLElement

CanvasRenderingContextHost

HTMLCanvasElement
+    bool IsCanvasElement() const override { return true; }

Figure 4.7: An example in Category 3: type information is encoded as the return value of a custom

type checking function that is overridden to return true in the corresponding subclass.

4.4.2 Custom RTTI Identification

As the foundation of our solution, we need to construct a precise database that

contains custom RTTI for a class hierarchy (i.e., a group of classes that share a base class),

referred as “class signatures”, that can uniquely identify a class/type in the hierarchy. In

other words, we will construct a map between a class signature and the actual (allocation)

type. More specifically, we scan all the source code files (including header files) and look for

class hierarchies that match the aforementioned three categories. For the first two categories,

we check the following conditions at the syntax level:

1. a unique enumeration constant is either assigned to a member field of each class in the

hierarchy, or returned by a virtual method;

2. if a member field is assigned with the constant, the assignment should happen inside

the constructor and the field should not be modified once it is initialized.
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For the third category, we use the following heuristics:

1. each class in the hierarchy overrides a unique method and changes its return value.

2. each class should have at least one overridden method that returns a unique value not

seen in other classes in the hierarchy.

For each class hierarchy (classes that share a base class), we store the unique constant and

method (collectively considered as the class signature) and its corresponding class type in

our database. Note that we find sometimes a class hierarchy can have a subset of classes

with signatures while the remaining classes do not have signatures by design. In other

words, there may be a “sub-class-hierarchy” within a complete hierarchy that encodes class

signatures. To accommodate such cases, we effectively look for such sub-class-hierarchies.

As long as the heuristics described above apply to the sub-class-hierarchy, we still infer that

it has encoded class signatures.

4.4.3 Custom Type Check Identification

Given the database, we can perform an analysis to find the type checks in the

target program. In general, any statement that uses the custom type information to control

the program flow is considered a type check. More specifically, we look for statements that

are of the form of type == c (including switch cases), where the left-hand side can be any

expression that evaluates to a previously-recognized type-indicating member variable or

type-indicating method, and the right-hand side is a constant. Given that we have mapped

each unique constant to a corresponding class type, we can tell exactly which type is checked

for in the statement.
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1 /* Some code snippet for use of custom type information,

2 * uninteresting code lines are ommited.

3 * */

4 std::unique_ptr<Shape> Shape::CreateShape(const BasicShape* basic_shape) {

5 std::unique_ptr<Shape> shape;

6 switch (basic_shape->GetType()) {

7 case BasicShape::kBasicShapeCircleType: {

8 /*To<> is implemented as a static_cast<>*/

9 const BasicShapeCircle* circle = To<BasicShapeCircle>(basic_shape);

10 //...

11 }

12 case BasicShape::kBasicShapeEllipseType: {

13 const BasicShapeEllipse* ellipse = To<BasicShapeEllipse>(basic_shape);

14 //...

15 }

16 case BasicShape::kBasicShapePolygonType: {

17 const BasicShapePolygon* polygon = To<BasicShapePolygon>(basic_shape);

18 //...

19 }

20 }

21 }

Figure 4.8: The simplified code for class BasicShape.
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Figure 4.8 shows an example of type checks relating to class BasicShape which is

described in Figure 4.6; the type check compares basic shape->GetType() against enumera-

tion constants that we record in the database (e.g., kBasicShapeCircleType), and then jump

to different program branches. T-Prunify can identify each switch case as a type check,

and determine that the type of object basic shape is BasicShapeCircle between line 7 and

line 11. We also discuss how Chrome sometimes uses custom C++ template expressions to

perform type checks in §section 4.6.

Note that we find rare cases where a type check would not look like a straight

equality comparison in the form of type == c. Instead, it can use inequality comparisons,

e.g., >= or <=. We do not currently recognize such type checks and leave them as future

work.

4.5 Static Safe Casting Verification

After constructing the database of custom type information and identifying the

custom type checks in the program, the next step is to determine whether the type casts

are actually safe, i.e., sufficiently protected by those checks. At a high level, given a type

check, we analyze all the type cast statements that are dominated by the type check. If the

destination type in the type cast statement is compatible with the checked type, we consider

it a safe type cast. Algorithm ?? illustrates the high-level procedure.

There are several considerations in performing such an analysis. First, type casts

do not always happen immediately after a type check, and the pointer used for the type check

may not be the same one that is used for type casts. Therefore, we perform a flow-sensitive
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1 /* Some code snippet for use of custom type information,

2 * uninteresting code lines are ommited.

3 * */

4 std::unique_ptr<Shape> Shape::CreateShape(const BasicShape* basic_shape) {

5 std::unique_ptr<Shape> shape;

6 switch (basic_shape->GetType()) {

7 case BasicShape::kBasicShapeCircleType: {

8 /*To<> is implemented as a static_cast<>*/

9 const BasicShapeCircle* circle = To<BasicShapeCircle>(basic_shape);

10 //...

11 }

12 case BasicShape::kBasicShapeEllipseType: {

13 const BasicShapeEllipse* ellipse = To<BasicShapeEllipse>(basic_shape);

14 //...

15 }

16 case BasicShape::kBasicShapePolygonType: {

17 const BasicShapePolygon* polygon = To<BasicShapePolygon>(basic_shape);

18 //...

19 }

20 }

21 }

Figure 4.9: Different corner cases need to be considered when proving when a type cast is safe.
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and field-sensitive intra-procedural pointer analysis to make sure that the pointer points to

the same object at the type check and the type cast. For example, the casting at line 13

in Figure 4.9 is safe because case1 and base point to the same object.

Second, the pointer analysis needs to consider different execution paths and summa-

rize possible types along all execution paths. Therefore, T-Prunify will only determine a

casting as safe if all types are compatible with the destination type. For example, T-Prunify

cannot prove that the casting at line 20 in Figure 4.9 is safe. This is because case2 may

point to both an object of Sub type due to the type check at line 9, and an object of Base

type due to the pointer reassignment at line 15. As not all aliased objects are compatible

with the destination type Sub*, the casting is potentially unsafe and needs an additional

runtime check.

Third, it is possible that the type check is insufficient in protecting subsequent type

casts, e.g., the target of the type cast is not compatible with the type checked. Therefore,

T-Prunify does not blindly trust a custom type check; it also performs a type compatibility

check to ensure that the refined type suggested by the type check is indeed compatible

with the destination type of cast. If T-Prunify cannot determine the casting is safe, it

acts conservatively and will not eliminate a sanitizer check. This is because such cases can

potentially be real type confusion bugs. For example, T-Prunify cannot prove the casting

at line 24 in Figure 4.9 as safe, because the check at line 9 only indicates case3, which is a

must-alias with base, is of type Sub*, which is not compatible with type SubSub*.

