
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Prediction-Constrained Latent Variable Models

Permalink
https://escholarship.org/uc/item/7bs43107

Author
Hope, John Gabriel

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7bs43107
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Prediction-Constrained Latent Variable Models

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

John Gabriel Hope

Dissertation Committee:
Erik Sudderth, Chair

Padhraic Smyth
Alexander Ihler

2023

© 2023 John Gabriel Hope

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vii

ACKNOWLEDGMENTS viii

VITA ix

ABSTRACT OF THE DISSERTATION xi

1 Introduction 1
1.1 Overview of Contributions . 3

2 Prediction-Constrained Training of Latent Variable Models. 6
2.1 Supervised Latent Variable Models . 7

2.1.1 Regularized Maximum Likelihood Optimization for Training Global
Parameters . 9

2.2 Prediction-Constrained Optimization for Training Global Parameters 10
2.2.1 Semi-supervised prediction constraints for data with missing labels . 13
2.2.2 Constraints on a general expected loss 14

2.3 Relationship to Other Supervised Learning Frameworks 16
2.3.1 Advantages over standard joint likelihood training 16
2.3.2 Advantages over maximum conditional likelihood training 17
2.3.3 Advantages over label replication . 17
2.3.4 Advantages over posterior regularization 20
2.3.5 Advantages over maximum entropy discrimination and regularized Bayes 22
2.3.6 Relationship to Semi-supervised Learning Frameworks 24

2.4 Generalized Prediction-Constraints . 25
2.4.1 Approximating constraints . 26
2.4.2 Constraints on posterior approximations 26

2.5 Prediction-constrained Mixture Models . 29
2.5.1 Objective function evaluation and parameter estimation. 31
2.5.2 Toy Example: Why Asymmetry Matters 33
2.5.3 Toy Example: Advantage of Semisupervised PC Training 36

ii

3 Prediction-Constrained Hidden Markov Models 40
3.1 Hidden Markov Models . 40
3.2 Supervised Hidden Markov Models . 42

3.2.1 Sequence classification. 43
3.2.2 Event detection. 45

3.3 Prediction-Constrained Learning of HMMs 47
3.3.1 Toy example: PC-HMM . 48

3.4 Applications: PC-HMM . 49
3.4.1 Baselines . 50
3.4.2 Dancing Honey Bee Segmentation. 51
3.4.3 Human activity recognition. 52
3.4.4 Ventilator need in the ICU. 53
3.4.5 ICU Mortality. 53
3.4.6 MIMIC-IV. 54
3.4.7 Interpreting learned PC-HMM models. 54

4 Prediction-Constrained Topic Models 58
4.1 Latent Dirichlet Allocation . 58
4.2 Supervised Topic Models . 59
4.3 Prediction-constrained Training of LDA . 60

4.3.1 Inference and Learning for PC-LDA 62
4.3.2 Toy example: PC-LDA . 65

4.4 Applications: PC-LDA . 67
4.4.1 Movie and restaurant review analysis. 67
4.4.2 Antidepressant prediction. 70

5 Prediction-Constrained Variational Autoencoders 72
5.1 Variational Autoencoders . 72

5.1.1 Generalized likelihoods. 73
5.1.2 Variational inference for VAEs . 74
5.1.3 Amortized inference for VAEs. 75
5.1.4 Hierarchical VAEs . 76

5.2 Prediction-constrained training of VAEs . 78
5.2.1 Semi-supervised learning with prediction-constrained VAEs 80

5.3 Comparisons to Prior Work of Semi-supervised VAEs 82
5.3.1 Advantages over two-stage VAEs for semi-supervised learning 82
5.3.2 Advantages over label-conditioned VAEs 82
5.3.3 Other related work on SSL of VAEs 86

5.4 Class-conditional Generation with PC-VAEs 88
5.4.1 MCMC sampling. 88
5.4.2 Rejection sampling. 89
5.4.3 Model-based sampling. 89
5.4.4 Results of Class-conditional Generation. 91

5.5 Consistency-Constrained Variational Autoencoders 91
5.5.1 Consistency Constraints via Generative Models 92

iii

5.5.2 Aggregate label consistency. 96
5.5.3 Sensitivity to constraint multiplier hyperparameters 96
5.5.4 Training time comparison . 97
5.5.5 Related Work on Constrained Learning 98

5.6 Generative Model Innovations . 100
5.6.1 Spatial Transformer VAE. 100
5.6.2 Very Deep VAEs. 103

5.7 Applications: PC-VAE . 107
5.7.1 Findings and Analysis of Results . 110

6 Future Directions 112
6.1 Prediction-Guided Imputation. 112
6.2 Prediction-Constrained Structured Variational Autoencoders. 114

Bibliography 117

iv

LIST OF FIGURES

Page

2.1 Graphical model representation of downstream supervised latent variable mod-
els. 8

2.2 Graphical model representation of upstream or label-conditioned supervised
latent variable models. 9

2.3 Graphical model representation of a supervised mixture model. 29
2.4 Toy example of prediction-constrained training of 1-D mixtures. 34
2.5 Toy example of semi-supervised learning with prediction-constrained mixtures. 37
2.6 Comparison of performance metrics for toy example of semi-supervised learn-

ing with mixture models. 38

3.1 Graphical model representation of a supervised hidden Markov model. . . . 41
3.2 Representation of prediction models for sequence classification and timestep

classification. 44
3.3 Toy example illustrating semi-supervised prediction with PC-HMMs 49
3.4 Application of PC-HMMs for segmenting bee movements. 51
3.5 Performance comparison of PC-HMMs on a human activity recognition task. 55
3.6 PC-HMM performance on an ICU ventilator-need prediction task. 56
3.7 Performance evaluation of PC-HMMs on mortality prediction using the eICU

dataset. 56
3.8 Interpretation of learned PC-HMM on eICU data. 57

4.1 Graphical model representation of a supervised latent Dirichlet allocation. . 59
4.2 3x3 bars toy example for PC-LDA. 66
4.3 Comparison of PC-LDA results on movie and Yelp review tasks. 69
4.4 PC-LDA results on the antidepressant prediction task. 70

5.1 Computational flow diagram of a variational autoencoder. 76
5.2 Graphical model representation of downstream supervised variational autoen-

coders. 79
5.3 Computational flow diagram of a prediction-constrained variational autoen-

coder. 80
5.4 Illustraion of the “M2” model. 84
5.5 Half-moon classification example for PC-VAEs. 86
5.6 Class-conditional samples of the MNIST dataset. 88
5.7 Class-conditional samples based on the SVHN dataset. 90

v

5.8 Computational flow diagram of a consistency-constrained variational autoen-
coder. 92

5.9 Visual comparison of consistency loss functions. 93
5.10 2-D embeddings of the MNIST dataset. 94
5.11 Formalization of our CPC-VAE as a decision network. 95
5.12 Sensitivity of CPC-VAE to the constraint (Lagrange multiplier) hyperparam-

eters λ and γ. 97
5.13 Training time comparison of semi-supervised VAEs. 97
5.14 Sampled reconstructions used to compute the consistency loss during training. 100
5.15 Visualization of spatial transform CPC-VAE reconstructions. 100
5.16 Prior distribution for spatial transform latent parameters. 102
5.17 Comparison of class-conditional samples of Celeb-A from a standard VAE and

the deep VAE. 103
5.18 Evaluation of CPC-VAE’s generative performance on CelebA. 104
5.19 Comparison of the “very-deep” VAE model architecture and the modified

version used by our CPC-VAE. 106
5.20 Comparison of CPC-VAE, PC-VAE and 2-stage VAE performance on MNIST. 109

vi

LIST OF TABLES

Page

5.1 Quantitative generative performance for PC-VAEs on the Celeb-A dataset. . 104
5.2 SSL image classification results. 108
5.3 Ablation study on MNIST. 108

vii

ACKNOWLEDGMENTS

I would like to thank my advisor Erik Sudderth who has been an invaluable and patient
guide throughout my long and not always straightforward journey through graduate school.
I would also like to thank my mentor Mike Hughes, who planted the seeds of this work,
provided me with continued support and without whom this thesis would not have been
possible. My other committee members, Padhraic Smyth and Alex Ihler both contributed
insightful comments and suggestions for improving my work. I would also like to thank
the other members of Erik’s Learning Inference and Vision group, who have helped and
supported my personal and academic growth immensely over the years. Finally, I would like
to thank my family who gave me the resources to succeed and who have always been my
strongest supporters.

This work was supported in part by NSF CAREER Award No. IIS-1349774 and the UCI
Machine Learning and Physical Sciences graduate training program (NSF award 1633631).

viii

VITA

John Gabriel Hope

EDUCATION

Doctor of Philosophy in Computer Science 2017-2023
University of California, Irvine Irvine, CA

Master of Science in Computer Science 2015-2017
Brown University Providence, RI

Bachelor of Science in Computer Science 2010-2014
Washington University in St. Louis St. Louis, MO

RESEARCH EXPERIENCE

Graduate Research Assistant 2017–2023
University of California, Irvine Irvine, California

TEACHING EXPERIENCE

Teaching Assistant 2017-2018, 2021-2023
University of California, Irvine Irvine, CA

Teaching Assistant 2017
Brown University Providence, RI

Teaching Assistant 2012-2014
Washington University in St. Louis St. Louis, MO

ix

REFEREED CONFERENCE PUBLICATIONS

A Decoder Suffices for Query-Adaptive Variational In-
ference

Aug 2023

Uncertainty in Artificial Intelligence

Prediction-Constrained Markov Models for Medical
Time Series with Missing Data and Few Labels

Dec 2022

Learning from Time Series For Health (TS4H) Workshop at NeurIPS 2022

Learning Consistent Deep Generative Models from
Sparsely Labeled Data

Jan 2022

4th Symposium on Advances in Approximate Bayesian Inference

Prediction-Constrained Hidden Markov Models for
Semi-Supervised Classification

July 2021

Time Series Workshop at ICML 2021

Semi-Supervised Prediction-Constrained Topic Models Apr 2018.
Artificial Intelligence & Statistics

Prediction-Constrained Topic Models for Antidepres-
sant Prediction

Dec 2017

ML for Health Workshop at NIPS 2017

x

ABSTRACT OF THE DISSERTATION

Prediction-Constrained Latent Variable Models

By

John Gabriel Hope

Doctor of Philosophy in Computer Science

University of California, Irvine, 2023

Erik Sudderth, Chair

Latent variable models provide a robust framework for modeling complex data distributions

while accounting for known or desired inductive biases. The compact, low-dimensional rep-

resentations learned by mixture models, variational autoencoders and other latent variable

models also provide useful and interpretable bases for downstream prediction tasks. Our

work introduces a novel framework for training latent variable models using prediction con-

straints, which aims to balance two important objectives: high-quality generative modeling

of complex data and accurate prediction of semantic labels. Our framework acknowledges

the inherent asymmetry of our discriminative objective, which is to learn how to predict

labels from data, rather than to predict data from labels. We show that addressing this

issue allows us to effectively leverage latent variable models for both supervised and semi-

supervised learning while retaining interpretability and generative performance. We further

introduce additional consistency constraints, derived naturally from the generative model,

that requires predictions on reconstructed data to match those on the original data. We show

that enforcing consistency is crucial when labels are very sparse. We apply our framework to

a variety of latent variable models including: mixture models, topic models, hidden Markov

models and variational autoencoders. Our experiments show state-of-the-art semi-supervised

learning performance on diverse tasks using each of these models.

xi

Chapter 1

Introduction

Learning to predict an outcome is a central goal in many applied fields. For example, we

would like to be able to answer questions like: ”what objects are in this image?”, ”what is

the sentiment of this movie review?”, and ”what are likely outcomes for this ICU patient?”.

In many cases, answering these questions can be difficult for humans, either because of the

number of predictions that need to be made (classifying unlabeled images or reviews on the

internet), or because of the complex nature of the domain (for example, a medical outcome

that is not well predicted by existing medical theories).

In the era of big data, we can gain access to many instances of observations (e.g. images)

with labels (i.e. the outcome that we want to predict, e.g. the objects that are present in the

image). With predictive models, machine learning attempts to leverage this data to learn how

to make accurate predictions of labels or outcomes, so that the task of making predictions

can be delegated to machines, or machines can assist humans at making predictions.

In addition, the large amount of data available can also be used to learn how to generate

new data (e.g. new images or text). This is the goal of generative models. Latent variable

models are a class of generative models that provide a coherent, well-motivated framework

1

for analyzing the distribution and structure of data. These models assume underlying,

but unobserved structures are present within the data. Powerful exact and approximate

inference techniques such as MCMC and variational methods allow for tractable inference

for latent variables, giving practitioners the ability to answer queries such as the most likely

configuration of the latent structure and the values of unseen variables in both the latent

and observable spaces. For example, mixture models allow users to visualize and interpret

the likely groupings of observations.

Latent variable models further provide a natural approach for feature extraction, as inferred

latent variable values can be used as inputs for downstream tasks such as prediction. Unfortu-

nately, this approach can often be sub-optimal, as the goals of data modeling and prediction

may not align well. In this thesis we take a deep dive into better integrating prediction

into latent variable models. In particular our focus will be on a new technique for training

latent variable models that we call prediction-constrained training. This approach allow for

a better combination of the strengths of latent variable models and prediction models.

Prediction tasks such as classification and regression have also been very well-studied in the

field of machine learning. Over the past decade the deep learning revolution has transformed

the field of machine learning with unprecedented results on tasks such as image recognition,

image and text generation, and natural language interaction. Deep learning models are

highly effective, but often lack a number of desirable properties such as: interpretability; it

is not easy to understand how their predictions or generations are made, structure; it can be

difficult to encode domain knowledge directly into the model, and robustness; deep models

typically require large volumes of data for effective training, providing poor results when data

is sparse. By providing a controllable and interpretable model for the generation of data,

latent variable models allow this shortcomings to be addressed. In this work we show that

making predictions via inferred latent structures allows for more interpretable predictions

and more robust predictions, particularly when output variables are sparsely observed.

2

1.1 Overview of Contributions

The remainder of this work introduces our prediction-constrained latent variable modeling

framework in detail, and provides specific examples of applications to models for different

types of data. We address modifications and design choices necessary in order to achieve

optimal performance with each model. We also demonstrate the effectiveness of our approach

through extensive experiments with each model. Finally we conclude with a discussion of

future research directions for prediction-constrained modelling.

We summarize the contributions of each chapter below.

Chapter 2: Prediction-Constrained Training of Latent Variable Models

We begin this section by introducing supervised latent variable models as a framework for

joint generative and discriminative modeling. We then discuss the core of our contribu-

tion, which is the prediction-constraint framework for training supervised latent variable

models. We compare our approach with a variety of related approaches from the relevant

literature and illustrate the advantages and disadvantages of prediction-constrained training.

