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ABSTRACT OF THE DISSERTATION 

 

Computational Insights into Porous Materials for Gas Separation 

by 

Song Wang 

Doctor of Philosophy, Graduate Program in Chemistry 

University of California, Riverside, June 2020 

Dr. De-en Jiang, Chairperson 

 

 

Membrane-based materials are an important branch in the field of gas separation. 

There are increasing number of membrane materials which are synthesized in recent years. 

Among them, the novel ultrathin membranes with uniform pores like nanoporous graphene 

attracted attention of many researchers, because their excellent gas separation ability based 

on molecular sieving effect. Several factors might influence the performance of ultrathin 

membranes, including pore size, pore shape, pore density, etc. However, the theoretical 

understanding of these factors has not been clearly addressed. In this dissertation, we firstly 

investigated the optimal pore size by first-principles density functional theory and 

simulated the pore-size effect for post-combustion carbon capture by grand canonical 

Monte Carlo. Next, we used molecular dynamics simulations to study the effect of pore 

density on the nanoporous graphene membrane. Then, we proposed a bilayer design of 
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nanoporous graphene membrane with continuously tunable effective pore size for gas 

separations, such as CO2/CH4, N2/CH4, O2/N2. Meanwhile, we studied the effect of entropic 

selectivity by tracking the trajectories of gas-permeance events. After that, we proposed 

other design of graphene/ionic-liquid composites with tunable slit pore size. Finally, to 

satisfy the requirement of exploring huge material database for gas separation, we applied 

machine learning to predict the selectivity of porous carbon materials. We further used 

convolutional neural networks to search the optimal porous carbon material from an 

ultimate input feature. The same approach was also used for prediction of hydrogen 

locations in copper clusters, which are potential materials for hydrogen storage. The works 

in this dissertation aims to find and design ultrathin nanoporous materials for gas separation 

by different computational approaches. 

  



x 
 

Table of Contents 

Chapter 1.   Introduction ............................................................................................... 1 

1.1   Basics of gas separation .................................................................................... 1 

1.2   Gas separation technologies and materials ....................................................... 3 

1.2.1   Sorbent-based separation technology ..................................................... 4 

1.2.2   Membrane-based separation technology................................................. 5 

1.3   Recent theoretical research on ultrathin membranes for gas separation ........... 7 

1.3.1   Porous graphene ...................................................................................... 7 

1.3.2   Porous carbon nanotube ........................................................................ 11 

1.3.3   2D organic membrane ........................................................................... 12 

1.4   Scientific questions in computational aspect .................................................. 14 

References .................................................................................................................. 15 

Chapter 2.   Computational Methods ......................................................................... 19 

2.1   Density functional theory (DFT) .................................................................... 19 

2.2   Grand canonical Monte Carlo (GCMC) ......................................................... 20 

2.3   Classical molecular dynamics (CMD) ............................................................ 20 

2.4   Machine learning ............................................................................................ 22 

References .................................................................................................................. 23 

Chapter 3.   Optimal Size of a Cylindrical Pore for Post-Combustion CO2 Capture

........................................................................................................................................... 25 

3.1   Abstract ........................................................................................................... 25 

3.2   Introduction ..................................................................................................... 26 

3.3   Computational Method ................................................................................... 28 

3.4   Results and discussion .................................................................................... 30 

3.4.1   Potential energy surface of CO2 and N2 in carbon nanotubes............... 30 

3.4.2   Optimal pore size from the potential energy surface. ........................... 32 

3.4.3   GCMC simulations of pure-gas CO2 and N2 uptakes inside the CNTs. 34 



xi 
 

3.4.4   GCMC simulations of CO2/N2 mixture inside the CNTs. ..................... 36 

3.4.5   Selectivity from the Ideal Adsorbed Solution Theory (IAST). ............. 37 

3.4.6   Implications for the practical separation of CO2 and N2. ...................... 38 

3.5   Summary and conclusions .............................................................................. 39 

References .................................................................................................................. 40 

Chapter 4.   Effect of Pore Density on Gas Permeation through Nanoporous 

Graphene Membranes .................................................................................................... 45 

4.1   Abstract ........................................................................................................... 45 

4.2   Introduction ..................................................................................................... 46 

4.3   Computational Method ................................................................................... 48 

4.4   Results and discussion .................................................................................... 49 

4.4.1   Gas permeation through the nanoporous graphene membranes ........... 49 

4.4.2   Gas adsorption on the nanoporous graphene membranes ..................... 53 

4.4.3   Surface flux vs direct flux ..................................................................... 56 

4.4.4   The relationship between adsorption and surface flux for CO2 ............ 57 

4.4.5   Implications........................................................................................... 58 

4.5   Summary and conclusions .............................................................................. 59 

References .................................................................................................................. 59 

Supporting Information .............................................................................................. 63 

Chapter 5.   Continuously Tunable Pore Size for Gas Separation via A Bilayer 

Nanoporous Graphene Membrane ................................................................................ 68 

5.1   Abstract ........................................................................................................... 68 

5.2   Introduction ..................................................................................................... 68 

5.3   Computational Method ................................................................................... 69 

5.4   Results and discussion .................................................................................... 71 

5.4.1   Bilayer design and gas permeation ....................................................... 71 

5.4.2   Permeance and selectivity ..................................................................... 74 

5.4.3   Entropic effect ....................................................................................... 77 



xii 
 

5.4.4   Bilayer membranes with larger pores in the single layer ...................... 79 

5.4.5   Implications........................................................................................... 80 

5.5   Summary and conclusions .............................................................................. 81 

References .................................................................................................................. 82 

Supporting Information .............................................................................................. 86 

Chapter 6.   Entropic Selectivity in Air Separation via a Bilayer Nanoporous 

Graphene Membrane...................................................................................................... 89 

6.1   Abstract ........................................................................................................... 89 

6.2   Introduction ..................................................................................................... 89 

6.3   Computational Method ................................................................................... 91 

6.4   Results and discussion .................................................................................... 92 

6.4.1   Membrane setup .................................................................................... 92 

6.4.2   O2/N2 permeation through the bilayer membrane ................................. 93 

6.4.3   O2/N2 selectivity.................................................................................... 95 

6.4.4   Mechanism of O2/N2 separation............................................................ 96 

6.4.5   Comparison of air-separation performances with available materials 101 

6.5   Summary and conclusions ............................................................................ 103 

References ................................................................................................................ 103 

Supporting Information ............................................................................................ 107 

Chapter 7.   Highly Selective CO2 Separation via Graphene/Ionic-Liquid 

Composites ...................................................................................................................... 112 

7.1   Abstract ......................................................................................................... 112 

7.2   Introduction ................................................................................................... 112 

7.3   Computational Method ................................................................................. 115 

7.4   Results and discussion .................................................................................. 116 

7.4.1   Composite design and control of the pore size ................................... 116 

7.4.2   GCMC simulations of pure gas uptakes ............................................. 118 

7.4.3   GCMC Simulations of Mixed Gas Selectivities ................................. 120 



xiii 
 

7.4.4   Implications......................................................................................... 121 

7.5   Summary and conclusions ............................................................................ 122 

References ................................................................................................................ 123 

Chapter 8.   Insights into CO2/N2 Selectivity in Porous Carbons from Deep Learning

......................................................................................................................................... 125 

8.1   Abstract ......................................................................................................... 125 

8.2   Introduction ................................................................................................... 125 

8.3   Computational Method ................................................................................. 128 

8.4   Results and discussion .................................................................................. 128 

8.4.1   Training neural networks for CO2 and N2 uptakes in porous carbons 128 

8.4.2   Exploration of the porous carbon space .............................................. 130 

8.4.3   2D maps of adsorption uptakes and selectivity ................................... 132 

8.5   Summary and conclusions ............................................................................ 136 

References ................................................................................................................ 136 

Chapter 9.   Prediction of CO2/N2 Selectivity in Porous Carbons from N2 Adsorption 

Isotherm at 77 K via Convolutional Neural Networks .............................................. 141 

9.1   Abstract ......................................................................................................... 141 

9.2   Introduction ................................................................................................... 141 

9.3   Results and discussion .................................................................................. 143 

9.3.1   Prediction of CO2 and N2 uptakes ....................................................... 143 

9.3.2   Prediction of CO2/N2 IAST selectivity ............................................... 146 

9.3.3   Optimal pore size distribution ............................................................. 147 

9.4   Summary and conclusions ............................................................................ 149 

References ................................................................................................................ 150 

Supporting Information ............................................................................................ 153 

Chapter 10.   Prediction of Hydride Location in Copper Clusters by Deep Learning

......................................................................................................................................... 161 



xiv 
 

10.1   Abstract ....................................................................................................... 161 

10.2   Introduction ................................................................................................. 161 

10.3   Computational Method ............................................................................... 162 

10.3.1   Rebuilding copper clusters in MATLAB .......................................... 162 

10.3.2   Generation of input dataset ............................................................... 163 

10.3.3   Training 3D-CNN ............................................................................. 163 

10.4   Results and discussion ................................................................................ 164 

10.5   Summary and conclusions .......................................................................... 168 

References ................................................................................................................ 168 

Supporting information ............................................................................................ 172 

Chapter 11.   Summary and Outlook ....................................................................... 177 

 

  



xv 
 

List of Tables 

Table S4-1. Lennard-Jones parameters for the porous graphene (atomic charges are in 

Figure S4-1). ..................................................................................................................... 64 

Table S4-2. Force field parameters for gas molecules. ..................................................... 64 

Table S5-1. Force field parameters for gas molecules ...................................................... 86 

Table S5-2. Eight numbers of offset used in this work and corresponding effective pore 

sizes. .................................................................................................................................. 88 

Table S6-1. Five numbers of offset used in this work and corresponding effective pore sizes.

......................................................................................................................................... 107 

Table 7-1. The interlayer distance (D) and accessible pore size (σ) of the graphene/ionic-

liquid (IL) composite for different ionic liquids (see Figure 7-3 for their molecular 

structures). ....................................................................................................................... 118 

 

  



xvi 
 

List of Figures 

Figure 1-1. Relative energy use by various separation technologies. ................................. 2 

Figure 1-2. Robeson upper bound and molecular diameters. ............................................. 6 

Figure 1-3. Two types of nanopores in graphene sheet. ...................................................... 8 

Figure 1-4. Examples of CMD simulations for gas separation. .......................................... 9 

Figure 1-5. Porous graphene with one IL layer. ................................................................ 10 

Figure 1-6. Porous carbon nanotube. ................................................................................ 12 

Figure 3-1. Structure of CO2 (a and b) and N2 (c and d) inside the carbon nanotube in our 

DFT modeling ................................................................................................................... 29 

Figure 3-2. Potential energy surface of CO2 in the CNTs calculated by the vdW-DF method

........................................................................................................................................... 30 

Figure 3-3. Potential energy surface of N2 in the CNTs calculated by the vdW-DF method

........................................................................................................................................... 32 

Figure 3-4. The minimum values of potential energy for different diameters of CNTs ... 33 

Figure 3-5. The difference in the potential energy between N2 and CO2 for different 

diameters of CNTs ............................................................................................................ 34 

Figure 3-6. The isotherms of (a) CO2 and (b) N2 at 298K for different diameters of CNTs

........................................................................................................................................... 35 

Figure 3-7. CNT bundle in GCMC simulation ................................................................. 36 

Figure 3-8. Gas uptake and CO2/N2 selectivity from a mixture ....................................... 37 

Figure 3-9. The IAST-predicted CO2/N2 selectivity as a function of total pressure ......... 38 

Figure 4-1. The 10×10 nm2 porous-graphene membrane with different pore densities ... 49 

Figure 4-2. The number of gas molecules permeating through the nanoporous graphene 

membrane with time for different pore densities .............................................................. 50 

Figure 4-3. Initial flux and permeance vs pore density of graphene membranes for CO2 and 

He permeation ................................................................................................................... 51 

Figure 4-4. CO2 distribution along the z direction for a graphene membrane (at z=0) with 

the pore density of 1.28 nm-2 after 25 ns MD simulation ................................................. 53 

Figure 4-5. Coverage of the gas adsorbate vs time on the feed side of the graphene 

membranes of different pore densities .............................................................................. 54 

Figure 4-6. Coverage of the adsorbate vs time on the permeate side of the graphene 



xvii 
 

membrane of different pore densities................................................................................ 55 

Figure 4-7. (a) Adsorption rate and (b) pressure-normalized adsorption rate on the permeate 

side vs the pore density for CO2 and He ........................................................................... 55 

Figure 4-8. The surface flux and the direct flux of CO2, across graphene membranes of 

different pore densities. ..................................................................................................... 57 

Figure 4-9. Coverage per pore of CO2 on feed side and permeate side of the graphene 

membrane of different pore densities................................................................................ 58 

Figure S4-1. The 4N4H pore structure ............................................................................. 63 

Figure S4-2. The number of gas molecules permeating through the nanoporous graphene 

membrane with time for different pore densities .............................................................. 66 

Figure S4-3. The forward, backward, and net direct fluxes, in comparison with the net 

surface flux of He, across graphene membranes of different pore densities .................... 67 

Figure 5-1. Construction of a porous bilayer graphene membrane .................................. 72 

Figure 5-2. The number of gas molecules passing through the bilayer nanoporous graphene 

membrane .......................................................................................................................... 72 

Figure 5-3. Permeance (left axis) and selectivity (right axis) as a function of the offset 

(bottom axis) or the effective pore size (top axis) ............................................................ 74 

Figure 5-4. Adsorption amount of CO2, N2 and CH4 on the feed side .............................. 76 

Figure 5-5. Snapshots of passing-through events of gas molecules ................................. 76 

Figure 5-6. Bilayer membranes with pore size of 10.4 Å. ................................................ 78 

Figure 5-7. Bilayer membranes with pore size of 25.2 Å. ................................................ 80 

Figure S5-1. (a) Side view and tilted view of bilayer nanoporous graphene membrane; (b) 

Schematic of cross section of pore (5.7 Å) ....................................................................... 87 

Figure 6-1. Construction of a porous bilayer graphene membrane .................................. 93 

Figure 6-2. The numbers of gas molecules passed through the bilayer nanoporous graphene 

membranes with different effective pore sizes ................................................................. 95 

Figure 6-3. O2 and N2 permeances (a) and O2/N2 permselectivity (b) of the bilayer 

nanoporous graphene membranes with different effective pore sizes .............................. 96 

Figure 6-4. Adsorption amount on the feed site of the bilayer nanoporous graphene 

membrane .......................................................................................................................... 97 

Figure 6-5. Snapshots of (a) O2 and (b) N2 passing through bilayer nanoporous graphene 



xviii 
 

membrane with effective pore size of 3.45 Å ................................................................... 97 

Figure 6-6. Comparison between single-layer and bilayer graphene membrane. ............. 98 

Figure 6-7. Free energy profiles of gas-permeation through the bilayer nanoporous 

graphene membrane (effective pore size at 3.45 Å) for N2 and O2 ................................ 100 

Figure 6-8. Change of O2/N2 selectivity with temperature for single-layer and bilayer 

nanoporous graphene membranes ................................................................................... 101 

Figure 6-9. Comparison of bilayer porous graphene membranes to other membranes for 

O2/N2 separation.............................................................................................................. 102 

Figure S6-1. (a) Side view and tilted view of bilayer nanoporous graphene membrane; (b) 

Schematic of cross section of pore (5.7 Å) ..................................................................... 107 

Figure 7-1. Schematic of the design of a composite material of graphene and an ionic liquid 

for gas adsorption. ........................................................................................................... 114 

Figure 7-2. Construction of graphene/IL composites via a layer-by-layer structure ...... 116 

Figure 7-3. Eight room-temperature ionic liquids in our work and their melting points 117 

Figure 7-4. Uptakes of pure gas molecules (CO2 – black, N2 – red, CH4 – blue) at 298K 

and 1 bar by different GIL composites ........................................................................... 119 

Figure 7-5. Uptakes of CO2 (black) and N2 (red) by different GIL composites of (a) 50/50 

and (b) 15/85 CO2/N2 gas mixtures ................................................................................ 120 

Figure 7-6. Uptakes of CO2 (black) and CH4 (red) by different GIL composites of 50/50 

CO2/CH4 gas mixtures .................................................................................................... 120 

Figure 8-1. The deep neural networks (DNNs) used in the present work ...................... 127 

Figure 8-2. Results of predicted CO2 uptakes. ................................................................ 129 

Figure 8-3. Results of predicted N2 uptakes. .................................................................. 130 

Figure 8-4. The 3D contour maps of (a) CO2 and (b) N2 pure-gas adsorption capacities

......................................................................................................................................... 131 

Figure 8-5. Results of predicted BET surface area. ........................................................ 132 

Figure 8-6. The 2D contour maps of (a) BET surface areas (m2/g), (b) CO2 and (c) N2 

adsorption capacities (mmol/g), and (d) CO2/N2 selectivity ........................................... 134 

Figure 8-7. The 2D contour maps of (a) CO2 adsorption capacity at 298K and 0.15 bar, and 

(b) CO2/N2 selectivity for 0.15 bar CO2 vs 0.85 bar N2 at 298 K. .................................. 135 

Figure 9-1. Results of predicted gas uptakes. ................................................................. 144 



xix 
 

Figure 9-2. Statistical distribution of gas uptakes ........................................................... 146 

Figure 9-3. Statistical distribution of CO2/N2 IAST selectivity ...................................... 147 

Figure 9-4. (a-d) N2 adsorption isotherm at 77 K and (e-h) the corresponding pore size 

distribution of the hypothetical porous carbon with the highest IAST CO2/N2 selectivity

......................................................................................................................................... 149 

Figure S9-1. The detailed architecture of the convolutional neural networks used in this 

work. ............................................................................................................................... 154 

Figure S9-2. An N2 adsorption isotherm at 77 K created by generation function .......... 155 

Figure S9-3. The N2 adsorption isotherm examples ....................................................... 156 

Figure 10-1. The process of generating input dataset and the sample architecture of 3D-

CNN ................................................................................................................................ 165 

Figure 10-2. The prediction results of 3D-CNN. ............................................................ 167 

Figure S10-1 The process of generating input dataset .................................................... 172 

Figure S10-2 The detailed architecture of 3D-CNN ....................................................... 173 

Figure S10-3 The structures and chemical formulas of 21 copper hydride clusters for 

training 3D-CNN ............................................................................................................ 174 

Figure S10-4 The structures and chemical of 2 copper hydride clusters for checking 

predictability of 3D-CNN ............................................................................................... 175 

Figure S10-5 The comparation between core copper hydride clusters with unreasonable 

hydride locations before and after DFT optimization ..................................................... 176 

 

  



1 
 

Chapter 1.   Introduction 

1.1   Basics of gas separation 

Separation is a process that converts a mixture or solution of chemical substances 

into two or more distinct product mixtures or fully divide the mixture into pure constituents. 

How to separate chemical mixtures into pure or purer forms is the goal of many industrial 

chemists. About 10-15% of the world’s energy consumption comes from separation process. 

If the US petroleum, chemical and paper manufacturing factories use more energy efficient 

separation methods, they will save 100 million tonnes of CO2 emissions and $4 billion per 

year in energy costs.1 

Nowadays, there are nine major separation technologies: distillation, evaporation, 

drying, extraction, absorption, adsorption, membrane, crystallization, and physical 

property-based operations (such as floatation and screening) (Figure 1-1). The first three 

methods are the most widely used in industry, which respectively account for 49%, 20%, 

and 11% of the industrial separations energy consumption.2 The rest methods are energy 

efficient separation methods, which could lower global energy usage, greenhouse gases 

emissions, and environment pollution. 
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Figure 1-1. Relative energy use by various separation technologies.2 

Gas separation is an important branch of chemical separation, including air 

separation, natural gas purification, hydrogen production, carbon dioxide capture, and et 

al. Air separation is a process that mainly divides air into nitrogen and oxygen. Pure 

nitrogen and oxygen both have many applications in medical, chemical, and industrial 

aspects. Natural gas purification is a process that remove water, carbon dioxide, and 

hydrogen sulfide from raw natural gas. Natural gas is already one of the most important 

energy resources for power generation, domestic use, transportation, and so on. Hydrogen 

production is the method for generating hydrogen gas. Nearly 95% hydrogen is produced 
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from fossil fuels by steam reforming of natural gas, partial oxidation of methane, and coal 

gasification.3 So, before use of hydrogen, rest components such as water, methane, carbon 

oxide, and carbon dioxide have to be removed. Carbon capture and storage (CCS) is the 

process for reducing CO2 emission from burning fossil fuels and weakening the greenhouse 

effect.4,5 There are mainly three different CO2 capture approaches: post-combustion, pre-

combustion, and oxyfuel combustion. In post-combustion approach, CO2 is removed from 

flue gas after fossil fuel combustion.6 In pre-combustion approach, fossil fuel is partially 

oxidized and transferred into H2 and CO2, which is easy to be captured from a relatively 

pure exhaust stream.7 In oxyfuel combustion approach, pure oxygen instead of air is used 

to react with fossil fuel. After condensation of water vapor through cooling, the flue gas is 

almost pure CO2.8 Among above three capture approaches, post-combustion carbon capture 

is most popular in research because it is most easily compatible with existing fossil fuel 

power plants. 