Fourth, the analysis should consider multiple type checks that gradually narrow

down the type to a more specific type (i.e., subclass). This also means the analysis should
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be flow-sensitive. For example, the casting at line 29 in Figure 4.9 is safe, because after the

check at line 25, the type of base is further narrowed down to SubSub*. However, without a

flow-sensitive analysis, one cannot be sure base’s type must be SubSub*.

Finally, type casts can be performed in a separate function from the function that

performed the type check. For example, the type cast may happen in a callee of a caller

that performs the type check. In such cases, we cannot conclude that the type cast is safe

simply because one caller has performed a safe type check. Instead, we need to analyze all

callers to make sure safe type checks are always present before the type cast. In our current

design, we perform only an intra-procedural analysis that makes sure the type cast happens

in the same function that performs the type check. We consider this a conservative solution

and will extend it to the inter-procedural case in the future.

Algorithm 2 summarizes the overall procedure in more detail. In the end, once

T-Prunify finds a safe casting, it will inform an existing type confusion sanitizer not to

emit redundant type checks during the compilation.

Algorithm 2 Input : F: Function Input : CRTTI: Customize Runtime Type Information

Output : SCSet: SafeCastsSet

for Inst ∈ F do

if isConditionInst(Inst) then

condition ← getCondition(Inst)

class ← getClass(condition, CRTTI)

if class ̸= null then

classPtr ← getClassPtr(condition)

compatibleClass(classPtr) ← class
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end if

end if

if isCastInst(Inst) then

srcType ← getCastSrcType(Inst)

dstType ← getCastDstType(Inst)

classPtr ← getClassPtr(Inst)

ptsSet ← getPtrSet(Inst)

cType ← compatibleClass(classPtr)

if pstSet ̸= ∅ then

for object ∈ ptsSet do

objectType=getType(object)

if notcompatible(objectType, dstType) then

continue

end if

end for

end if

if cType ̸= null then

if iscompatible(dstType, cType) then

SCSet.add(Inst)

continue

end if

end if

if pstSet ̸= ∅ then SCSet.add(Inst)

end if

end if
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end for

4.6 Implementation

In this section, we describe several key implementation details. Overall, we imple-

ment T-Prunify on top of the libclang library and LLVM (v14.0.5). The implementation

consists of 9,652 lines of code in total. Specifically, we implement the component “custom

runtime type information inference” using libclang by analyzing the source code of the

target program (as certain information like the C++ class hierarchies is preserved better

at the source code level). We implement the component “static safe casting verification”

using LLVM passes as LLVM is more appropriate for pointer analysis. Since our analysis

spans source code and LLVM IR, we need to pass intermediate analysis results from source

code level to the IR level, which we will describe in this section. In addition, we modified

a state-of-the-art type confusion sanitizer, HexType [84], to facilitate the evaluation of

T-Prunify.

Class Hierarchy Construction. The C++ compiler front-end like Clang can accurately

parse the C++ class hierarchy. However, as the LLVM IR language is generic (i.e., needs to

support different source languages) and is relatively low level, the C++ class hierarchies are

not explicitly stored at the IR level. Therefore, we implement a Clang plugin to store the

C++ class hierarchies (i.e., inheritance relations and type compatibility) and store them for

further use.
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Class Signature Database Building. This part is done by analyzing the source code

of a target program directly (instead of LLVM IR). Specifically, we use libclang’s python

binding. Besides missing the class hierarchy information at the LLVM IR level, another

reason for source code analysis is that enumeration constants at C/C++ level will be lowered

to integer constants thus losing their semantic information and become indistinguishable

from other integer constants. libclang allows the user to iterate the abstract syntax tree

(AST) to get compilation time information (e.g., the type of the variable, the name of the

variable, the type of the functions). Using libclang, we iterate through the AST to (1) extract

enumeration constants used to assist identification of custom runtime type information

(see section 4.4 for details), and (2) record the use of these constants (e.g., assignment,

comparison, return value).

Feeding Source Code Analysis Results to the LLVM Analysis. The class signa-

ture database stores variable names, method names, and enumeration constants to assist

identification of custom type checks. However, at the LLVM IR level, names of C++ virtual

methods are available only in type definitions. At method call sites, virtual methods will

be lowered to indirect calls, thus losing the source code level semantics. For example, a

simple method call of basic shape->GetType() would look like the following in LLVM IR

(simplified for reading):

%41 = getelementptr (%”class.blink::BasicShape”*)** %40, 5

%42 = load i32 (%”class.blink::BasicShape”*)** %41

%43 = call noundef i32 %42(%”class.blink::BasicShape”* %0)
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switch i32 %43, label %342 [

...

To overcome this issue, we modified the Clang++ front-end to annotate LLVM IR with

method names. In the above example, our annotation would label %42 as GetType(). The

IR snippet is shown as:

@.str.2 = ”blink::BasicShape::GetType”

%vfn = getelementptr (%”class.blink::BasicShape”*)** %vtable, 5

%10 = load i32 (%”class.blink::BasicShape”*)** %vfn

%call31 = call noundef i32 %10(%basic shape)

%11 = call i32 @llvm.annotation(i32 %call31, (@.str.2))

switch i32 %call31, label %sw.default [

...

The %vtable is the equivalent pointer as %40 before the annotation.

Manually-Summarized Type Checks We find that some subsystems of Chrome choose

to use custom C++ templates to implement type checks. For example, we have seen IsA<T>

frequently which operates as a type check for type T. Behind the template, different classes

can choose to implement it differently. Since our solution to recognize type checks is by

analyzing the source code, we currently recognize these statements specifically through

manually-curated domain knowledge. Technically, we could pre-process the source code

into a version without templates and then perform our follow-up analysis. However, due
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to implementation issues, we were not able to succeed at this point. We leave this as our

future work.

4.7 Evaluation

To evaluate the efficacy of T-Prunify, we performed a systematic analysis of

Chrome version 98.0.4720.0 with the objective of answering the following research questions:

• RQ1: How effective is T-Prunify at identifying safe casts statically?

• RQ2: What is the accuracy of T-Prunify?

• RQ3: How much runtime overhead can T-Prunify improve by pruning unnecessary

sanitzier checks?

We chose Chrome because it is a complex, large-scale, and well-engineered piece

of software. If our analysis works on Chrome, we argue that it should also work on other

targets, as long as the project leverages developer-inserted custom runtime type information

(RTTI) to avoid unsafe castings. In addition, unlike smaller programs that may not have

complex class hierarchies (and hence, few developer-implemented type checks), according

to our analysis, the Chrome source code does indeed have many complex class hierarchies

and a large number of developer-implemented type checks. Therefore, we believe Chrome

represents an ideal benchmark to validate the ideas proposed in this paper. We believe that

other large-scale programs such as Firefox would also similarly benefit from our solution.