Finally we introduce a specific example of a prediction-constrained latent variable model,

the prediction-constrained mixture model, in order to illustrate how the approach is applied

in practice. We show how to effectively train the prediction constrained mixture and discuss

results on toy data.

Chapter 3: Prediction-Constrained Training of Hidden Markov Models

In this chapter we introduce the first more complex example of prediction-constrained latent

variable model training with real-world examples. Specifically we introduce the prediction

constrained hidden Markov model for time-series data. We show how to adapt the prediction-

3

constrained training framework to this model by using a prediction approach based on the

marginals of state assignments. We further show extensions of the prediction-constrained

model using non-linear predictors and per-timestep predictors. We demonstrate the effective-

ness of our approach on semi-supervised datasets from the human activity recognition and

healthcare domains. These experiments further show the interpretability of the prediction-

constrained model alongside its natural ability to handle missing data.

Chapter 4: Prediction-Constrained Training of Topic Models

In this section we show a second case study of prediction-constrained training for latent

variable models; prediction-constrained topic models. We show how to perform prediction-

constrained training for the latent Dirichlet allocation topic models of bag-of-words docu-

ments. Our approach makes predictions based on maximum a posteriori estimate of the pre-

document topic distribution, while training the generative model with the same approach.

We show that this is an efficient and effective approach to training supervised topic mod-

els and demonstrate promising results on a range of realistic semi-supervised text datasets

including movie and restaurant reviews and electronic health records.

Chapter 5: Prediction-Constrained Training of Deep Latent Variable Models

As a final case study for prediction-constrained latent variable models, we showcase applica-

tions to deep generative models such as variational autoencoders. We show how to integrate

prediction-constrained training with amortized variational inference, as well as the pitfalls of

this approach. We further introduce a novel addition in consistency constraints and show that

this is critical for effective semi-supervised learning with prediction-constrained variational

autoencoders. We also discuss a number of other extensions to the prediction-constrained

variational autoencoder framework such as: aggregate consistency for more robust semi-

4

supervised training, prediction-constrained hierarchical VAEs with more expressiveness, and

affine transform VAEs that allow explicit modelling of affine-transformed images. We couple

these technical introductions with thorough experiments demonstrating the advantages of

our approach.

5

Chapter 2

Prediction-Constrained Training of

Latent Variable Models.

In this chapter, we introduce a new framework for training supervised variants of latent

variable models with prediction-constraints. Our approach is applicable to a broad family of

latent variable models. Later sections and chapters provide concrete learning algorithms for

supervised mixture models [Everitt and Hand, 1981], hidden Markov models [Rabiner and

Juang, 1986a], topic models [Blei, 2012] and factor analysis models. In later chapters we

will also discuss extensions to deep latent variable models such as variational autoencoders

[Kingma and Welling, 2014] and structured variational autoencoders [Johnson et al., 2016c].

We emphasize that this framework could also be applied more broadly to allow supervised

training of other latent variable models like dynamic topic models [Blei and Lafferty, 2006],

linear dynamical system models [Shumway and Stoffer, 1982, Ghahramani and Hinton, 1996],

stochastic block models for relational data [Wang and Wong, 1987, Kemp et al., 2006], and

many more.

6

2.1 Supervised Latent Variable Models

We consider the broad family of latent variable models illustrated in Fig. 2.1. We now

assume an observed dataset of D paired observations {xd, yd}Dd=1. We refer to xd as data

and yd as labels or targets, with the understanding that in intended applications, we can

easily access some new data xd but often need to predict yd from xd. For example, the pairs

xd, yd may be text documents and their accompanying class labels, images and accompanying

scene categories, or patient medical histories and their accompanying diagnoses. In this work

we specifically consider the case of classification, where yd is discrete and categorical (non-

ordinal), however we note that most of our approaches could be extended to the case of

regression or structured prediction.

We assume that each of the data pairs {xd, yd} is generated independently conditioned on its

own unobserved latent variable hd. For a simple mixture model, hd is an integer indicating

the associated data cluster. For more complex members of our family like topic models, hd

may be a set of several document-specific hidden variables. We now assume the following

generic process for generating the 3 random variables:

1. Draw a latent value from the prior: hd | ξh ∼ p(hd | ξh),

2. Draw an observation conditioned on the latent value: xd | hd, ξ
x ∼ p(xd | hd, ξ

x)

3. Draw a label conditioned on the latent value and observation: yd | hd, xd, ξ
y ∼ p(yd |

hd, xd, ξ
y)

Steps 1 and 2 are inherited from the latent variable model framework, while step 3 introduces

the label variable y as a child of the observation and latent value. The form of each condi-

tional as well as the global model parameters ξ = {ξh, ξx, ξy} will depend on the specific

7

hd

xd yd

ξh ξx ξy

observed

data

target

label

hidden

variable

examples

d = 1,...,D optional

connection

Figure 2.1: Graphical model representation of downstream supervised latent variable models.

model chosen. Under these assumptions, the joint density for datum d then factorizes as

p(xd, yd, hd | ξh, ξx, ξy) = p(hd | ξh)p(xd | hd, ξ
x)p(yd | xd, hd, ξ

y). (2.1)

We assume all of the above distributions have parameterized probability density or mass

functions which can be easily evaluated and differentiated. The global parameters ξh, ξx,

and ξy specify each distribution. When training our model, we may treat the full set of

global parameters ξ = {ξh, ξx, ξy} as random variables with associated prior density p(ξ) =

p(ξh, ξx, ξy).

Our chosen model family is an example of a downstream LVM: the core assumption of

Eq. (2.1) is that the generative process produces both observed data xd and targets yd

conditioned on the hidden variable hd. In contrast, upstream or label-conditioned models

such as Dirichlet-multinomial regression [Mimno and McCallum, 2008], DiscLDA [Lacoste-

Julien et al., 2009], and labeled LDA [Ramage et al., 2009] assume that observed labels yd

are generated first, and then combined with hidden variables hd to produce data xd. For

labeled-conditioned models, inference is challenging when labels are missing. For example,

in downstream models p(hd | xd) may be computed by omitting factors containing yd, while

8

hd

xd

yd

ξh ξx ξy

observed

data

target

label

hidden

variable

examples

d = 1,...,D

Figure 2.2: Graphical model representation of upstream or label-conditioned supervised
latent variable models.

upstream models must explicitly marginalize over all possible yd. Similarly, upstream pre-

diction of labels yd from data xd is more complex than for downstream models. That said,

our prediction-constrained LVM framework could also be used to produce novel learning

algorithms for upstream LVMs.

Given this general model family, there are two core problems of interest. The first is global

parameter learning: estimating values or approximate posteriors for ξ given training data

{xd, yd}. The second is local prediction: estimating the target yd given data xd and model

parameters ξ. While we focus primarily on these tasks, other related problems may also be

of interest, such as predicting observations xd from labels yd, or imputing missing dimensions

of xd.

2.1.1 Regularized Maximum Likelihood Optimization for Training

Global Parameters

A classical approach to estimating ξ = {ξh, ξx, ξy} would be to maximize the marginal

likelihood of the training data x and targets y, integrating over the hidden variables h. This

9

is equivalent to minimizing the following objective function:

min
ξh,ξx,ξy

−

[
D∑

d=1

log p(xd, yd | ξh, ξx, ξy)

]
+R(ξh, ξx, ξy), (2.2)

p(xd, yd | ξh, ξx, ξy) =
∫

p(hd | ξh)p(xd | hd, ξ
x)p(yd | xd, hd, ξy) dhd.

Here, R(ξh, ξx, ξy) denotes a (possibly uninformative) regularizer for the global parameters.

If R(ξh, ξx, ξy) = − log p0(ξ
h, ξx, ξy) for some prior density function p0(ξ

h, ξx, ξy), Eq. (2.2) is

equivalent to maximum a posteriori (MAP) estimation of ξh, ξx, ξy. To simplify optimization

we choose to use point estimates of ξ rather than marginalizing over these parameters.

One problem with standard ML or MAP training is that the inputs xd and targets yd are

given equal weight. However, because practical models are typically misspecified and only

approximate the generative process of real-world data, solving this objective can lead to solu-

tions that are not matched to the practitioner’s goals. We care much more about predicting

patient mortality rates than we do about estimating past incidences of routine checkups.

Especially because inputs xd are usually higher-dimensional than targets yd, conventionally

trained LVMs may have poor predictive performance [Zhang and Kjellström, 2014].

2.2 Prediction-Constrained Optimization for Training

Global Parameters

As an alternative to maximizing the joint likelihood, we consider a prediction-constrained

objective, where we wish to find the best possible generative model for data x that meets

some quality threshold for prediction of targets y given x. A natural quality threshold for

our probabilistic model is to require that the sum of negative log conditional probabilities

p(yd | xd, ξ
h, ξx, ξy) must be bounded by some scalar value ϵ. This leads to the following

10

constrained optimization problem:

min
ξh,ξx,ξy

−

[
D∑

d=1

log p(xd | ξh, ξx)

]
+R(ξh, ξx, ξy), (2.3)

subject to −
D∑

d=1

log p(yd | xd, ξ
h, ξx, ξy) ≤ ϵ.

We emphasize that the conditional probability p(yd | xd, ξ
h, ξx, ξy) marginalizes the hidden

variable hd:

p(yd | xd, ξ
h, ξx, ξy) =

∫
p(yd | xd, hd, ξy)p(hd | xd, ξ

h, ξx) dhd. (2.4)

This marginalization allows us to make predictions for yd that correctly account for our

uncertainty in hd given xd, and importantly, given only xd. At test time yd may not be

observed so we want to be able to accurately infer hd and therefore yd given xd; however xd

is assumed to always be observed, so it is not necessary to do the inverse.

We note that we define our constraint in terms of the total prediction loss across the dataset.

We make this choice such that our constraint framing agrees with our choices of performance

metrics (average accuracy, etc.). A reasonable alternative choice would be to define the

constraint per-observation.

A natural alternative form of the prediction-constraint framework would be to use a set of

constraints specified per-instance:

min
ξh,ξx,ξy

−

[
D∑

d=1

log p(xd | ξh, ξx)

]
+R(ξh, ξx, ξy), (2.5)

subject to − log p(yd | xd, ξ
h, ξx, ξy) ≤ ϵd ∀ d ∈ {1...D}.

However this approach is challenging to integrate with stochastic optimization methods and

is less aligned with the goals of practitioners; typically model quality is measured in terms of

11

average performance. Thus in practice we consider only the constrain on the total prediction

loss.

The Karush-Kuhn-Tucker (KKT) [Kuhn and Tucker, 2013] conditions induce an equivalent

unconstrained objective that maximizes the unsupervised likelihood but penalizes inaccurate

predictions:

min
ξh,ξx,ξy

−

[
D∑

d=1

log p(xd | ξh, ξx)

]
− λϵ

[
D∑

d=1

log p(yd | xd, ξ
h, ξx, ξy)

]
+R(ξh, ξx, ξy),

(2.6)

Here, λϵ > 0 is a Lagrange multiplier chosen to ensure that the prediction constraint is

achieved; smaller loss tolerances ϵ require larger λϵ. For each distinct value of λϵ, the solution

to Eq. (2.6) also solves the constrained problem in Eq. (2.3) for a particular threshold ϵ.

While the mapping between λϵ and ϵ is monotonic, it is not constructive and lacks a simple

parametric form.

We define the optimization problem in Eq. (2.6) to be our prediction-constrained (PC) train-

ing objective. This objective directly encodes the asymmetric relationship between data xd

and labels yd by prioritizing prediction of yd from xd when λϵ > 1. This contrasts with the

joint maximum likelihood objective in Eq. (2.2) which treats these variables symmetrically,

and (especially when xd is high-dimensional) may not accurately model the predictive dis-

tribution p(yd | xd). In the special case where λϵ = 1, the PC objective of Eq. (2.6) reduces

to the ML objective of Eq. (2.2).

Extension: Prediction constraints for individual data items

In Eq. (2.3), we defined our prediction quality constraint using the sum (or equivalently, the

average) of the observation-specific losses log p(yd | xd, ξ
h, ξx, ξy). An alternative, more strin-

12

gent training objective would enforce separate prediction constraints for each observation:

min
ξh,ξx,ξy

−

[
D∑

d=1

log p(xd | ξh, ξx)

]
+R(ξh, ξx, ξy), (2.7)

subject to − log p(yd | xd, ξ
h, ξx, ξy) ≤ ϵd for all d.

This modified optimization problem would generalize Eq. (2.6) by allocating a distinct La-

grange multiplier weight λϵd for each observation d.

2.2.1 Semi-supervised prediction constraints for data with missing

labels

In many applications, we have a dataset of D observations {xd}Dd=1 for which only a subset

DS ⊂ {1, 2, . . . D} have observed labels yd; the remaining labels are unobserved, we call

the unlabeled portion of the dataset DU = D \DS. For semi-supervised learning problems

like this, we generalize Eq. (2.3) to only enforce the label prediction constraint for the

observations in DS, so that the PC objective of Eq. (2.3) becomes:

min
ξh,ξx,ξy

−

[
D∑

d=1

log p(xd | ξh, ξx)

]
+R(ξh, ξx, ξy), (2.8)

subject to −
∑
d:DS

log p(yd | xd, ξ
h, ξx, ξy) ≤ ϵ.

In general, the value of ϵ will need to be adapted based on the amount of labeled data. In

the unconstrained form

min
ξh,ξx,ξy

−

[
D∑

d=1

log p(xd | ξh, ξx)

]
− λϵ

[∑
d:Dy

log p(yd | xd, ξ
h, ξx, ξy)

]
+R(ξh, ξx, ξy),

(2.9)

13

as the fraction of labeled data b = |DS |
|D| gets smaller, we will need a much larger Lagrange

multiplier λϵ to uphold the same average quality in predictive performance. This occurs

simply because as b gets smaller, the data likelihood term log p(xd) will continue to get

larger in relative magnitude compared to the label prediction term log p(yd | xd).

2.2.2 Constraints on a general expected loss

Penalizing aggregate log predictive probability is sensible for many problems, but for some

applications other loss functions are more appropriate. More generally, we can penalize the

expected loss between the true labels yd and predicted label distribution ŷ(xd, hd, ξ
y) under

the LVM posterior p(hd | xd, ξ
x, ξh):

min
ξ

−

[
D∑

d=1

log p(xd | ξx, ξh)

]
+R(ξ), (2.10)

subject to
D∑

d=1

Ep(hd|xd,ξx,ξy)

[
ℓ(yd, ŷ(hd, ξ

y))

]
≤ ϵ.

Here ℓ(·, ·) denotes the label loss. This more general approach allows us to incorporate classic

non-probabilistic loss functions like the hinge loss or epsilon-insensitive loss, or to penalize

errors asymmetrically in classification problems, when measuring the quality of predictions.