1.2   Gas separation technologies and materials 

Besides traditional distillation method, which is based on different boiling point of 

gases, there are two common types of extensively studied gas separation technology, which 

are separately based on sorbents and membranes. 
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1.2.1   Sorbent-based separation technology 

Sorbent-based separation technology uses solid or liquid sorbents for gas capture 

and storage. Common sorbent materials include but not limit to zeolites, metal organic 

frameworks (MOFs), porous carbons, porous organic polymers (POPs), polymeric 

materials, et al.9-12 According to the binding energy, adsorption process is classified as 

chemisorption and physisorption.13 In chemical adsorption, gas molecules are bound to the 

sorbents by covalent bond. In physical adsorption, gas molecules are bound to the sorbents 

by weak van der Waals forces or electrostatic attraction. 

Gas adsorption process has two popular models (mechanisms): monolayer model 

(Langmuir theory) and multilayer model (Brunauer–Emmett–Teller (BET) theory). The 

former was proposed by Langmuir in 1918,14 which is the most common adsorption theory 

because of its simplicity and its ability to fit a variety of adsorption data. This theory 

assumes that only a monolayer is formed on the sorbent surface at the maximum adsorption. 

Langmuir theory gives us an adsorption expression: 

1

𝑣
=

1

𝐾𝑣𝑚𝑜𝑛
∙
1

𝑃
+

1

𝑣𝑚𝑜𝑛
 

where 𝑣  is volume of adsorbate, 𝑣𝑚𝑜𝑛  is volume of adsorbate required to form a 

monolayer on the adsorbent, 𝐾  is adsorption-desorption equilibrium constant, 𝑃  is 

partial pressure of the gas. In 1938, Stephen Brunauer, Paul Emmett, and Edward Teller 
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developed a new model for multilayers adsorption.15 The adsorption expression was also 

modified as follow: 

1

𝑣(1 − 𝑥)
=

1

𝑣𝑚𝑜𝑛𝑐
+
𝑥(𝑐 − 1)

𝑣𝑚𝑜𝑛𝑐
 

where 𝑥 is the pressure divided by vapor pressure (𝑥 = 𝑃 𝑃0⁄ ), 𝑐 is equilibrium constant 

multiplied by vapor pressure (𝑥 = 𝐾 ∙ 𝑃). 

1.2.2   Membrane-based separation technology 

Membrane materials include polymers, carbon molecular sieves (CMS), MOFs, 

perovskites, etc.16-18 The solution-diffusion mechanism is the most widely used theory for 

gas separation through polymeric and liquid membrane.19 There are three steps in this 

mechanism: a) gas molecule adsorbs onto the feed side of membrane; b) gas molecule 

diffuses through the membrane; c) gas molecule desorbs from the permeate side of 

membrane. According to this mechanism, the permeability (𝑃) is a product of diffusivity 

(𝐷) and solubility (𝑆), expressed by: 𝑃 = 𝐷 ∙ 𝑆. There is a trade-off between selectivity 

and permeability called Robeson upper bound (Figure 1-2a),20-22 which can be shown by 

following equation: 

𝛼𝑖,𝑗 = 𝑃𝑖 𝑃𝑗⁄ = 𝛽𝑖,𝑗 ∙ 𝑃𝑖
−𝜆𝑖,𝑗

 

where 𝑃𝑖  and 𝑃𝑗  are permeabilities, 𝛼𝑖,𝑗  is selectivity, 𝛽𝑖,𝑗  and 𝜆𝑖,𝑗  are parameters 

depending on the gas pair. 𝜆𝑖,𝑗 can be calculated by the ratio of gas molecule size: 

𝜆𝑖,𝑗 = (𝑑𝑗 𝑑𝑖⁄ )2 − 1 
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where 𝑑𝑖 and 𝑑𝑗 are the kinetic diameters of larger and smaller gas molecules. 𝛽𝑖,𝑗 is 

relevant to 𝜆𝑖,𝑗, gas solubility, and average distance between polymer chains and chain 

stiffness. 

Although the trade-off constrains the separation performance of membrane 

materials, people also often use permeance to describe membrane productivity. Because 

permeance is equal to permeability divided by membrane thickness, if the permeability is 

a constant, when the thickness decreases, the permeance will increases. Therefore, ultrathin 

membranes even one-atom-thin membranes will have the highest permeance. If they also 

possess a serial of nanoscale pores with uniform size between the kinetic diameters of the 

gas pair, they can achieve high selectivity by molecular-sieving separation process at the 

same time.23 

 

Figure 1-2. Robeson upper bound and molecular diameters. (a) The trade-off between selectivity 

and permeability called Robeson upper bound.22 (b) Comparation between the QM diameters with 

the experimental kinetic diameters.24 
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From above introduction, we can know that, for membrane-based separation 

technology, kinetic diameter of gas molecules is an essential parameter. It can be 

determined by quantum mechanical (QM) calculation. Figure 1-2b shows the QM diameter 

values calculated by the iso-electronic density surfaces and compares the QM diameters 

with the experimental kinetic diameters.24 

1.3   Recent theoretical research on ultrathin membranes for gas separation 

1.3.1   Porous graphene 

Graphene is a two-dimensional sheet of sp2-hybridized carbon atoms with 

hexagonal lattice, named by Hanns-Peter Boehm, who originally observed graphene in 

electron microscopes in 1962.25 But the breakthrough discovery occurred in 2004 by Andre 

Geim and Konstantin Novoselov, who rediscovered, isolated, and characterized 

graphene.26 They won Nobel Prize in Physics in 2010 for this work. There are increasing 

numbers of research on graphene because of its excellent chemical stability, unique 

electrical conductivity, and great potential applications, including catalysis, electronics, 

and energy storage.27 The global market for graphene will reach $151.4 million by 2021.28 

However, the perfect graphene sheet is impermeable to any gas molecules. To use it for gas 

separation, people have to introduce sub-nanometer pores into the pristine graphene sheet. 

In 2009, Dr. Jiang and coworkers firstly proposed the porous graphene for gas separation 

in theoretical study.29 They designed two types of pore shown in Figure 1-3 and calculated 
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interaction energy between H2 or CH4 and the porous graphene to estimate the high H2/CH4 

selectivity. Three years later, the porous graphene was produced in experiment by using 

ultraviolet-induced oxidative etching technology and showed great gas separation ability.30 

 

Figure 1-3. Two types of nanopores in graphene sheet. (a) all-hydrogen saturated pore; (b) 

nitrogen-functionalized pore. (c) and (d) are their electron density isosurface.29 

Later on, several works further studied the permeance and selectivity of more gas 

molecules by classical molecular dynamics (CMD).31-33 Figure 1-4a shows the simulation 

model, which is divided into two chambers by the porous graphene membrane. Gas 

molecules are allowed to permeate from high pressure chamber (feed side) to the vacuum 

chamber (permeate side). Figure 1-4b shows the H2 permeance at different feed pressures.31 
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Similarly, the result of CO2 and N2 permeation through nitrogen-functionalized nanopore 

(4N4H) are shown in Figure 1-4c.32 With an initial pressure of 10 atom, CO2 permeance 

reached to 2.9×105 GPU (1 GPU = 3.35×10-10 mol·m-2·s-1·Pa-1) and nearly no N2 molecule 

can pass through the pore. Then, various gas molecules were simulated and the trend of 

permeate flux is that H2＞CO2＞＞N2＞Ar＞CH4, generally agreement the sequence of 

their kinetic diameters.33 

 

Figure 1-4. Examples of CMD simulations for gas separation. (a) The bi-chamber simulation 

model.31 (b) H2 permeance through the porous graphene at different pressure.31 (c) CO2 and N2 

permeation through nitrogen-functionalized nanopore (4N4H).32 (d) Fluxes of several gas 

molecules through 4N4H nanoporous graphene by CMD simulations.33 
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Because precisely control the pore size down to 3-5 Å is difficult in experiment, 

and larger pore size could significantly decrease the permeability selectivity, how to utilize 

nonselective large pores for gas separation is a challenge. A strategy proposed in 2017 

applied a composite membrane comprising a monolayer (less than 5 Å) of ionic liquid-

coated porous graphene with pore diameter of 6.0 Å (Figure 1-5a).34 The [emim][BF4] 

ionic liquid was chosen because of its wettability on graphene.35 

 

Figure 1-5. Porous graphene with one IL layer. (a) The simulation model of gas permeance through 

the porous graphene with one IL layer. Pure gas permeation through porous graphene membrane 

(b) without and (c) with IL layer.34 



11 
 

Because the pore size is much greater than the kinetic diameters of CO2 (3.30 Å), 

N2 (3.64 Å), and CH4 (3.80 Å), without the IL layer, all three gases could pass through the 

porous graphene membrane without any hindrance and achieve equilibriums quickly 

(Figure 1-5b). However, with the IL layer, one can see that the membrane is highly selective 

for CO2 permeation, while CH4 permeation is reduced the most (Figure 1-5c). Based on 

linear regression, a high CO2 permeance value of 1.39 × 105 GPU and an impressive pure-

gas selectivity of 42 for CO2/CH4 are achieved.34 

1.3.2   Porous carbon nanotube 

Carbon nanotube is another allotrope of carbon, intermediate between fullerene and 

graphene. Naturally, the idea of rolling porous graphene into porous carbon nanotube for 

gas separation was came up with. Figure 1-6 shows a model containing two coaxial single-

wall carbon nanotubes.36 There are several 4N4H pores on the inner nanotube. Initially, the 

gas molecules are inside the inner nanotube. Then, they are allowed to pass through the 

pores and enter the interspace between two nanotubes. By CMD simulations, Figure 1-6c 

shows the number of permeate gas molecules. One can see that no CH4 molecule can cross 

through the pore, resulting in high CO2/CH4 selectivity. Similar studies have also been done 

for estimate the H2/CH4 selectivity of porous carbon nanotubes.37 
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Figure 1-6. Porous carbon nanotube. (a) 4N4H pore on the carbon nanotube wall. (b) initial 

configuration of CMD simulation. (c) number of permeate molecules with time.36 

1.3.3   2D organic membrane 

Beside porous graphene and porous carbon nanotube, which use the top-down 

approach to obtain the pore, there is another pathway called bottom-up approach. Many 2D 

organic membranes natively have pores in nanoscale. With suitable design, the pore size 

could fit the separation requirement of target gas pairs. 



13 
 

The poly-phenylene membrane, as one of graphene-derived 2D membranes, was 

explored by Zhou et al.38 Its native pore with a width of 2.48 Å, which is close to the kinetic 

diameter of H2 and much less than the size of CO2, CO, and CH4. So, this membrane was 

expected to have high selective H2 permeability for hydrogen purification application. 

Graphyne and graphdiyne are also graphene derivatives.39 The pore size of the later is about 

3.8 Å, which is between the diameters of H2 and CH4. So, it is also an ideal choice for H2 

separation.40,41 

Graphene oxide is obtained by treating graphite with strong oxidizer. The ultrathin 

porous graphene oxide usually has a few layers. Both pores and interlayer channels have 

effect of gas separation. Besides carbon atom, graphene oxide might also include oxygen, 

nitrogen, and hydrogen. These functional groups also influence the gas mixture 

selectivity.42,43 

The number of 2D porous organic polymers is increasing. Their structures usually 

include a serial of phenyl rings linked by various planar groups like ethenyl, phenyl, 

biphenyl, etc.44-46 The length of these linker groups controls the pore size of final structures. 

And the pore size determines the membranes will be used for which gas pair systems and 

what the selectivity will be. Porphyrin derivatives are another class of 2D porous materials, 

which have been studied for CO2/N2 separation by computation study.47 
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1.4   Scientific questions in computational aspect 

Although many works have been done, there are still some challenges in using 

membranes especially ultrathin membranes for gas separation. Here, we list four of them: 

1) First challenge is how to precisely control the pore size. In experiment, pore size of 

membrane by top-down approach is too large to have high selectivity. 2) The second 

challenge is how to continuously tune the pore size, because for both experiment and 

simulation studies, the molecular construction forms the pore that varies non-continuously. 

3) The third challenge is how to separate adsorption and diffusion selectivities. The 

permselectivity is the combination of adsorption selectivity and diffusion selectivity. 

Finding the contribution of both of selectivities is a challenge. 4) The last challenge is how 

to handle the increasing number of new membrane materials. Traditional simulation 

methods like DFT and CMD are always time-consuming to screen the huge material 

databases and pick out the required materials for required purpose. And they have poor 

ability to quickly make prediction and explore the unknown materials space. 

In view of the above challenges, this dissertation presents our several works related 

to the effects of pore size and pore density, the new methods of continuously tuning pore 

size, the applications of entropy selectivity mechanism, and the applications of machine 

learning on prediction and screening materials space. 
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Chapter 2.   Computational Methods 

This chapter will briefly introduce the computational methods used in this thesis 

and figure out the main purposes of using these methods. The details of specific 

computational methods used in each work will be discussed in each following chapter. 

2.1   Density functional theory (DFT) 

Many porous materials capture gas molecules by physisorption such as van der 

Waals (vdW) interaction.1 To accurately calculate the interaction energy, we could use 

many methods, including Hartree-Fock (HF) method, Møller-Plesset perturbation 

calculation (MP2) method, and DFT methods.2 Among them, DFT methods are widely 

used because they can not only calculate small molecular systems, but also simulate large 

and periodic systems.  

2D membrane materials are extended unlimitedly in x and y directions. In 

simulations, we usually pick one or more unit cells as our simulation systems. The cell 

parameters and material structures need to be optimized by DFT methods firstly before 

doing further simulations. Then, gas molecules are added into the systems. Further 

optimization by DFT can help us find the adsorption bonding sites and calculate the 

bonding energies by following equation: 

Δ𝐸 = 𝐸𝑡𝑜𝑡𝑎𝑙 − 𝐸𝑠 − 𝐸𝑔 
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where Δ𝐸  is bonding energy, 𝐸𝑠  is sorbent energy, 𝐸𝑔  is gas molecule energy, and 

𝐸𝑡𝑜𝑡𝑎𝑙  is total energy after gas molecule has been bonded with sorbent material. The 

bonding energy differences between different gas molecules can help us estimate their 

Boltzmann factor or ideal pure-gas selectivity by Arrhenius equation. 

2.2   Grand canonical Monte Carlo (GCMC) 

GCMC is the most popular method to calculate gas molecule uptakes and simulate 

adsorption isotherms of porous materials.3 In grand canonical (VT) ensemble, chemical 

potential, temperature, and volume are fixed, while the total energy and total number of 

particles can be changed in all possible states of the system. Firstly, an initial N-particle 

system is established randomly. Then, a random trial move including insertion, deletion, or 

displacement is attempted. This trial move is accepted or rejected according to the Monte 

Carlo lottery. If it is accepted, a new microstate is obtained. After hundreds of hundreds of 

thousands of trials, many microstates are accepted. The ensemble average of them can tell 

us the properties of this system, such as the adsorption capacity. GCMC method is usually 

used for the study of sorbent-base materials. 

2.3   Classical molecular dynamics (CMD) 

CMD is a powerful computational method to study and analyze dynamics of gas 

molecules in sorbent-based or membrane-based materials. It determined dynamic 

trajectories of gas molecule by solving Newton’s equations of motion. Instead of solving 
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Schrodinger equation base on quantum mechanics, the force considered in CMD come 

from classical interatomic potentials or so-called force field energy functions, which are a 

sum of terms with analytical formula and empirical parameters. There are two parts in total 

energy (𝐸𝑡𝑜𝑡𝑎𝑙) of a system: 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑏𝑜𝑛𝑑𝑒𝑑 + 𝐸𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 

where 𝐸𝑏𝑜𝑛𝑑𝑒𝑑 is covalent bonded energy terms, 𝐸𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 is nonbonded energy terms. 

The 𝐸𝑏𝑜𝑛𝑑𝑒𝑑 is a sum of four parts: bond interaction between pairs of atoms (𝐸𝑏𝑜𝑛𝑑), angle 

interaction between triplets of atoms (𝐸𝑎𝑛𝑔𝑙𝑒), dihedral interaction between quadruplets of 

atoms (𝐸𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙), and improper interaction between quadruplets of atoms (𝐸𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟). In 

this thesis, they are expressed by following formulas: 

𝐸𝑏𝑜𝑛𝑑 = 𝐾𝑏𝑜𝑛𝑑(𝑟 − 𝑟0)
2 

𝐸𝑎𝑛𝑔𝑙𝑒 = 𝐾𝑎𝑛𝑔𝑙𝑒(𝜃 − 𝜃0)
2 

𝐸𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 = 𝐾𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙[1 + 𝑑1 ∙ cos(𝑛1𝜙1)] 

𝐸𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟 = 𝐾𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟[1 + 𝑑2 ∙ cos(𝑛2𝜙2)] 

where all 𝐾  parameters are pre-factors, 𝑟  and 𝑟0  are actual and equilibrium bond 

distances, 𝜃 and 𝜃0 are actual and equilibrium angle values, 𝑑1 and 𝑑2 are equal to +1 

or -1, 𝑑1  and 𝑑2  are non-negative integers, 𝜙1  and 𝜙2  are dihedral and improper 

dihedral angles. 
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The 𝐸𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 is a sum of two parts: van der Waals interaction (𝐸𝑣𝑎𝑛𝑑𝑒𝑟𝑊𝑎𝑎𝑙𝑠) 

and electrostatic interaction (𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 ). In this thesis, the former is described by 

standard 12/6 Lennard-Jones potential,4 given by: 

𝐸𝑣𝑎𝑛𝑑𝑒𝑟𝑊𝑎𝑎𝑙𝑠 = 4𝜀 [(
𝜎

𝑟
)
12

− (
𝜎

𝑟
)
12

] 𝑟 < 𝑟𝑐 

where 𝜀  is the depth of the potential well, 𝜎  is the finite distance at which the inter-

particle potential is zero, 𝑟  is the distance between the particles, 𝑟𝑐  is the LJ cutoff 

distance. The is calculated by Coulomb’s equation: 

𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 =
𝐶𝑞𝑖𝑞𝑗
𝜀𝑟

𝑟 < 𝑟𝑐 

where C is energy-conversion constant, 𝑞𝑖 and 𝑞𝑗 are the charges on the atoms, 𝜀 is the 

dielectric constant, 𝑟  is the distance between the particles, 𝑟𝑐  is the Coulombic cutoff 

distance. 

The timestep used for CMD simulations is set to 1 fs. The simulations are usually 

on a time scale of 1-100 nanoseconds. Every fixed interval, the positions and distributions 

of gas molecules are recorded for further analyzing of properties, such as adsorption, 

diffusivity, permeability, and free energy. 

2.4   Machine learning 

Machine learning is a powerful tool to build a mathematical model based on sample 

data. It can find the relationship between different variables and make predictions or 

decisions. Machine learning is a very hot topic in recent years. Increasing numbers of 
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algorithm are put forward. In this thesis, we will not discuss all of them. Instead, we pay 

attention to the artificial neural networks (ANNs).5 More specifically, we mainly use 

feedforward neural network with backpropagation learning technique.6,7 Typically, there 

are three types of layer: input layer, output layer, and hidden layer. Linear combination and 

nonlinear activation functions are applied to transfer the values. Suitable optimizers, such 

as stochastic gradient descent with momentum (SGDM) optimizer8 and Adam optimizer,9 

are selected to search the optimal parameters in the best models. Once we obtain a well-

trained model, we can use it to rapidly make prediction and explore the material databases. 

For the traditional theorical methods, such a huge amount of work is extremely time-

consuming and unimaginable. This is one of the most important benefits for machine 

learning methods. In this thesis, we will use machine learning to study the porous carbon 

materials for selective CO2 capture and make a little attempt at hydrogen storage metal 

clusters for determining hydrogen locations in them. 
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Chapter 3.   Optimal Size of a Cylindrical Pore for Post-Combustion 

CO2 Capture 

3.1   Abstract 

Pore size is an essential factor in controlling gas sorption in porous separation 

media. Overlap of the potential energy surface (PES) of CO2 interacting with a cylindrical 

pore wall can be used to tune gas sorption inside a porous material, but how such overlap 

can benefit post-combustion CO2 capture has not been fully addressed from a 

computational perspective. Here we use van der Waals density functional (vdW-DF) theory 

to assess the overlap of PES of CO2 inside cylindrical pores as represented by carbon 

nanotubes (CNTs) of different diameters. Then we employ grand canonical Monte Carlo 

simulations to obtain the adsorption capacity and selectivity of a CO2/N2 mixture with a 

CO2 partial pressure of 0.15 atm at room temperature. We find that the maximum PES 

overlap and maximum amount of CO2 adsorbed are both achieved at a CNT diameter or 

cylindrical pore size of 7.8 Å, which corresponds to an accessible pore size of 4.4 Å. 

Further investigation of N2 adsorption corroborates the idea of PES overlap. GCMC 

simulations reveal that a maximum CO2/N2 selectivity of ~33 is reached at a CNT diameter 

of 7.05 Å for the gas mixture. This work suggests that a cylindrical pore size between 7 

and 8 Å would be most beneficial for post-combustion CO2 capture from overlap of PES. 