Experimental Setup.. We design experiments by compiling Chrome into three versions:

the original Chrome (chrome) without any instrumentation, the fully HexType-instrumented

Chrome (chrome-hextype), and the Chrome with reduced instrumentation after applying
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T-Prunify (chrome-reduced). For chrome-hexytpe and chrome-reduced, we did not instru-

ment libc++ as the standard C++ library because (1) we consider it as safe and (2) it does

not include any custom RTTI. The performance with these three versions are compared

using standard browser benchmarks. The experiment is conducted on machines equipped

with Intel(R) Xeon(R) E5-2695v4 processors and 256GB RAM, running on a 64-bit Ubuntu

16.04 LTS operating system.

HexType Configurations.. The original HexType [84] is implemented based on llvm-3.9.0,

which is no longer compatible with the Chromium version we test. Therefore, we ported it

to llvm-14.0.5, which could be used to compile the target Chromium we evaluate. When

assessing the overhead, we take into account all the optimizations implemented by HexType,

which include the elimination of checks for safe casts that can be verified during compilation

time.

Benchmarks.. In order to effectively showcase the performance improvements from using

T-Prunify, we provide further details on the benchmarks that are used in our experiments.

We chose three different benchmarks, namely Speedometer, JetStream2 and Motion Mark [27]

that exercise different parts of a browser. Speedometer is a benchmark that measures the

responsiveness of web applications by simulating user interactions with the browser (e.g.,

DOM manipulation). JetStream2 is a comprehensive benchmark suite that measures the

performance of JavaScript and WebAssembly in advanced web applications. It consists of

a variety of tests, including latency and throughput tests, that cover a wide range of web

application use cases. Finally, Motion Mark is a benchmark designed to put the graphics

systems of web browsers to the test. This benchmark includes a variety of subtests, including
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Table 4.1: Overall statistics of the results.

# of class hierarchies 6, 671

# of classes in hierarchies 54,617

# of class hierarchies with downcasts 1,123

# of classes as downcast targets 5,160

# of class hierarchies w/ custom RTTI found 719

# of classes w/ custom RTTI found 3,585

# of classes w/ custom RTTI & as downcast targets 827

# of downcast ops 49,364

# of downcast ops where destination types w/ RTTI 23,721

# of downcast ops with type checks (safe casts) 6,704

the CSS, image and text rendering, that assess the performance of the browser’s rendering

capabilities.

4.7.1 Overall Results

We first report the overall results of analyzing Chrome. As shown in Table 4.1,

there are a total of 54,617 classes that are part of class hierarchies, out of which 6,671 were

base classes, forming class hierarchies. We observe all downcasts occur within 1,123 of these

class hierarchies and in total there are 5,160 classes that appear as downcast targets.

Among 1,123 class hierarchies, we identify 719 hierarchies, or 3,585 classes within

these hierarchies, that have custom RTTI. Furthermore, we find 827 classes in total that have

both RTTI and appear as downcast targets. As we can see, many classes have custom RTTI
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but are never used as downcast targets. Upon inspecting some such cases, we find that their

custom RTTI is used in scenarios like serialization and deserialization [1] or logging [30].

Finally, we find 49,364 downcast operations in Chrome, and 23,721 of them have

destination types with custom RTTI. A subset of these downcasts, i.e., 6,704, are determined

to be safe casts. In other words, T-Prunify finds these downcasts are protected by

developer-inserted type checks. Overall, this represents a significant fraction of downcasts

that can be exempt from sanitizer checks.

To better understand the relationship between classes and downcasts, we sort the

classes by the number of downcast operations where the class appears as the destination type.

Figure 4.10 illustrates the CDF of the proportion of downcast operations with respect to top

n classes The blue line shows the cumulative distribution of downcast operations over top n

classes, e.g., over 80% of downcast operations are concentrated in the top 1,000 classes. The

green line shows the cumulative distribution of downcast operations with destination types

that have custom RTTI recognized by T-Prunify, e.g., 40% of downcasts are recognized to

have destination types with custom RTTI when looking at only the top 100 classes. The

yellow line shows the cumulative distribution of safe casts, e.g., the majority of them are

concentrated in the top 2,000 classes.

In terms of runtime overhead reduction, after eliminating the safe casts T-Prunify

identified, we compare the performance overhead that T-Prunify incurs to that of HexType.

Overall, our solution incurs only 25% to 74.5% of the overhead incurred by HexType,

representing a significant reduction for free. We discuss more details in subsection 4.7.3.
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Figure 4.10: CDF of all 5,160 the downcast target classes and the downcast that we can validate.

4.7.2 Accuracy

To verify the accuracy of our approach, we check the intermediate results of each

critical step. These steps include custom RTTI identification, type check identification, and

safe casts identification. Then, we manually curated the ground truth of the above steps

relating to the top 50 classes (that appeared as destination types of downcasts). We then use

the ground truth to evaluate the false positives and false negatives of the results produced

by T-Prunify.

Custom RTTI Identification. As shown in Table 4.2, we found that 25 of the top

50 classes had custom RTTI encoded, and our approaches correctly identified 20 of the

25, representing an 80% class-level coverage. We are unable to infer the custom type info

encoded in 5 classes primarily due to the patterns that we currently do not recognize, as

described in subsection 4.4.1. For instance, one of them is the class v8:Uint32 which has a

member function IsUint32() that returns true if the object is of class v8::Uint32. However,

this function examines whether the object value is within the range of [0, kMaxUInt32].
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Among the 20 classes that are identified to have custom RTTI by T-Prunify, we find no

false positives.

Type Check Identification. In terms of false negatives, since T-Prunify failed to identify

the RTTI of 5 classes, it will therefore automatically miss type checks relating to these 5

classes. To evaluate whether our safe cast identification will miss any additional cases, we

sample 54 type checks from the remaining 20 classes with custom RTTI. For most classes,

we sampled three checks per class. However, there are cases where we can find only one type

check. The results show that T-Prunify can identify all 54 type checks. To evaluate false

positives, we sample 50 type checks that are reported by T-Prunify, and all of them are

true positives.