We note that under this framework the maximum likelihood loss with ŷ(zd, ξ
y), specifying

the parameters of a distribution on y such that:

ℓ(yd, ŷ(hd, ξy)) ≜ − log p(yd | ŷ(hd, ξ
y)), (2.11)

14

is an upper bound on the original prediction constraint:

− log

[
p(yd | xd, ξ

h, ξx, ξy)

]
= − logEp(hd|xd,ξx,ξy)

[
p(yd | ŷ(hd, ξ

y))

]
(2.12)

≤ −Ep(hd|xd,ξx,ξy)

[
log p(yd | ŷ(hd, ξ

y))

]
.

In order to develop simple and tractable learning algorithms, we will use this form in most

applications.

Example: balanced cross-entropy

For unbalanced binary tasks where y ∈ {0, 1} and δ+ ∈ (0, 1) denotes the fraction of positive

examples, we find that a re-weighted a cross-entropy loss is useful in practice. We re-weight

such that positive examples have weight 1−δ+
δ+

, while negative examples have weight 1; this

equalizes the loss contribution of the two classes. Under the assumption that ŷ(hd, ξ
y) ≜

p(yd = 1|xd, hd, ξ
y) outputs the conditional probability of a positive label, this loss can be

written as:

ℓ(yd, ŷ(hd, ξy)) ≜ −yd
(
1− δ+
δ+

)
log ŷ(hd, ξy)− (1− yd) log ŷ(hd, ξy) (2.13)

Balancing defines a smooth upper bound on the balanced accuracy [Brodersen et al., 2010],

a common evaluation metric for image classification [Griffin et al., 2007]. While balanc-

ing does not arise from generative models of labels, it can naturally be incorporated into

our PC framework, and can be directly generalized to unbalanced multi-class classification

problems.

15

2.3 Relationship to Other Supervised Learning Frame-

works

While the definition of the PC training objective in Eq. (2.6) is straightforward, it has

desirable features that are not shared by other supervised training objectives for downstream

LVMs. In this section we contrast the PC objective with alternative approaches from the

latent variable model literature that incorporate labels.

2.3.1 Advantages over standard joint likelihood training

For our chosen family of supervised downstream LVMs, the most standard training method

is to find a point estimate of global parameters ξ that maximizes the (regularized) joint

log-likelihood log p(xd, yd | ξ) as in Eq. (2.2). Related Bayesian methods that approximate

the posterior distribution p(ξ | xd, yd), such as variational methods [Wainwright and Jordan,

2008] and Markov chain Monte Carlo methods [Andrieu et al., 2003], estimate moments of

the same joint likelihood (see Eq. (2.1)) relating hidden variables hd to data xd and labels

yd.

For example, supervised LDA [McAuliffe and Blei, 2008, Wang et al., 2009] learns latent

topic assignments hd by optimizing the joint probability of bag-of-words document repre-

sentations xd and document labels yd. One of several problems with this joint likelihood

objective is cardinality mismatch: the relative sizes of the random variables xd and yd can

reduce predictive performance. In particular, if yd is a one-dimensional binary label but

xd is a high-dimensional word count vector, the optimal solution to Eq. (2.2) will often

be indistinguishable from the solution to the unsupervised problem of modeling the data x

alone. Low-dimensional labels can have negligible impact on the joint density compared to

the high-dimensional words xd, causing learning to ignore subtle features that are critical for

16

the prediction of yd from xd. Despite this issue, recent work continues to use this training

objective [Wang and Zhu, 2014, Ren et al., 2017].

2.3.2 Advantages over maximum conditional likelihood training

Motivated by similar concerns about joint likelihood training, Jebara and Pentland [1999]

introduce a method to explicitly optimize the conditional likelihood log p(yd | xd, ξ) for a

particular LVM, the Gaussian mixture model. They replace the conditional likelihood with

a more tractable lower bound, and then monotonically increase this bound via a coordinate

ascent algorithm they call conditional expectation maximization (CEM). Chen et al. [2015]

instead use a variant of backpropagation to optimize the conditional likelihood of a supervised

topic model.

One concern about the conditional likelihood objective is that it exclusively focuses on the

prediction task; it need not lead to good models of the data x, and cannot incorporate

unlabeled data. In contrast, our prediction-constrained approach allows a principled trade-

off between optimizing the marginal likelihood of data and the conditional likelihood of labels

given data.

2.3.3 Advantages over label replication

We are not the first to notice that high-dimensional data xd can swamp the influence of low-

dimensional labels yd. Among practitioners, one common workaround to this imbalance is to

retain the symmetric maximum likelihood objective of Eq. (2.2), but to replicate each label

yd as if it were observed r times per document: {yd, yd, . . . , yd}. Applied to supervised LDA,

label replication leads to an alternative power sLDA topic model [Zhang and Kjellström,

2014].

17

Label replication still leads to nearly the same per-document joint density as in Eq. (2.1),

except that the likelihood density is raised to the r-th power: p(yd | xh, hd, ξ
y)r. While label

replication can better “balance” the relative sizes of xd and yd when r ≫ 1, performance gains

over standard supervised LDA are often negligible [Zhang and Kjellström, 2014], because this

approach does not address the asymmetry issue. To see why, we examine the label-replicated

training objective:

min
ξ

−
D∑

d=1

log

[∫
p(hd | ξh)p(xd | hd, ξ

x)p(yd | xd, hd, ξ
y)r dhd

]
+R(ξ). (2.14)

This objective does not contain any direct penalty on the predictive density p(yd | xd),

which is the fundamental idea of our prediction-constrained approach and a core term in

the objective of Eq. (2.6). Instead, only the symmetric joint density p(x, y) is maximized,

with training assuming both data x and replicated labels y are present. It is easy to find

examples where the optimal solution to this objective performs poorly on the target task of

predicting y given only x, because the training has not directly prioritized this asymmetric

prediction. In later sections such as the case study in Fig. 2.4, we provide intuition-building

examples where maximum likelihood joint training with label replication fails to give good

prediction performance for any value of the replication weight, while our PC approach can

do better when λϵ is sufficiently large.

Example: Label replication may lead to poor predictions.

Even when the number of replicated labels r → ∞, the optimal solution to the label-

replicated training objective of Eq. (2.14) may be sub-optimal for the prediction of yd given

xd. To demonstrate this, we consider a toy example involving two-component Gaussian

mixture models.

Consider a one-dimensional data set consisting of six evenly spaced points, x = {1, 2, 3, 4, 5, 6}.

18

The three points where x ∈ {2, 4, 5} have positive labels y = 1, while the rest have negative

labels y = 0. Suppose our goal is to fit a mixture model with two Gaussian components to

these data, assuming minimal regularization (that is, sufficient only to prevent the probabil-

ities of clusters and targets from being exactly 0 or 1). Let hd ∈ {0, 1} indicate the (hidden)

mixture component for xd.

If r ≫ 1, the p(yd | xd, hd, ξ
y)r term will dominate in Eq. (2.14). This term can be optimized

by setting hd = yd, and the probability of yd = 1 to close to 0 or 1 depending on the cluster.

In particular, we choose p(yd = 1 | hd = 0) = 0.0001 and p(yd = 1 | hd = 1) = 0.9999.

If one computes the maximum likelihood solution to the remaining parameters given these

assignments of hd, the resulting labels-from-data likelihood equals
∑D

d=1 log p(yd | xd) =

−3.51, and two points are misclassified. Misclassification occurs because the two clusters

have significant overlap.

However, there exists an alternative two-component mixture model that yields better labels-

given-data likelihood and makes fewer mistakes. We set the cluster centers to µ0 = 2.0

and µ1 = 4.5, and the cluster variances to σ0 = 5.0 and σ1 = 0.25. Under this model,

we get a labels-given-data likelihood of
∑D

d=1 log p(yd | xd) = −2.66, and only one point is

misclassified. This solution achieves a lower misclassification rate by choosing one narrow

Gaussian cluster to model the adjacent positive points x ∈ {4, 5} correctly, while making

no attempt to capture the positive point at x = 2. Therefore, the solution to Eq. (2.14) is

sub-optimal for making predictions about yd given xd.

This counter-example also illustrates the intuition behind why the replicated objective fails:

increasing the replicates of yd forces hd to take on a value that is predictive of yd during

training, that is, to get p(yd | hd) as close to 1 as possible. However, there are no guarantees

on p(hd | xd) which is necessary for predicting yd given xd. See Fig. 2.4 for an additional

in-depth example.

19

2.3.4 Advantages over posterior regularization

The posterior regularization (PR) framework introduced by Graça et al. [2008], and later

refined in Ganchev et al. [2010], is notable early work which applied explicit performance

constraints to latent variable model objective functions. Most of this work focused on models

for only two local random variables: data xd and hidden variables hd, without any explicit

labels yd. Mindful of this, we can naturally express the PR objective in our notation,

explaining data x explicitly via an objective function and incorporating labels y only later

in the performance constraints.

The PR approach begins with the same overall goals of the expectation-maximization treat-

ment of maximum likelihood inference: frame the problem as estimating an approximate

posterior q(hd | v̂d) for each latent variable set hd, such that this approximation is as close as

possible in KL divergence to the real (perhaps intractable) posterior p(hd | xd, yd, ξ). Gener-

ally, we select the density q to be from a tractable parametric family with free parameters

v̂d restricted to some parameter space v̂d ∈ V which makes q a valid density. This leads to

the objective

min
ξ,{v̂d}Dd=1

R(ξ)−
D∑

d=1

L(xd, v̂d, ξ), (2.15)

L(xd, v̂d, ξ) ≜ Eq(hd|v̂d)

[
log p(xd, hd | ξ)− log q(hd | v̂d)

]
≤ log p(xd | ξ). (2.16)

Here, the function L is a strict lower bound on the data likelihood log p(xd | ξ) of Eq. (2.2).

The popular EM algorithm optimizes this objective via coordinate descent steps that alter-

nately update variational parameters v̂d and model parameters ξ. The PR framework of

Graça et al. [2008] adds additional constraints to the approximate posterior q(hd | v̂d) so

that some additional loss function of interest, over both observed and latent variables, has

20

bounded value under the distribution q(hd | v̂d):

Posterior Regularization (PR): Eq(hd|v̂d)

[
ℓ(yd, ŷ(hd, ξ

y))
]
≤ ϵ. (2.17)

For our purposes, one possible loss function could be the negative log likelihood for the label

y: ℓ(yd, ŷ(hd, ξ
y)) = − log p(yd | xd, hd, ξ

y). It is informative to directly compare the PR

constraint above with the PC objective of Eq. (2.10). Our approach directly constrains the

expected loss under the true hidden-variable-from-data posterior p(hd|xd, ξ):

Prediction Constrained (PC): Ep(hd|xd,ξ)

[
ℓ(yd, ŷ(hd, ξ

y))
]
≤ ϵ. (2.18)

In contrast, the PR approach in Eq. (2.17) constrains the expectation under the approximate

posterior q(hd | v̂d). This posterior does not have to stay close to true hidden-variable-from-

data posterior p(hd | xd, ξ). Indeed, when we write the PR objective in unconstrained form

with Lagrange multiplier λϵ, and assume the loss is the negative label log-likelihood, we have:

min
ξ,{v̂d}Dd=1

−Eq(hd|v̂d)

[
D∑

d=1

log p(xd, hd | ξ) + λϵ log p(yd | xd, hd, ξ
y)− log q(hd | v̂d)

]
+R(ξ)

(2.19)

Shown this way, we reach a surprising conclusion: the PR objective reduces to a lower bound

on the symmetric joint likelihood with labels replicated λϵ times. Thus, it will inherit all the

problems of label replication discussed above, as the optimal training update for q(hd | v̂d)

incorporates information from both data xd and labels yd. However, this does not train the

model to find a good approximation of p(hd | xd, ϵ), which we will show is critical for good

predictive performance.

21

2.3.5 Advantages over maximum entropy discrimination and reg-

ularized Bayes

Another key thread of related work putting constraints on approximate posteriors is known

as maximum entropy discrimination (MED), first published in Jaakkola et al. [1999b] with

further details in followup work [Jaakkola et al., 1999a, Jebara, 2001]. This approach was

developed for training discriminative models without hidden variables, where the primary

innovation was showing how to manage uncertainty about parameter estimation under max-

margin-like objectives. In the context of LVMs, this MED work differs from standard EM

optimization in two important and separable ways. First, it estimates a posterior for global

parameters q(ξ) instead of a simple point estimate. Second, it enforces a margin constraint

on label prediction, rather than just maximizing log probability of labels. We note briefly

that Jaakkola et al. [1999a] did consider a MED objective for unsupervised latent variable

models (see their Eq. 48), where the constraint is directly on the expectation of the lower-

bound of the log data likelihood. The choice to constrain the data likelihood is fundamentally

different from constraining the labels-given-data loss, which was not done for LVMs by the

original MED work yet is more aligned with our focus with high-quality predictions.

The key application MED to supervised LVMs has been Zhu et al. [2012]’s MED-LDA, an

extension of the LDA topic model based on a MED-inspired training objective. Later work

developed similar objectives for other LVMs under the broad name of regularized Bayesian

inference [Zhu et al., 2014]. To understand these objectives, we focus on Zhu et al. [2012]’s

original unconstrained training objectives for MED-LDA for both regression (Problem 2,

Eq. 8 on p. 2246) and classification (Problem 3, Eq. 19 on p. 2252), which can be fit into

22

our notation1 as follows:

min
q(ξ),{v̂d}Dd=1

KL
(
q(ξ)

∣∣∣∣ p0(ξ))
− Eq(ξ)

[D∑
d=1

L(xd, v̂d, ξ)

]
+ C

D∑
d=1

loss
(
yd,Eq(ξ,hd)

[
ŷd(xd, hd, ξ)

])
(2.20)

Here C > 0 is a scalar emphasizing how important the loss function is relative to the un-

supervised problem, p0(ξ) is some prior distribution on global parameters, and L(xd, v̂d, ξ)

is the same lower bound as in Eq. (2.15). We can make this objective more comparable to

our earlier objectives by performing point estimation of ξ instead of posterior approxima-

tion, which is reasonable in moderate to large data regimes, as the posterior for the global

parameters ξ will concentrate. This choice allows us to focus on our core question of how

to define an objective that balances data x and labels y, rather than the separate question

of managing uncertainty during this training. Making this simplification by substituting

point estimates for expectations, with the KL divergence regularization term reducing to

R(ξ) = − log p0(ξ), and the MED-LDA objective becomes:

min
ξ,{v̂d}Dd=1

R(ξ)−
D∑

d=1

L(xd, v̂d, ξ) + C
D∑

d=1

loss
(
yd,Eq(hd)

[
ŷd(xd, hd, ξ)

])
. (2.21)

Both this objective and Graça et al. [2008]’s PR framework consider expectations over the

approximate posterior q(hd), rather than our choice of the data-only posterior p(hd|xd, ξ).