26 
 

3.2   Introduction 

With increasing emission of CO2, global warming becomes one of the most critical 

environmental issues. Thus, CO2 capture and storage (CCS) from large point sources of 

emission is important for reducing the global atmospheric concentration of CO2.1-2 Post-

combustion CO2 capture from flue gas is a crucial choice to reduce CO2 emission.3-4 Both 

chemisorption and physisorption can be used for CO2 separation from flue gas.5-7 Several 

recent articles have reported a diverse range of promising porous materials for CO2 

capture.1, 8-12 

Zeolites and activated carbons are traditional porous materials for gas adsorption.13 

Metal organic frameworks (MOFs) have shown great potential for CO2 adsorption, due to 

their chemical diversity, intrinsic porosity, and abundant functionality.14-23 The MOF-74 

family with high density of open metal sites has excellent performance of CO2 

adsorption.24-26 Covalent organic frameworks (COFs) can also serve as promising CO2 

sorbents.27-31 Researchers have successfully developed strategies for converting a 

conventional 2D COF into an outstanding CO2 capture scaffold through channel-wall 

functionalization.28  

Optimizing pore size is an another important strategy for CO2 adsorption.32-36 

Zaworotko et al. reported a MOF comprised of hexafluorosilicate.37-39 The pore sizes 

within these “SIFSIX” materials can be controlled by changing the length of the organic 
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linkers, the metal node, and framework interpenetration. They found that SIFSIX-3-Zn 

with a pore size of 3.84 Å had outstanding CO2 uptake and selectivity. They further studied 

SIFSIX-3-Cu with a smaller pore size of 3.5 Å which showed higher CO2 uptake. Recently, 

Jung et al. reported the optimal slit pore size for CO2 capture by using the bilayer 

graphene,40 while simulation of gas adsorption and separation by ordered carbon nanotube 

arrays mainly focused on double-walled tubes with a rather large and fixed inner-tube 

diameter of 3.0 nm with varying intertube distances41-42 and relatively high pressure 

conditions.43 

Although there are many previous studies of porous materials for CO2 adsorption, 

the fundamental question of an optimal cylindrical pore size for post combustion CO2 

capture has not been clearly addressed. Especially, one can envision that when the 

cylindrical pore size is very small (< 1 nm), significant overlap of potential energy surface 

between CO2 and the pore walls. To address this question, herein we use first-principles 

van der Waals density functional theory (vdW-DFT) to map out the potential energy 

surfaces of CO2 in cylindrical pores, which are modeled by carbon nanotubes (CNTs); 

compared with the empirical Lennard-Jones potentials, vdW-DFT as an electronic-

structure method is free of empirical parameters and able to describe the polarization of 

charge density due to the CO2-CNT interaction. Then we study the overlap of potential 

energy surfaces by adjusting the pore size (the CNT diameter). Next, we perform the grand 
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canonical Monte Carlo simulation to obtain the optimal pore size for adsorbing CO2 and 

reveal the relationship between the PES overlap and adsorption performance of the 

cylindrical pore for post-combustion CO2 capture.  

3.3   Computational Method 

The van der Waals corrected density functional (vdW-DF) calculations44 were 

performed by using the Vienna ab initio simulation package (VASP).45-47 The Perdew–

Burke–Ernzerhof (PBE) form of the generalized-gradient approximation (GGA) was used 

for electron exchange and correlation.48 The projector-augmented-wave (PAW) method 

was used to describe the electron-core interaction.49 The plane waves cutoff energy of 450 

eV was used. A supercell with cell parameters of a = b = 20.0 Å, c = 21.3 Å, α = β = γ = 

90˚ was used for calculation of CO2 in nanotube system. A CO2 molecule was put in the 

center of CNTs in the axial direction.  A 1 × 1 × 1 Monkhorst Pack k-point grid was 

chosen for sampling the Brillouin zone. The convergence threshold for geometry 

optimization was set to be 0.025 eV/Å in force, and the thicknesses of the vacuum layer 

were all set to be larger than 10 Å. The CNTs were kept fixed during all the calculations. 

For CO2, carbon atom was fixed, and oxygen atoms were allowed to relax in all directions. 

For N2, nitrogen atoms were only allowed to relax in nitrogen-nitrogen bond direction. The 

potential energy (Epot) was defined by Epot = ECNT+CO2 – (ECNT + ECO2) or Epot = Egraphene+N2 

– (Egraphene + EN2).  
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In order to simulate the adsorption of CO2 and selectivity of CO2/N2 at close to the 

experimental conditions, the grand canonical Monte Carlo (GCMC) simulation at constant 

chemical potential μ, volume V and temperature T was used. The CNTs were arranged on 

a hexagonal bundle structure with minimal intertube distance. The force-field parameters 

from previous studies were used for the CNTs42, CO2,50 and N2.50 The vdW interactions 

between different atoms were calculated by the Lorentz-Berthelot Rules. The cutoff for the 

interatomic interactions was 12.8 Å. The temperature was fixed at 298K. All GCMC 

simulations ran 107 steps.  

 

Figure 3-1. Structure of CO2 (a and b) and N2 (c and d) inside the carbon nanotube in our DFT 

modeling. 
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3.4   Results and discussion 

3.4.1   Potential energy surface of CO2 and N2 in carbon nanotubes. 

Besides slit pores, the cylindrical pores are often used to simulate porous materials. 

Here we used carbon nanotubes (CNTs) to model a cylindrical pore. Figure 3-1 shows that 

we placed CO2 or N2 inside the CNTs along the axis. The radial position of the CNT axis 

was set at zero and the diameters of the CNTs were adjusted by the indices [n, 0]. Then for 

a given CNT, we computed the energy of the whole system as we changed the radial 

position of CO2 or N2 along a random direction in both ways to generate the potential 

energy surface (PES) curve.  

 

Figure 3-2. Potential energy surface of CO2 in the CNTs calculated by the vdW-DF method. 

As shown in Figure 3-2, we started with a relatively large nanotube CNT [16, 0] 

and then decreased it to CNT [8, 0]. We can see that all the potential energy surfaces are 
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symmetric. For CNT [16, 0], there are two minima where both the maximum binding 

energy are 0.34 eV. With the decrease of the diameter, the overlap effect becomes 

increasingly strong and the maximum bonding energy becomes larger. For CNT [11, 0], 

the double-well shape of the PES changes to a flat-bottom, single-well form, where the 

maximum binding energy is 0.56 eV and the width of this potential energy bottom is about 

1.4 Å. Apparently, this is the size where the two peaks in the PES curve begin to merge 

into one. When the diameter or cylindrical pore size decreases further, the PES changes to 

a parabola shape with an increasingly sharper bottom. The lowest bottom is reached by 

CNT [10, 0] with a diameter of 7.8 Å, corresponding to the strongest binding of CO2 at 

0.675 eV. At this pore size, optimal overlap of PES is achieved. Further narrower CNTs 

such as CNT [9, 0] and [8, 0] have a weakened interaction with CO2 because of repulsion 

against the wall, especially in CNT [8, 0]. Here, we used a simple definition of the CNT 

diameter as the pore size. The accessible pore size often used in the literature would 

correspond to the CNT diameter minus the vdW diameter of the carbon atom (3.4 Å; that 

is, the wall thickness), so a diameter of 7.8 Å would correspond to an accessible pore size 

of 4.4 Å. 

The PES curves of N2 in the CNTs were also obtained in the same way (Figure 3-

3). The shapes of all curves are similar to those of CO2 in Figure 3-2. However, the bonding 

energies of N2 with CNTs are always weaker when those of CO2. The maximum interaction 
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is also reached by CNT [10, 0] for N2 with a binding energy of 0.523 eV. 

 

Figure 3-3. Potential energy surface of N2 in the CNTs calculated by the vdW-DF method. 

3.4.2   Optimal pore size from the potential energy surface. 

To shed light on the optimal cylindrical pore size, Figure 3-4 plots the PES 

minimum versus the diameter of the CNT. We can see that the strongest binding is achieved 

at about 7.8 Å with a minimum of -0.675 eV for CO2. This value of CO2 binding is much 

stronger than the optimal value in the case of the graphene bilayer slit pore,40 indicating 

that the curvature increases CO2 binding. This can be explained by the fact that the CNT 

wraps around the linear, rod-like CO2 so that there are more carbon atoms from the CNT 

can be in close contact with CO2 than those from the two planar graphene sheets. In 

addition, Figure 3-4 shows that the bonding of N2 is weaker than that of CO2 by about 15% 

to 25% for the same CNT. 
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Figure 3-4. The minimum values of potential energy for different diameters of CNTs. 

Figure 3-5 shows the difference in the potential energy between N2 and CO2 for 

different diameters of CNTs, which is an indication of the CO2/N2 selectivity; in other 

words, the more positive the difference, the higher the CO2/N2 selectivity. One can see that 

the selectivity can be best achieved by a cylindrical pore size of 7 Å to 8 Å; the 0.15 eV 

energy difference yields a Boltzmann factor or ideal pure-gas selectivity of 372 at room 

temperature (298.15 K) for CO2/N2 separation. The selectivity is expected to decrease with 

the increase of CNT diameter. 
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Figure 3-5. The difference in the potential energy between N2 and CO2 for different diameters of 

CNTs. 

3.4.3   GCMC simulations of pure-gas CO2 and N2 uptakes inside the CNTs. 

The PES overlap and the optimal size for selectivity from the first principles vdW-

DF results above best represent the low to ambient pressure conditions where the strong 

adsorption sizes are populated. To test these predictions, we employed GCMC to simulate 

CO2 and N2 uptakes inside the CNTs at ambient conditions that are relevant to post-

combustion CO2 capture. First, we simulated the isotherms up to 1 atm at 298 K (Figure 3-

6). One can see that at 0.1 atm, CNT [9, 0] (d = 7.05 Å), CNT [10, 0] (d = 7.83 Å), and 

CNT [11, 0] (d = 8.61 Å) have higher CO2 uptake (Figure 3-6a) than the larger-sized CNTs. 

With the increasing pressure, the CNTs with larger pore sizes begin to win over the smaller-

sized ones. At 1 bar, CNT [14, 0] (d = 10.96 Å) has the highest CO2 uptake (4.59 mol/kg). 

Figure 3-6b shows the isotherms of N2. Interestingly, the N2 uptake in this pressure region 
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well follows the PES curves in Figures 3-3 and 3-4: CNT [9, 0] (d = 7.05 Å) and [10, 0] (d 

= 7.83 Å) have the best PES overlap, so their N2 uptake is the highest from 0 to 1 atm. This 

difference between CO2 and N2 in terms of pressure and pore size dependences can be 

leveraged for CO2/N2 separation.  

 

Figure 3-6. The isotherms of (a) CO2 and (b) N2 at 298K for different diameters of CNTs. 

Figure 3-7 shows the snapshots of CO2 distribution inside CNTs of different sizes 

at 0.15 atm. When the diameter of CNT is small in the cases of [9,0] and [10,0], the CO2 

molecules concentrate at the center of CNTs along the central axis, but when the diameter 

is larger as in [11,0], some CO2 molecules move away from the central axis toward the 

wall. While the CO2 molecules are more or less oriented along the central axis in CNT 

[9,0], some CO2 molecules are actually oriented almost perpendicularly to the central axis 

in CNT [10,0]. 



36 
 

 

Figure 3-7. CNT bundle in GCMC simulation (a); and CO2 distribution inside the CNT [9, 0] (b, 

e), CNT [10,0] (c, f) and CNT [11,0] (d, g); (b-d) are the top view figures and (e-g) are the side 

view figures. 

3.4.4   GCMC simulations of CO2/N2 mixture inside the CNTs. 

To be relevant to the experimental conditions, we simulated the gas uptake and the 

CO2/N2 selectivity of a 15%/85% molar ratio mixture of CO2/N2 at 1 atm and 298 K. Figure 

3-8 shows how the gas uptake and the CO2/N2 selectivity change with the CNT diameter. 

One can see that CO2 uptake is highest at the pore size of 7.8 Å, while N2 uptake is highest 

at 10.3 Å. One can also see that the CO2 uptake of 1.5 mol/kg from the mixture is similar 

to that in the pure-gas isotherm at the same partial pressure (Figure 3-6a). Due to this 

preferential adsorption of CO2 from the mixture, N2 uptake inside the CNTs from the 

mixture is much less than that in the pure-gas isotherm (Figure 3-6b). Figure 3-8 also shows 

the CO2/N2 selectivity, defined as 

/ ( / )( / )=i j i j j iS x x y y
 

where xi and yi are the mole fractions of component i in adsorbed and bulk phases, 
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respectively. One can see that the highest selectivity (~33) is obtained at the pore size of 

7.05 Å for CNT [9,0]. The selectivity decreases to below 15 when the pore size is greater 

than 10 Å.  

 

Figure 3-8. Gas uptake and CO2/N2 selectivity from a mixture of CO2 (0.15 atm) and N2 (0.85 atm) 

at 298K for different diameters of CNTs. 

3.4.5   Selectivity from the Ideal Adsorbed Solution Theory (IAST). 

Besides direct simulation of adsorption of mixture gases, another simple way to 

estimate the adsorption selectivity for gas mixtures is via the Ideal Adsorbed Solution 

Theory (IAST).42, 51-52  Because CNT [9,0] exhibits the highest selectivity from the 

GCMC simulations (Figure 3-8), we applied the IAST to determine how CO2/N2 selectivity 

changes as a function of pressure for a mixture of CO2 and N2 in 0.15/0.85 molar ratio 

inside the CNT [9,0]. As shown in Figure 3-9, IAST predicts a CO2/N2 selectivity of 38.8 

at 1 atm, very close to the GCMC result (~33) in Figure 3-8.  
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Figure 3-9. The IAST-predicted CO2/N2 selectivity as a function of total pressure for a mixture of 

CO2 and N2 in 0.15/0.85 molar ratio in CNT [9, 0]. 

3.4.6   Implications for the practical separation of CO2 and N2. 

The enhanced CO2 adsorption and CO2/N2 selectivity inside the small-diameter 

CNTs as predicted above beg the questions of their practicality in real-world applications, 

such as how to deploy them and whether the desorption could be an issue due to the 

enhanced interaction. We expect that the desorption should be facile for N2 due to the much 

weaker N2-CNT interaction. Although the CO2-CNT interaction here is enhanced through 

the potential energy surface overlap, the interaction is still physisorption in nature and the 

magnitude is still lower than the chemisorption. To demonstrate this point, we compare the 

CNT with the conventional 13X zeolite. At a loading of 1.5 to 1.7 mmol/g, the average 

isosteric heat of adsorption of CO2 is about 40 kJ/mol in 13X53 and about 44 kJ/mol in 

CNT [9,0] from our own calculation. In other words, the CO2-CNT interaction is only 
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slightly stronger than the CO2-13X interaction. So we think that like the 13X zeolite, the 

narrow CNTs can also be used for pressure-swing adsorption for CO2/N2 separation,54 

given their similar isotherms and heat of adsorption. 

Although the present work focuses on the pore size, other factors may also 

contribute to the gas uptake and selectivity. These include surface chemistry and 

functionality, surface defects, and surface area. It would be interesting to find out how the 

pore size can combine with these other factors in affecting post-combustion CO2 capture. 

Further simulations are warranted.  

3.5   Summary and conclusions 

We have investigated the overlap of potential energy surface (PES) of CO2 in 

cylindrical pores modeled by CNTs from first principles van der Waals density functional 

(vdW-DF) theory. We further simulated the pore-size effect on CO2 uptake and CO2/N2 

selectivity for post-combustion CO2 capture. By changing the diameter of CNTs, we found 

that the optimal pore size for overlap of PES is about 7.8 Å for the cylindrical pore. The 

binding strength of CO2 inside the 7.8-Å CNT triples that between CO2 and a single layer 

of graphene. We have also performed the GCMC simulations to obtain the uptakes of CO2 

at low pressure and the CO2/N2 selectivity from a mixture. The results show that CNTs 

with a pore size between 7 and 8 Å is particularly good for achieving high CO2/N2 

selectivity (~ 33) and good CO2 uptake (1.5 mol/kg) for a 0.15atm/0.85atm CO2/N2 mixture 
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at 298 K. Our work shows that cylindrical pores of 7 to 8 Å in size are promising for post-

combustion CO2 capture. 
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Chapter 4.   Effect of Pore Density on Gas Permeation through 

Nanoporous Graphene Membranes  

4.1   Abstract 

Pore density is an important factor dictating gas separations through one-atom-thin 

nanoporous membranes, but how it influences the gas permeation has not been fully 

understood. Here we use molecular dynamics (MD) simulations to investigate gas 

permeation through nanoporous graphene membranes with the same pore (3.0 Å × 3.8 Å 

in dimensions) but varying pore densities (from 0.01 to 1.28 nm-2). We find that higher 

pore density leads to higher permeation per unit area of membrane for both CO2 and He, 

but the rate of the increase decreases greatly for CO2 at high pore densities. As a result, the 

per-pore permeance decreases for CO2 but remains relatively constant for He with the pore 

density. By separating the total flux into direct flux and surface flux, we find that He 

permeation is dominated by direct flux and hence the per-pore permeation rate is roughly 

constant with the pore density. In contrast, CO2 permeation is dominated by surface flux. 

The overall decreasing trend of the per-pore permeation rate of CO2 with the pore density 

can be explained by the decrease of coverage per pore on feed side with the increase of 

pore density and the coverage per pore on permeate side can be ignored. Our work now 

provides a complete picture of the pore-density dependence of gas permeation through one-

atom-thin nanoporous membranes. 
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4.2   Introduction 

Graphene with sub-nanometer pores is promising as a one-atom-thin membrane for 

applications in separations of gases, water, ions, and isotopes.1-11 Porous graphene was first 

proposed as the ultimate membrane for gas separation in 2009 by a computational proof-

of-concept.12 In 2012, molecular sieving of gases through porous graphene membranes 

with controlled pore sizes was experimentally demonstrated.13 Meanwhile, porous 

graphene membranes and their derivatives have been predicted to be able to separate 

hydrogen isotopes.14 To achieve scalable production of porous graphene membranes, 

graphene-oxide (GO) membranes have been fabricated and tested for gas separations.15-17 

Recently, other two-dimensional materials have also been examined as porous 

membranes.18-23 For example, the MoS2 nanosheets with suitable triangular pores were 

proposed for separating H2 from N2, CO, and CH4 and for removing CO2 from natural 

gas,19 while molecular sieving of gases was shown for a MXene membrane.23  

Although molecular sieving has been the main working mechanism for selective 

gas separations by porous graphene and related ultrathin membranes,24 Drahushuk and 

Strano proposed two pathways of gas permeation through nanoporous graphene 

membranes from a detailed kinetic analysis: direct gas-phase pathway and adsorbed phase 

pathway.25 In the gas-phase pathway, the flux scales with the pore area and the differential 

pressure. In the adsorbed phase pathway, the permeation is divided into five steps: 
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adsorption, association, translocation, dissociation, and desorption.25 Hadjiconstantinou et 

al. further explored the impact of pore size and pore functionalization on gas permeation 

through nanoporous graphene membrane by theoretical analysis and MD simulations.26  

Although the role of pore density has been alluded to in several previous studies,27-

31 how exactly the pore density affects permeation has not been fully addressed, especially 

in the light of the direct gas-phase pathway vs the indirect adsorbed phase or surface 

pathway. In a more recent theoretical analysis combined with simulations for the 

adsorption-translocation mechanism, a minimum pore density has been identified for the 

porous graphene membrane to achieve sufficient permeance.31 But finding an optimal pore 

density would help guide both the top-down and bottom-up syntheses of ultrathin 

membranes with desired pore densities.  

The goal of the current work is to understand the role of pore density in gas 

permeation through porous graphene. To this end, we have built a series of nanoporous 

graphene membrane models with different pore densities using the same pore, and then 

used classical molecular dynamics (CMD) simulation to study the relationship of gas 

permeation with the pore density. We chose CO2 and He, which represent two different 

types of gas molecule with strong and weak adsorption onto the nanoporous graphene 

membrane surface, respectively. By comparing the permeation behaviors of CO2 and He, 

we aim to achieve a deeper understanding of how gas permeation depends on pore density 
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on a porous graphene and to probe the direct vs indirect pathways. 

4.3   Computational Method 

To simulate the effect of pore density, the same membrane dimensions of 10 nm × 

10 nm and the same pore are employed, while the number of pores increases from 1 to 128 

(Figure 4-1a-h), corresponding to pore densities from 0.01 nm-2 to 1.28 nm-2. The size of 

simulation box is 10 nm × 10 nm × 20 nm. The pore has dimensions of 3.0 Å × 3.8 Å (see 

Figure S4-1 in the electronic supplementary information, ESI) and has been used 

previously for H2/CO2/N2/CH4 separations; it has very good performances for selective gas 

separations, for example, a selectivity of 300 for CO2/N2 separation with a CO2 permeance 

on the order of 105 GPU.32, 33 A bi-chamber system (Figure 4-1i) with two-dimensional 

periodic boundary conditions is set up in our classical MD simulations, with the porous 

graphene membrane in the middle. The upper chamber is pressurized at 20 atm by 550 gas 

molecules of CO2 or He for all graphene sheets of different pore densities, while the lower 

chamber is vacuum initially. MD simulations are performed using the LAMMPS package34 

in the canonical (NVT) ensemble at 300 K controlled using the Nose-Hoover thermostat.35, 

36 The force-field parameters for the membrane and gas molecules are taken from previous 

studies.33, 37, 38 Only the non-bonded interactions (van der Waals and electrostatic) are 

considered. The graphene membrane is fixed, and the gas molecules are rigid during the 

simulations. The Lennard-Jones parameters and partial atomic charges are provided in ESI. 
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The cutoff distances for Lennard-Jones and Coulombic interactions are 12 Å; the long-

range electrostatic interaction is calculated using the PPPM method.39-41 

 

Figure 4-1. The 10×10 nm2 porous-graphene membrane with different pore densities of the same 

pore (3.0 Å ×3.8 Å in size; see Figure S4-1 in ESI for a close-up view of the pore): (a) 0.01 nm-2; 

(b) 0.02 nm-2; (c) 0.04 nm-2; (d) 0.08 nm-2; (e) 0.16 nm-2; (f) 0.32 nm-2; (g) 0.64 nm-2; (h) 1.28 nm-

2. (i) Side view of the bi-chamber setup for simulating gas permeation through the membrane in the 

middle; the upper chamber (the feed side) is pressurized at 20 atm while the lower chamber (the 

permeate side) is vacuum initially. 