Safe Cast Identification. We follow a similar approach described above to evaluate the

false negatives of safe cast identification. The same 54 sampled type checks are also in fact

safe casts, according to our manual analysis. T-Prunify successfully identifies 51 to be safe

casts, missing the remaining 3 because of the lacking of an inter-procedural analysis, i.e.,

the check is performed in a caller function but the cast happened in a callee. In addition,

we sampled some cases to see whether the lack of inter-procedural analysis is the only

reason. In particular, we find one false negative even when the check and cast are in the

same function. The example is located in the v8 submodule: a base class BaseSpace which

has two subclasses NormalPageSpace and LargePageSpace. Before casting an object space

to type NormalPageSpace, the developer performed a type check !(space.is large()). This

case constitutes a safe cast. However, T-Prunify failed to identify it because it did not

take into account the fact that there are only two possible types, !is large() effectively
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Table 4.2: The top 50 downcast classes targets in the Chrome, # of cast is the frequency, Type Info?

is the ground truth whether the class has encoded some form of the custom type information. The

last column shows whether T-Prunify captured those information into our database.

Cast to # of cast Captured? Type Info? Captured?

v8::FunctionTemplate 3117 Y Y
v8::Object 2974 Y Y
v8::Int32 2735 Y N
blink::Element 1973 Y Y
llvm::Constant 1541 N N
blink::EventTarget 1507 N N
v8::Uint32 1343 Y N
llvm::Instruction 971 N N
v8::Number 827 Y Y
llvm::Function 806 N N
blink::HTMLElement 716 Y Y
blink::WebGLRenderingContextBase 476 N N
blink::WebGL2RenderingContextBase 445 N N
perfetto::trace processor::TypedColumn 421 N N
blink::LocalFrame 405 Y Y
blink::LocalDOMWindow 401 Y Y
blink::DOMWindow 397 N N
v8::Boolean 395 Y Y
blink::WebGLUniformLocation 374 N N
v8::internal::Isolate 312 N N
v8::Array 304 N N
skjson::ObjectValue 294 N N
v8::JSVisitor 286 N N
GrGpuResource 276 N N
blink::UniqueElementData 273 Y Y
llvm::cl::OptionValueCopy 273 N N
v8::String 273 Y Y
blink::ShareableElementData 267 Y Y
blink::JSBasedEventListener 241 Y Y
blink::CSSPrimitiveValue 231 Y Y
blink::SVGElement 225 Y Y
tint::sem::Vector 213 N N
blink::LayoutBoxModelObject 208 Y Y
blink::LayoutBlockFlow 203 Y N
v8::internal::compiler::HeapObjectData 196 N N
blink::Longhand 195 Y N
blink::LayoutBox 177 Y N
ppapi::PPB Graphics3D Shared 166 N N
blink::Node 153 N N
content::WebContentsImpl 149 N N
base::DictionaryValue 148 N N
blink::Document 145 Y Y
llvm::StructType 143 N N
blink::HTMLInputElement 142 Y Y
blink::NGPhysicalBoxFragment 140 Y Y
blink::HTMLCanvasElement 135 Y Y
blink::TransformPaintPropertyNode 134 N N
llvm::GlobalValue 126 N N
llvm::MDString 121 N N
blink::JSEventHandler 118 Y Y
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Table 4.3: Overhead improvement in three benchmarks, the improvement is calculated based on

the HexType instrumentation. Numbers in the parentheses is the overhead.

Benchmark Chrome Chrome-hextype Chrome-reduced

Speedometer 40.3 36.2 (10.2%) 37.2 (7.7%)

JetStream2 68.6 56.3 (17.9%) 65.6 (4.4%)

MotionMark 72.3 24.8 (65.7%) 47.8 (33.92%)

indicates that space is of type NormalPageSpace. Finally, we also collect 3 patches that fix

type confusion vulnerabilities in Chrome with developer-implemented type checks and they

are all identified by T-Prunify, i.e., no false negatives. To evaluate false positives, we

sample 50 safe casts reported by T-Prunify from six different submodules and find none of

them are false positives. Overall, the results exhibit a high level of accuracy.

4.7.3 Runtime Overhead Reduction

So far, we have evaluated the results of T-Prunify statically, e.g., the effectiveness

of T-Prunify in terms of the statically-identified safe casts. In this section, we will

measure the runtime overhead achieved by T-Prunify compared to the state-of-the-art

solution, HexType. As mentioned, we use three popular web browser benchmarks, and

the corresponding results are shown in Table 4.3. We tested each benchmark four times

back-to-back, and eliminate the first run as it would be a cold start. The results are relatively

stable, and we use the median as the representative numbers in the table.

To compute the runtime overhead, we rely on the “scores” produced by each

benchmark for chrome, chrome-hextype, and chrome-reduced, respectively Note that these
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scores from different benchmarks may consist of different metrics, e.g., throughput or others.

Nevertheless, we assume these scores captured the most suitable metrics as intended by each

benchmark.

For Speedometer, we see that the original Chrome can achieve 40.3 runs/min, while

chrome-hextype and chrome-reduced achieved 36.2 runs/min and 37.2 runs/min, respectively.

Overall, the Speedometer benchmark has a relatively low overhead to being with, i.e., 10.2%,

indicating that the exercised sanitizer-inserted checks have a relatively low proportion overall.

Nevertheless, T-Prunify manages to reduce the overhead from 10.2% to 7.7%, representing

a 25% relative reduction. In Table 4.4, we also report the total number of type checks

that are executed at runtime with HexType and T-Prunify. We can see that T-Prunify

successfully eliminated 100K checks that would otherwise be performed by HexType.

In JetStream2, the overall score of the original Chrome is 68.6, while chrome-

hextype and chrome-reduced achieved 56.3 and 65.6 respectively. The improvement is

significant, from 17.9% to 4.4%, representing a 75% relative reduction. Looking at Table 4.4,

we can see the majority of the sanitizer checks are pruned, i.e., 261K out of 448K. We

believe that the observed high ratio can be attributed to the predominant use of the V8

engine in the exercised code paths by JetStream2. The V8 engine has a history of being

susceptible to numerous type confusion bugs [50–53, 55]. Consequently, developers have

inserted a significant number of type checks as a precautionary measure to mitigate potential

vulnerabilities.

In MotionMark, the overall score of the original Chrome is 72.31, while chrome-

hextype and chrome-reduced achieved 24.75 and 47.78, respectively. The improvement is
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Table 4.4: Number of dynamic cast verification performed by HexType before and after our pruning.

Benchmark Chrome-hextype Chrome-reduced Reduced

Speedometer 7,070 K 6,891 K 179 K

JetStream2 448 K 187 K 261 K

MotionMark 4,551 K 2,163 K 2,387 K

the most significant out of the three benchmarks, i.e., from 65.7% to 33.9%, representing a

48% relative reduction. According to Table 4.4, T-Prunify results in 2.38M fewer sanitizer

checks at runtime. The significant number of pruned checks in this benchmark is due to the

many rendering elements such as SVG node, HTML elements with CSS style. Many such

classes have custom RTTI and safe casts (as some of our examples showed in section 4.2).