However, the key difference between MED-LDA and the PR objectives is that the MED-

LDA objective computes the loss of an expected prediction (loss(yd,Eq[ŷd])), while the earlier

PR objective in Eq. (2.17) penalizes the full expectation of the loss (Eq(hd)[loss(yd, ŷd)]).

Earlier MED work [Jaakkola et al., 1999a] also suggests using an expectation of the loss,

1We note an irregularity between the classification and regression formulation of MED-LDA published
by Zhu et al. [2012]: while classification-MED-LDA included labels y only the loss term, the regression-
MED-LDA included two terms in the objective that penalize reconstruction of y: one inside the likelihood
bound term L using a Gaussian likelihood G as well as inside a separate epsilon-insensitive loss term. Here,
we assume that only the loss term is used for simplicity.

23

Eq(ξ,hd)[loss(yd, ŷd(xd, hd, ξ))]. Decision theory argues that the latter choice is preferable when

possible, since it should lead to decisions that better minimize loss under uncertainty. We

suspect that MED-LDA chooses the former only because it leads to more tractable algorithms

for their chosen loss functions.

Motivated by this decision-theoretic view, we consider modifying the MED-LDA objective

of Eq. (2.21) so that we take the full expectation of the loss. This swap can also be justified

by assuming the loss function is convex, as are both the epsilon-insensitive loss and the hinge

loss used by MED-LDA, so that Jensen’s inequality may be used to bound the objective in

Eq. (2.21) from above. The resulting training objective is:

min
ξ,{v̂d}Dd=1

R(ξ)−
D∑

d=1

L(xd, v̂d, ξ) + C
D∑

d=1

Eq(hd)

[
loss(yd, ŷd(xd, hd, ξ))

]
. (2.22)

In this form, we see that we have recovered the symmetric maximum likelihood objective

with label replication from Eq. (2.14), with y replicated C times. Thus, even this MED

effort fails to properly handle the asymmetry issue we have raised, possibly leading to poor

generalization performance.

2.3.6 Relationship to Semi-supervised Learning Frameworks

Often, semi-supervised training is performed via optimization of the joint likelihood log p(x, y |

ξ), using the EM algorithm to impute missing data [Nigam et al., 1998]. Other work falls un-

der the thread of “self-training”, where a model trained on labeled data only is used to label

additional data and then retrained accordingly. Chang et al. [2007] incorporated constraints

into semi-supervised self-training of an upstream hidden Markov model (HMM). Starting

with just a small labeled dataset, they iterate between two steps: (1) train model parame-

ters ξ via maximum likelihood estimation on the fully labeled set, and (2) expand and revise

the fully labeled set via a constraint-driven approach. Given several candidate labelings yd

24

for some example, their step 2 re-ranks these to prefer those that obey some soft constraints

(for example, in a bibliographic labeling task, they require the “title” field to always appear

once). Importantly, however, this work’s sub-procedure for training from fully labeled data

is a symmetric maximum likelihood objective, while our PC approach more directly encodes

the asymmetric structure of prediction tasks.

Other work deliberately specifies prior domain knowledge about label distributions, and

penalizes models that deviate from this prior when predicting on unlabeled data. Mann

and McCallum [2010] propose generalized expectation (GE) constraints, which extend their

earlier expectation regularization (XR) approach [Mann and McCallum, 2007]. This objective

has two terms: a conditional likelihood objective, and a new regularization term comparing

model predictions to some weak domain knowledge:

log p(y|x, ξ)− λ∆(Ŷ (x, ξ), YH). (2.23)

Here, YH indicates some expected domain knowledge about the overall labels-given-data

distribution, while Ŷ (x, ξ) is the predicted labels-given-data distribution under the current

model. The distance function ∆, weighted by λ > 0, penalizes predictions that deviate from

the domain knowledge. Unlike our PC approach, this objective focuses exclusively on the

label prediction task and does not at all incorporate the notion of generative modeling.

2.4 Generalized Prediction-Constraints

The prediction-constrained training framework has a number of compelling advantages, but

it is limited to models for which hd can be explicitly marginalized and the prediction model

can be effectively trained via maximum likelihood. In many practical applications these

assumptions may not hold, thus we consider generalizations to the prediction-constrained

25

framework.

2.4.1 Approximating constraints

For many latent variable models it is not tractable to compute the marginalization over

the hidden variable shown in Eq. (2.4). In such cases we can approximate the prediction-

constrained training objective via samples from the posterior over the hidden variable,

min
ξ
−

[
D∑

d=1

log p(xd | ξh, ξx)

]
− λϵ

[
D∑

d=1

log
1

S

S∑
s=1

p(yd | hds, ξ
y)

]
+R(ξ), (2.24)

zd1...zdS ∼ p(hd|xd, ξ
h, ξx).

In cases where our hidden variable of interest is discrete, this sampling procedure is non-

differentiable. In such cases, we consider an alternative prediction scheme using the expec-

tation of the hidden state as the covariate for prediction.

min
ξ
−

[
D∑

d=1

log p(xd | ξh, ξx)

]
− λϵ

[
D∑

d=1

log p
(
yd | E

[
hd|xd, ξ

h, ξx
]
, ξy
)]

+R(ξ), (2.25)

2.4.2 Constraints on posterior approximations

In many cases is impractical to compute or even sample from the true posterior, as in topic

models or deep latent variable models, we can instead enforce a prediction constraint using

an appropriate posterior approximation q(hd | xd, ξ
h, ξx) ≈ p(hd | xd, ξ

h, ξx), making the

26

approximation,

p(yd | xd, ξ
h, ξx, ξy) ≈

∫
p(yd | xd, hd, ξ

y)q(zd | xd, ξ
h, ξx) dhd (2.26)

In this case our constrained objective becomes:

min
ξ

−

[
D∑

d=1

log p(xd | ξh, ξx, ξy)

]
+R(ξ), (2.27)

subject to −
D∑

d=1

Eq(hd|xd,ξ)

[
log p(yd | hd, ξ

y)
]
≤ ϵ.

We stress that our approximate posterior only approximates the posterior given the obser-

vation p(zd | xd, α, θ) rather than the full posterior p(zd | xd, yd, α, θ, w), which would require

knowledge of the true label yd. We can similarly write our unconstrained PC objective as:

min
ξ
−

[
D∑

d=1

log p(xd | ξh, ξx)

]
− λϵ

D∑
d=1

Eq(hd|xd,ξ)

[
log p(yd | hd, ξ

y)

]
+R(ξ). (2.28)

Note that in cases where the marginalization over hd is intractable for the prediction con-

straint, the equivalent marginalization in the maximum likelihood objective, p(xd | ξh, ξx) =∫
hd
p(xd, hd | ξh, ξx)dhd may also be intractable. In such cases we again replace the exact

marginal likelihood with a tractable lower bound, using the approximate posterior. The

prediction-constrained evidence lower bound objective then becomes:

min
ξ
−Eq(hd|xd,ξ)

[
D∑

d=1

log p(xd, hd | ξ) + λϵ log p(yd | xd, hd, ξ
y)− log q(hd|xd, ξ)

]
+R(ξ)

(2.29)

27

Distinction from posterior regularization

This framing raises an important subtlety: what is the difference between the posterior

regularized objective and the approximate prediction-constrained ELBO? The key to the

distinction is in the treatment of the posterior approximation. We see that the posterior

regularization objective jointly optimizes over both the global parameters ξ and the posterior

approximation parameters v̂d as in Eq. (2.19). In the prediction-constrained framework

the approximate posterior (or equivalently its parameters v̂d) are always chosen to best

approximate p(hd | xd, ξ) given the global parameters ξ and approximating family q. For

example, the equivalent to Eq. (2.19) under the prediction-constrained framework would

become

min
ξ
−Eq(hd|v̂d)

[
D∑

d=1

log p(xd, hd | ξ) + λϵ log p(yd | xd, hd, ξ
y)

]
+R(ξ) (2.30)

v̂ = {v̂d}Dd=1 = arg min
{v̂d}Dd=1

D∑
d=1

Eq(hd|v̂d)

[
log p(xd, hd | ξ)− log q(hd | v̂d)

]

This is equivalent to minimizing the KL-divergence between q(hd | v̂d) and p(hd | xd, ξ) for

all d ∈ {1...D}. We refer to the minimization over v̂d as the inner optimization and the

minimization over ξ as the outer optimization. In this case we view the parameters of the

approximate posterior as a function of the observation and global parameters v̂(xd, ξ) and

thus more compactly write our objective as:

min
ξ
−

D∑
d=1

Eq(hd|v̂(xd,ξ))

[
log p(xd, hd | ξ) + λϵ log p(yd | xd, hd, ξ

y)

]
+R(ξ) (2.31)

We note that in some cases, such as our prediction-constrained variational autoencoders,

this distinction becomes ambiguous and the prediction-constrained model can be viewed as

a special case of posterior regularization.

28

zd

xd yd

π ξx ξy

observed

data

target

label

mixture

assignment

examples

d = 1,...,D

Figure 2.3: Graphical model representation of a supervised mixture model.

2.5 Prediction-constrained Mixture Models

We first present the application of prediction-constrained training to supervised mixture

models. Our goal is to illustrate the benefits of our prediction-constrained approach in a

situation where the marginalization over hd in Eq. (2.6) can be computed exactly in closed

form. This allows direct comparison of our proposed PC training objective to alternatives

like maximum likelihood, without worry about how approximations needed to make inference

tractable affect either objective.

Consider a simple supervised mixture model which generates data pairs xd, yd, as illustrated

in Fig. 2.3. This mixture model assumes there are K possible discrete hidden states, and

that the only hidden variable at each data point d is an indicator variable: hd = {zd}, where

zd ∈ {1, 2, . . . K} indicates which of the K clusters point d is assigned to. For the mixture

29

model, we parameterize the densities in Eq. (2.1) as follows:

log p(zd = k | ξh) = log πk, (2.32)

log p(xd | zd = k, ξx) = log p(xd | ξxk), (2.33)

log p(yd | xd, zd = k, ξy) = log p(yd | xd, ξ
y
k). (2.34)

The parameter set of the latent variable prior P is simple: ξh = {π}, where π is a vector of

K positive numbers that sum to one, representing the prior probability of each cluster.

We emphasize that the data likelihood p(xd | ξxk) and label likelihood p(yd | xd, ξ
y
k) are left in

generic form since these are relatively modular: one could apply the mixture model objectives

below with many different data and label distributions, so long as they have valid densities

that are easy to evaluate and optimize for parameters ξx, ξy. Fig. 2.3 assumes the particular

likelihood choices we used in our toy data experiments (Gaussian distribution for p(xd | ξxk),

Bernoulli distribution for p(yd | xd, ξ
y
k)), but we will develop our PC training for more general

cases; the mixture component distributions could be other data appropriate distributions and

alternative prediction models could include multiclass categorical prediction or regression.

The only assumption we make is that each of the K clusters has a separate parameter set:

ξx = {ξxk}Kk=1 and ξy = {ξyk}Kk=1.

Related work on supervised mixtures. While to our knowledge, our prediction-constrained

optimization objective is novel, there exists prior literature on applying mixtures to super-

vised problems where the practitioner observes pairs of data covariates x and targets y. One

line of work uses generative models with factorization structure like Fig. 2.3, where each

cluster k has parameters for generating data ξxk and targets ξyk . For example, Ghahramani

and Jordan [1993, Sec. 4.2] consider nearly the same model as in our toy experiments (except

for using a categorical over labels y instead of a Bernoulli). They derive an Expectation Max-

imization (EM) algorithm to maximize a lower bound on the symmetric joint log likelihood

30

log p(x, y | ξ). Later applied work has sometimes called such models Bayesian profile regres-

sion when the targets y are real-valued [Molitor et al., 2010]. These efforts have seen broad

extensions to generalized linear models especially in the context of Bayesian nonparametric

priors like the Dirichlet process fit with MCMC sampling procedures [Shahbaba and Neal,

2009, Hannah et al., 2011, Liverani et al., 2015]. However, none of these efforts correct for

the asymmetry issues we have raised, instead simply using the symmetric joint likelihood.

Other work takes a more discriminative view of the clustering task. Krause et al. [2010] de-

velop an objective called Regularized Information maximization which learns a conditional

distribution for y that preserves information from the data x. Other efforts do not estimate

probability densities at all, such as “supervised clustering” [Eick et al., 2004]. Many appli-

cations of this paradigm exist [Finley and Joachims, 2005, Al-Harbi and Rayward-Smith,

2006, DiCicco and Patel, 2010, Peralta et al., 2013, Ramani and Jacob, 2013, Grbovic et al.,

2013, Peralta et al., 2016, Flammarion et al., 2016, Ismaili et al., 2016, Yoon et al., 2016,

Dhurandhar et al., 2017].

2.5.1 Objective function evaluation and parameter estimation.

Computing the data log likelihood. The marginal likelihood of a single data example

xd, marginalizing over the latent variable zd, can be computed in closed form via the function:

log p(xd | π, ξx) = log
K∑
k=1

exp
(
log p(xd | ξxk) + log πk

)
. (2.35)

Computing the label given data log likelihood. Similarly, the likelihood p(yd | xd)

of labels given data, marginalizing away the latent variable zd, can be computed in closed

31

form:

log p(yd | xd, π, ξ
x, ξy) =

log

[
K∑
k=1

exp
(
log p(yd | xd, ξ

y
k) + log p(xd | ξxk) + log πk

)]
− log p(xd | π, ξx). (2.36)

PC parameter estimation via gradient descent. Our original unconstrained PC op-

timization problem in Eq. (2.6) can thus be formulated for mixture models using this closed

form marginal probability functions M and appropriate regularization terms R:

min
π, ξx, ξy

−
D∑

d=1

log p(xd | π, ξx)− λ
D∑

d=1

log p(yd | xd, π, ξ
x, ξy) +R(ξ). (2.37)

We can practically solve this optimization objective via gradient descent. However, some

parameters such as π live in constrained spaces like the K−dimensional simplex. To han-

dle this, we apply invertible, one-to-one transformations from these constrained spaces to

unconstrained real spaces and apply standard gradient methods easily.

In practice, for training supervised mixtures we use the Adam gradient descent procedure

[Kingma and Ba, 2014], which requires specifying some baseline learning rate (we search

over a small grid of 0.1, 0.01, 0.001) which is then adaptively scaled at each parameter

dimension to improve convergence rates. We initialize parameters via random draws from

reasonable ranges and run several thousand gradient update steps to achieve convergence to

local optima. To be sure we find the best possible solution, we use many (at least 5, preferably

more) random restarts for each possible learning rate and choose the one snapshot with the

lowest training objective score.