4.4   Results and discussion 

4.4.1   Gas permeation through the nanoporous graphene membranes 

Figure 4-2 shows the MD simulation results of the number of the gas molecules 

permeating through the porous graphene membrane with time for different pore densities. 

One can see that for both CO2 (Figure 4-2a) and He (Figure 4-2b), the permeation rate (the 

slope of the line) increases with the pore density. This can be seen more clearly in the first 

5 ns of the simulations (Figure 4-2c,d). In addition, we can see that when the pore density 
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is relatively high (> 0.16 nm-2), equilibrium can be reached within about 5 ns when pressure 

difference across the membranes approaches zero. To compare the permeation rates for the 

different pore densities, we used the initial slopes from our simulations (dashed lines in 

Figure 4-2c,d).  

 

Figure 4-2. The number of gas molecules permeating through the nanoporous graphene membrane 

with time for different pore densities (from 0.01 to 1.28 nm-2): (a) CO2 in 25 ns; (b) He in 25 ns; (c) 

CO2 in 5 ns; (d) He in 5 ns. Dashed lines in (c) and (d) denote the permeation rates used to compute 

the initial fluxes. 

From the initial permeation rate and the membrane total area (100 nm2), we 

computed the initial flux as a function of the pore density. Figure 4-3a shows that the flux 

of He increases almost linearly with the pore density, while the flux of CO2 shows a similar 
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linear increase when the pore density is < 0.3 nm-2 but the increase greatly slows down 

after 0.3 nm-2. Figure 4-3c shows the bulk-pressure-normalized flux (that is, permeance). 

At the pore density of 1.28 nm-2, the flux of CO2 is about 60% that of He and corresponds 

to a permeance of ~ 6×106 GPU. This permeance is higher than the typical permeance 

found for one-atom-thin membranes (~ 104 to 105 GPU) from previous simulations18, 33, 42, 

43 because of the higher pore densities employed in this work. We also used an exponential 

decay model to fit the whole curves in Figure 4-2 and obtained similar trends of fluxes for 

both CO2 and He (see Figure S4-3 in ESI). 

 

Figure 4-3. Initial flux and permeance vs pore density of graphene membranes for CO2 and He 

permeation: (a) flux per unit membrane area; (b) flux per pore; (c) permeance; (d) permeance per 

pore. Error bars from averaging over parallel simulations. 
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The difference between CO2 and He regarding the flux vs pore density trend can be 

more clearly seen in terms of the per-pore flux. One can see from Figure 4-3b that at low 

pore densities the initial flux per pore is higher for CO2 than He, even though He is smaller 

in size. This reverse selectivity is not uncommon in the literature of gas-separation 

membranes. For example, some polymeric membranes are selective for CO2 than the 

smaller H2, due to CO2’s higher solubility in these polymers.44 The underlying reason is 

similar in our case, due to the much more favorable surface adsorption of CO2 than He on 

the membrane, as explained below. Over the whole range of the pore densities, Figure 4-

3b shows that the initial flux per pore is nearly constant for He, but displays a roughly 

exponential decay with the pore density for CO2. This distinct and interesting difference 

between CO2 and He begs a detailed analysis of their permeation behaviors through the 

porous graphene membranes of different pore densities. We first examine the adsorption 

behavior.  
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Figure 4-4. CO2 distribution along the z direction for a graphene membrane (at z=0) with the pore 

density of 1.28 nm-2 after 25 ns MD simulation: (a) statistical distribution at the 25-ns time point 

(bin size: 1 Å); (b) snapshot of CO2 distribution at the 25-ns time point. 

4.4.2   Gas adsorption on the nanoporous graphene membranes 

Being a larger molecule with a large quadrupole moment, CO2 adsorbs more 

strongly than He on the graphene membrane. Figure 4-4 shows the distribution of CO2 

molecules along the direction perpendicular to the membrane surface after the equilibrium 

has been reached across the membrane. One can clearly see the adsorption layer on both 
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sides of the membrane: each layer is about 5 Å thick, with the majority of the CO2 

molecules about 3 to 4 Å away from the graphene surface. Some CO2 molecules with z < 

3 Å are actually close to or in the pore.  

 

Figure 4-5. Coverage of the gas adsorbate vs time on the feed side of the graphene membranes of 

different pore densities: (a) CO2; (b) He. 

Next, we examined how fast the adsorption layers are built up on both sides of the 

graphene membrane. Figure 4-5 shows the adsorption on the feed side of the membrane. 

One can see that regardless of the pore density, CO2 adsorption on the feed side quickly 

reaches equilibrium within about 1 ns (Figure 4-5a). In contrast, He coverage is much lower 

and shows much greater fluctuation (Figure 4-5b). Similarly, we proceed to analyze the 

adsorption on the permeate or back side of the membrane. As shown in Figure 4-6, the 

change of gas coverage with time displays a strong dependence on the pore density, 

especially for CO2 (Figure 4-6a). Figure 4-7a shows that the initial adsorption rate on the 

permeate side increases with the pore density for both CO2 and He. This increase is 

expected to closely correlate with the pressure rise in the permeate side; indeed, after 
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pressure normalization, the adsorption rate becomes roughly constant at high pore densities 

(Figure 4-7b). 

 

Figure 4-6. Coverage of the adsorbate vs time on the permeate side of the graphene membrane of 

different pore densities: (a) CO2; (b) He. 

 

Figure 4-7. (a) Adsorption rate and (b) pressure-normalized adsorption rate on the permeate side 

vs the pore density for CO2 and He. 

Figures 4-5 to 4-7 indicate that adsorption plays an important role in the dependence 

of CO2 permeation on the pore density. However, to fully understand the trends in Figure 

4-3, we need to quantify the contribution of surface adsorption to the total flux relative to 
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that of the direct flux. 

4.4.3   Surface flux vs direct flux 

According to a previous kinetic analysis of gas permeation through a porous 

graphene membrane, the total flux can be decomposed into direct flux and surface flux.25, 

26 To assess their contributions, we have tracked all gas molecules in our simulations 

individually and analyzed their trajectories during the initial 1 ns, to determine the numbers 

of the different events. This allowed us to obtain the surface vs direct flux contributions. 

For He, we found that the total flux is dominated by the direct flux and the surface flux can 

be ignored (especially at high pore densities, see Figure 4-8b), due to the weak adsorption 

(as evidenced from Figure 4-5b and Figure 4-6b). Since the direct flux scales with the 

permeable area (which in turns scales with the pore density), one expects a net flux linear 

with the pore density or a constant per-pore flux, as seen in Figure 4-3 for He. 

On the other hand, CO2 shows a completely different behavior. We found that the 

CO2 total flux per pore is dominated by the surface flux, as the direct flux is minor for all 

pore densities (Figure 4-8a), due to the strong adsorption (as evidenced from Figure 4-5a 

and Figure 4-6a). Since the surface flux is relevant to surface adsorption, we will discuss 

the effect of adsorption behavior below. 
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Figure 4-8. The surface flux and the direct flux of CO2, across graphene membranes of different 

pore densities. The values are from the trajectory analysis of all gas molecules during the initial 1 

ns. 

4.4.4   The relationship between adsorption and surface flux for CO2 

Figure 4-8 suggests that surface flux is the dominating part for CO2. To analyze the 

relationship between adsorption and surface flux per pore, we plot coverage per pore vs. 

pore density, as shown in Figure 4-9. Compared with the coverage per pore on feed side, 

the coverage per pore on permeate side can be ignored. The similar curve trends of 

coverage per pore on feed side and surface flux per pore in Figure 4-8 indicates a close 

relationship between them. 
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Figure 4-9. Coverage per pore of CO2 on feed side and permeate side of the graphene membrane 

of different pore densities. 

4.4.5   Implications 

The present work revealed some interesting trends of gas permeation across the 

porous graphene membranes of different pore densities. Our simulations showed that the 

higher the pore density, the greater the flux for both strongly and weakly adsorbing gases. 

This is expected. More important, we found that the adsorption on both sides of the 

membrane greatly modulates the dependence of the flux on the pore density for a strongly 

adsorbing gas such as CO2. The observation suggests that making the membranes 

asymmetric by creating dissimilar surfaces could lead to more interesting permeation 

behavior.  
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4.5   Summary and conclusions 

We have investigated permeation of CO2 and He through nanoporous graphene 

membranes with varying pore densities (from 0.01 nm-2 to 1.28 nm-2) by using molecular 

dynamics (MD) simulations. Higher pore density will yield higher permeation rate for both 

CO2 and He per unit area of membrane, but the increase rate decreases greatly for CO2. 

Separating the total permeation flux into direct flux and surface flux allowed us to find that 

He permeation is dominated by direct flux, leading to a relatively flat per-pore flux with 

the pore density. In contrast, CO2 permeation is dominated by the surface flux. The per-

pore flux of CO2 decreases with the pore density overall, mainly due to the decrease of 

coverage per pore of the adsorbed CO2 molecules on feed side with the increase of pore 

density. The present work provides insights into the pore-density dependence of gas 

permeation through a one-atom-thin membrane and also suggests new ways to improve the 

design of ultrathin membranes for gas separations.  
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Supporting Information 

1. The 4N4H pore structure 

 

Figure S4-1. The 4N4H pore structure (carbon, grey; nitrogen, blue; hydrogen, white). The partial 

atomic charges used in our simulations are provided next to each atom. Due to the D2h symmetry 

of the pore structure, only the atoms in the lower left part are labelled with their atomic charges. 
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2. Force field parameters 

Table S4-1. Lennard-Jones parameters for the porous graphene (atomic charges are in Figure S4-

1). 

Porous graphene 

 ε (K)  (Å) 

C 28.0 3.40 

N 85.6 3.25 

H 15.1 2.42 

bonds length (Å)  

C-C 1.42  

C-N 1.42  

C-H 1.10  

 

Table S4-2. Force field parameters for gas molecules. 

CO2 

 ε (K)  (Å) q (e) 

C 28.129 2.757 0.6512 

O 80.507 3.033 -0.3256 

bonds length (Å)   

C-O 1.149   

He 

 ε (K)  (Å) q (e) 

He 10.956 2.641 0 

 

  



65 
 

3. Exponential fitting 

Instead of the linear fitting of the initial portion of the permeation number vs. time 

curves (Figure 4-2 in the text), here we use an exponential decay model 𝑦 = 𝑎 ∗

(1 − 𝑒−𝜆𝑡) to fit the whole curves (Figure S4-2a,b). For each curve, the fitting yields a𝜆 

value; the half-time, 𝑡1 2⁄ , is simply 𝑙𝑛(2) 𝜆⁄   and the permeation rate is𝑎 (2𝑡1 2⁄ )⁄ . Then 

total flux and flux per pore can be obtained (Figure S4-2c,d). Compared with the linear 

fitting results (Figure 4-3 in the text), one can see that the two methods give very similar 

results.  

 

 



66 
 

Figure S4-2. The number of gas molecules permeating through the nanoporous graphene 

membrane with time for different pore densities (from 0.01 to 1.28 nm-2): (a) CO2; (b) He; Dashed 

lines represent the exponential decay model fitting. Flux vs pore density of graphene membranes 

for CO2 and He permeation: (c) flux and permeance per unit membrane area; (d) flux per pore. 
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4. Flux for He molecule 
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Figure S4-3. The forward, backward, and net direct fluxes, in comparison with the net surface flux 

of He, across graphene membranes of different pore densities. 
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Chapter 5.   Continuously Tunable Pore Size for Gas Separation via A 

Bilayer Nanoporous Graphene Membrane 

5.1   Abstract 

Pore size is a crucial factor impacting gas separation, but it is difficult to control for 

a single-layer nanoporous graphene membrane. Here we propose a bilayer design of a 

nanoporous graphene membrane with a continuously tunable effective pore size, by 

shifting the lateral position of one graphene layer against the other. Molecular dynamics 

simulations of gas permeation reveal that selective separation of gases such as CO2, N2, 

and CH4 of 3 to 4 Å in kinetic diameter can be achieved for a bilayer membrane from 

single-layer pores as large as 25 Å in size. Hence this bilayer design allows both great 

flexibility of pore sizes in a single layer graphene and continuous variation of the effective 

pore size at a sub-Å level. 

5.2   Introduction 

Nanoporous graphene is an important size-selective membrane both conceptually 

and experimentally.1-3 With the sub-nanometer pores, it can be used as a one-atom-thin 

molecular-sieving membrane for separations of gases,4-8 ions,9-11 water,12-14 and isotopes.15-

17 Nanoporous graphene membrane can be also used for DNA sequencing.18-21  

For gas separation, several factors can influence the performance of nanoporous 
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graphene membrane, including pore shape, pore size, pore density, and functionalization.22-

25 The mechanisms of gas permeation through nanoporous graphene membranes with 

different pore sizes were explored from molecular simulations.24, 25 Interesting proposals 

such as ion gating have been proposed to tune the pore size.26 Experimentally, it is 

challenging to precisely control the pore size in a one-atom-thin membrane for gas 

separation.3, 27 It is even harder to continuously tune the pore size because of the molecular 

construction forming the pores that varies non-continuously.25  

To overcome the above challenges in pore control in 2D membranes, we propose a 

bilayer nanoporous graphene membrane with continuously tunable pore size. The key idea 

is to use the lateral shift of the two graphene layers (called offset in this work) to tune the 

effective pore size continuously. Although bilayer and multilayer membranes have been 

explored before for gas permeations,28, 29 these graphene-oxide-based membranes have 

relative large interlayer spacing (~10 Å) and the main mechanism of permeance control is 

via modulation of the interlayer gas adsorption.28 In contrast, the present work focuses on 

the effect of the offset in the bilayer graphene membrane on the molecular sieving of gases 

without any interlayer adsorption. We demonstrate the working of such an idea in selective 

gas permeation of CO2/CH4 and N2/CH4 by using molecular dynamics simulations.  

5.3   Computational Method 

MD simulations were performed with the LAMMPS package36 in the canonical 
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(NVT) ensemble at 300 K controlled using the Nose-Hoover thermostat.37, 38 The 

simulation box of 10×10×20 nm3 with periodic boundaries in the xy directions was divided 

into two chambers along the z direction by the bilayer nanoporous graphene membrane at 

z = 0: the upper chamber (the feed side) was pressurized at 10 bar, while the lower chamber 

(the permeate side) was vacuum initially. The bilayer nanoporous graphene membrane was 

fixed during the simulations. We chose a high initial pressure to accelerate our MD 

simulations, so that sufficient numbers of gas passing-through events could be observed in 

our simulation time.  

The duration of each simulation was 25 ns. The feed pressure was initialized with 

a certain number of gas molecules in the upper chamber and then it would decrease as gas 

molecules begin to permeate through the membrane to the lower chamber. To determine 

gas permeance, we used the first 5-ns permeation data for flux analysis when the pressure 

difference across the membrane was roughly constant. We have previously shown that this 

simple approach gives similar permeances as an exponential fitting method.23 We note that 

there is a more accurate approach to derive the permeance for the non-equilibrium 

system.25, 39, 40  In addition, we are also exploring advanced simulation techniques that can 

maintain a constant pressure difference across the membrane.41  

The partial atomic charges of nanoporous graphene were calculated by the 

Repeating Electrostatic Potential Extracted Atomic charges (REPEAT) method based on 



71 
 

DFT-derived electrostatic potential.42 The Lennard-Jones (LJ) parameters of carbon atoms 

in nanoporous graphene sheet were 0.086 kcal/mol for ε and 3.4 Å for , while the LJ 

parameters of hydrogen were 0.015 kcal/mol for ε and 2.45 Å for .26 The force field of 

gas molecular atoms were taken from previous studies.26, 43 For CO2 and N2, three-site 

models were adopted, and for methane, all-atom model was used (Table S5-1).26 The LJ 

potential parameters were calculated by using Lorentz-Berthelot Combining Rules. The 

cutoff distance for Lennard-Jones and Coulombic potential was 12 Å. The long ranged 

electrostatic interaction was calculated using the PPPM method with a kspace slab 

correction.44-46 

5.4   Results and discussion 

5.4.1   Bilayer design and gas permeation 

Since we are tuning the offset of two pores in two overlapping graphene layers, the 

single pore size can be flexible and large. To demonstrate our idea, we employed a pore 

with all-hydrogen termination and a size of 5.7 Å (Figure 5-1a).  The distance between 

the two layers of graphene sheets was fixed at 3.4 Å, similar to the layer spacing in 

graphite,30 so there is no adsorption between the two layers. Figure 5-1c shows how the 

offset, which represents the relative position of two layers of graphene sheet in a lateral 

direction, is continuously tuned. The effective pore size and shape through the bilayer 

graphene membrane due to the offset can be seen in Figure 5-1b (the white space). 
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Figure 5-1. Construction of a porous bilayer graphene membrane: (a) the single-layer graphene 

with a relatively larger pore (5.7 Å in diameter) than the sizes of small gas molecules such as CO2; 

(b) the bilayer nanoporous graphene membrane from stacking two single-layer membranes from 

(a); (c) side view of the bilayer nanoporous graphene membrane. Isosurfaces of electron density 

are shown in (a) and (b) to define the pore shape; larger spheres in (c) indicate the pore rims.  

 

Figure 5-2. The number of gas molecules passing through the bilayer nanoporous graphene 

membrane vs. time for different offset values between the two single-layer graphene membranes: 

(a) CO2, (b) N2 and (c) CH4. 



73 
 

To simulate gas permeation through the bilayer membrane, classical molecular 

dynamics (CMD) simulations were performed via a bi-chamber setup with the membrane 

in the middle. The feed chamber was pressurized at 10atm initially, while the permeate side 

started with a vacuum. Since the pore in the single-layer graphene (Figure 5-1a) has a larger 

size than the kinetic diameters of many small gaseous molecules, such as CO2, N2, and 

CH4, the single layer porous graphene would not have any selectivity to separate these 

gases.26 Hence, the bilayer membrane setup would provide a desirable test to determine 

whether selective gas permeation can be achieved. Figure 5-2 shows the number of 

molecules permeating through the bilayer membrane with time for the varying offset values 

or effective pore sizes. The trends are similar for the three gas molecules simulated. In each 

case, the number of pass-through gas molecules decreases with the increasing offset, due 

to the shrinking effective pore size. More interestingly, one can see that for the same offset 

(that is, same-colored curves in Figure 5-2), the decrease in the number of pass-through 

gas molecules is much greater for CH4 than CO2 and N2. In other words, at certain offsets, 

the bilayer graphene membrane began to show selective permeation of CO2 and N2 over 

CH4. 
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Figure 5-3. Permeance (left axis) and selectivity (right axis) as a function of the offset (bottom axis) 

or the effective pore size (top axis) in the bilayer nanoporous graphene membranes: (a) CO2 vs. 

CH4; (b) N2 vs. CH4. 

5.4.2   Permeance and selectivity 

To quantify the permeation rate and selectivity as a function of the offset, we chose 

the first 5-ns permeation data to calculate the permeance and selectivity. In addition, we 

also defined an effective pore size (see Figure S5-1 in SI) of the bilayer graphene 

membrane to better understand the control of the overlapping pore area relative to the sizes 

of the gas molecules. Figure 5-3a shows the permeances of CO2 and CH4 (two solid lines, 

left axis) and the CO2/CH4 selectivity (the dashed line, right axis). We can see that the 

selectivity of CO2/CH4 increases as the offset increases or the effective pore size decreases. 

When the effective pore size is about 3.6 Å, the selectivity achieves 100 with a CO2 

permeance of 6×105 GPU. 

Further decrease of the effective pore size essentially blocks permeation of CH4 

molecule, leading to much higher selectivity of CO2/CH4. Since too small an effective pore 
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size also causes the permeance of CO2 to decrease, a trade-off between permeance and 

selectivity suggests that control of the effective pore size between 3.6 and 3.7 Å affords the 

optimal balance. Likewise for N2 and CH4, as shown in Figure 5-3b, when the effective 

pore size is about 3.6 Å, the selectivity of N2/CH4 reaches to 68 while N2 permeance 

remains 4×105 GPU. Hence, Figure 5-3 has convincingly shown that the effective pore size 

through a bilayer porous graphene membrane can be continuously tuned for selective gas 

permeation. 

We examined the contributions of adsorption and diffusion to the selectivity. Figure 

5-4a shows the coverages of gas molecules on the feed side as a function of the effective 

pore size, while Figure 5-4b shows the adsorption selectivity. One can see that adsorption 

selectivity of CO2/CH4 varies between 1 and 1.5, while that of N2/CH4 between 0.4 and 

0.7. In other words, the contribution of adsorption to the high selectivities shown in Figure 

5-3 is negligible, so the diffusion selectivity is the key factor. Figure 5-4b also shows that 

adsorption selectivities of N2/CH4 and CO2/CH4 have a minimum at offset ~ 4.0 Å. This 

can be understood from Figure 5-4a: both CO2 and N2 adsorption amounts increase with 

the offset, but CH4 adsorption amount has a maximum at offset ~ 4.0 Å, so the adsorption 

selectivities of N2/CH4 and CO2/CH4 as a ratio of the adsorption amount show a minimum 

at offset ~ 4.0 Å. 



76 
 

 

Figure 5-4. Adsorption amount of CO2, N2 and CH4 on the feed side (a) and adsorption selectivities 

of CO2/CH4 and N2/CH4 (b) as a function of the offset (bottom axis) or the effective pore size (top 

axis) in the bilayer nanoporous graphene membranes. 