4.8 Limitations and Extensions

While our experimental results are quite promising, we did encounter some practical

limitations of T-Prunify while manually assessing accuracy. In the custom RTTI identifi-

cation phase, we discovered cases where a wide range of constants or even structure pointers

were used to assist encoding custom RTTI information, patterns not handled by our current

approach. These cases could be addressed in future work by doing deeper semantic analysis

during the RTTI identification phase. It is also interesting to investigate the encoding

patterns of custom RTTI across open-source projects beyond Chrome. Additionally, our

safe cast analysis is currently intra-procedural, which means that it may overlook certain

safe casts that occur across different function calls. In future work we plan to make this
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analysis inter-procedural, thereby supporting cases where a type check occurs in a caller

while the cast occurs in the callee.

Beyond the aforementioned improvements, there are multiple fruitful ways to

broaden and extend this work. First, we believe there are uses for automatic detection of

custom RTTI schemes beyond reducing sanitizer overhead. For example, in cases where casts

are not protected by a type check, one could automatically insert type checks into the code

using the custom RTTI found by our technique. Also, we believe it would be worthwhile to

extend our RTTI detection approach could to support structs in the C language—there

also, custom RTTI has been used to ensure cast safety [8].

4.9 Related Works

In this section, we compare T-Prunify with closely related work in three areas.

Type Confusion Sanitizers. As mentioned before, type confusion sanitizers aim to

detect bad castings that can introduce confusion vulnerabilities, by instrumenting the target

program with additional runtime checks. Undefined Behavior sanitizer (UBSan) [147] is one

of the earliest available type confusion sanitizers. It relies on the standard C++ RTTI to

perform type compatibility check. As a result, it does not support non-polymorphic classes

and may introduce crashes [97]. Recently, Clang CFI [145] also added support for detecting

type confusing bugs by leveraging the standard C++ RTTI. CaVer [97] aims to address

two main issues of the standard C++ RTTI: (1) it improves the speed of type checking

by using unique hashes instead of mangled names, and by including all compatible types

in a single RTTI entry, instead of requiring traversing the class hierarchy; (2) it supports
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non-polymorphic classes by using a decoupled lookup table to find RTTI associated with

a memory object. TypeSan [75] and HexType [84] further improve the performance and

coverage over CaVer by using lower cost data structures, caching, and by expanding the

instrumentation targets. EffectiveSan [57] can also detect type confusion vulnerabilities,

besides other memory errors like out-of-bound and use-after-free. EffectiveSan uses low-fat

pointer [56, 58, 95] to achieve efficient metadata access. It also supports checking casts

between primitive types. T-Prunify is orthogonal and complementary to these type

confusion sanitizers as our goal is to leverage developer-inserted custom type checks to

eliminate redundant checks induced by type sanitizers. Therefore, T-Prunify can be

combined with any of these type sanitizers.

Optimizing Sanitizer Checks. There are also some work to reduce the sanitizers’

overhead, these work could be divided into two categories. The first is using sanitizer-specific

static analysis to remove only semantically redundant checks, for example, RedCard [63]

is designed to use static analysis to reduce the redundant instrumentation for dynamic

race conditions. Similarly, DataGuard [81] uses a set of sophisticated static analyses to

prove the safety of stack objects and migrate them to safe stack, thus reducing the runtime

protection overhead. Furthermore, WPBound [141] utilizes value range analysis to effectively

minimize the number of out-of-bound memory checks inserted by sanitizers. Besides static

analysis, SIMBER [171] incorporates statistical inferences to identify redundant bound

checks. Another approach develops the framework and use general heuristics to remove

costly sanitizer checks irrespective their semantics, those work includes ASAP [153] and

SanRazor [182]. ASAP [153] allows developers to specify the acceptable percentage of
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runtime overhead based on their resource constraints. Leveraging this information, ASAP

automatically instruments the program to maximize the security promise within the given

budget. While SanRazor [182] combines runtime profiling and static analysis to identify

and eliminate repeated and redundant checks, thereby optimizing computing resources.

T-Prunify falls within the first category, but with a specific focus on type confusion

sanitizers.

Generic Spatial Memory Error Detector. As mentioned in section 4.2, exploiting

a type confusion vulnerability usually manifests as a spatial memory error (i.e., accessing

data beyond the boundary of the underlying object). Therefore, approaches that ensure

spatial memory safety can also serve as mitigation against type confusion vulnerabilities.

These approaches encompass static and dynamic techniques that guarantee spatial memory

safety [86, 120,121] as well as those that detect out-of-bound memory access [78, 122,136].
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Chapter 5

Conclusions

Within this thesis, we delve into the realm of memory errors that have introduced

threats to computer systems. Our focus centers on the effective and efficient detection of

use-before-initialization and type confusion bugs in large scale software.

We first target the principled detection of the underrated yet dangerous use-before-

initialization (UBI) bugs in the Linux kernel. These bugs pose a security threat not only

because they can lead to unpredictable behaviors but also because they are ex- ploitable to

gain root privileges. We design and implement UbiTect, a framework that combines flow-,

field-, and context-sensitive type qualifier inference with symbolic execution to identify UBI

bugs with low false positive rates. A key characteristic that distinguishes UbiTect from other

efforts is that it takes the best of the two meth- ods and performs scalable inter-procedural

analysis to catch the uninitialized use of variables across functions. We apply UbiTect to

the Linux 4.14 kernel and 138 new bugs are unearthed from which 52 of them are confirmed

by Linux maintainers.
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To align with the software development cycle, we design and implement InreLux, a

framework for principled incremental analysis of the Linux kernel. IncreLux is effective across

both mainline and stable versions, and provides an effective progressive way to detect bugs

with dramatic speed ups compared to today’s expensive whole-kernel analysis that needs to

be performed each time a new Linux kernel version is released. This speed up aids developers

in quickly identifying bugs before merges can happen, thereby enabling much safer Linux

kernel version releases. By tracking bug lifetimes across Linux versions, IncreLux is able to

identify bugs that potentially are hard to exploit (since they have remained for long) and

newer bugs that need more immediate attention. The same feature also allows IncreLux to

effectively disambiguate bug fixes from other normal commits. Our evaluations of IncreLux

over a fairly large set of Linux versions show that IncreLux dramatically reduces the analysis

time towards detecting bugs (a factor of nearly a 1000× speed up at times). Furthermore,

we show that it is able to achieve almost perfect accuracy in terms of conclusions that it

draws via its incremental analysis of a new version, in comparison to a holistic clean slate

analysis of the same version.