32

2.5.2 Toy Example: Why Asymmetry Matters

We now consider a small example to illustrate one of our fundamental contributions: that PC

training is often superior to symmetric maximum likelihood training with label replication,

in terms of finding models that accurately predict labels y given data x. We will apply

supervised mixture models to a simple toy dataset with data xd ∈ R on the real line and

binary labels yd ∈ {0, 1}. The observed training dataset is shown in the top rows of Fig. 2.4

as a stacked histogram. We construct the data by drawing data x from three different

uniform distributions over distinct intervals of the real line, which we label in order from left

to right for later reference: interval A contains 175 data points x ∈ [−1, 1], with a roughly

even distribution of positive and negative labels; interval B contains 100 points x ∈ [1, 1.5]

with purely positive labels; interval C contains 75 points x ∈ [1.5, 2.0] with purely negative

labels. Stacked histograms of the data distribution, colored by the assigned label, can be

found in Fig. 2.4.

We now wish to train a supervised mixture model for this dataset. To fully specify the

model, we must define concrete densities and parameter spaces. For the data likelihood f ,

we use a 1D Gaussian distribution N (µk, σk), with two parameters ξxk = {µk, σk} for each

cluster k. The mean parameter µk ∈ R can take any real value, while the standard deviation

is positive with a small minimum value to avoid degeneracy: σk ∈ (0.001,+∞). For the label

likelihood g, we select a Bernoulli likelihood Bern(ρk), which has one parameter per cluster:

ξyk = {ρk}, where ρk ∈ (0, 1) defines the probability that labels produced by cluster k will

be positive. For this example, we fix the model structure to exactly K = 2 total clusters for

simplicity.

We apply very light regularization on only the π and ρ parameters:

R(π) = − log Dir(π | 1.01, . . . 1.01), R(ρ) =
K∑
k=1

− log Beta(ρk | 1.01, 1.01). (2.38)

33

Figure 2.4: Toy example from Sec. 2.5.2: asymmetric prediction constrained (PC) training
predicts labels better than symmetric joint maximum likelihood training with label replica-
tion (ML+rep). Top rows: Estimated 2-cluster Gaussian mixture model for each training
procedure under different weight values λ, taking the best of many initializations using the
relevant training objective function. Curves show the estimated 1D Gaussian distribution
N (µk, σk) for each cluster. Upper left text in each panel gives the estimated probability ρk
that each cluster will emit a positive label. Colors are assigned so that red cluster has higher
probability of emitting positive labels. Stacked histograms of 1-dimensional training dataset
overlaid in background (blue shading means y = 0, red means y = 1). Bottom row: Area-
under-the-ROC-curve and error rate scores for predicting labels y from data x on training
data, using the best solution (as ranked by each training objective) across different weight
values λ. Final panel shows negative log likelihood of data x (normalized by number of data
points) across same λ values.

These choices ensure that MAP estimates of ρk and π are unique and always exist in nu-

merically valid ranges (not on boundary values of exactly 0 or 1). This is helpful for the

closed-form maximization step we use for the EM algorithm for the ML+rep objective.

When using this model to explain this dataset, there is a fundamental tension between

explaining the data x and the labels y|x: no one set of parameters ξ will outrank all other

parameters on both objectives. For example, standard joint maximum likelihood training

34

(equivalent to our PC objective when λ = 1) happens to prefer a K = 2 mixture model with

two well-separated Gaussian clusters with means around 0 and 1.5. This gives reasonable

coverage of data density p(x), but has quite poor predictive performance p(y|x), because the

left cluster is centered over interval A (a non-separable even mix of positive and negative

examples), while the right cluster explains both B and C (which together contain 100 positive

and 75 negative examples).

Our PC training objective allows prioritizing the prediction of y|x by increasing the Lagrange

multiplier weight λϵ. Fig. 2.4 shows that for λϵ = 4, the PC objective prefers the solution with

one cluster (colored red) exclusively explaining interval B, which has only positive labels.

The other cluster (colored blue), has wider variance to cover all remaining data points. This

solution has much lower error rate (≈ 0.25 vs. ≈ 0.5) and higher AUC values (≈ 0.69 vs.

≈ 0.5) than the basic λϵ = 1 solution. Of course, the trade-off is a visibly lower likelihood of

the training data log p(x), since the higher-variance blue cluster does less well explaining the

empirical distribution of x. As λϵ increases beyond 4, the quality of label prediction improves

slightly as the decision boundaries get even sharper, but this requires the blue background

cluster to drift further away from data and reduce data likelihood even more. In total, this

example illustrates how PC training enables the practitioner to explore a range of possible

models that tradeoff data likelihood and prediction quality.

In contrast, any amount of label replication for standard maximum likelihood training does

not reach the prediction quality obtained by our PC approach. We show trained models

for replication weights values equal to 1, 4, 16, and 64 in Fig. 2.4 (we use common notation

λ for simplicity). For all values λ > 1, we see that symmetric joint “ML+rep” training

finds the same solution: Gaussian clusters that are exclusively dedicated to either purely

positive or purely negative labels. This occurs because at training time, both x and y are

fully observed, and thus the replicated presence of y strongly cues which cluster to assign

and allows completely perfect label classification. However, when we then try asymmetric

35

prediction of y given only x on the same training data, we see that performance is much

worse: the error rate is roughly 0.4 while our PC method achieved near 0.25. It is important

to stress that no amount of label replication would fix this, because the asymmetric task of

predicting y given only x is not the focus of the symmetric joint likelihood objective.

2.5.3 Toy Example: Advantage of Semisupervised PC Training

Next, we study how our PC training objective enables useful analysis of semi-supervised

datasets, which contain many unlabeled examples and few labeled examples. Again, we will

illustrate clear advantages of our approach over standard maximum likelihood training in

prediction quality.

The dataset is generated in two stages. First, we generate 5000 data vectors xd ∈ R5 drawn

from a mixture of 2 well-separated Gaussians with diagonal covariance matrices:

xd ∼
1

2
N

([
−1
0
0
0
0

]
,

[
2
1
1
0.5

1

])
+

1

2
N

([
+1
0
0
0
0

]
,

[
2
1
1
1
0.5

])
.

Next, we generate binary labels yd according to a fixed threshold rule which uses only the

absolute value of the second dimension of xd:

yd|xd =


1 if |xd2| < 0.1,

0 otherwise.

(2.39)

While the full data vectors are 5-dimensional, we can visualize the first two dimensions of

x as a scatterplot in Fig. 2.5. Each point is annotated by its binary label y: 0-labeled

data points are grey ’x’ markers while 1-labeled points are black ’o’ markers. Finally, we

make the problem semi-supervised by selecting some percentage b of the 5000 data points to

keep labeled during training. For example if b = 50%, then we train using 2500 labeled pairs

36

(a) PC: Prediction-constrained

(b) ML+rep: Maximum likelihood
with label replication

Figure 2.5: Toy example from Sec. 2.5.3: Estimated supervised mixture models produced by
PC training (a) and ML+rep (b) for semi-supervised tasks with few labeled examples. Each
panel shows the 2D elliptical contours of the estimated K = 2 cluster Gaussian mixture
model which scored best under each training objective using the indicated weight λ and
percentage b of examples which have observed labels at training, which varies from 3% to
100%. Upper text in each panel gives the estimated probability ρk that each cluster will emit
a positive label. Colors are assigned so that red cluster has higher probability of emitting
positive labels. In the background of each panel is a scatter plot of the first two dimensions
of data x, with each point colored by its binary label y (grey = negative, black = positive).

{xd, yd} randomly selected from the full dataset as well as the remaining 2500 unlabeled data

points. Our model specification is the same as the previous example: Gaussian with diagonal

covariance for f , Bernoulli likelihood for g, and the same light regularization as before to

allow closed-form, numerically-valid M-steps when optimizing the ML+rep objective via EM.

37

Figure 2.6: Toy example from Sec. 2.5.3: Each panel shows line plots of performance metrics
as the PC or replication weight λ increases, for particular percentage of data b that is labeled.
Top row shows label prediction error rate (lower is better), and bottom row shows negative
data likelihood − log p(x) (lower is better). For visualizations of corresponding parameters,
see Fig. 2.5.

We have deliberately constructed this dataset so that a K = 2 supervised mixture model is

misspecified. Either the model will do well at capturing the data density p(x) by covering

the two well-separated blobs with equal-covariance Gaussians, or it will model the predictive

density p(y|x) well by using a thin horizontal Gaussian to model the black y = 1 points as

well as a much larger background Gaussian to capture the rest. With only 2 clusters, no

single model can do well at both.

Our PC approach provides a range of possible models to consider, one for each value of

λ, which tradeoff these two objectives. Line plots showing overall performance trends for

data likelihood p(x) and prediction quality are shown in Fig. 2.6, while the corresponding

parameter visualizations are shown in Fig. 2.5. Overall, we see that PC training when λ = 1,

which is equivalent to standard ML training, yields a solution which explains the data x well

but is poor at label prediction. For all tested fractions of labeled data b, as we increase λ

there exists some critical point at which this solution is no longer preferred and the objective

instead favors a solution with near-zero error rate for label prediction. For b = 100%, we find

a solution with near zero error rate at λ = 4, while for b = 3% we see that it takes λ≫ 64.

In contrast, when we test symmetric ML training with label replication across many repli-

38

cation weights λ, we see big differences between plentiful labels (b ⪆ 20%) and scarce labels

(b ⪅ 20%). When enough labeled examples are available, high replication weights do favor

the same near-zero error rate solution found by our PC approach. However, there is some

critical value of b below which this solution is no longer favored, and instead the preferred

solution for label replication is a pathological one: two well-separated clusters that explain

the data well but have extreme label probabilities ρk. Consider the b = 3%, λ = 64.0 so-

lution for ML+rep in Fig. 2.5. The red cluster explains the left blob of unlabeled data x

(containing about 2400 data points) as well as all positive labels y observed at training,

which occur in both the left and right blobs (only 150 total labels exist, of which about

half are positive). The symmetric joint ML objective weighs each data point, whether la-

beled or unlabeled, equally when updating the parameters ξh, ξx that control p(x) no matter

how much replication occurs. Thus, enough unlabeled points exert strong influence for the

particular well-separated blob configuration of the data density p(x), and the few labeled

points can be easily explained as outliers to the two blobs. In contrast, our PC objective

by construction allows upweighting the influence of the asymmetric prediction task on all

parameters, including ξh, ξx. Thus, even when replication happens to yield good predictions

when all labels are observed, it can yield pathologies with few labels that our PC easily

avoids.

39

Chapter 3

Prediction-Constrained Hidden

Markov Models

In this section, we explore prediction-constrained training of supervised Hidden Markov

models for timeseries data. We now assume that each observation is a sequence of T values

xd = {xd1...xdT}. To simplify notation, we will assume that the T is shared across obser-

vations (i.e. all observed sequences are of the same length), however this assumption can

easily be relaxed.

3.1 Hidden Markov Models

As with mixtures, HMMs [Rabiner and Juang, 1986a] assume that observed sequences are

generated by a common model with K hidden, discrete states. Rather than each observation

having a global state, the hidden variable is a sequence of T per-timestep state assignments

hd = {zd} = {zd1...zdT} drawn from a Markov process, where each state assignment zdt is

associated with the corresponding observation xdt for time t. The global prior parameters ξh

40

zd0

xd0

yd

α

ξx

η target

label

zd2 zdTzd1

xd1 xd2 xd0

⋅ ⋅ ⋅ π

examples

d = 1,...,D

state

sequence

observed

timeseries

Figure 3.1: Graphical model representation of a supervised hidden Markov model.

define the initial state distribution α and a set of transition distributions π for this Markov

process. So ξh = {α, π}, where π = {πk}Kk=0 denotes the probabilities of transitioning from

state j to state k: πjk = p(zdt = k | zd,t−1 = j).

Concretely, we define our joint density as follows:

log p(zd0 = k | ξh) = logαk, (3.1)

log p(zdt = k | ξh, zd,t−1) = log πzd,t−1k t ∈ {1...T}, (3.2)

log p(xdt | zdt = k, ξx) = log p(xdt | ξxk) t ∈ {1...T}. (3.3)

As with mixtures the data likelihood p(xdt | ξxk) (also called the emission distribution) is

modular and can be replaced with task-appropriate choices. In this section we consider two

examples: Gaussian emissions with a state-specific mean and covariance, ξxk = {µk,Σk}:

p(xdt | znt=k, ξx) = N (xnt | µk,Σk), (3.4)

41

as well as first-order autoregressive Gaussian emissions, ξxk = {Ak, µk,Σk}:

p(xnt | xnt−1, znt=k, ξx) = N (xnt | Akxnt−1 + µk,Σk). (3.5)

To simplify notation, we assume that there exists an unmodeled observation xn0 at time

zero.

3.2 Supervised Hidden Markov Models

In designing a supervised variant of the Hidden Markov Model, we note that the marginal-

ization in equation 2.4 is intractable in general, requiring a sum over KT terms to account

for all possible state configurations. For HMMs we instead consider variants of the objective

presented in equation 2.25.

Given the observed data xn, we can efficiently compute posterior marginal probabilities, or

beliefs, for the latent states zd via the belief propagation or forward-backward algorithm [Ra-

biner and Juang, 1986a]. This algorithm computes a forward set of messages
→
md at each

timestep as:

→
mdtk = p(xdt | ξxk)

K∑
i=1

→
md(t−1)i

(
πki∑K
j=1 πji

)
, t ∈ {1...T}, k ∈ {1...K} (3.6)

→
md0k = f(xd0 | ξxk) αk. t = 0

The corresponding set of backwards messages
←
md is computed as:

←
mdtk =

K∑
i=1

p(xd(t+1) | ξxi)
←
md(t+1)i πki, t ∈ {1...T}, k ∈ {1...K} (3.7)

We denote the posterior marginal probabilities by bdtk ≜ p(zdt = k | xd1 . . . xd,T , α, π, ξ
x) ∝

42

→
mdtk ·

←
mdtk. Note that these beliefs are a deterministic function of xd (which will be important

for our end-to-end optimization) with computational cost O(TK2). The beliefs bntk at time

t take into account the full sequence xn, including future timesteps xdt′ , t
′ > t. In some

applications, predictions must be made only on the data up until time t. These forward

beliefs
→
b ntk ≜ p(zdt = k | xd1, . . . , xdt, α, π, ξ

x) are computed by the forward pass of belief

propagation.

We may view the complete sequence of beliefs bd as a deterministic function of the data

xd, transition probability vectors α, π, and emission parameters ξx: bd = b(xd, α, π, ξ
x).