 

Figure 5-5. Snapshots of passing-through events of gas molecules: (a) and (d) CO2; (b) and (e) N2; 

(c) and (f) CH4. Upper pane, top view; lower panel, side view. 

As previously used for understanding gas permeation through the microporous 

carbon molecular sieve membrane,31, 32 the diffusion selectivity can be decomposed into 
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energetic selectivity and entropic selectivity.33 Due to their smaller sizes,34 CO2 and N2 

diffusions are favored energetically (that is, they have lower diffusion barriers) than CH4. 

Moreover, they are also favored in the entropic selectivity which is related to the partition 

functions in both the adsorbed state before permeation and the transition state in the pore.33 

For the linear gas molecules such as CO2 and N2, they pass along the pore channel by 

orienting their molecular axis along the line connecting the two pore centers, as shown in 

Figure 5-5a,d for CO2 and Figure 5-5b,e for N2. In contrast, the CH4 molecule is more 

tightly held in the transition state (Figure 5-5c,f).  

5.4.3   Entropic effect 

Although CH4 is more spherical, its kinetic dimeter is larger, so it can only struggle 

through the nanopore and will lose all three rotational degrees of freedom in the transition 

state. On the other hand, the linear molecules such as N2 and CO2 are thinner than CH4. So, 

they still keep one of their two rotational degree of freedom in the transition state. The 

elliptic-cylinder shape of the composite pore of the bilayer membrane also facilitates the 

rotation of N2 and CO2, leading to higher entropy selectivity (more degrees of freedom at 

the transition state, leading to a lower free energy of permeation). O2 is even thinner than 

N2, so when the pore size is controlled properly to be between the kinetic diameters of O2 

and N2, N2 will lose all two rotational degrees of freedom, while O2 can maintain one, 

leading to a higher O2/N2 selectivity due to the entropy different at the transition state.33  
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There are both similarities and differences regarding the mechanism of selective 

gas separation between the single-layer graphene and the bilayer graphene. Gas permeation 

through both types of membranes involve adsorption and diffusion and the selectivity is 

mainly dictated by the (effective) pore size. But the difference in pore shape does have a 

significant impact on permselectivity: the single-layer porous graphene has a disk-like pore 

shape, while the bilayer porous graphene with a small effective pore size has an elliptic-

cylinder shape. This difference in the pore shape has an impact on the motion of the gas 

molecule in the transition state. This entropic-selectivity difference will be fully addressed 

in next chapter. 

 

Figure 5-6. Bilayer membranes with pore size of 10.4 Å. (a) Structure of the graphene sheet with 

pore size of 10.4 Å; (b) the bilayer graphene membrane from two single-layer membranes from (a) 

at an offset of 9.3 Å (red oval represents the effective pore dimensions, ~3.6 Å in width); (c) 

permeation of CO2, N2 and CH4 with time through the bilayer graphene membrane in (b). 
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5.4.4   Bilayer membranes with larger pores in the single layer 

Having demonstrated that selective gas separation can be achieved for a bilayer 

graphene membrane with a pore size of 5.7 Å in a single graphene layer, we next explore 

the flexibility in the pore size. In other words, we want to show that the continuously 

tunable effective pore size can be achieved for offsetting very large pores in a bilayer 

graphene membrane. We first tested a pore size of 10.4 Å (Figure 5-6a) and tuned the offset 

such that the effective pore size is about 3.6 Å (Figure 5-6b). As shown in Figure 5-6c, 

highly selective CO2/CH4 and N2/CH4 permeation can be seen. We further tested a pore as 

large as 25.2 Å (Figure 5-7a), which is in the mesopore range. Again, at the effective pore 

size of 3.6 Å (Figure 5-7b), selective CO2/CH4 and N2/CH4 permeations can be achieved 

(Figure 5-7c). 

 



80 
 

Figure 5-7. Bilayer membranes with pore size of 25.2 Å. (a) Structure of the graphene sheet with 

pore size of 25.2 Å; (b) the bilayer graphene membrane from two single-layer membranes from (a) 

at an offset of 24.0 Å (red oval represents the effective pore dimensions; ~3.6 Å in width); (c) 

permeation of CO2, N2 and CH4 with time through the bilayer graphene membrane in (b). 

We further estimated the gas permeances for the two bilayer porous graphene 

membranes. For the membrane in Figure 5-6, average permeances are 1.18×105 GPU for 

CO2 and 0.47×105 GPU for N2. For the membrane in Figure 5-7, average permeances are 

0.67 ×105 GPU for CO2 and 0.13 ×105 GPU for N2. For CH4, no permeation through these 

two bilayer porous graphene membranes has been observed in the simulation time scale, 

so the permeances of CH4 are too slow to allow a reliable determination of the very high 

selectivities of CO2/CH4 and N2/CH4 in these two membranes. 

5.4.5   Implications 

In current work, we considered only the overlapping of two single-layer pores to 

form a single composite pore in the bilayer membrane. For large-scale bilayer membranes, 

there would be many such composite pores and it would be challenging to maintain 

uniform offsets among the different composite pores. To alleviate this difficulty, we think 

that the key is to make sure that the single-layer porous graphene membrane has an ordered 

array of the same-sized pores as in a two-dimensional covalent-organic framework. It is 

encouraging that great progress toward the bottom-up synthesis of such porous graphene 

has been made recently.27 

To experimentally realize the desired offset of one graphene layer against the other, 
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it would be challenging to have just only one bilayer membrane and then try to vary its 

offset. Instead, we suggest that one prepare many parallel, random samples of porous 

graphene bilayer membranes stabilized by the van der Waals interaction and with different 

offsets and then transfer them on a porous support (such as carbon) for characterization of 

the offset and test of membrane performance. To prepare such bilayer membranes, we 

suggest two strategies. First, one can simply stack one porous-graphene layer to another 

one. Recently, great progress has been made in bottom-up synthesis of single-layer porous 

graphene.27 The second strategy is to fold a porous single-layer porous graphene into a 

bilayer. Ruoff and coworkers reported the folded graphene film by using a tailored substrate 

having a hydrophobic region and a hydrophilic region.35  

5.5   Summary and conclusions 

In summary, we have designed bilayer nanoporous graphene membranes with 

continuously tunable effective pore size. Using classical molecular dynamics (MD) 

simulations, we showed that the effective pore size can be tuned in the bilayer membranes 

to achieve selective CO2/CH4 and N2/CH4 separations while CO2 or N2 permeance remains 

on the order of 105 GPU. We further showed that the bilayer membrane can utilize pores 

as large as 25.2 Å in the single layer to achieve selective gas separations.  

Compared with single-layer porous graphene, the bilayer porous graphene makes 

the effective pore size continuously tunable, allows the use of much larger graphene pores, 
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and creates a unique and variable pore shape that allows one to explore more permeation 

mechanisms such as entropic selectivity in addition to molecular sieving that dominates 

the permeation through the single-layer porous graphene. Hence, our work suggests a 

promising direction to achieve advanced control in pore sizes and permeation mechanisms 

for selective gas separations via the ultrathin membranes. 
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Supporting Information 

Table S5-1. Force field parameters for gas molecules 

 

  

CO2 

 ε (K)  (Å) q (e) 

C 28.129 2.757  0.6512 

O 80.507 3.033 -0.3256 

bonds length (Å)   

C-O 1.149   

N2 

 ε (K)  (Å) q (e) 

N 36.4 3.318 -0.4048 

COM 0 0 0.8096 

bonds length (Å)   

N-N 1.098   

CH4 

 ε (K)  (Å) q (e) 

C 33.23 3.500 -0.2400 

H 15.1 2.500 0.0600 

bonds length (Å)   

C-H 1.087   
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Definition of effective pore size 

 

Figure S5-1. (a) Side view and tilted view of bilayer nanoporous graphene membrane; (b) 

Schematic of cross section of pore (5.7 Å). 

As shown in Figure S5-1a, if we look at the membrane in tilted view angle, the 

short shaft of the elliptical pore is defined as effective pore size, which can be calculated 

by mathematic formula. Figure S5-1b is a schematic of cross section of the pore, the 

effective pore size (d) can be expressed as: 

 

where 𝑙 is the interlayer distance, 𝑜 is the offset, 𝑝 is the original pore size. When 𝑙 

𝑑 =
𝑙

√𝑙2 + 𝑜2
× 𝑝 
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and 𝑝 are fixed, the offset is the only parameter affecting effective pore size. Table S5-2 

shows eight numbers of offset used in this work and corresponding effective pore sizes. 

Table S5-2. Eight numbers of offset used in this work and corresponding effective pore sizes. 

𝒑 = 5.7 Å, 𝒍 = 3.4 Å 

𝒐/Å 3.61 3.79 3.94 4.09 4.16 4.36 4.56 4.78 

𝒅/Å 3.90 3.80 3.72 3.64 3.60 3.50 3.40 3.30 
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Chapter 6.   Entropic Selectivity in Air Separation via a Bilayer 

Nanoporous Graphene Membrane 

6.1   Abstract 

Membranes are an energy-efficient technology for air separation, but it is difficult 

to control the pore size to separate N2 and O2 due to their similar kinetic diameters. Here 

we demonstrate from molecular dynamics simulations that a bilayer nanoporous graphene 

membrane with continuously tunable pore sizes by the offset between the two graphene 

layers can achieve O2/N2 selectivity up to 26 with a permeance over 105 GPU. We find that 

the entropic selectivity is the main reason behind the high selectivity via the tumbling 

movement of the skinnier and shorter O2 molecules entering and passing through the 

elliptic-cylinder-shaped nanopore of the bilayer membrane. Such motion is absent in the 

single-layer graphene membrane with a similar-sized and similar-shaped pore which yields 

an O2/N2 selectivity of only 6 via molecular sieving alone. Hence the bilayer nanoporous 

graphene membrane provides a novel way to enhance entropic selectivity for gas separation 

via control of both the pore size and the 3D pore shape. 

6.2   Introduction 

Pure oxygen is widely used in medical, chemical, and material applications. Pure 

nitrogen is also important as a feedstock in ammonia synthesis, an inert atmosphere, or a 



90 
 

coolant. Hence, air separation is paramount for many industrial and medical uses. 

Conventionally, large-scale oxygen/nitrogen production by air separation is performed by 

the energy-intensive cryogenic distillation process.1-3 For small to medium scales, other 

technologies such as pressure-swing-adsorption and membranes are also employed.4-8 

Membrane technologies can provide a more energy-efficient alternative for air 

separation.4, 8 An increasing number of membrane materials have been synthesized, such 

as polymers, zeolites, inorganic ceramic materials, carbon molecular sieves (CMS), and 

metal-organic frameworks (MOFs).9-14 There is a well-known trade-off between membrane 

selectivity and membrane permeability, called the Robeson upper bound.10, 15, 16 To surpass 

the upper bound, various approaches have been suggested for next-generation molecularly 

selective synthetic membranes, for example, using advanced semi-rigid polymers, hybrid 

materials, or scalable molecular sieves.14  

One-atom-thin membranes such as porous graphene offers an attractive feature of 

ultra-high permeance and selectivity for gas separations based on molecule sieving.17-22 

However, due to the similar kinetic diameters of N2 (3.64 Å) and O2 (3.46 Å) and the 

discontinuously varying pore size on the graphene sheet, high O2/N2 selectivity is hard to 

achieve via the monolayer nanoporous graphene membranes. It is well known that the 

kinetic selectivity favors O2 over N2 in carbon molecular sieves via the ultra-micropore 

windows.10 The selectivity has been attributed to an entropic factor that favors a smaller 
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molecule at the transition state, while the diffusion motion of the larger molecule is 

hindered.  

Given the increasing interest in graphene and other 2D membranes for molecular 

and ion transport,23, 24 we wonders if the entropic selectivity of O2/N2 can be achieved by 

a nanoporous graphene membrane. To address this question, we perform classical 

molecular dynamics (CMD) simulations and show that high nanoporous entropic 

selectivity of O2/N2 can be achieved via O2 tumbling through a bilayer nanoporous 

graphene membrane. Below we first explain our simulation methods and then show our 

membrane design and performance. This is followed by the explanation and analysis of the 

selectivity mechanism and then the implications of our results and main conclusions. 

6.3   Computational Method 

Classical molecular dynamics (CMD) simulations were performed with the 

LAMMPS package25 in the canonical (NVT) ensemble at 300 K via the Nose-Hoover 

thermostat.26, 27 The simulation box of 10×10×20 nm3 with periodic boundaries in the xy 

directions was divided into two chambers along the z direction by the bilayer nanoporous 

graphene membrane at z = 0: the feed side was pressurized at 10 bar, while the permeate 

side was vacuum initially. Single-component or pure-gas permeance was simulated; the 

feed pressure was initialized by randomly placing a certain number of pure gas molecules 

in the feed side to yield a pressure of 10 bar according to the ideal-gas law. The duration 
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of each simulation was 10 ns; the number of molecules in the permeate side, as the number 

of molecules crossed net that of crossed back, was counted every 10 ps. The bilayer 

nanoporous graphene membrane was fixed during the simulations. The force-field 

parameters for the membrane (consisting of carbon and hydrogen atoms only) were given 

in ESI. For O2 and N2, three-site models were adopted.28 The LJ potential parameters were 

calculated by using Lorentz-Berthelot Combining Rules. The cutoff distance for Lennard-

Jones and Coulombic potential was 12 Å. The long ranged electrostatic interaction was 

calculated using the PPPM method with a k-space slab correction.29-31 Free-energy profiles 

were calculated via the umbrella sampling method implemented in the PLUMED tool.32 

The weighted histogram analysis method (WHAM) was applied to reconstruct the free 

energy profile.33 

6.4   Results and discussion 

6.4.1   Membrane setup 

Bilayer nanoporous graphene membranes provide an effective way to continuously 

tune the pore size at sub-angstrom resolution via the offset between the two one-atom-thin 

membranes.34 It also offers a knob to control the diffusion path through the bilayer 

membrane. Figure 6-1a shows the single-layer porous graphene used to build the bilayer. 

It has an all-hydrogen-terminated pore of 5.7 Å in size which is much greater than the sizes 

of O2 and N2 (Figure 6-1d). So the single-layer membrane would not have any O2/N2 
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selectivity (that is, it is close to 1). The bilayer membrane is then constructed with an 

interlayer spacing of 3.4 Å (similar that in graphite) between the two porous single-layer 

graphene membranes (Figure 6-1b), so there is no adsorption between the two layers (the 

accessible pore size in between the layers is hence zero). The offset (Figure 6-1c) can be 

tuned to control the effective pore size of the bilayer membrane for gas permeation. 

 

Figure 6-1. Construction of a porous bilayer graphene membrane: (a) Single-layer graphene pore; 

(b) bilayer nanoporous graphene membrane; (c) side view of the bilayer nanoporous graphene 

membrane with an offset of the two pore centers (the larger spheres indicate the pore rims); (d) 

molecular sizes of nitrogen and oxygen. In (a) and (b), the pore shapes and sizes are estimated by 

the isosurfaces of electron density at 0.0004 e/a0
3. 

6.4.2   O2/N2 permeation through the bilayer membrane 

The bilayer membrane was then placed in the middle of a bi-chamber system where 

the upper chamber was pressurized at 10 bar with either O2 or N2 and the lower was vacuum. 
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Then classical molecular dynamics simulations were performed to follow the trajectories 

of the gas molecules. Figure 6-2 shows the number of gas molecules (N2 or O2) permeating 

through the bilayer membrane with time for different effective pore sizes. The effective 

size is determined by a simple analytical relationship with the offset (Figure S6-1; ESI). 

When the effective pore size is 3.60 Å (Figure 6-2a), both of N2 and O2 have high 

permeances. When the effective pore size decreases to 3.50 Å (Figure 6-2b), N2 permeance 

is significantly reduced while O2 permeance decrease only slightly, indicating an increase 

in O2/N2 selectivity. When the effective pore size further decreases to 3.45 Å (Figure 6-2c), 

N2 permeance is greatly reduced, because now the pore size is much less than the N2 kinetic 

dimeter (3.64 Å) but still comparable to O2 kinetic diameter (3.46 Å). When the effective 

pore size further decreases to 3.40 Å (Figure 6-2d), now O2 permeance is also greatly 

reduced. Figure 6-2 suggests that an effective pore size of 3.45 Å would be optimal for 

O2/N2 selectivity and O2 permeance. 
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Figure 6-2. The numbers of gas molecules passed through the bilayer nanoporous graphene 

membranes with different effective pore sizes: (a) 3.60 Å; (b) 3.50 Å; (c) 3.45 Å; (d) 3.40 Å. 

6.4.3   O2/N2 selectivity 

To analyze the relationship between the O2/N2 selectivity and the effective pore size, 

we first fitted the curves in Figure 6-2 via an exponential model, 𝑦 = 𝑎 ∗ (1 − 𝑒−𝜆𝑡),35 to 

obtain the fitting parameter a and 𝜆  whose product is proportional to the permeance. 

Figure 6-3 shows how O2 and N2 permeances and O2/N2 permselectivity vary with the 

effective pore size. One can see that the effective pore size of 3.45 Å affords the highest 

selectivity of 25.6, while the O2 permeance is at 5 × 105 GPU (gas permeation unit). For 

comparison, carbon molecular sieve (CMS) membranes show O2/N2 selectivity of 8 – 25.13, 
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36 So the bilayer nanoporous graphene membrane with the optimal effective pore size rivals 

the best CMS membranes in terms of O2/N2 selectivity. 

 

Figure 6-3. O2 and N2 permeances (a) and O2/N2 permselectivity (b) of the bilayer nanoporous 

graphene membranes with different effective pore sizes. 

6.4.4   Mechanism of O2/N2 separation 

For ultrathin membranes such as porous graphene, gas permeation usually consists 

of two main steps: adsorption on the surface of the feed side and diffusion across the 

membrane.14, 37 To determine which step dictates the selectivity, we analyze them 

separately. Figure 6-4 shows that the coverages of N2 and O2 on the feed side with time for 

the bilayer membrane with the optimal effective pore size of 3.45 Å. One can see that both 

gases reach their maximum coverages very quickly (< 1 ns). Then O2 coverage slightly 

decreases, while N2 coverage fluctuates. After 4 ns, O2 and N2 coverages are close to each 

other and in fact N2 coverage is slightly higher, so the adsorption selectivity is close 1, 

which means that O2/N2 permselectivity is dictated by the diffusion process.  
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Figure 6-4. Adsorption amount on the feed site of the bilayer nanoporous graphene membrane 

(effective pore size at 3.45 Å) with time. 

 

Figure 6-5. Snapshots of (a) O2 and (b) N2 passing through bilayer nanoporous graphene membrane 

with effective pore size of 3.45 Å.  
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To understand how the bilayer membrane modulates the diffusion process and 

hence yields the high O2/N2 selectivity, we tracked and analyzed the motions of O2 and N2 

molecules passing through the membrane. As shown in Figure 6-5, the skinnier and shorter 

O2 molecule tumbles through the elliptical-shaped nanopore (Figure 6-5a), while the longer 

and fatter N2 molecule wiggles through the nanopore with the rotational degrees of freedom 

hindered (Figure 6-5b). Hence the unique elliptical-shaped nanopore in the bilayer 

graphene greatly facilitates the tumbling of O2. 

 

Figure 6-6. Comparison between single-layer and bilayer graphene membrane. (a) A single-layer 

porous graphene membrane with a pore of an elliptic shape and an average pore size of 3.4 Å. (b) 

Comparison of O2 and N2 permeances as well as O2/N2 selectivity between a single-layer graphene 

with a pore size of 3.4 Å and the bilayer graphene membrane with an effective pore size of 3.4 Å. 

To further show that the distinct difference of this bilayer-graphene nanopore from 

the single-layer graphene pore, we also simulated O2/N2 separation through a single-layer 

graphene pore with an elliptic shape and an average pore size of 3.4 Å (Figure 6-6a). As 

shown in Figure 6-6b, in comparison with the performances of the bilayer graphene 
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membrane of the similar pore size, the O2 permeance becomes lower while the N2 

permeance becomes higher through the single-layer membrane, leading to a lower O2/N2 

selectivity of 7. Further analysis of the trajectories confirmed that there is no tumbling 

motion for either O2 or N2 in passing through the single-layer membrane. In other words, 

the size-sieving effect of the single-layer membrane achieves O2/N2 selectivity of 7, while 

the additional entropic effect via the tumbling of the O2 molecule through the bilayer 

membrane increases the selectivity by two times.  

Figures 6-5 and 6-6 clearly indicate that it is the entropic effect that yields the high 

O2/N2 selectivity through the bilayer graphene membrane, due to the extra unconstrained 

rotational degrees of freedom that O2 enjoys at the transition state. To quantify this entropic 

difference, the umbrella sampling method was applied to determine the free-energy profiles 

of permeation for N2 and O2 through the bilayer membrane (Figure 6-6). The two porous 

graphene layers are at z = ±1.7 Å. For both O2 and N2, the transition state is at the middle 

of the bilayer (z = 0), with the free energy barrier of 5.08 kcal/mol for N2 permeation and 

3.18 kcal/mol for O2. Then, we apply the transition-state theory. The free-energy-barrier 

difference would yield an O2/N2 selectivity of 24.5, which is consistent with the selectivity 

of 25.6 from CMD simulations. The 1.9 kcal/mol difference between N2 and O2 at the 

transition state should mainly result from the entropy contribution, because a simple 

estimate of the entropy difference from the partition functions would yield a contribution 
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to the free energy at 1.7 kcal/mol at room temperature (see ESI).  