Additionally, in tackling type confusion bugs, developers usually introduce custom

RTTI and type checks to prevent them. Based on this observation, we implemented TPrunify,

a tool that can automatically identify developer-inserted type checks and leverage these

checks to validate the safety of type casts. Applying TPrunify to the Chrome browser allows

us to identify a large number, i.e., 6,704, of safe casts. Leveraging this information, TPrunify

can help remove redundant type casting checks induced by type confusion sanitizers like

HexType and reduce the corresponding performance overhead by 25% to 75%.
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Appendix 1: Type System for UbiTect: .

We present the full qualifier inference system in this section. Our system extends

the flow-sensitive analysis of Foster et al. [65]. In particular, we consider pair types (and

more generally records) and present their corresponding type inference rules. Providing

separate qualifiers for the elements of pairs is important in our problem domain, as records

(C structs) are used extensively in the Linux kernel. More importantly, pointers to records

are often passed between functions and whether a field of a record is or is not initialized is

independent of the other fields of the record. We present a type qualifier inference system to

infer a qualifier (either init or uninit) for each expression of the program.

Syntax. Our qualifier inference is performed after alias analysis. The alias analysis results

are used to decorate aliased references with the same abstract locations ρ. This can be the

line number of an object allocation statement. In the input programs, reference creation

expressions are decorated with abstract locations and functions are decorated with effects

(i.e., the set of abstract locations that they access). The abstract syntax is defined as follows:

e := x | n | λL x : t. e | e1 e2 | refρ e | !e

| e1 := e2 | ⟨e1, e2⟩ | fst(e) | snd(e)

| fst(e1) := e2 | snd(e1) := e2 |

| assert(e,Q) | check(e,Q)

t := α | int | ref (ρ) | t→L t′ | ⟨t1, t2⟩

L := {ρ, .., ρ}

An expression e can be a variable x, a constant integer n, a function λL x : t. e with argument

x of type t, effect set L and body e. The effect set L is the set of abstract locations ρ that the
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function accesses. A type t is either a type variable α, an integer type int , a reference ref (ρ)

(to the abstract location ρ), a function type t→L t′ (that is decorated with its effects L) or

a pair type ⟨t1, t2⟩. The analysis will involve a store C that maps abstract locations ρ to

types. The expression e1 e2 is the application of function e1 to argument e2. The reference

creation expression refρ e (decorated with the abstract location ρ) allocates memory with

the value e. The expression !e dereferences the reference e. The expression e1 := e2 assigns

the value of e2 to the location e1 points to. The expression ⟨e1, e2⟩ is the pair of e1 and e2.

The expressions fst(e) and snd(e) are the first and second elements of the pair e respectively.

The expressions fst(e1) := e2 and snd(e1) := e2 assign the value of e2 to the first element

and second elements of the location e1 points to respectively.

We use explicit qualifiers to both annotate and check the initialization status of

expressions. The expression assert(e,Q) annotates the expression e with the qualifier Q. The

expression check(e,Q) requires the top-level qualifier of e to be at most Q. We automatically

insert the check expressions through a simple program transformation. Specifically, we

consider two types of use as security critical: pointer dereferences and conditional branches.

To detect UBI, we insert a check(e, init) statement before every statement where e is

dereferenced or is used as the predicate of a conditional branch.
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Types and Type Stores. We now define the qualified types.

τ := Q σ

Q := κ | init | uninit

σ := int | ref (ρ) | (C, τ)→ (C ′, τ ′) | ⟨τ1, τ2⟩

C := ϵ | Alloc(C, ρ) | Assign(C, ρ : τ)

| Merge(C,C ′, L) | Filter(C,L)

η := 0 | 1 | ω

The qualified types τ can have qualifiers at different levels. Q can be a qualifier variable κ or

a constant qualifier init or uninit. The flow-sensitive analysis associates a ground store C

to each program point that is a vector that associates abstract locations to qualified types.

Thus, function types are now extended to (C, τ) → (C ′, τ ′) where C is the store that the

function is invoked in and C ′ is the store when the function returns.

Each location in a store C also has an associated linearity η that can take three

values: 0 for unallocated locations, 1 for linear locations, and ω for non-linear locations.

An abstract location is linear if the type system can prove that it corresponds to a single

concrete location in every execution. An update that changes the qualifier of a location

is called a strong update; otherwise, it is called a weak update. Strong updates can be

applied to only linear locations. The three linearities form a lattice 0 < 1 < ω. Addition on

linearities is as follows: 0 + x = x, 1 + 1 = ω, and ω + x = ω. The type inference system

tracks the linearity of locations to allow strong updates for only the linear locations.

Since a store C maps from each abstract location ρi to a type τi and a linearity ηi,

we write C(ρ) as the type of ρ in C and Clin(ρ) as the linearity of ρ in C. Store variables

are denoted as ϵ. We use the following store constructors to represent the store after an
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Alloc(C, ρ′)(ρ) =C(ρ)

Alloc(C, ρ′)lin (ρ) =


1 + Clin (ρ) if ρ = ρ′

C(ρ) otherwise

Merge(C,C′, L)(ρ) =


C(ρ) if ρ ∈ L

C(ρ′) otherwise

Merge(C,C′, L)lin (ρ) =


Clin (ρ) if ρ ∈ L

C′
lin (ρ) otherwise

Filter(C,L)(ρ) =C(ρ) ρ ∈ L

Filter(C,L)lin (ρ) =


Clin (ρ) if ρ ∈ L

0 otherwise

Assign(C, ρ′ : τ)(ρ) =


τ ′ where τ ⪯ τ ′ if ρ = ρ′ ∧ Clin (ρ) ̸= ω

τ ⊔ C(ρ) if ρ = ρ′ ∧ Clin (ρ) = ω

C(ρ) otherwise

Assign(C, ρ′ : τ)lin (ρ)=Clin (ρ)

expression as a function of the store before it. Alloc(C, ρ) returns the same store as C

except for the location ρ. Allocating ρ does not affect the types in the store; however, as ρ

is allocated once more, the linearity of ρ is increased by one. Merge(C,C ′, L) returns the

combination of stores C and C ′; for a location ρ, if ρ ∈ L, then its type and linearity are taken

from C, otherwise from C ′. Filter(C,L) restricts the domain of C to L. Assign(C, ρ : τ)

overrides C by mapping ρ to a type τ ′ such that τ ⪯ τ ′. The condition τ ⪯ τ ′ allows

assigning a subtype τ of resulting type τ ′ to ρ. If ρ is linear then its type in Assign(C, ρ : τ)

is τ ′; otherwise its type is conservatively the least-upper bound of τ and its previous type

C(ρ).