Similarly, for a specific timestep we can write bdt = bt(xd, α, π, ξ
x). Each of these functions

can be computed with cost O(TK2).

Now we consider the prediction of labels y given data x. Because they capture uncertainty

in the hidden states zd, the beliefs bd are succinct (and computationally efficient) summary

statistics for the data. We use beliefs as features for the prediction of labels yd from data

xd in two scenarios: per-sequence classification, where the entire sequence d has a single

label yd, and per-timestep classification, where each timestep has its own event label yd =

{yd1, . . . , ydT}.

3.2.1 Sequence classification.

In the sequence classification scenario, we seek to assign a scalar label yd to the entire se-

quence. For example, in data retrieval applications we may wish to classify existing record-

ings of human activities into one of several predefined categories. Below, we provide two

possible prediction functions that use belief features. For the probabilistic case our predic-

tion function ŷ(xd, α, π, ξ
x, ξy) will define the parameters of the conditional for yd:

p(yd | xd, α, π, ξ
x, ξy) = p(yd | ŷ(xd, α, π, ξ

x, ξy)) (3.8)

43

xd1 xd2 xd3

zd0 zd2 zd3

xd2

zd2 …

…

yd

xd1 xd2 xd3

zd0 zd2 zd3

xd2

zd2 …

…

yd0 yd1 yd2 yd3

Figure 3.2: Representation of prediction models for sequence classification (left) and timestep
classification (right).

First, we use the fraction of time spent in each state:

ŷ(xd, α, π, ξ
x, ξy) = ĝ(ηT b̄(xd, α, π, ξ

x)), ξy = {η} (3.9)

b̄(xd, π, ϕ) ≜
1

Tn

T∑
t=1

bt(xd, α, π, ξ
x), (3.10)

where bt(xn, π, ϕ) = p(znt | xn, π, ϕ), η is a vector of regression coefficients, and ĝ(·) is an

appropriate link function (e.g., a logistic ĝ(w) = 1/(1 + e−w) for binary labels or a softmax

for categorical labels). We demonstrate in Sec. 3.4 that predictions based on this intuitive

feature match the performance of more complex, “deep” neural networks in several domains.

Second, we consider non-linear features learned from belief states. Some tasks may require

this flexibility for high-quality prediction (especially if the intended HMM is misspecified).

In these cases, we can replace the linear model based on averaged belief states in Eq. (5.13)

with a general function that takes in the sequence of belief states, and outputs a prediction:

ŷ(xd, α, π, ξ
x, ξy) = ĝ(b̄(xd, α, π, ξ

x); η), ξy = {η} (3.11)

44

where η are parameters of a parameterized differentiable function g(·; η), such as a neural

network. In one of the sequence classification tasks in Sec. 3.4, we find that a prediction

function incorporating a convolutional transformation of the belief sequence, followed by local

max-pooling, leads to improved accuracy. The convolutional structure allows for predictions

to depend on belief patterns that span several time-steps. We emphasize that the only input

to this flexible prediction function are the beliefs produced by an HMM. Thus, the prediction

task must be informing the learned states of this HMM.

Several previous efforts have integrated HMMs and deep neural networks. Kuehne et al.

[2018] develop a per-frame activity classifier for videos where an RNN produces fine-grained

likelihoods which are then fed into an HMM to infer smoothed segmentations over longer

time-scales. Related efforts explore cooking videos [Malmaud et al., 2015] and sign-language

sequences [Koller et al., 2017] using a similar neural likelihood approach. In contrast, our

work applies an HMM to raw data and then feeds beliefs into a learned discriminator (possibly

a NN). Our approach allows us to make predictions even when some data xt is missing, and

further performs end-to-end training to optimize all parameters at once to balance generative

and discriminative goals, rather than the iterative alignment in Kuehne et al. [2018].

3.2.2 Event detection.

In other applications, we seek to densely label the events occurring at each timestep of a

sequence, such as the prediction of medical events from hourly observations of patients in

a hospital. To predict the label ydt at time t, we use the beliefs bdt at times in a window

twstart : twend
around t as features for a prediction model with parameters η:

ŷt(xn, π, ϕ, η) = ĝ(btwstart :twend
(xn, π, ϕ); η). (3.12)

45

Here ĝ(·; η) could either be a generalized linear model based on the average state frequencies

in the local time window, or a more complicated non-linear model as discussed for sequence

classification.

Finally, we note that many prediction tasks are offline: the prediction is needed for post-

hoc analysis and thus can incorporate information from the full data sequence. When a

prediction needs to happen online, for example in forecasting applications, we use only the

forward-beliefs
→
b dt as regression features.

While many previous efforts have used HMMs to produce features for prediction models

(e.g., the forward-belief representation were used for ICU forecasting [Ghassemi et al., 2017]),

prior work has trained via a two-stage procedure: first training the HMM via unsupervised

likelihood maximization (without labels), and next training the prediction model g(·; η) while

fixing the HMM.

Many competitive sequential prediction models are variants of conditional random fields

(CRFs) [Lafferty et al., 2001] or structural support vector machines (SSVMs) [Tsochantaridis

et al., 2004, Taskar et al., 2004]. These models typically assume the labels y are available

for all training sequences x, and are trained to minimize a loss (log-likelihood for CRFs,

hinge loss for SSVMs) in the prediction of y given x. Surveys have highlighted applications

to natural language [Sutton and McCallum, 2012] and image data [Nowozin and Lampert,

2011].

46

3.3 Prediction-Constrained Learning of HMMs

Our prediction-constrained (PC) training objective for both the sequence classification and

event detection is:

min
α,π,ξx,η

−
D∑

d=1

log p(xd | α, π, ξx)−R(α, π, ξx, η) (3.13)

subject to:



∑D
d=1 ℓ

(
yd, ŷ(xd, α, π, ξ

x, η)
)
≤ ϵ

if one label per sequence

∑D
d=1

∑T
t=1 loss

(
ydt, ŷt(xd, α, π, ξ

x, η)
)
≤ ϵ

if one label per timestep

As before we fit the model parameters α, π, ξx, η by using the KKT conditions to define an

equivalent unconstrained objective that penalizes inaccurate label predictions:

min
π,ϕ,η

D∑
d=1

− log p(xd | α, π, ξx) + λϵ

∑
d:DS

ℓ(yd, ŷ(xd, α, π, ξ
x, η)) +R(α, π, ξx, η) (3.14)

Regularization.

In Eq. (3.14), we include a term to regularize the generative HMM parameters {π, ϕ} by pe-

nalizing their log density under some suitable prior distribution: log p(α, π, ξx) = logDir(α |

βα) +
∑K

k=0 log Dir(πk | βk) +
∑K

k=1 log p(ξ
x
k). The form of the prior on the emission pa-

rameters ξx, will depend on the form of the likelihood. For Gaussian emissions we use

a normal-inverse-Wishart prior, and for autoregressive emissions we use a matrix normal

47

inverse-Wishart prior. We can interpret our objective as the maximum a posteriori (MAP)

estimation of generative parameters subject to a supervised prediction constraint.

Gradient Descent via Automatic Differentiation.

This training objective in Eq. (3.14) is differentiable with respect to the model parameters

α, π, ξx, η and can thus be minimized via standard (stochastic) gradient descent algorithms.

Efficient computation of the data log-likelihood log p(xn | α, π, ξx) is possible by accumu-

lating the log-normalizers of the forward messages from belief propagation [Rabiner and

Juang, 1986a]. We can compute all terms in Eq. (3.14) and their gradients via automatic

differentiation software, with cost linear in the number of time steps.

Handling missing data.

The HMM construction allows for elegant handling of missing data within a sequence. Let xO
d

denote the observed timesteps of xd. We can easily marginalize over the unobserved timesteps

noting that
∫
xdt

p(xdt | zdt = k, ξx) = 1, by definition. Modifying belief propagation simply

amounts to dropping the likelihood terms f(· | ξx) from the messages in eq. 3.6 and eq. 3.7

for missing timesteps. Thus we can use this modified algorithm to compute log p(xO
d |α, π, ξx)

and ŷ(xO
d , α, π, ξ

x, η) and perform optimization as in the fully-observed case.

3.3.1 Toy example: PC-HMM

Figure 3.3 includes an intuitive application of the PC-HMM framework to binary sequence

classification, illustrating its advantages over HMMs trained solely from unlabeled data, as

well as its potential for semi-supervised learning from databases with few labeled sequences.

48

1 2 3* 4

0.5

0.5

0.5

0.5 1

1 PC-HMM, 10 labeled sequences (74.6% held-out accuracy):

PC-HMM, including unlabeled (89.3% held-out accuracy):

EM Result (48.6% held-out accuracy):

PC-HMM Result (97.3% held-out accuracy):

30

2

-2

0

Figure 3.3: Comparison of our PC-HMM to conventional unsupervised HMM features on a
synthetic binary classification task. Left: Many state sequences zn of length 8 are drawn
from the illustrated Markov chain, with 350 used for training and 150 held out for valida-
tion. 2D observations xn are then drawn from evenly-spaced state-specific Gaussians. Each
sequence is assigned a positive label yn only if it has any observation xnt that falls into the
marked box. Center: Fully-labeled task. We compare a supervised PC-HMM (bottom) to the
conventional approach (top) of first training an unsupervised HMM with the EM algorithm,
and subsequently predicting labels given average belief state features with a linear classi-
fier. The PC-HMM successfully learns to split the original state (yellow #3 in left diagram)
that determines sequence labels, leading to more accurate predictions than features from
the unsupervised HMM (97.3% accuracy vs. 48.6%). Right: Semi-supervised task. Only 10
randomly selected training sequences (out of 350) are labeled (colored observations). Using
only these 10 sequences, the PC-HMM cannot model labels or data well (top). However, if
allowed to use the 10 labeled sequences and 340 unlabeled sequences, then our PC-HMM
accurately predicts test labels (bottom). All models use an overcomplete set of K = 6 states
to avoid local optima. We select the best of 25 runs.

3.4 Applications: PC-HMM

We now assess how well our proposed PC training achieves our two key goals on real-world

problems: accurate prediction of labels y given data x (even if labels are rare) and useful

generative models of the sequential data x.

49

3.4.1 Baselines

RNN Baselines.

To establish a competitive baseline for some prediction tasks, we consider modern deep re-

current neural networks [Cho et al., 2014, Hochreiter and Schmidhuber, 1997]. We train

RNNs via an aggressive randomized grid search over many possible architectures with 2

recurrent layers, varying the number of hidden units in each layer {10, 25, 50, 100}, the re-

current unit type {gru, lstm}, the activation function, and the number of dense output layers

{1, 2}, batch size, learning rate and L2 regularization strength on all weight parameters. The

RNN models are trained to optimize the class-balanced cross-entropy loss (described in Sec.

2.2.2), using RMSprop stochastic gradient descent for up to 200 epochs with early stopping

triggered whenever validation loss stops improving. For each possible model size (number of

hidden units), we select the best of 50 possible hyperparameter configurations according to

the validation set area under the ROC curve (AUC).

HMM Baselines.

To demonstrate that PC optimization is necessary to learn HMM states useful for prediction,

we compare to a baseline that trains an HMM to maximize the unsupervised likelihood of the

data, via expectation maximization (EM) [Rabiner and Juang, 1986b]. This HMM baseline

first fits α, π, ϕ given only the data x, then trains a second-stage predictor with parameters

η given belief states from the fixed HMM and labels y. An alternative supervised HMM

(sHMM) baseline optimizes the λϵ = 1 special case of our PC objective. Across all HMM-

based methods, to mitigate sensitivity to local optima we select the best of many independent

runs from random initializations.

50

True labels for sequence 0

10% of labels available for training

Class probabilities from Unsupervised HMM (EM) Model

Prediction Errors from Unsupervised HMM (EM) Model, accuracy: 66.4%

Class probabilities from Prediction-Constrained HMM Model

0 200 400 600 800

Time

Prediction Errors from Prediction-Constrained HMM, accuracy: 90.0%

← Trace of bee movements in sequence 0

Trace of bee movements in sequence 1→
Waggle
Turn right
Turn left

True labels for sequence 1

10% of labels available for training

Class probabilities from Unsupervised HMM (EM) Model

Prediction Errors from Unsupervised HMM (EM) Model, accuracy: 57.8%

Class probabilities from Prediction-Constrained HMM Model

0 200 400 600 800 1000

Time

Prediction Errors from Prediction-Constrained HMM, accuracy: 84.6%

Figure 3.4: Per-timestep label completion task on the dancing bee dataset. Each method
must predict the missing behavior labels for all 6 bee sequences given 10% of the labels
selected at random. We heuristically set λ = 100 for the PC-HMM based on the ratio of
observed labels to observed features and ran each algorithm from 15 random initializations,
choosing the best using their corresponding objective function. We visualize the learned
states from our PC-HMM and an unsupervised HMM on two representative sequences (left:
sequence 0, right: sequence 1). Over all 6 sequences, the EM baseline achieved an overall
accuracy of 61.1% on the missing labels and the PC-HMM achieved an accuracy of 87.2%.

3.4.2 Dancing Honey Bee Segmentation.

Honey bees communicate the location of food sources to other members of their hive through

“waggle dances.” Oh et al. [2008] tracked 6 different bees performing these dances and

identified 3 distinct behaviors within each dance: turn left, turn right and waggle (moving

straight while waggling its body). We consider the task of per-timestep prediction of these

behaviors using the bee’s tracked position and orientation.

We consider two tasks, a label completion task and a leave-one-sequence-out generalization

task. For both tasks, we assume K = 6 states, an AR-Gaussian emission model, and

a prediction model with two additional layers between the beliefs and the per-timestep

predictions: a convolutional layer with 3 filters of width 3 and a max-pooling layer with

window size 5. The small size of this data makes flexible discriminative models, such as

RNNs, a poor choice.

Fig. 3.4 shows the results of a label completion task on two representative sequences. Across

all sequences, the PC-HMM achieves 87.2% accuracy at label completion, compared to 61.1%

51

for the unsupervised HMM. On the leave-one-sequence-out task, our PC-HMM achieved

80.4% accuracy while the EM baseline achieved only 59.4%.

3.4.3 Human activity recognition.

We next consider human activity recognition using the activities of daily living task from

the UniMiB SHAR dataset [Micucci et al., 2017]. This dataset consists of 7759 short (256

timesteps) sequences of 3-axis accelerometer measurements captured from 30 subjects per-

forming 9 different everyday activities, such as walking, sitting down, and climbing stairs.

The measurement at each timestep specifies the acceleration in each of the 3 spatial dimen-

sions at that time.