 

Figure 6-7. Free energy profiles of gas-permeation through the bilayer nanoporous graphene 

membrane (effective pore size at 3.45 Å) for N2 and O2.  

To further show the favorable entropic selectivity in the bilayer graphene membrane, 

we simulated the temperature effect on the selectivity whereby a more favorable entropy 

contribution would yield a higher selectivity at a higher temperature. As shown in Figure 

6-8, the O2/N2 selectivity through the bilayer membrane increases from 273 K to 300K, 

while it stays about the same for the single-layer membrane during the same temperature 

range.  



101 
 

 

Figure 6-8. Change of O2/N2 selectivity with temperature for single-layer and bilayer nanoporous 

graphene membranes. 

6.4.5   Comparison of air-separation performances with available materials 

Although our bilayer porous graphene membranes are still a design concept to be 

realized experimentally, it is still informative to compare with available materials in the 

literature for their air-separation performances, to show the distinctive features of the 

bilayer porous graphene membranes. Figure 6-9 shows that the bilayer porous graphene 

membranes have much higher permeances because of their sub-nanometer thickness, way 

beyond the upper bound.16 More important, by obtaining the entropic selectivity via 

controlling the effective pore size, the bilayer porous graphene membranes can achieve 

higher O2/N2 selectivity, rivaling those of carbon-based mixed matrix membranes and 

carbon-molecular-sieve (CMS) membranes. 
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Figure 6-9. Comparison of bilayer porous graphene membranes to other membranes for O2/N2 

separation.8, 38 The upper bound for polymer membranes is plotted with an assumed 1 m-thick 

selective layer.38 CMS: carbon molecular sieve; PPO: poly(phenylene oxide); PFP: 

perfluoropolymer; SR: silicone rubber. 

The bilayer design is not limited to graphene membranes and could also be 

extended to 2D covalent-organic frameworks (COFs) and MOFs. To experimentally realize 

such design, we propose to first prepare a single-layer membrane with uniform pore sizes. 

There has been great progress recently in bottom-up synthesis of single-layer porous 

graphene.39 More excitingly, 2D COFs40 and MOFs41, 42 have also been created by 

exfoliation. Once such a 2D membrane with uniform pores is available, one can stack such 

two layers together randomly to create the bilayer membranes with different offsets, or one 

can fold it into a bilayer, as experimentally demonstrated recently.43 
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6.5   Summary and conclusions 

In summary, we have demonstrated by classical molecular dynamics simulations 

that bilayer nanoporous graphene membranes with a proper effective pore size can achieve 

an O2/N2 selectivity as high as 26, while maintaining an O2 permeance above 105 GPU. By 

tracking the trajectories of gas-permeation events, we found that the high O2/N2 

permselectivity is mainly contributed by the extra tumbling motion of O2 molecules 

through the elliptical-shaped pore. Both transition-state theory analysis, simulated free-

energy profiles, and temperature-dependent permeation confirm this entropic contribution 

to the selectivity. Our work hence shows that the bilayer nanoporous graphene membrane 

is effective for air separation and could be potentially useful for other separations by 

enhancing entropic selectivity. 
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Supporting Information 

1. Definition of the effective pore size (d) 

 

Figure S6-1. (a) Side view and tilted view of bilayer nanoporous graphene membrane; (b) 

Schematic of cross section of pore (5.7 Å). 

 

𝑙: the interlayer distance;  

𝑜: is the offset 

𝑝: single-layer pore size.  

Table S6-1. Five numbers of offset used in this work and corresponding effective pore sizes. 

𝑝 = 5.7 Å, 𝑙 = 3.4 Å 

𝑜/Å 4.16 4.26 4.36 4.46 4.56 

𝑑/Å 3.60 3.55 3.50 3.45 3.40 

 

 

𝑑 =
𝑙

√𝑙2 + 𝑜2
× 𝑝 
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2. Calculation of entropic selectivity 

According to transition state theory of diffusion,1, 2 the O2/N2 entropic diffusion 

selectivity can be written as: 

(
𝐷𝑂2
𝐷𝑁2

)𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐 = exp (
𝑆𝐷,𝑂2 − 𝑆𝐷,𝑁2

𝑅
) =

(𝐹≠ 𝐹⁄ )𝑂2
(𝐹≠ 𝐹⁄ )𝑁2

 

where 𝐷 is diffusion, 𝑆 is entropy, 𝐹 is partition function for normal state, and 𝐹≠ is 

partition function for transition state. The partition function includes translational, 

rotational, and vibrational contributions, as shown below: 

𝐹 = 𝐹𝑡𝑟𝑎𝑛𝑠 ∙ 𝐹𝑟𝑜𝑡 ∙ 𝐹𝑣𝑖𝑏, 𝐹𝑡𝑟𝑎𝑛𝑠 = (
2𝜋𝑚𝑘𝑇

ℎ2
)𝑛 2⁄ 𝑎𝑛,  𝐹𝑟𝑜𝑡 = (

𝑇

𝜎𝜃𝑟
)𝑛 2⁄ , 𝐹𝑣𝑖𝑏 = [

exp(−
𝜃𝑣
2𝑇
)

1−exp(−
𝜃𝑣
𝑇
)
]𝑛 

where 𝑛 is degree of freedom, 𝑚 is mass of molecule, 𝑘 is Boltzmann constant, ℎ is 

Planck constant, 𝑎 is cavity length (which is the difference between gas molecular width 

and the elliptical pore size2), 𝜎 is symmetry number of gas molecule, 𝜃𝑟 is characteristic 

rotational temperature, 𝜃𝑣 is characteristic vibrational temperature. In the transition state, 

all two rotational degrees of freedom of N2 is suppressed, while O2 still keeps one 

unconstrained rotational degrees of freedom. And in the transition state, both of N2 and O2 

are believed to only have two translational degrees of freedom, since the factor 
𝑘𝑇

ℎ
 

accounts for the translational degree of freedom in the direction of gas diffusion. The 

vibrational degrees of freedom of N2 and O2 are unrestricted in both normal and transitional 

state.1 Thus, the vibrational partition functions are cancelled out. Table S6-2 shows the 
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parameters used in calculations. According to these functions and parameters, the O2/N2 

entropy difference is 5.67 cal/K and entropic diffusion selectivity is 17.3 at 300 K.  

Table S6-2. Parameters used in entropic selectivity calculation when effective pore size of 3.45 Å1, 

2 

 O2 N2 

𝑎 for normal state / Å 100 100 

𝑎 for transition state / Å 
0.77 for short axis 

2.85 for long axis 

0.36 for short axis 

2.01 for long axis 

𝜎 2 2 

𝜃𝑟 2.07 2.88 
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3. Force field parameters 

3.1. Gas molecules 

Table S6-3. Force field parameters for gas molecules3 

O2 

 ε (kcal/mol)  (Å) q (e) 

O 0.108 3.050 -0.1120 

COM 0 0 0.2240 

bonds length (Å)   

O-O 1.21   

N2 

 ε (K)  (Å) q (e) 

N 0.0728 3.318 -0.4048 

COM 0 0 0.8096 

bonds length (Å)   

N-N 1.098   

 

3.2. Porous graphene 

Table S6-4. Lennard-Jones parameters for the bilayer porous graphene membrane4 

 ε (kcal/mol)  (Å) 

C 0.086 3.400 

H 0.015 2.450 
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Chapter 7.   Highly Selective CO2 Separation via Graphene/Ionic-

Liquid Composites 

7.1   Abstract 

Pore size is a crucial factor impacting gas separation in porous separation materials, 

but how to control the pore size to optimize the separation performance remains a challenge. 

Here we propose a design of graphene/ionic-liquid (GIL) composites with tunable slit pore 

size where cation and anions are intercalated between graphene layers. By varying the sizes 

of the ions, we show from first-principles density function theory calculations that the 

accessible pore size can be tuned from 3.4 Å to 6.0 Å. Grand canonical Monte Carlo 

simulations of gas uptakes find that the composite materials possess high CO2 uptakes at 

room temperature and 1 bar. Further simulations of adsorption of gas mixtures reveals that 

high CO2/N2 and CO2/CH4 adsorption selectivities can be obtained when the accessible 

pore size is < 5 Å. This work suggests a new strategy to achieve tunable pore size via the 

graphene/IL composites for highly selective CO2/N2 and CO2/CH4 adsorption. 

7.2   Introduction 

Increasing demand for energy has been driving the combustion of fossil fuel in the 

past century. Consequently, rising CO2 levels in the atmosphere has led to climate change. 

Developing advanced materials and technologies is key to energy-efficient carbon capture 
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and sequestration (CCS) which has garnered interest of many researchers.1-3 Sorbents and 

membranes are two common types of materials for carbon capture. 

Porous materials are the most widely studied system for CO2 separation.4 Metal-

organic frameworks (MOFs) have shown excellent performance as CO2 sorbents.5 For 

example, at 303 K and 0.15 bar, Mg-MOF-74 achieves CO2 uptake of 5.9 mmol/g and 

CO2/N2 selectivity of 44.6 Other porous materials such as covalent-organic frameworks, 

conventional zeolites, porous carbons, and porous organic polymers have also been 

explored for carbon capture.7-10 

The pore size of porous materials is an important factor for molecule adsorption 

and separation.11 For example, the SIFSIX-3-Zn MOF with a pore size of 3.84 Å shows 

prominent CO2 uptakes, while SIFSIX-3-Cu with smaller pore size of 3.5 Å possesses even 

higher CO2 uptakes.12 Based on the idea of the overlapping of potential energy surfaces, 

the optimal accessible pore size for achieving high uptake and selectivity of CO2 separation 

has been shown to be ~3.6 Å.11 The pore size of SIFSIX-3-Cu is right in this optimal range.  

The tremendous advances in 2D materials in the past 15 years prompted the 

question how one can leverage them to create tunable spaces for carbon capture and storage. 

One idea is to use pillars and layer-by-layer assembly to create a composite system with 

tunable interlayer spacing and amply empty space. Due to their non-volatile nature and 

great tunability,13 ionic liquids can be the perfect candidate for the pillars. The interface of 
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an ionic liquid with a 2D material has been previously explored for membrane gas 

separation and water/ion separation.14 Here we think that there is a great opportunity in 

creating the composites of 2D materials and ionic liquids as adsorbents for CO2 separation 

by controlling the accessible pore size.  

Using graphene as our 2D material of choice, Figure 7-1 shows the schematic of 

our design. The interlayer distance of multilayer graphene as in graphite is just 3.4 Å, so 

the accessible pore size is zero and there is no space for gas sorption. After inserting an 

ionic liquid in between graphene layers, the interlayer space could be opened up for gas 

uptake. By choosing different ionic liquids, the slit pore size could be tuned to achieve 

highest uptake and/or selectivity. To demonstrate this proof-of-concept, we use both first-

principles density function theory calculations (to determine the slit pore size) and grand 

canonical Monte Carlo simulations (to obtain gas-adsorption isotherms and selectivity). 

 

Figure 7-1. Schematic of the design of a composite material of graphene and an ionic liquid for 

gas adsorption. Ionic liquid is used to as a pillar to open up the space between graphene layers.  
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7.3   Computational Method 

Density function theory (DFT) calculations were performed using the Vienna Ab 

initio Simulation Package (VASP).15-17 The generalized gradient approximation (GGA) of 

Perdew-Burke-Ernzerhof (PBE) was used for electron exchange-correlation.18 The D3 

correction method of Grimme et al. was used for the van der Waals interaction.19 The 

projector-augmented wave (PAW) method was used to describe the electron-core 

interaction.20 The cutoff energy of 450 eV was applied for the plane-wave basis set. A 

hexagonal lateral cell of 24.6×24.6 Å2 with a c parameter (varying from 7 to 10 Å) was 

used to simulate the composite material (including a graphene layer and a pair of cation 

and anion). A 1×1×6 Monkhorst-Pack k-point grid was chosen for sampling the Brillouin 

zone. The convergence threshold for geometry relaxation was set to 0.025 eV/Å in force. 

The grand canonical Monte Carlo (GCMC) method at constant chemical potential 

, volume V, and temperature T was used to simulate the uptakes of pure gases and 

selectivities of mixed gases at close to the experimental conditions. The periodic boundary 

conditions in all three dimensions and the generic Dreiding force-field parameters were 

used.21 The cutoff of the interatomic interactions was 12.5 Å. The temperature was fixed 

at 298 K. All GCMC simulations ran 107 steps. 
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7.4   Results and discussion 

7.4.1   Composite design and control of the pore size 

Figure 7-2 shows the composite material with a layer-by-layer stacked structure of 

an ionic liquid pillar in between graphene layers. By varying the cation and anions of the 

room-temperature ionic liquids (Figure 7-3), one can control the size of the slit-like pores. 

 

Figure 7-2. Construction of graphene/IL composites via a layer-by-layer structure (coverage: 0.19 

ion pair per nm2). 
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Figure 7-3. Eight room-temperature ionic liquids in our work and their melting points.  

To determine the pore size for the different ionic liquid pillars, we optimized the 

structure of the composite material by DFT-D3 calculations. After optimization, the 

graphene is still quite flat and only slightly distorted around the ionic liquid. The optimized 

c parameter represents the interlayer distance between adjacent two layers of graphene. 

Subtracting the vdW diameter of a carbon atom (3.4 Å; namely, the thickness of the wall), 

one obtains the accessible pore size. As shown in Table 7-1, the pore sizes are mainly 

determined by the anion because the two imidazolium cations are similar in size lying flat 

between graphene layers. As the anion varies from [BF4] to [B(CN)4], the interlayer 

distance increases from 6.8 to 9.4 Å while the accessible pore size from 3.4 to 6.0 Å.  
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Table 7-1. The interlayer distance (D) and accessible pore size (σ) of the graphene/ionic-liquid (IL) 

composite for different ionic liquids (see Figure 7-3 for their molecular structures). 

IL [Emim][BF4] [Bmim][BF4] [Bmim][PF6] [Emim][OTf] 

D (Å) 6.8 6.9 7.2 8.2 

σ (Å) 3.4 3.5 3.8 4.8 

IL [Emim][NTf2] [Emim][AlCl4] [Bmim][AlCl4] [Emim][B(CN)4] 

D (Å) 8.9 9.3 9.3 9.4 

σ (Å) 5.5 5.9 5.9 6.0 

 

7.4.2   GCMC simulations of pure gas uptakes 

We simulated pure-gas uptakes of CO2, N2, and CH4 at 1 bar and 298 K. As shown 

in Figure 7-4, CO2 uptakes vary between 8 and 9 mmol/g with the interlayer spacing, which 

is greatly higher than other state-of-the-art materials. As a comparation, the CO2 uptake of 

an excellent porous carbon material is 5.56 mmol/g at the same condition.22 The slightly 

increase of CO2 uptake with the increase of accessible pore size mainly due to the increase 

of absorption interlayered space. On the other hand, the interaction between N2 and 

graphene is weaker than CO2, so the uptakes are lower than CO2. Moreover, according to 

our previous work, the potential energy surface overlap effect plays a dominant role for N2 

uptakes.11 With the decrease of slit pore size, overlap effect becomes stronger, which causes 

the increase of N2 uptakes. Only when the accessible pore size had been reduced to 3.5 Å, 

the uptake no longer increased. Too small pore size (less than N2 kinetic diameter of 3.64 

Å) will weaken the interaction between N2 and graphene due to more repulsions. Similarly, 
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CH4 uptake curve has the similar trend when accessible pore size decreased from 6 Å. The 

adsorption energy of CH4 lies between CO2 and N2, so the uptakes are also higher than N2 

but lower than CO2. However, due to the larger kinetic diameter of CH4 than N2, when pore 

size is equal to or less than 3.5 Å, CH4 uptakes dramatically decreased and presents an 

inversed N2/CH4 uptake abilities. 

 

Figure 7-4. Uptakes of pure gas molecules (CO2 – black, N2 – red, CH4 – blue) at 298K and 1 bar 

by different GIL composites. 
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7.4.3   GCMC Simulations of Mixed Gas Selectivities 

 

Figure 7-5. Uptakes of CO2 (black) and N2 (red) by different GIL composites of (a) 50/50 and (b) 

15/85 CO2/N2 gas mixtures at 298K and 1 bar and corresponding selectivities (blue). 

 

Figure 7-6. Uptakes of CO2 (black) and CH4 (red) by different GIL composites of 50/50 CO2/CH4 

gas mixtures at 298K and 1 bar and corresponding selectivities (blue). 

To be relevant to the experimental conditions, we further performed GCMC 

simulations for gas uptakes and selectivities of a 50%/50% molar ratio mixture of CO2/N2 
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or CO2/CH4 and a 15%/85% molar ratio mixture of CO2/N2 at 1 bar and 298 K. The 

selectivity is defined as 𝑆𝑖/𝑗 = (𝑥𝑖/𝑥𝑗)(𝑦𝑗/𝑦𝑖), where xi and yi are the mole fractions of 

component i in absorbed and bulk phases, respectively. For the CO2/N2 mixture (Figure 7-

5), one can see that CO2 uptakes at partial pressure of 0.5 bar are similar to that in the pure 

gas at 1 bar. When partial pressure is 0.15 bar, the CO2 uptakes are still not reduced largely 

until accessible pore size is larger than 5.0 Å. By contrast, compared with that in the pure 

gas, N2 uptakes are significantly decreased, especially when the pore size is small, which 

leads to an opposite trend between N2 uptakes and pore size. According to our previous 

work, when accessible pore size is less than 4.4 Å, the adsorption energy difference 

between CO2 and N2 is the highest and absorbed CO2 molecules will further block the 

absorption of N2.11 Thus, with the contributions of energy difference and competitive 

exclusion, the selectivity is increased with the decrease of pore size. For the CO2/CH4 

mixture (Figure 7-6), competitive exclusion is also proved to play an important role, 

because of the dramatically reduction of CH4 uptakes. When the pore size is less than the 

kinetic diameter of CH4, the size exclusion effect causes CH4 uptakes to be closed to zero. 

So, the CO2/CH4 selectivity achieves a pretty high level. 

7.4.4   Implications 

By GCMC simulations of GIL composite materials, we found that high CO2 

uptakes were achieved at room temperature even compared with other cutting-edge 
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materials. Besides, the composites also possessed satisfactory adsorption selectivities at 

the actual experimental conditions. A huge selection of ionic liquid suggests diversity of 

multilayer graphene with different slit pore size for the requirements of absorption of 

different objective adsorbates. 

To experimentally realize the GIL composites, the following steps are briefly 

suggested below. First, large area graphene layer is grown on a copper substrate,23 

following by a serial of processes to transfer graphene layer to a porous substrate.24 Next, 

the nanopores are generated by oxygen plasma etching or ion bombardment of chemical 

etching.25-27 Then, low-density ionic liquid pillars are introduced by spin coating.28 And 

another layer of graphene is stacked through a polymer transfer layer like PMMA, which 

can be removed later. By repeating the above steps, the GIL composites can be used for 

gas absorption. 

7.5   Summary and conclusions 

In summary, we presented a layer-by-layer graphene/ILs composite material. The 

interlayer distances were calculated by first-principle DFT-D3 method. We further used 

GCMC to simulate CO2/N2/CH4 adsorption capacities and selectivities at experimental 

conditions. The CO2 uptakes are significantly high than current gas absorbing materials. 

We also found that high CO2/N2 selectivity and CO2/CH4 selectivity are achieved for gas 

mixtures when accessible slit pore size is less than 5 Å and 4 Å separately. This type of 
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composite with high selective absorption ability is an application of many theoretical 

effects, such as potential energy difference, size exclusion, and competitional exclusion. 

This work suggests a novel strategy to achieve tunable slit pore size of graphene/ILs 

composite for high selective carbon capture. 
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Chapter 8.   Insights into CO2/N2 Selectivity in Porous Carbons from 

Deep Learning 

8.1   Abstract 

Porous carbons are an important class of porous material for carbon capture. The 

textural properties of porous carbons greatly influence their CO2 adsorption capacities. But 

it is still unclear what features are most conductive to achieve high CO2/N2 selectivity. Here, 

we trained deep neural networks from the experimental data of CO2 and N2 uptakes in 

porous carbons, based on textural features of micropore volume, mesopore volume, and 

BET surface area. We then used the model to screen porous carbons and to predict CO2 and 

N2 uptakes as well as CO2/N2 selectivity. We found that the highest CO2/N2 selectivity can 

be achieved not at the regions of highest CO2 uptake but at the regions of lowest N2 uptake 

where mesopores disrupt N2 adsorption. This insight will help guide experiment to 

synthesize better porous carbons for post-combustion CO2 capture. 

8.2   Introduction 

Post-combustion CO2 capture from flue gas (composed mainly of N2) is an 

important approach to reduce the CO2 emissions.1-3 A range of porous materials for CO2 

capture have been developed, including zeolites,4 metal-organic frameworks (MOFs),5-7 

covalent-organic frameworks (COFs),8-10 porous organic polymers,11 porous carbons,12-14 
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ionic liquids,15-16 advanced solvents,17-19 and membranes.20-22 

Porous carbons are versatile due to their tunable pore size, pore shape, and 

electronic conductivity.23 An empirical relation for CO2 adsorption capacity as a function 

of mesopore (𝑉𝑚𝑒𝑠𝑜) and micropore (𝑉𝑚𝑖𝑐𝑟𝑜) volumes has been proposed for porous carbons: 

𝑀𝑎𝑑𝑠
𝐶𝑂2 = 0.095 + 2.10 × 𝑉𝑚𝑖𝑐𝑟𝑜 + 3.51 × 𝑉𝑚𝑖𝑐𝑟𝑜 × 𝑉𝑚𝑒𝑠𝑜.24 Although this relationship can 

be used to predict CO2 uptake, it will have difficulty in predicting CO2/N2 selectivity, since 

it does not apply to other gases such as N2. In addition, it is often very difficult to measure 

accurately the low N2 uptakes in materials with high CO2/N2 selectivity, so it is desirable 

to predict N2 uptakes to guide synthesis. 