The type inference system generates subtyping constraints between stores. We

define store subtyping in Figure .1.
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Int⪯

Q ⪯ Q′

Q int ⪯ Q′ int

Ref⪯

Q ⪯ Q′

Q ref (ρ) ⪯ Q′ ref (ρ)

Fun⪯

Q ⪯ Q′ τ2 ⪯ τ1 τ ′1 ⪯ τ ′2 C2 ⪯ C1 C ′
1 ⪯ C ′

2

Q (C1, τ1)→L (C ′
1, τ

′
1) ⪯ Q′ (C2, τ2)→L (C ′

2, τ
′
2)

Store⪯

τi ⪯ τ ′i ηi ⪯ η′i i = 1..n

{ρη1

1 : τ1, ..., ρ
ηn
n : τ1} ⪯ {ρ

η′
1

1 : τ ′1, ..., ρ
η′
n

1 : τ ′n}
Pair⪯

Q ⪯ Q′ τ1 ⪯ τ ′1 τ1 ⪯ τ ′2

Q ⟨τ1, τ2⟩ ⪯ Q′ ⟨τ ′1, τ ′2⟩

Figure .1: Store subtyping.

Constraints between stores yield constraints between linearities and types, which

in turn yield constraints between qualifiers and linearities. The rule Int⪯ requires a

corresponding subtyping relation for the qualifiers of the type int . The rule Ref⪯ requires

the same subtyping relation between qualifiers and further, the equality of the two locations.

The rule Fun⪯ requires the subtyping relation between the top-level qualifiers, and contra-

variance for the argument and input store and co-variance for the return value and output

store. The rule Store⪯ requires both subtyping and stronger linearity for corresponding

locations. The rule Pair⪯ requires subtyping between the top-level qualifiers, and also

subtyping for corresponding elements of the two pair type.

Type Inference System. We present the complete rules of the type inference system

in Figure .2. The judgments are of the form Γ, C ⊢ e : τ, C ′ that is read as in type environment
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Var

x ∈ dom(Γ)

Γ, C ⊢ x : Γ(x), C

Int

κ fresh

Γ, C ⊢ n : κ int, C

Ref

Γ, C ⊢ e : τ, C ′ τ ⪯ C ′(ρ)

Γ, C ⊢ refρe : κ ref (ρ), Alloc(C ′, ρ)

Deref

Γ, C ⊢ e : Q ref (ρ), C ′

Γ, C ⊢ !e : C ′(ρ), C ′

Assign

Γ, C ⊢ e1 : Q ref (ρ), C ′ Γ, C ′ ⊢ e2 : τ, C
′′ τ ⪯ C ′′(ρ)

Γ, C ⊢ e1 := e2 : τ, Assign(C ′′, ρ : τ)

Lam

τ = sp(t) ϵ, ϵ′, κ fresh Γ[x 7→ τ ], ϵ ⊢ e : τ ′, C ′ C ′ ⪯ ϵ′

Γ, C ⊢ λLx : t.e : κ(ϵ, τ)→L (ϵ′, τ ′), C

App

Γ, C ⊢ e1 : Q(ϵ, τ)→L (ϵ′, τ ′), C ′ Γ, C ′ ⊢ e2 : τ2, C
′′ τ2 ⪯ τ F ilter(C ′′, L) ⪯ ϵ

Γ, C ⊢ e1 e2 : τ ′, Merge(ϵ′, C ′′, L)

Assert

Γ, C ⊢ e : Q′ σ,C ′ Q′ ⪯ Q

Γ, C ⊢ assert(e,Q) : Q σ,C ′

check

Γ, C ⊢ e : Q′ σ,C ′ Q′ ⪯ Q

Γ, C ⊢ check(e,Q) : Q′ σ,C ′

Pair

Γ, C ⊢ e1 : τ1, C
′ Γ, C ′ ⊢ e2 : τ2, C

′′

Γ, C ⊢ ⟨e1, e2⟩ : κ ⟨τ1, τ2⟩, C ′′

Fst

Γ, C ⊢ e : Q ⟨τ1, τ2⟩, C ′

Γ, C ⊢ fst(e) : τ1, C
′

FstAssign

Γ, C ⊢ e1 : Q ref (ρ), C ′

Γ, C ′ ⊢ e2 : τ1, C
′′ κ ⟨α1, α2⟩ ⪯ C ′′(ρ) τ1 ⪯ α1 κ, α1, α2 fresh

Γ, C ⊢ fst(e1) := e2 : τ1, Assign(C ′′, ρ : ⟨τ1, snd(C ′′(ρ))⟩)

Figure .2: Type inference system.

158



Γ and store C, evaluating e yields a result of type τ and a new store C ′. The rules Var

and Int are standard. The rule Ref creates a location and adds it to the store. The type

τ of the expression e that is stored in the new location is constrained to be a subtype of

the type of ρ in the post-store. The qualifier of the new location is initialized. The rule

Deref checks that the dereferenced expression is of a reference type ref (ρ) and retrieves

the type of the value stored at the location ρ from the store. Qualifiers are checked by the

single check expression described before (and not when references are dereferenced). The

rule Assign checks that the left-hand side expression is of a reference type and checks that

the type of the right-hand side is a subtype of the type of the value that the reference stores.

It also checks that the right-hand side can be assigned to the left-hand side considering

the linearity and type of the left-hand side reference and the type of the right-hand side

expression (as described in the definition of Assign above). The rule Lam type-checks the

function body e in a fresh initial store ϵ and with the parameter bound to a type with fresh

qualifier variables. The resulting post-store of the function body C ′ should be a subtype of

the post-store of the function ϵ′. This step essentially creates a function summary, which has

been explained in the paper section 4.3. We use the function sp(t) to decorate a standard

type t with fresh qualifier and store variables:

sp(α) = κ α κ fresh

sp(int) = κ int κ fresh

sp(ref (ρ)) = κ ref (ρ) κ fresh

sp(t→L t′) = κ (ϵ, sp(t))→L (ϵ′, sp(t′)) κ, ϵ, ϵ′ fresh

sp(⟨t, t′⟩) = κ ⟨sp(t), sp(t′)⟩ κ fresh

The rule App checks that the type of e2 is a subtype of the parameter type of e1, Further,
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with the condition Filter(C,L) ⪯ ϵ, it checks that state of the locations that e1 uses (captured

by its effect set L) in the post-store C ′′ of e2 are compatible with the store ϵ that the function

e1 expects. The resulting store Merge(ϵ′, C ′′, L) joins the store C ′′ before the function call

with the result store ϵ′ of the function. Filtering and merging according to the effect set

provides polymorphism as functions do not affect the locations they do not use. The rule

Assert adds a qualifier annotation to the program, and the rule Check checks that the

top-level qualifier Q′ of e is more specific or equal to the the expected qualifier Q.