For this task, we used the Hyperopt library [Bergstra et al., 2013] to perform a wider search

over the prediction model structure and hyperparameters, including the regularization hy-

perparameters and the number of states. We used a fixed 70%-30% train-validation split

to evaluate each candidate model. Our final model uses a AR Gaussian likelihood, and a

prediction model that applies a convolutional layer with 10 filters of width 6 to the belief

sequence, followed by a max-pooling layer of width 9. Labels are predicted using a linear

model from the time-averaged outputs of the pooling layer. We pre-processed the data for the

HMM models by approximately removing gravity with a low-pass Butterworth filter [An-

guita et al., 2013], then smoothing with another Butterworth filter and downsampling to

effectively 10Hz.

We evaluated the performance of our final model using leave-one-out cross-validation over the

30 subjects in the dataset. Results are shown in Figure 3.5. Our best model with non-linear

prediction function achieved a total accuracy of 83.0 %. This is a substantial improvement

over the 73.2% baseline accuracy from a random forest classifier reported by [Micucci et al.,

2017]. A PC-HMM model using the simpler linear prediction model of Eq. (5.13) achieves

52

72.2% accuracy (78.6% accuracy with a second-order AR emission model in place of the

first-order model).

3.4.4 Ventilator need in the ICU.

We consider a treatment prediction task using 16492 train, 2007 validation, and 4582 test

sequences of vital signs and lab results available from the MIMIC-III public dataset of patient

stays in an intensive care unit [Johnson et al., 2016a]. Following previous work on treatment

onset prediction [Ghassemi et al., 2017], each sequence xn contains 18 hourly measurements:

7 vital signs and 11 laboratory measurements. The per-sequence binary outcome yn is the

need for a mechanical ventilator (breathing tube), which was positive in 34% of the training

data. Positively labeled sequences were censored one hour before the ventilator was installed

to prevent label leakage into the data xn. Negatively labeled sequences were re-sampled to

have similar length distribution as the positive sequences. The average length of a sequence

is 15.6 hours, with maximum length 40 hours. We train all methods with the class-balanced

logistic loss, with our PCHMM using a linear prediction model given beliefs. Results are

shown in Fig. 3.6. With 100% examples labeled, our 10-state PCHMM achieves an area

under the precision-recall curve (AUROC) score of 0.878 which is slightly better than the

RNN’s 0.867. Greater advantage is seen when only 10% of examples are labeled: the 10-state

PCHMM with achieves 0.848 AUROC, which beats the RNN’s 0.785 and the plain HMM’s

0.817.

3.4.5 ICU Mortality.

To evaluate the PC-HMM on clinical tasks that require SSL with feature missingness, we

predict in-ICU mortality after the first 24 hours on the eICU dataset [Pollard et al., 2018]

of vitals and labs (81% missing) from deidentified patient-stays at 59 critical care units

53

throughout the U.S. For each patient-stay, we extract 3 demographics, 8 vitals, and 6 lab

measurements discretized to hourly bins using eICU Extract [Wang et al., 2020]. Our train/-

valid/test splits have 43642/14509/14518 patient-stays, with ∼ 8.2% resulting in death. We

train the model at various percentages p of labels available for training, approximately pre-

serving the full dataset’s label imbalance. Fig. 3.7 shows the area under the precision-recall

curve for each method (where y = 1 means death) as label availability p increases. Across all

tested percentages p, the PC-HMM is competitive with deep alternatives, including BRITS

[Cao et al., 2018] and GRU-D [De Brouwer et al., 2019] as well as deep SSL such as FixMatch

[Sohn et al., 2020] and MixMatch [Berthelot et al., 2019b].

3.4.6 MIMIC-IV.

We further analyzed MIMIC-IV [Johnson et al., 2020], which contains over 60,000 de-

identified ICU patient-stays from one hospital. In an effort to make the task more challeng-

ing, our preprocessing downsampled feature frequencies and death events (67% missingness,

1.2% mortality). Our train/valid./test splits have 42836/15443/15802 patient-stays, with

∼ 1.2% patient stays resulting in death. Fig. 3.7 shows again that PC-HMM results are

quite competitive with deep learning baselines with 100x more parameters.

3.4.7 Interpreting learned PC-HMM models.

Our PC-HMM framework lets us interpret cohorts of vulnerable populations by visualizing

the emission distributions for the states that have the highest predictor coefficients ηk. On

eICU data, Fig. 3.8 shows our PC-HMM identifies states representing high blood urea nitro-

gen (BUN) and high creatinine (common indicators of kidney failure [Baha et al., 2021]) as

the most vulnerable to in-ICU mortality. The model transitions to these ‘high-risk’ states

as soon as high values of creatinine and BUN are seen in a patient who eventually dies.

54

1 2 3 6 All
Labeled Training Subjects

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 A
cc

ur
ac

y

PC-HMM (weighted loss)
PC-HMM
sHMM (weighted loss)
sHMM
CNN (weighted loss)
CNN

(a) Cross-validation accuracy

standing

getting up
walking

running
up sta

irs
jumping

down sta
irs lying

sitti
ng

standing

getting up

walking

running

up sta
irs

jumping

down sta
irs

lying

sitti
ng

0 0 0.13 0 0 0 0.1 0.77 0

0 0 0.16 0.02 0.078 0 0 0.75 0

0 0 1 0 0 0 0.0045 0 0

0 0 0.0024 0.92 0 0 0.078 0 0

0 0 0.025 0 0.89 0.0099 0.059 0.02 0

0 0 0 0 0.033 0.96 0.0066 0 0

0 0 0.02 0.14 0.013 0 0.81 0.0099 0

0 0 0.091 0 0.045 0.015 0 0.83 0.015

0 0 0.15 0 0.12 0 0.03 0.7 0

Standard loss
Balanced acc.: 60.11%

standing

getting up
walking

running
up sta

irs
jumping

down sta
irs lying

sitti
ng

0.7 0.17 0 0 0 0 0 0.033 0.1

0.25 0.31 0.078 0 0.078 0 0 0.25 0.02

0 0.014 0.95 0 0.014 0 0.0045 0.009 0.0045

0 0 0.015 0.86 0.0024 0.0024 0.12 0.0024 0

0 0.02 0.034 0 0.93 0 0.0049 0.0049 0.0049

0 0 0 0 0.0066 0.99 0 0 0

0.0099 0.026 0.14 0.05 0.093 0.0033 0.65 0.0099 0.013

0.18 0.15 0.03 0 0.015 0 0.015 0.45 0.15

0.03 0 0.03 0 0.03 0 0 0.061 0.85

Weighted loss
Balanced acc.: 74.55%

2

2.8

23

26

12

9.8

17

3.9

2.6

% of labels

(b) Confusion matrix for test data using cross-entropy and weighted losses

Figure 3.5: Performance on the activities of daily living task, evaluated using 30-fold cross-
validation, split by human subject. We show the performance for the PC-HMM model
varying the number of labeled test subjects available in each fold of the training data (each
fold uses unique labeled subjects). We compare these results against a CNN architecture for
this task [Li et al., 2018b] that we found strictly outperformed our RNN baseline. Using a
class-balanced loss, the PC-HMM outperforms the CNN in most cases and is better able to
distinguish rare classes at test time. It is also clear that an objective equivalent to maximizing
the joint likelihood p(y,x) (λ = 1), is outperformed by a prediction constrained objective
with further emphasis on the discriminative term.

55

0.05 0.2 0.5 1.0
frac. sequences labeled

0.65
0.70
0.75
0.80
0.85
0.90

te
st

 A
U

C

num. states = 10

0.05 0.2 0.5 1.0
frac. sequences labeled

num. states = 50

RNN layers=2
PCHMM
sHMM (max. joint lik.)
HMM (max. data lik.)

0.05 0.2 0.5 1.0
frac. sequences labeled

0.4
0.5
0.6
0.7
0.8
0.9
1.0

te
st

 lo
g

lik
.

num. states = 10

0.05 0.2 0.5 1.0
frac. sequences labeled

num. states = 50

PCHMM
sHMM (max. joint lik.)
HMM (max. data lik.)

Figure 3.6: Performance on ICU task: model vital signs x and predict need-for-ventilator y,
using 5%, 10%, 20%, 50%, and 100% of labels. Left: AUC scores (prediction quality, higher
is better) on heldout test set, for HMMs with K = 10 and K = 50 states. Right: Predictive
likelihood (generative quality, higher is better) on test set.

1.2 3.7 11.1 33.3 100.0
% labels (trained on)

0.01

0.04

0.07

0.10

0.13

0.16

0.19

0.22

0.25

0.28

Ar
ea

 u
nd

er
 P

R
Cu

rv
e

(te
st

 se
t)

PCHMM-n_states=5 (params = 212)
MixMatch (params = 41,026)
FixMatch (params = 41,026)
GRU-D (params = 20,723)
BRITS (params = 58,258)
Random Forest

Predicting in-hospital mortality in first 24 hours (e-ICU)

1.2 3.7 11.1 33.3 100.0
% labels (trained on)

0.01

0.04

0.07

0.10

0.13

0.16

0.19

0.22

0.25

0.28

Ar
ea

 u
nd

er
 P

R
Cu

rv
e

(te
st

 se
t)

PCHMM-n_states=5 (params = 172)
MixMatch (params = 40,258)
FixMatch (params = 40,258)
GRU-D (params = 62,379)
BRITS (params = 52,146)
Random Forest

Predicting in-ICU mortality in first 48 hours (MIMIC-IV)

Figure 3.7: AUPRC (higher is better) versus amount of labeled data for in-hospital mortality
early warning classifiers on two large EHR datasets (left: eICU, right: MIMIC-IV). X-axis:
Percentage of all training sequences available with labels (SSL methods treat remaining
sequences as unlabeled; other methods discard them). Y-axis: Area under precision-recall
curve (AUPRC, higher is better). SSL methods, including our PC-HMM as well as MixMatch
and FixMatch, learn from both labeled and unlabeled data. GRU-D, BRITS, and Random
Forest use the labeled set only. The PC-HMM matches or beats the other models across
all tested labeled set sizes, despite needing fewer parameters and only 1/10th of the training
time as the other models.

56

4 2 0 2 4 6
creatinine

0

10

20

30

40

50

BU
N

z=4 (Risk state)
z=0 (Risk state)
z=3 (Normal)

15
20
25

BU
N

1.0

1.5

cr
ea

tin
in

e

0 5 10 15 20 25
Time(hrs)

0

1
p(z=4|X) p(z=0|X) p(z=3|X)

At-Risk Patient (y=1)

15
20
25

BU
N

1.0

1.5

cr
ea

tin
in

e
0 5 10 15 20

Time(hrs)

0

1

p(z=4|X) p(z=0|X) p(z=3|X)

Healthy Patient (y=0)

Figure 3.8: Interpretation of learned PC-HMM on eICU data. Left : Gaussian emission
distributions of states with highest and lowest ηk (predictor weights). The red and green
states represent high risk (high ηk); the blue state indicates low risk. We show only 3 states
and 2 features for clarity. High risk states seem to represent populations with high blood
urea nitrogen (BUN) levels (above 20mg/dL) and high creatinine levels (above 1.45mg/dL),
which could indicate kidney problems [Baha et al., 2021]. Center : For a patient labeled
y = 1 (who eventually dies), high BUN and high creatinine are observed throughout the
stay, and thus beliefs bt give highest probability to high risk states (green and red). The
probability of state 4 (red) peaks initially and towards the end of the stay because of high
heart rate (> 150 bpm) and high blood glucose (> 170 mg/dL). Right : For a patient labeled
y = 0 with normal creatinine and BUN levels, our PC-HMM says the most likely state is
low-risk (blue).

57

Chapter 4

Prediction-Constrained Topic Models

4.1 Latent Dirichlet Allocation

The latent Dirichlet allocation topic model [Blei, 2012] (LDA) finds structure in a collection

of D documents, or more generally, D examples of count vectors. Each document d is

represented by a count vector xd of V discrete words or features: xd ∈ ZV
+. The LDA model

generates these counts via a document-specific mixture of K topics:

πd|α ∼ Dir(πd | α),

xd|πd, ϕ ∼ Mult(xd |
∑K

k=1 πdkϕk, Nd). (4.1)

The latent random variable hd = {πd} is a document-topic probability vector, where πdk is

the probability of topic k in document d and
∑K

k=1 πdk = 1. The vectors ξx = {ϕ1...ϕK}

are topic-word probability vectors, where ϕkv gives the probability of word v in topic k and∑V
v=1 ϕkv = 1. Nd is the (observed) size of document d: Nd =

∑
v xdv. LDA assumes πd has

58

πd

xd yd

α ϕ η

bag-of-words
 target

label

p(topic|doc)

documents

d = 1,...,D

Figure 4.1: Graphical model representation of a supervised latent Dirichlet allocation.

a symmetric Dirichlet prior, with parameters ξh = {α} > 0. Our log joint density is:

log p(πd|α) = logDir(πd | α),

log p(xd|πd, ϕ) = logMult(xd |
∑K

k=1 πdkϕk, Nd). (4.2)

4.2 Supervised Topic Models

Suppose document d also has a binary label yd ∈ {0, 1}. Standard supervised topic models

assume labels and word counts are conditionally independent given document-topic proba-

bilities πd:

yd | πd, η ∼ Bern(yd | ĝ(
∑K

k=1 πdkηk)), (4.3)

where ĝ(z) = (1 + e−z)−1 is the logit function, and ξy = {η} ∈ RK is a vector of real-

valued regression weights. Non-binary labels can be predicted via a generalized linear

model [McAuliffe and Blei, 2008]. In some experiments, we model vectors of binary labels

yd ∈ {0, 1}L with L conditionally independent logistic regressions.

59

The sLDA model of McAuliffe and Blei [2008] represents the count likelihood of Eq. (4.2) via

Nd independent assignments zdn ∼ Cat(πd) of word tokens to topics, and generates labels

yd ∼ Bern(yd | ĝ(
∑K

k=1 z̄dkηk)), where z̄d = N−1d

∑
n zdn and E[z̄d] = πd. To enable more

efficient inference algorithms, we analytically marginalize the topic assignments zd away in

Eq. (4.2,4.3).

There also exist “upstream” variants of supervised topic models [Lacoste-Julien et al., 2009,

Mimno and McCallum, 2008] in which the document-topic probabilities πd have a distribution

that is conditioned on the label yd. We focus on “downstream” topic models as in Eq. (4.3)

because they are more easily learned from data in which not all documents have labels yd.

4.3 Prediction-constrained Training of LDA

For prediction-constrained training of supervised topic models, we focus on training linear

predictors with a probabilistic loss as in prior work on supervised LDA:

ŷ(πd, ξ
y) ≜ ĝ(ηTπd), ξy = {η}. (4.4)

ℓ(yd, ŷ(πd, η)) = − log p(yd | ŷ(πd, η)). (4.5)

We note that as with mixture models and HMMs, the framework could easily be applied

to non-probabilistic losses and non-linear prediction functions. Our prediction-constrained

objective for supervised LDA is therefore:

min
α,ϕ,η

−
[D∑

d=1

log p(xd | ϕ, α)
]
+R(α, ϕ, η) (4.6)

subject to −
D∑

d=1

log p(yd | xd, α, ϕ, η) ≤ ϵ.