To establish the complex relationship between the textural properties of porous 

carbons and the desired CO2/N2 selectivity, machine learning is a powerful tool to build a 

mathematical model based on sample data.25 As a popular ML method based on artificial 

neural networks (ANNs), deep learning employs is an ANN with multiple hidden layers, 

so that it can build a complex non-linear model. The applications of deep learning in 

chemistry are increasing quickly in recent years.25-29 

One application of machine learning is to rapidly screen materials,28 predict 

properties,25 and suggest promising candidates for synthesis.30 Recently, deep learning was 

for the first time applied to predict CO2 adsorption in porous carbons.25 It was found that 

besides micropore volume, mesopore volume and BET surface area (SBET) are also 
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important in dictating CO2 uptake.25 Inspired by this work and moving beyond CO2 uptake, 

herein we use deep learning to evaluate another important factor in using porous carbons 

for post-combustion carbon capture, namely, CO2/N2 selectivity. 

To achieve our goal, we built two deep NNs (DNNs) for adsorption capacities of 

CO2 and N2, respectively. Each DNN is composed of two hidden layers (Figure 8-1). After 

training on experimental data, the DNNs were used to make predictions of CO2 and N2 

uptakes and then the CO2/N2 selectivity (as a ratio of the uptakes) for porous carbons of 

broader feature space. Finally, by analyzing the results, we discuss the desired textual 

features for the porous carbons to yield high CO2/N2 selectivity. 

 

Figure 8-1. The deep neural networks (DNNs) used in the present work to predict gas uptake in 

porous carbons based on inputs from BET surface area (SBET), mesopore volume (𝑉𝑚𝑒𝑠𝑜), micropore 

volume (𝑉𝑚𝑖𝑐𝑟𝑜), temperature (T), and pressure (P). 
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8.3   Computational Method 

All deep neural networks (DNNs) were created by using the MATLAB R2018a 

environment. The DNNs consist of an input layer, two hidden layers (each having 7 

neurons), and an output layer. When training the DNNs, the weights and biases were 

adjusted according to the gradient descent with momentum and adaptive learning rate 

backpropagation algorithm. The maximum number of training epochs was 100000 and the 

performance goal was 0.001.25 We totally collected 1138 data points of CO2 uptake25, 34-38 

and 314 data points of N2 uptake12, 24, 37-45 in various porous carbons. All screened porous 

carbons almost have no heteroatom, especially no nitrogen atom, since the amount of N is 

an important influence factor for the CO2 adsorption capacity. We used the BET surface 

area (SBET), micropore volume (Vmicro), mesopore volume (Vmeso), temperature (T), and 

pressure (P) as five input neurons. Gas uptake was used as the output neuron. Both inputs 

and outputs were normalized in the range of 0 to 1.46 The leave-one-out method was applied 

for cross-validation and to avoid overfitting: one data point was used as the validation set 

and the remaining data points were used as the training set; this process was repeated for 

each data point.25  

8.4   Results and discussion 

8.4.1   Training neural networks for CO2 and N2 uptakes in porous carbons 

1138 CO2 adsorption data points were collected with five varying input parameters 
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(SBET, Vmeso, Vmicro, T, and P). Among them, 1118 random data points were chosen for 

training a neural network via deep learning (DNN-1). The remaining 20 data points were 

used to test the trained neural network. As shown in Figure 8-2a, the predicted values and 

the experimental values are in good agreement, indicating that the trained neural network 

should be useful for predicting CO2 uptakes. To check our model accuracy and avoid 

overfitting, we further did leave-one-out cross-validation.31 As shown Figure 8-2b, very 

good linear relationship is found between experimental values and DNN-1 predicted values. 

 

Figure 8-2. Results of predicted CO2 uptakes. (a) Comparison between experiment and DNN-1 

prediction for 20 pairs of CO2 adsorption values. (b) The correlation between experiment and DNN-

1 prediction for CO2 uptakes by the leave-one-out method (R2 = 0.96). 

Likewise, we trained a neural network for N2 adsorption capacity (DNN-2). 314 N2 

adsorption data points were used: 294 in the training set and 20 in the test set. The training 

set is smaller than that of CO2 because most studies reported the N2 adsorption data only 

when the porous carbon materials have good selectivity. Nevertheless, a good prediction 

of the test set is also made by the trained neural network (Figure 8-3a); cross-validation of 
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the training set shows good agreement between experimental values and predicted values 

(Figure 8-3b). 

 

Figure 8-3. Results of predicted N2 uptakes. (a) Comparison between experiment and DNN-2 

prediction for 20 pairs of N2 adsorption values. (b) The correlation between experiment and DNN-

2 prediction for N2 uptakes by the leave-one-out method (R2 = 0.96). 

8.4.2   Exploration of the porous carbon space 

With the help of above two well-trained neural networks for CO2 and N2 

adsorptions (DNN-1 and DNN-2), we can now explore the space of porous carbons. Here, 

we fixed temperature at 298 K and pressure at 1 bar. By varying SBET, Vmeso, and Vmicro, we 

created 125000 hypothetical data points. From the contour maps, we can pinpoint the 

regions of highest CO2 and/or lowest N2 uptake, to yield highest CO2/N2 selectivity. Figure 

8-4a shows that the region of Vmicro ~ 1.0 cm3/g and SBET ~ 1250 m2/g has higher CO2 

uptake. On the other hand, Figure 8-4b shows that porous carbon materials with large SBET 

and large Vmicro will have high N2 uptake, negatively impacting CO2/N2 selectivity. Thus, 

to obtain high selectivity, high CO2 uptake and low N2 uptake are necessary. 
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Figure 8-4. The 3D contour maps of (a) CO2 and (b) N2 pure-gas adsorption capacities at 298 K 

and 1 bar in 125000 hypothetical porous carbons predicted from DNN-1 and DNN-2, respectively. 

 

To determine the textural features that can yield high CO2/N2 selectivity for realistic 

porous carbons, we need to reduce the three descriptors to two, since SBET are related to 

Vmicro and Vmeso. By doing this, we can avoid hypothetical carbons that cannot exist (such 

as a high SBET with close-to-zero Vmicro and Vmeso). Toward this end, we trained another 
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neural network (DNN-3) to predict SBET from Vmicro and Vmeso. As shown in Figure 8-5, 

DNN-3 provides a reasonably good model to correlate Vmicro and Vmeso to SBET. 

 

Figure 8-5. Results of predicted BET surface area. (a) Comparison between experiment and DNN-

3 prediction for 10 pairs of BET surface area values. (b) The correlation between experiment and 

DNN-3 prediction for BET surface area by the leave-one-out method (R2 = 0.70). 

8.4.3   2D maps of adsorption uptakes and selectivity 

With the reduced dimensions, we can now determine the features of porous carbons 

in terms of Vmicro and Vmeso for high CO2/N2 selectivity. First, we created 2500 different 

hypothetical combinations of Vmicro and Vmeso ranging from 0.02 to 1.00 cm3/g. Then, the 

trained DNN-3 was applied to predict their SBET. As shown in Figure 8-6a, Vmicro plays a 

dominating role in SBET: Vmicro > 0.5 cm3/g generally leads to a larger SBET; for Vmicro ~ 

0.55 cm3/g, Vmeso can greatly promote SBET by increasing from 0.5 cm3/g to 1.0 cm3/g. 

Vmicro and Vmeso as well as SBET from DNN-3 were used as inputs to predict CO2 and N2 

uptakes at 1 bar and 298 K from DNN-1 and DNN-2, respectively. As shown in Figure 8-

6b, there are two regions of high CO2 uptake (> 4 mmol/g): Region I – high Vmicro (~ 0.85 
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cm3/g) and close-to-zero Vmeso, where SBET is moderately high (2000 m2/g); Region II – 

medium Vmicro (~ 0.5 cm3/g) and high Vmeso (~ 1.0 cm3/g), where SBET is very high (4000 

m2/g). Interestingly, N2 uptake is also highest at Region I (Figure 8-6c), leading to moderate 

CO2/N2 selectivity ~ 10 (Figure 8-6d). In contrast, the narrow band from Vmicro ~ 0.6 cm3/g 

and Vmeso ~ 0.4 cm3/g to Vmicro ~ 0.4 cm3/g and Vmeso ~ 1.0 cm3/g has the lowest N2 uptake 

(Figure 8-6c) and the highest CO2/N2 selectivity ~ 60 (Figure 8-6d). Interestingly, there is 

another region of low N2 uptake with Vmicro ~ 0.7 cm3/g and Vmeso ~ 1.0 cm3/g (Figure 8-

6c), leading to moderately high CO2/N2 selectivity ~ 30 (Figure 8-6d). Figure 8-6 suggests 

that inducing more mesopores in microporous carbons disrupts and decreases N2 

adsorption, hence benefiting CO2/N2 selectivity. This concept was proposed in 2015 by 

Choi et al.32 It’s based on their observation that the CO2/N2 selectivity actually increases 

from 273 K to 298 K in ordered mesoporous carbons of 2.9 nm in size, due to a greater 

decrease in N2 uptake from 273 K to 298 K. In other words, mesopores are much less 

attractive to N2 than to CO2 at ambient conditions, thereby “disrupting N2 adsorption”. 
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Figure 8-6. The 2D contour maps of (a) BET surface areas (m2/g), (b) CO2 and (c) N2 adsorption 

capacities (mmol/g), and (d) CO2/N2 selectivity for 2500 hypothetical porous carbons at 298 K and 

1 bar. The black dots in (b) and (c) represent the experimental data points at the same condition. 

To be relevant to the experimental conditions, we further calculated the CO2/N2 

selectivity for 0.15 bar CO2 vs 0.85 bar N2 at 298 K. The CO2 uptake is shown in Figure 8-

7a, while the CO2/N2 selectivity is shown in Figure 8-7b. The high selectivity region is 

similar to that in Figure 8-6d. The available experimental data points in the space of the 

textual features of porous carbons examined are shown as black dots in Figure 8-6b,c and 

Figure 8-7a for comparison. One can see that there is very little data at the religions of 

predicted high CO2/N2 selectivity. This could be areas of potential interest for future 
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experimental synthesis. 

The selectivity in this work is simply defined as the ratio of pure-component CO2 

and N2 uptakes at the corresponding gas-phase pressures (𝑆𝐶𝑂2/𝑁2 = (𝑛𝐶𝑂2/𝑝𝐶𝑂2)/(𝑛𝑁2/

𝑝𝑁2) , where n is the adsorbed amount and 𝑝  is the gas-phase pressure), which are 

predicted from neural networks. To predict IAST or Henry’s Law selectivity, we need to 

predict the whole isotherms which is much more time-demanding and difficult to do for N2 

due to the limited data available. We plan to address this issue in the future by directly 

predicting CO2 and N2 adsorption isotherms at ambient conditions and then IAST 

selectivity from the commonly used experimental measurement of N2 adsorption isotherm 

at 77 K. 

 

Figure 8-7. The 2D contour maps of (a) CO2 adsorption capacity at 298K and 0.15 bar, and (b) 

CO2/N2 selectivity for 0.15 bar CO2 vs 0.85 bar N2 at 298 K. The black dots in (a) represent the 

experimental data points. 
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8.5   Summary and conclusions 

In summary, we have trained deep neural networks to predict N2 uptakes and 

CO2/N2 selectivity for post-combustion CO2 capture by porous carbons, using three 

features (micropore volume, mesopore volume, and BET surface area). In this work, all 

screened porous carbons have approximately nonpolar surface. But it would be interesting 

to include the polarity of the surface together with the doping of heteroatoms as an 

additional feature or descriptor in our deep-learning model. This is indeed what we plan to 

do next. We found that the best features for high CO2 uptake may not be optimal for CO2/N2 

selectivity. Instead, focusing on the lowest N2-uptake regions of moderate micropore and 

mesopore volumes is a better strategy to achieve highest CO2/N2 selectivity. The predicted 

selectivity maps show promising regions for experimental realization. Pore size is also an 

important factor for CO2 adsorption and CO2/N2 selectivity.33 In experiment, the textural 

features of pore volume, surface area, as well as pore size distribution are all derived from 

N2 adsorption isotherms at 77 K. In the future, we hope to directly use N2 adsorption 

isotherm at 77 K to predict CO2 and N2 adsorption isotherms at ambient conditions. 
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Chapter 9.   Prediction of CO2/N2 Selectivity in Porous Carbons from N2 

Adsorption Isotherm at 77 K via Convolutional Neural Networks 

9.1   Abstract 

Porous carbons are an important class of porous materials with many applications 

including gas separation, while N2 adsorption isotherm at 77 K is the most widely used 

approach to characterize porosity. Conventionally, textual properties such as surface area 

and pore volumes are derived from the N2 adsorption isotherm at 77 K via fitting to an 

adsorption theory and then correlated to gas separation performance (uptake and 

selectivity). Here we use the N2 isotherm at 77 K directly as input (representing feature 

descriptors for the porosity) to train convolutional neural networks that predict gas 

separation performance (using CO2/N2 as a test case) for porous carbons more accurately. 

We then explore the porosity space for porous carbons for higher CO2/N2 selectivity. We 

find that porous carbons with a bimodal pore-size distribution of well-separated mesopores 

(3 – 7 nm) and micropores (< 2 nm) are most promising. This work will be useful in guiding 

experimental research of porous carbons with desired porosity for gas separation and other 

applications. 

9.2   Introduction 

Due to their low cost, large surface area, fast adsorption-desorption kinetics, and 
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tunable porosity,1,2 porous carbons are widely used as separation media for gases, ions, and 

large molecules3-7 as well as electrodes for supercapacitors8-10 and other electrochemical 

applications.11,12 However, their amorphous nature impedes our understanding of their 

structure-property relationship at the atomic level. As a comprise, researchers have used 

textural properties such as surface area and pore volumes as structural descriptors to 

establish correlation with properties such as uptakes of CO2 and N2 for post-combustion 

carbon capture.13-15 To this end, an empirical function for predicting CO2 uptake (𝑀𝑎𝑑𝑠
𝐶𝑂2) 

was proposed based on fitting the experimental data of CO2 uptakes to the textural 

properties of porous carbons: 𝑀𝑎𝑑𝑠
𝐶𝑂2 = 0.095 + 2.10 × 𝑉𝑚𝑖𝑐𝑟𝑜 + 3.51 × 𝑉𝑚𝑖𝑐𝑟𝑜 × 𝑉𝑚𝑒𝑠𝑜 , 

where 𝑉𝑚𝑖𝑐𝑟𝑜 is micropore volume and 𝑉𝑚𝑒𝑠𝑜 is mesopore volume.13 Going beyond the 

empirical relationship, Zhang et al. employed a deep learning neural network approach 

based on the same experimental database and trained a model that uses the BET surface 

area 𝑆𝐵𝐸𝑇 in addition to 𝑉𝑚𝑖𝑐𝑟𝑜 and 𝑉𝑚𝑒𝑠𝑜as input parameters to predict CO2 uptake.14 

More recently, a similar deep learning method was used to predict N2 uptakes at ambient 

conditions as well as CO2/N2 selectivity.15 

Despite the insights from these data-driven, machine-learning (ML) approaches 

using textural features of porous carbons as input, important information such as pore size 

distribution (PSD) has not been explicitly used in the ML models. PSD and textural features 

are most commonly obtained from N2 adsorption isotherm at 77 K fitted to a theoretical 
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model such as BET16 or non-local density functional theory (NL-DFT).17 In other words, 

N2 adsorption isotherm at 77 K contains rich information about the porosity of a porous 

carbon that could be harvested for a ML model directly, to establish a mapping between 

porosity and gas-separation performance for porous carbons, bypassing the BET or NL-

DFT theory. To this end, this paper aims to demonstrate such a ML model by using the 

convolutional neural networks (CNNs)18 that directly take as input the experimental 77K-

N2-adsorption isotherms of porous carbons. 

9.3   Results and discussion 

9.3.1   Prediction of CO2 and N2 uptakes 

CNNs are an important deep learning algorithm most commonly applied to analyze 

images, because they are good at extracting features and handling high-dimensional 

inputs.19 There are already a few applications of CNNs in chemistry, such as crystal 

symmetry determination and molecular fingerprinting.20-22 Figure 9-1a shows a typical 

architecture of our CNNs. Each 77K-N2-adsorption curve as a 1D image is represented by 

an array of 200 pressure points and their corresponding adsorbed volumes, which is fed 

into five convolutional layers that automatically extract features from the image. Then, 

these features as representations of porosity, together with temperature (T: 273 ~ 323 K) 

and pressure (P: 0 ~ 1 bar) inputs, are fed into three fully connected layers and one 

regression layer to an output neuron that is the gas uptake (see Supporting Information and 
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Figure S9-1 for details). 111 different experimental 77K-N2-adsorption curves 

corresponding to 111 different porous carbons were used as input. Their gas-adsorption 

performances at ambient conditions were collected (679 uptake data points for CO2 and 

291 for N2) and each partitioned into 3 sets: 70% of data as training set, 15% as validation 

set, and 15% as test set. As shown in Figure 9-1b and c, after training both models of CNN-

1 (for prediction of CO2 adsorption capacity) and CNN-2 (for N2) show excellent 

agreement with the experimental values for not only training and validation sets but also 

test sets. This indicates that CNN-1 and CNN-2 can reliably predict CO2 and N2 uptakes at 

ambient conditions directly using 77K-N2-adsorption isotherm as input. 

 

Figure 9-1. Results of predicted gas uptakes. (a) Architecture of the convolutional neural networks 

(CNN) used in this work: input, N2 adsorption at 77 K; output, gas uptakes at ambient temperature 
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(T) and pressure (P). The correlation between experimental and CNN-predicted gas uptakes: (b) 

CO2 by CNN-1; (c) N2 by CNN-2. 

Armed with the two CNNs, we can now explore the much wider space of porous 

carbons with different porosity as characterized by their 77K-N2-adsorption isotherms, to 

find the promising ones with high CO2 uptakes and/or high CO2/N2 selectivity around 298 

K and 1 bar, conditions relevant to post-combustion CO2 capture. We generated 1 million 

77K-N2-adsorption isotherms corresponding to 1 million hypothetical porous carbons by 

using an analytical function with six varying parameters (see SI and Figure S9-2 for details). 

We divided the isotherms into four groups (see Figure S9-3 for 10 examples for each group). 

Groups 1 and 4 are mainly type I isotherms representing microporous carbons, while 

groups 2 and 3 are mainly type IV isotherms representing mesoporous carbons.  

The 1 million 77K-N2-adsorption isotherms in four groups are fed into CNN-1 and 

CNN-2 to predict their CO2 and N2 uptakes (at 298 K and 1 bar), respectively. Figure 9-2 

shows the results for each group. One can see that some porous carbons belong to groups 

2 and 3 can achieve CO2 uptake above 5 mmol/g at 298 K and 1 bar. More interestingly, 

some porous carbons of groups 2 and 3 have very low N2 uptakes. In other words, some 

mesopore structures in groups 2 and 3 offer great opportunity in controlling CO2/N2 

selectivity than the micropore-dominated groups 1 and 2. 
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Figure 9-2. Statistical distribution of gas uptakes at 298 K and 1 bar in each of the four groups of 

hypothetical porous carbons: (a-d) CO2; (e-h) N2. 

9.3.2   Prediction of CO2/N2 IAST selectivity 

To quantify the CO2/N2 selectivity relevant to post-combustion carbon capture and 

to compare with experimental values, we applied the Ideal Adsorbed Solution Theory 

(IAST),23 a thermodynamic theory which predicts mixed-gas selectivity from a set of pure 

gas adsorption isotherms at ambient conditions. Here, we first used CNN-1 and CNN-2 to 

predict CO2 and N2 uptakes at 298 K for 20 different pressures (from 0.05 bar to 1 bar) for 

each hypothetical porous carbon, to obtain pure-gas adsorption isotherms at 298 K. Then 

we applied the IAST theory to our CNN-predicted pure-gas isotherms and obtained the 

predicted CO2/N2 selectivity for a mixed gas of 90 mol% N2 and 10 mol% CO2 at 298 K 
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and 1 bar (total pressure). See SI for details of our prediction of IAST selectivity. The 

results are analyzed as follows. 

 

Figure 9-3. Statistical distribution of CO2/N2 IAST selectivity for 90 mol% N2 and 10 mol% CO2 

at 298 K and total pressure of 1 bar for the four groups of hypothetical porous carbons. 

The distributions of IAST selectivity for four groups of hypothetical porous carbons 

are shown in Figure 9-3. The highest selectivity is about 100 for group 1 and 40 for group 

4, similar to the experimental selectivity of common microporous carbons.24-26 In contrast, 

the highest selectivity is about 2000 for group 2 and 3000 for group 3, two groups where 

mesopores are predominant. 