The rule Pair type-checks the expressions e1 and e2 in order and results in an

initialized pair type. The rule Fst checks that the expression e is of a pair type and types

fst(e) as the first element of the pair type. The qualifier Q of the pair type is unconstrained;

qualifiers are only checked by the check expressions presented above. The rule FstAssign

checks that the expression e1 is of a reference type ref (ρ), the post-store C ′′ (after checking

e1 and e2) maps the reference ρ to a supertype of a pair type κ ⟨α1, α2⟩, and the type τ1

of e2 is a subtype of α1. The resulting store remaps ρ to a new pair type where the first

element is the type of τ1 and the second element is unchanged. More precisely, as described

in the definition of Assign above, the Assign store updates ρ to the new pair type if ρ is

linear; otherwise updates ρ to the least upper bound of the old and new pair types. We elide

the rules for snd that are similar to the rules for fst. The constraints generated by the new

rules Pair, Fst and FstAssign are type and store subtyping constraints that the previous

rules generated too. Further, by the rule Pair⪯, the subtyping constraints between pair

types are decomposed into subtyping constraints between qualifier and simpler types that

are inductively decomposed into constraints between qualifiers and linearities. Thus, the
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added inference rules do not increase the complexity of the generated constraints.

Soundness. The type inference has the following soundness property. Consider a given

expression e. Consider the set of conditions C generated during type inference for e in the

empty environment and empty store i.e., the constraints generated to derive the judgment

∅, ∅ ⊢ e : τ, C ′ for some type τ and store C ′. A solution S for the constraints C is a mapping

from store variables ϵ to concrete stores, from qualifier variables κ to concrete qualifiers,

and from type variables α to concrete types such that S satisfies the constraints C. In other

words, substituting each variable in the constraints C with its mapping in S results in valid

constraints. If there is a solution S for the constraints C then the evaluation of e cannot get

stuck. The evaluation of an expression can get stuck if a non-reference value is dereferenced,

a value is assigned to a non-reference value, a value of a mismatching type is assigned to a

reference to a location of a specific type, the parameter of a function is instantiated with an

argument of a mismatched type, and more importantly a qualifier check or assertion fails,

i.e., the qualifier of a value is not a subtype of the expected qualifier.
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Table .1: Appendix 2: Table:. Incremental analysis results for mainline versions v4.14 to v5.9.

T(h).: Total analysis time in hours. CG Analysis(s).: Call graph analysis time. SU.: Speedup

compared to exhaustive analysis of v4.14. FM.: Number of functions modified compared to the

immediate. predecessor. FR.: Number of functions (re-)analyzed in this version. Warn.: Number

of Warnings reported in the current version. Dis(Disappearing).: Number of warnings that

disappear in the current version (compared with the last analyzed version). Rem(Remaining).:

Number of warnings that remain in the current version compared to the immediate previous analyzed
version. New.: Number of warnings newly introduced in the current version compared with the last

analyzed version. SE-New.: New bugs confirmed by SE that are introduced in the new version.

versions T(h) SU FM FR Warn Dis Rem New SE-New
v4.14 106h45min N/A N/A 629862 103616 N/A N/A N/A 622
v4.15-rc1 28.26 3.78 23941 42548 21190 4325 99291 4979 69
v4.15-rc2 2.91 36.74 719 2617 2190 422 103848 211 0
v4.15-rc3 2.27 47.04 656 3084 1937 301 103758 238 0
v4.15-rc4 1.13 94.52 332 1268 718 116 103880 70 0
v4.15-rc5 1.28 83.31 329 1793 1339 207 103743 331 0
v4.15-rc6 1.15 92.6 273 1761 1282 96 103978 96 0
v4.15-rc7 0.43 248.74 101 403 263 21 104053 27 0
v4.15-rc8 1.33 80.15 243 1707 1305 114 103966 151 0
v4.15-rc9 0.63 169.82 217 1031 696 49 104068 48 0
v4.15 0.13 800.63 122 262 215 36 104080 48 2
v4.16-rc1 26.77 3.99 21251 52151 26922 4240 99888 4742 55
v4.16-rc2 0.24 453.72 220 521 342 10 104620 25 0
v4.16-rc3 0.7 151.6 434 1012 713 136 104509 77 1
v4.16-rc4 3.39 31.48 278 7398 3446 502 104084 509 4
v4.16-rc5 0.76 141.23 422 979 598 80 104513 76 0
v4.16-rc6 0.26 415.01 144 401 279 15 104574 27 0
v4.16-rc7 0.93 115.2 498 1543 819 107 104494 190 2
v4.16 0.33 318.92 183 535 278 18 104666 15 0
v4.17-rc1 35.1 3.04 23807 64758 33619 4493 100188 6620 28
v4.17-rc2 1.38 77.36 310 1290 1133 90 106718 89 0
v4.17-rc3 0.38 281.13 387 671 466 133 106674 72 1
v4.17-rc4 0.53 203.23 302 546 335 49 106697 30 4
v4.17-rc5 0.56 192.05 267 686 499 36 106691 31 0
v4.17-rc6 0.18 590.32 151 213 128 10 106712 15 0
v4.17-rc7 0.69 154.21 367 729 610 64 106663 56 0
v4.17 0.22 490.8 133 274 183 40 106679 17 0
v4.18-rc1 34.55 3.09 26607 64907 34669 3736 102960 7696 50
v4.18-rc2 3.25 32.85 597 7573 2060 159 110497 221 0
v4.18-rc3 0.32 336.81 251 557 281 14 110704 22 0
v4.18-rc4 1.1 97.41 587 1070 909 53 110673 183 1
v4.18-rc5 0.11 937.32 123 210 301 11 110845 143 0
v4.18-rc6 0.52 203.87 374 667 481 107 110881 136 0
v4.18-rc7 1.03 103.81 266 796 586 41 110976 53 0
v4.18-rc8 0.23 470.38 181 294 143 18 111011 2 0
v4.18 0.14 771.69 81 194 87 11 111002 13 0
v4.19-rc1 32.11 3.32 21896 55931 28780 4182 106833 6109 51
v4.19-rc2 0.55 195.37 271 1121 789 88 112854 126 0
v4.19-rc3 0.6 178.08 304 824 618 38 112942 39 0
v4.19-rc4 0.82 129.87 713 1717 1121 157 112824 218 1
v4.19-rc5 1.06 100.89 252 1015 867 157 112885 128 0
v4.19-rc6 0.53 201.73 231 693 686 45 112968 31 0
v4.19-rc7 2.56 41.72 384 3317 4634 70 112929 486 1
v4.19-rc8 0.39 271.21 129 491 411 6 113409 27 0
v4.19 0.43 247.3 116 579 484 62 113374 40 0
v5.4 97.9 1.09 99370 205327 158018 43762 69652 88366 N/A
v5.9 99.65 1.07 91741 197413 152746 40720 85425 67321 N/A
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