9.3.3   Optimal pore size distribution 

To further understand the origin of the highest selectivity, the best-performing ones 
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in each group are singled out and their 77K-N2-adsorption isotherms and corresponding 

pore-size distributions are shown in Figure 9-4 (see SI for details of how the pore-size 

distributions are obtained). One can see that porous carbons with gapped (or well-separated) 

bimodal distributions of distinct micropores and mesopores have the highest selectivity: 

the case from group 2 has a peak around 1.5 nm and another around 4.0 nm, while the case 

from group 3 has peaks around 0.5 nm and 6.5 nm. The two cases from groups 1 and 4 

resemble conventional activated carbons with a continuous (or not well-separated) 

distribution of micropores (predominant) to mesopores up to 5 nm, which have a much 

lower selectivity than the two cases from groups 2 and 3. Hence, our finding points out a 

design strategy for porous carbons in terms of post-combustion carbon capture: creating a 

porous carbon with nonoverlapping, distinct micropores (< 2 nm) and mesopores (3 – 7 

nm). This conclusion echoes a few recent studies13-15,27 in emphasizing the importance of 

mesopores in porous carbons for CO2 uptake and gas separation. More important, we 

provide a target porosity to guide synthesis. In the future, we hope to further incorporate 

defects and functional groups in our training models to predict their effects in addition to 

porosity. 
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Figure 9-4. (a-d) N2 adsorption isotherm at 77 K and (e-h) the corresponding pore size distribution 

of the hypothetical porous carbon with the highest IAST CO2/N2 selectivity in each group for 90 

mol% N2 and 10 mol% CO2 at 298 K and total pressure of 1 bar. 

9.4   Summary and conclusions 

In sum, to understand and predict how the porosity of porous carbons impacts their 
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CO2/N2 separation performance, we have used their N2 adsorption isotherms at 77 K as 

direct input to train convolutional neural networks (CNN) to predict their CO2 and N2 

uptakes and CO2/N2 selectivity at ambient conditions. Excellent agreement between 

experimental and CNN-predicted values was achieved. We then explored one million 

hypothetical porous carbons of varying 77K-N2-adsorption isotherms and predicted their 

CO2/N2 separation performance. From the predicted IAST selectivity of a CO2-N2 mixture, 

we found that the highest selectivity on the order of 2000 – 3000 can be achieved for porous 

carbons that have bimodal distributions of well-separated micropores (< 2 nm) and 

mesopores (3 – 7 nm). 
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Supporting Information 

1. Details of the neural networks and training methods used: The convolutional 

neural networks CNN-1 and CNN-2 were created in the MATLAB R2019b environment 

using the stochastic gradient descent with momentum (SGDM) optimizer. The CNNs 

included one input layer, five convolutional layers, three fully connected dense layers, and 

one output layer (Figure S9-1).  

From each N2 adsorption isotherm, 200 adsorbed volume values at different relative 

pressures were extracted as an input layer of size 200×1. After each convolutional layer, a 

batch normalization (BN) layer was used to speed up training and one rectified linear unit 

(ReLU) layer and one average pooling layer (Avpool) was employed to perform down-

sampling. Flatten layer (Flat) transformed multi-channel output of convolutional layers 

into a single long feature vector that can be fed into a fully connected layer. Concatenation 

layer (Concat) was used to concatenate features from convolutional layers and other input 

features (temperature and pressure) together. Dense layers were the fully connected layers, 

which multiplied the input by a weight matrix and then adds a bias vector. After each dense 

layer, a BN layer, a leaky ReLU layer (Leaky), and a dropout layer with dropout probability 

0.125 (Dropout) were applied to avoid overfitting. The filter sizes of five convolutional 

layers were [9,1], [7,1], [7,1], [5,1], [3,1], the number of filters were 2, 3, 4, 5, 5, and the 

neuron numbers of three dense layers were 1024, 256, and 1. During the training process, 
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the parameters in convolutional filters as well as weights and biases were adjusted to 

improve the performance. The maximum number of training epochs was 3000. The initial 

learning rate was 0.01 and reduced by a factor 0.99 every 10 epochs. The training data was 

shuffled before each training epoch. The 111 different experimental 77K-N2-adsorption 

curves and their gas-adsorption performances at ambient conditions (679 uptake data points 

for CO2
1-19 and 291 for N2

3,10,12,13,16,19-22) were collected from the literature. 

 

Figure S9-1. The detailed architecture of the convolutional neural networks used in this work. The 

layer names represent different types of layer. “Input”: image input layer; “Conv”: convolutional 

layer; “BN”: batch normalization layer; “Relu”: rectified linear unit activation layer; “Avpool”: 

average pooling layer; “Flat”: flatten layer; “Concat”: concatenation layer; “Dense”: fully 

connected layer; “Leaky”: leaky ReLU activation layer; “Dropout”: dropout layer; “Output”: 

regression output layer. 
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2. Generating 1 million 77K-N2-adsorption isotherms: 1 million 77K-N2-

adsorption isotherms corresponding to 1 million hypothetical porous carbons were 

generated by a function: 𝑦 = 𝑎1𝑒
−𝑒−𝑏1(𝑥−𝑐1) + 𝑎2𝑒

−𝑒−𝑏2(𝑥−𝑐2), where y is N2 adsorption 

value at 77 K, x is the adsorption pressure, parameter 𝑎1 and 𝑎2 control the equilibrium 

values of isotherm curve, parameter 𝑏1 and 𝑏2 control the slope of steps, and parameter 

𝑐1 and 𝑐2 control the position of steps (Figure S9-2). The range of each parameter: 𝑎1 =

50~500 , 𝑎2 = 50~500 , 𝑏1 = 5~95 ,𝑏2 = 5~95 ,𝑐1 = −0.4~0 ,𝑐2 = −0.4~1.5 . 

The increments of these variables are 50 for 𝑎1 and 𝑎2, 10 for 𝑏1 and 𝑏2, 0.1 for 𝑐1 

and 𝑐2. We further divide the 1million isotherms into four groups (see Figure S9-3 for 

some examples in each group). 

 

Figure S9-2. An N2 adsorption isotherm at 77 K created by generation function ( 𝑦 =

400𝑒−𝑒
−35(𝑥−0)

+ 200𝑒−𝑒
−10(𝑥−0.6)

). 
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Figure S9-3. The N2 adsorption isotherm examples from (a) group 1 (𝑐2 = −0.4~0.0), (b) group 

2 (𝑐2 = 0.1~0.5), (c) group 3 (𝑐2 = 0.6~1.0), and (d) group 4 (𝑐2 = 1.1~1.5). 
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3. Prediction of Ideal Adsorbed Solution Theory (IAST) selectivity: The IAST 

selectivity was calculated by using the pyIAST code.23 Each pure-gas adsorption isotherm 

at 298 K was fit to the Langmuir model. These fitting parameters were provided as input 

to calculate the adsorption values of CO2 and N2 for a mixed gas of 90 mol% N2 and 10 

mol% CO2 at 298 K and 1 bar (total pressure). Finally, the IAST selectivity was calculated 

by the following function: 𝑆 = (𝑞1 𝑞2⁄ ) (𝑝1 𝑝2⁄ )⁄ , where 𝑞1 and 𝑞2 are the uptakes of 

CO2 and N2, and 𝑝1 and 𝑝2 are the partial pressures of CO2 and N2. 
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4. Plotting pore size distribution: The pore size distribution was plotted by using 

an experimental software QuadraWin. It was obtained from N2 adsorption isotherm at 77 

K using non-local density functional theory (NLDFT) method. 
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Chapter 10.   Prediction of Hydride Location in Copper Clusters by 

Deep Learning 

10.1   Abstract 

The location of hydrides in copper clusters is hard to be determined. Here, we 

present a rapid approach to help us predict the hydride location by deep learning. The input 

feature of this network only has the coordinates of “heavy atoms”, which are accessible 

from single-crystal X-ray diffraction. Then, two copper clusters with undetermined hydride 

location were used to verify the predictive ability of this neural network. 

10.2   Introduction 

Since the first copper hydride CuH was reported in 1844 by Wirtz,1 there is already 

a long time to study it. Recent years, with the advances in synthetic technology, a serial of 

copper hydride clusters have been presented.2 And the research of their applications such 

as hydrogen storage and catalytic activity are also carrying out in full swing.3-8 The 

hydrogen atoms as an important part of these copper clusters, heavily depend on neutron 

diffraction to determine their locations, and cannot be localized from common single-

crystal X-ray diffraction (SXRD).2 But sometimes growing a larger crystal (1 mm3) 

suitable for neutron diffraction is hard to be successful for many novel copper hydride 

clusters, especially for those with complex structures.9 For them, nowadays, people usually 
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have to hypothesize the hydride locations according to their own chemical knowledge and 

experience. Then, to make verification, the hypothesized structures need to be optimized 

by density functional theory (DFT) calculation.9-13 If the hydride locations are wrong, the 

whole cluster structures will collapse. If not, the hypothesized hydride locations might be 

reasonable. However, the making hypothesis process is always time-consuming because 

no one can guarantee success on their very first attempt. The hypothesis might be also not 

the most stable structure because of the possibility of energy local minimum. And the 

difficulty will even multiply with the increasing number of copper and hydrogen atoms. 

So, how to quickly and accurately locate all hydrides is still a challenge. Here, we describe 

a rapid and universal approach to predict the hydride locations in copper clusters by deep 

learning. 

10.3   Computational Method 

10.3.1   Rebuilding copper clusters in MATLAB 

Firstly, the experimental cif files for all copper cluster crystals were download from 

CCDC database. They were imported into software Materials Studio. Secondly, a single 

cluster structure from each crystal was selected and put into a large box (25.5×25.5×25.5 

Å3), which is large enough for all collected clusters. Then, the coordinates of “heavy atoms” 

were used to rebuild the structures in MATLAB. The resolution was 0.1 Å, so the size of 

3D image in MATLAB is 256×256×256. The size of atoms was Van der Waals radius, and 
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the grey level of each atom was quadratically declined from the atom’s center, which can 

help the network easily recognize the atom’s position. Since there are seven different 

“heavy atoms”: C, N, O, P, S, Se, Cu, seven channels were applied for each element, 

analogous to red, green, blue channels in color images. So, the size of rebuilt structures in 

MATLAB was 256×256×256×7. 

10.3.2   Generation of input dataset 

Because one cluster might have more than 1 hydride, above large boxes was further 

divided to many small boxes, which can make sure there is no more than one hydride in 

each small box. This process is shown in Figure S10-1. The size of small red boxes in each 

channel was 32×32×32, while a smaller green box (24×24×24) in the center of each red 

box was set to be predicted whether it possesses a hydride or not. The green boxes could 

help us pinpoint the hydride location more precisely and the red boxes could contain more 

surrounding information around a potential hydride location. The sampling step’s length 

was equal to 24 to avoid omission or repetition. 

10.3.3   Training 3D-CNN 

Figure S10-2 shows the detailed architecture of 3D-CNN. It was created in 

MATLAB R2019b environment using the stochastic gradient descent with momentum 

(SGDM) optimizer. After each convolutional layer, there were one batch normalization 

layer to speed up training, one ReLU layer, and one average pooling layer to perform down-
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sampling. Two dropout layers with dropout probability 0.3 were used to avoid overfitting. 

The filter sizes of three convolutional layers were [3,3,3,7], [3,3,3,8], [3,3,3,16], the 

number of filters were 8, 16, 16, and the neuron numbers of three dense layers were 1024, 

256, 2. During the training process, the parameters in convolutional filters as well as 

weights and biases were adjust to improve the performance. The maximum number of 

training epochs was 100. The initial learing rate was 0.01 and it was reduced by a factor 

0.9 every epoch. The training data was shuffled before each training epoch. 

10.3.4   Optimization of copper hydrides 

The density functional theory (DTF) calculations were performed with the Vienna 

ab initio simulation package (VASP) to optimize the structures of copper hydride 

clusters.26-28 The Perdew–Burke–Ernzerhof (PBE) form of the generalized-gradient 

approximation (GGA) was used for electron exchange and correlation.29 The projector-

augmented-wave (PAW) method30 was used to describe the electron-core interaction with 

the cutoff energy of 450 eV for the planewave bases. To reduce computational cost, the 

outer groups like phenyl and tert-butyl were replaced by methyl. All atoms were allowed 

to relax. 

10.4   Results and discussion 

We collected 21 different copper clusters which have been determined exact 

hydride locations by neutron diffraction as benchmark.14-25 The coordinates of “heavy 
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atoms” (excluding hydrogen atom) in copper clusters which can be measured by SXRD 

were selected as the input. They were not directly delivered to the input layer but converted 

into 595 small three-dimensional images (or called boxes) as the input dataset. Because 

there are seven different “heavy atoms” among the collected copper clusters, seven input 

channels were created for each element. Then, a three-dimensional convolutional neural 

network (3D-CNN) was applied for classification, as shown in Figure 10-1 and Figure S10-

2. In this network architecture, there are three convolutional layers to automatically extract 

features and three fully connected layers to classify input data to two classes: boxes with 

hydride or boxes without hydride. 

 

Figure 10-1. The process of generating input dataset and the sample architecture of 3D-CNN. 

There are 85% input data as training set and 15% input data as validation set. The 

prediction results by 3D-CNN were compared with the benchmark from neutron diffraction 
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in Figure 10-2a. The accuracies of 3D images with hydride and without hydride are both 

around 95%. The consistency of accuracy between training set and validation set indicates 

no overfitting. 

Then, another two new copper hydride clusters without neutron diffraction 

measurement were used to proof the predictability of above well-trained 3D-CNN. The 

first example includes 25 copper atoms and 10 hydrides (Figure 10-2b).12 Because it is not 

a very complicated structure, the hydride locations have been obtained by DFT calculation, 

shown in the third column of Figure 10-2d. Then, a serial of small boxes from the whole 

structure were put into the 3D-CNN, and the number of boxes with different probability of 

having hydride are shown in Figure 10-2c. They were approximatively divided into two 

sides, and just few boxes have an ambiguous probability. Then, we further considered the 

number of hydrides according to the experimental chemical formula [Cu25H10(SPhCl2)18]3-, 

and preferentially paid attention to the boxes with higher probability of having hydride 

(Figure 10-2d). In the top 10, nine of them agree with the DFT results, while the last right 

location also ranks higher. 
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Figure 10-2. The prediction results of 3D-CNN. (a) The statistical number of input boxes with or 

without hydride according to the experimental neutron diffraction or the prediction of 3D-CNN. (b) 

The SXRD structure of [Cu25H10(SPhCl2)18]
3-. (c) The predicted probability distribution for the 

boxes extracted from [Cu25H10(SPhCl2)18]
3-. (d) The comparation between predicted and DFT 

calculated results. (e) The SXRD structure of [Cu61(StBu)26S6Cl6H14]
+. (f) The top and side view of 

copper cluster part with predicted hydride locations. (g) The comparation between core copper 

hydride clusters before and after DFT optimization. 

The second example is more complex including 61 copper atoms and 14 hydrides 

(Figure 10-2e),13 so the hydride locations are still undetermined in experiment. But the 

XRD measurement has already been done, so the chemical formula 

[Cu61(StBu)26S6Cl6H14]+, the crystal symmetry, and the cluster structure without hydrogen 

atom could be obtained. The prediction process was similar to that for the first example. 

The XRD structure was divided to many small 3D boxes as input. Then, from high to low 

probability, and also considering the symmetry (space group C2/c),13 14 boxes were 

selected to possess a hydride, and the structure with 14 hydrides are shown in Figure 10-
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2f. All hydrides are around the core copper cluster. Then, the whole structure was optimized 

by DFT calculation to check its stability. As shown in Figure 10-2g, the copper atoms have 

almost no change, and the hydrogen atoms are also fine-tuned slightly. The absence of 

collapse proves the structure’s stability and the hydride location’s reasonability. As 

comparation, several hydrides were moved to other locations, and the structure was also 

optimized in the same way. But this time a structure distortion was observed (Figure S10-

5). 

10.5   Summary and conclusions 

In summary, we have trained a 3D-CNN from the experimental copper hydride 

clusters based on the coordinates of “heavy atoms”. Then, the well-trained network 

successfully predicted hydride locations for two complicated copper clusters which cannot 

be measured by neutron diffraction in experiment. This deep learning approach can help 

researches rapidly pinpoint the hydride locations for increasing number of novel copper 

hydride clusters. Furthermore, the neural network is possible to be transferred for 

prediction of other metal clusters like silver hydride if enough clusters are reported in future. 
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Supporting information 

 

Figure S10-1. The process of generating input dataset. 

The large blue box (256×256×256) contained the copper hydride cluster. The middle red boxes, 

which included enough information around a potential hydride location, formed the input dataset. 

The 3D-CNN would predict whether there is a hydride in each small green box or not. 
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Figure S10-2. The detailed architecture of 3D-CNN. 

The layer names represent different types of layer. “Input”: 3D image input layer; “Conv”: 3D 

convolutional layer; “BN”: batch normalization layer; “Relu”: ReLU layer; “Avpool”: average 

pooling layer; “Dropout”: dropout layer; “Dense”: fully connected layer; “Tanh”: hyperbolic 

tangent activation layer; “Softmax”: softmax layer; “ClassOutput”: classification layer. 
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Figure S10-3. The structures and chemical formulas of 21 copper hydride clusters for training 3D-

CNN. 
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Figure S10-4. The structures and chemical of 2 copper hydride clusters for checking predictability 

of 3D-CNN. 
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Figure S10-5. The comparation between core copper hydride clusters with unreasonable hydride 

locations before and after DFT optimization. 
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Chapter 11.   Summary and Outlook 

In this dissertation, we studied the ultrathin nanoporous materials for gas separation 

by using different computational approaches including DFT, GCMC, CMD, and machine 

learning. The effect of several factors has been studied, such as pore size, pore density, pore 

shape, surface area, et al. 

In Chapter 3, we studied the pore-size effect on CO2 uptake and CO2/N2 selectivity 

according to the overlap of potential energy surface of gas molecules in carbon nanotubes. 

GCMC simulations were applied to quantify the values of uptake and selectivity. We found 

that cylindrical pores of 7 to 8 Å (or accessible pores of 3.4 to 4.4 Å) in size are promising 

for post-combustion CO2 capture. 

In Chapter 4, we studied another important factor pore density dictating gas 

separations through ultrathin nanoporous membranes. By CMD simulations, we found that 

higher pore density would yield higher permeation rate for gas molecules. We also found 

that for weakly adsorbing gas such as He, its permeation is dominated by direct flux. In 

contrast, for strongly adsorbing gas such as CO2, its permeation is dominated by surface 

flux. This work suggested that making the membranes asymmetric by creating dissimilar 

surfaces could lead to more interesting permeation and separation behaviors. 

In Chapter 5 and 6, we presented a design of bilayer nanoporous graphene 

membranes to continuously tune the effective pore size. With suitable effective pore size, 
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high selectivities of CO2/CH4, N2/CH4, and O2/N2 can be achieved, while CO2, N2, and O2 

permeances remain on the order of 105 GPU. By tracking trajectories of gas molecules, we 

found extra tumbling motion of gas molecule through the elliptical-shaped pore would 

yield high entropic selectivity. This design can be also extended to more membranes with 

larger pore size. These works suggested a promising direction to tune the effective pore 

size for selective gas separation. 

In Chapter 7, we presented another design to tune pore size through combination of 

graphene and ionic liquid. The layer-by-layer graphene/ILs composite materials were 

optimized by DFT calculation. Then, they were simulated by GCMC to calculate their 

CO2/N2/CH4 adsorption capacities and selectivities at experimental conditions. This work 

shows an easily way to tune slit pore size for high selective carbon capture. 

In Chapter 8 and 9, we presented how to use machine learning to rapidly predict 

the uptakes and selectivities for large numbers of porous carbon material. In Chapter 8, we 

chose micropore volume, mesopore volume, and BET surface area as input features. 

Further, in Chapter 9, we chose N2 adsorption isotherm at 77 K, which is an ultimate input 

feature. By exploring hypothetical porous carbons space, we found the best features for 

high CO2 uptake are not the same with the best features for CO2/N2 selectivity. Focusing 

on the lowest N2-uptake regions is a better strategy. The region should have bimodal 

distributions of well-separated micropores (< 2 nm) and mesopores (3 – 7 nm). 
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In Chapter 10, we extended the application of deep learning to predict the location 

of hydrides in copper clusters. This work presented how to transfer crystal structures of 

copper cluster to a serial of 3D images as input dataset and how to train a 3D-CNN model 

to predict the hydride location. The accuracy of this model was proved by DFT calculation 

for two complicated copper clusters whose hydride locations have not been measured by 

neutron diffraction in experiment. This work provides a useful tool to rapidly pinpoint the 

hydride locations in novel copper clusters, even in other metal clusters by transfer learning 

in future. 

In conclusion, we have studied various factors which are relevant to gas separation 

via ultrathin membrane materials by several computational methods. Our works are 

important for exploring novel materials for different gas separation systems. However, with 

the increasing numbers of new materials, there is still room for further research in this area. 

First, beside carbon based membrane materials, which are mainly considered in this 

dissertation, there are many other 2D porous materials which are promising for forming 

gas separation membranes. They need more researches in future. Second, some functional 

groups like nitrogen, oxygen, and fluorine are significantly influence the separation ability 

of membrane materials. The effects of them need more studies. Third, this dissertation only 

considered physisorption. Chemisorption is another important branch. Many ionic liquids 

belong to this aspect. Reactive force fields need to be developed for them for molecular 
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dynamics simulations. Fourth, traditional computational methods like DFT and CMD are 

usually time-consuming. For exploring large material database to find novel membrane 

materials for gas separation, high throughput methods will be more and more important. 

As one of these methods, machine learning applications in chemical area are still limited. 

In future, machine learning will be benefit for every aspect of chemistry. 