60

The corresponding unconstrained objective is:

min
α,ϕ,η
−

D∑
d=1

[
log p(xd | α, ϕ) + λϵ log p(yd|xd, α, ϕ, η)

]
+R(α, ϕ, η). (4.7)

Computing p(xd | α, ϕ) and p(yd | xd, α, ϕ, η) requires the marginalization of πd over its

simplex domain ∆K :

p(xd | α, ϕ) =
∫

Mult
(
xd |

∑K
k=1 πdkϕk

)
Dir
(
πd | α

)
dπd, (4.8)

p(yd | xd, ϕ, η) =

∫
Bern

(
yd | σ(πT

d η)
)
p
(
πd | xd, α, ϕ, α

)
dπd.

Because p(yd | xd, α, ϕ, η) integrates over p(πd | xd, α, ϕ), the posterior of πd given only words

xd, our PC objective encodes the asymmetry of label prediction tasks.

Unfortunately, these integrals are intractable. To gain traction, we first contemplate an

objective that instantiates πd rather than marginalizing πd away:

min
π,ϕ,η
−

D∑
d=1

[
log p(πd | α) + log p(xd | πd, ϕ) + λ log p(yd | πd, η)

]
+R(α, ϕ, η) (4.9)

As discussed in previous sections, solutions to this objective would lead to replicated joint

training and its poor predictions of yd given xd alone. Since we wish to train under the

same asymmetric conditions present at test time, where we have xd but not yd, we fix πd to a

deterministic embedding of the words xd to the topic simplex. We choose this mapping to pro-

duce the maximum a posteriori (MAP) estimate of πd given xd: πd = argmaxπd∈∆K log p(πd |

xd, ϕ, α). As we show in Sec. 4.3.1, this MAP estimate can be found deterministically via a

tractable function: πd ← MAP(xd, ϕ, α).

Our chosen MAP embedding is a feasible approximation to the full posterior p(πd|xd, ϕ, α)

needed in Eq. (4.8), with approximation accuracy increasing as the number of observed words

61

Nd grows. We can now write a tractable PC training objective for sLDA:

−
D∑

d=1

[
log p

(
MAP(xd, ϕ, α) | α

)
+ log p

(
xd | MAP(xd, ϕ, α), ϕ

)
(4.10)

+ λϵ log p
(
yd | MAP(xd, ϕ, α), η

)]
+R(α, ϕ, η).

Note that is this a special case of Eq. (2.31), where q(hd) ≜ δ(hd − πd) and v̂(xd | ξ) ≜

MAP(xd, ϕ, α), where δ(·) is the Dirac delta function.

While this objective is similar to BP-sLDA [Chen et al., 2015], the key difference is that the

prediction constraint of Eq. (4.6) leads to a multiplier λϵ that balances the generative and

discriminative objectives. In contrast, Chen et al. [2015] consider only a fully unsupervised

objective (labels y are ignored) and a fully supervised objective (the distribution of x is

ignored). If documents are partially labeled, the objectives of Eq. (4.6) and (4.10) can be

naturally generalized to only include prediction constraints for observed labels.

4.3.1 Inference and Learning for PC-LDA

We first show how to evaluate the PC objective of Eq. (4.10) by describing an algorithm

that computes the embedding MAP(xd, ϕ, α). We then differentiate through the entire ob-

jective to allow gradient-based optimization of the topic-word probability vectors {ϕk}Kk=1,

document-topic probability prior {α} and regression coefficients {ηk}Kk=1.

62

MAP via Exponentiated Gradient.

Sontag and Roy [2011] define the document-topic MAP estimation problem for LDA as

argmaxπd∈∆Kℓ(πd, xd, ϕ, α), where

ℓ(πd, xd, ϕ, α) = logMult(xd | πT
d ϕ) + logDir(πd | α). (4.11)

This problem is convex for α ≥ 1 and non-convex otherwise. For the convex case, they apply

an exponentiated gradient algorithm [Kivinen and Warmuth, 1997] that iteratively re-scales

elements of the probability vector with exponentiated derivatives of the objective ℓ:

init: π0
d ←

[
1
K
. . . 1

K

]
, (4.12)

repeat: πt
dk ←

ptdk∑K
j=1 p

t
dj

, ptdk = πt−1
dk · eν∇ℓ(π

t−1
dk).

With small enough step size ν > 0, exponentiated gradient (EG) converges to the MAP

solution. We define our embedding function πd ← MAP(xd, ϕ, α) to be the deterministic

outcome of T EG iterations. In experiments, we use T ≈ 100 and ν ≈ 0.005.

When α < 1, the sparsity-promoting Dirichlet prior may lead to multimodal posteriors on

the simplex πd ∈ ∆K . But as noted by Taddy [2012], if we instead use a softmax [MacKay,

1997] representation of πd (the natural parameters of the corresponding exponential family),

the posterior is log-concave with a single mode. Elegantly, the softmax-basis MAP for

a particular α < 1 equals the simplex MAP estimate under a modified Dirichlet prior,

p(πd | xd, ϕ, α+1). Using this “add one” trick, exponentiated gradient gives optimal natural

parameter MAP estimates even when α < 1.

63

Parameter Learning via SGD.

To optimize the objective in Eq. (4.10), we realize first that the iterative MAP embedding in

Eq. (4.12) is differentiable with respect to the parameters α, ϕ and η. This means the entire

objective is differentiable and modern gradient descent methods may be applied to learn

α, ϕ, η from data, using standard transformations of constrained parameters {α, ϕ} from the

simplex to the reals. Once the loss function is specified via unconstrained parameters, we

perform automatic differentiation to compute gradients and then optimize via the Adam

algorithm [Kingma and Ba, 2014]. For scalability, we can perform stochastic updates from

minibatches of data.

Previously, Chen et al. [2015] optimized a purely discriminative objective via mirror descent

directly on the constrained parameters ϕ, using a C# implementation with manually-derived

gradient computations. In contrast, our approach allows many useful extensions (such as

multi-label binary classification) without need to derive and implement gradient calculations

by hand.

Efficient gradients via implicit differentiation.

It is in fact not necessary to apply automatic differentiation to each individual operation in

the exponentiated gradient optimization. Instead, we can use the fact that the MAP is a

fixed point of the exponentiated gradient update:

MAP(xd, α, ϕ) = EG (MAP(xd, α, ϕ), xd, α, ϕ) , (4.13)

where EG is the vector-wise exponentiated gradient update defined in Eq. (4.12), such that

πt
d ← EG(πt−1

d , xd, α, ϕ), and apply the implicit function theorem [Krantz and Parks, 2002]

to find the Jacobian of the the MAP with respect to α, ϕ : ∇α,ϕMAP(xd, α, ϕ). Letting

64

π∗d = MAP(xd, α, ϕ) and differentiating both sides of Eq. (4.13) we get:

∇α,ϕMAP(xd, α, ϕ) =
[
I −∇π∗

d
EG (π∗d, xd, α, ϕ)

]−1∇α,ϕEG (π∗d, xd, α, ϕ) . (4.14)

This form allows us to compute the gradients of out MAP embedding function with respect

to the global parameters using only the final output of the exponentiated gradient optimiza-

tion. This approach saves significant memory over applying automatic differentiation to the

iterative computation which would require storing all of the intermediate values computed

during optimization.

4.3.2 Toy example: PC-LDA

To study trade-offs between models of p(x) and p(y|x), we built a toy dataset that is de-

liberately misspecified : neither the unsupervised LDA maximum likelihood solution nor the

supervised sLDA maximum likelihood solution performs better than chance at label predic-

tion. We look at 500 training documents, each with V = 9 possible vocabulary words that

can be arranged in a 3-by-3 grid to indicate bar-like co-occurrence structure, as illustrated

in Fig. 4.2. Each binary label yd is unrelated to the observed xd vector except for a rare

signal word (top-left corner).

Baselines.

Our discriminative baselines include logistic regression, the fully supervised BP-sLDA algo-

rithm of Chen et al. [2015], the unsupervised Gibbs sampler for LDA [Griffiths and Steyvers,

2004] from the Mallet toolbox [McCallum, 2002], and the supervised MED-sLDA Gibbs sam-

pler [Zhu et al., 2013] which is reported to improve on an earlier variational method [Zhu

et al., 2012]. To be fair to all methods, we tune relevant hyperparameters (L2 regulariza-

65

(a) True topics: 4 bars

0.0

0.2

0.4

(b) Draw data {xd}500d=1 via LDA

doc 4 doc 310 doc 249 doc 67 doc 179 0
10
20

w
or

d
ct

(c) Set label yd at random, then

if yd = 1 insert signal into xd.

y4 = 1

1

y310 = 0 y249 = 1

1

y67 = 0 y179 = 0 0
10
20

w
or

d
ct

0.2 0.3 0.4
−log p(x|π)

0

0.2

0.4

0.6

5.0

−l
og

p(
y|
x,
π)

train mode: π|x, y

0.2 0.3 0.4
−log p(x|π)

predict mode: π|x
Power_sLDA λ = 100
Power_sLDA λ = 10
Power_sLDA λ = 1
Power_sLDA λ = 0
Gibbs_LDA
PC_sLDA λ = 0
PC_sLDA λ = 1
PC_sLDA λ = 10
PC_sLDA λ = 100
MED_sLDA
BP_sLDA

Power sLDA λ = 100 PC sLDA λ = 100 BP sLDA

-216.7 -8.2 -6.9 156.8 -15.4 -10.0 -6.3 376.3 -21.8 -20.9 19.5 20.4
0.0
0.1
0.2
0.3

Gibbs LDA PC sLDA λ = 1 MED sLDA

-2.0 -1.6 -1.2 -0.8 -2.0 -1.6 -1.2 -0.8 -2.0 -1.6 -1.2 -0.8
0.0
0.1
0.2
0.3

Figure 4.2: 3×3 bars task: The advantages of PC training under misspecification. Given only
K = 4 topics, the goal is to simultaneously model the bar-like topic structure (as in Griffiths
and Steyvers [2004]) of observed counts while making accurate binary label predictions using
learned topic features. Top Left: Illustration of the true generative process for 5 example
documents. Each document d has a binary label yd and a count vector xd over 9 possible
vocabulary symbols arranged in a 3 × 3 square grid. To generate document d, we first
draw xd as a mixture of 4 true “bar” topics, as in LDA. Next, we draw yd ∼ Bern(0.2),
so it is independent of xd and thus any sLDA model is misspecified. Finally, if yd = 1 we
set the top-left word xd0 = 1, otherwise xd0 = 0. Thus, there is a clear signal to predict
yd well given xd but it relies on none of the bar topics. Top Right: Each method’s best
solution (as ranked by its training objective) is located on a 2-dimensional fitness landscape.
The x-axis is negative log likelihood of data x averaged per token (lower is better). The
y-axis is the negative log likelihood of labels y averaged per document (lower is better).
These metrics are computed on the training set. We show these scores under two possible
modes for estimating the document-topic vector πd. Train mode finds the supervised MAP
estimate maxπd

log p(πd|xd, yd, ϕ, η, α). Predict mode finds the unsupervised MAP estimate
maxπd

log p(πd|xd, ϕ, α). This distinction highlights the key difference between PC-sLDA
with λϵ > 1, which deliberately trains topics to be good at labels-from-data prediction, and
label replication (Power-sLDA with λ > 1), which trains models that do well in training mode
but fail in a predictive setting (even on the same training data). Bottom Rows: Learned
topic-word parameters for each method, labeled with regression coefficient ηk for each topic.

66

tion strength for regression, MED-sLDA regularization weight, step sizes, etc.) on valida-

tion data. For our toy example, we also compare to a coordinate ascent algorithm for the

maximum-likelihood sLDA objective in Eq. (4.9) (Power-sLDA), across different values of

the label replication factor λ ≥ 0. Power-sLDA λ = 0 is equivalent to unsupervised LDA;

Power-sLDA λ = 1 is the standard sLDA of McAuliffe and Blei [2008].

All baselines support documents with one binary label yd ∈ {0, 1}. Third-party MED-sLDA

and BP-sLDA code does not support multiple binary labels per document, but our PC-sLDA

does. In these cases, we either train MED-sLDA on only one label (e.g., only wifi for the

Yelp task) or omit it.

Results.

We see that our PC-sLDA with λϵ ≥ 10 is the only method to find a topic with high

probability on the signal word (top left corner), which is key to good discrimination. Most

other methods, such as sLDA or MED-sLDA, are indistinguishable from the unsupervised

LDA solution. Label replication (Power-sLDA λ > 1) suffers the most under misspecification,

yielding solutions with terrible generalization performance. Purely discriminative BP-sLDA

discriminates well but learns very poor generative models with no useful bar structure.

4.4 Applications: PC-LDA

4.4.1 Movie and restaurant review analysis.

We compare both the predictive and generative performance of PC-LDA training to existing

methods on 2 real-world datasets of review text:

67

• Movie reviews. Each of the 4004/500/501 documents is a published movie review

by a professional critic [Pang and Lee, 2005], with V = 5338 terms. Each review has

one binary label, where yd = 1 means the critic gave the film more than 2 of 4 stars.

• Yelp reviews. Each of the 23159/2895/2895 documents [Yelp Dataset Challenge,

2016] aggregates all text reviews for a single restaurant, using V = 10, 000 vocabulary

terms. Each document also has 7 possible binary labels yd: takes-reservations, delivery,

alcohol, good-for-kids, expensive, outdoor-patio, and wifi.

In our comparisons we artificially include only a small fraction (0.05, 0.10, or 0.20) of available

training labels, chosen at random. Fully supervised methods (e.g. BP-sLDA, MED-sLDA)

are only given documents (xd, yd) from this subset, because third-party code does not allow

using unlabeled data at training. Our PC-sLDA as well as Gibbs-LDA uses the entire

partially-labeled training set.

All topic models are run from multiple random initializations of ϕ, η (for fairness, all meth-

ods use same predefined initializations of these parameters). We record point estimates of

topic-word parameters ϕ and regression weights η at defined intervals throughout training.

For all methods, at each parameter snapshot ϕ, η we evaluate discriminative prediction qual-

ity via area-under-the-ROC-curve (AUC) using the predicted probability Pr(yd = 1|xd) =

σ(ηTMAP(xd, ϕ, α)). We evaluate generative model quality via a variational evidence lower

bound on heldout per-token log likelihood: (
∑

dNd)
−1∑D

d=1 log p(xd|ϕ, α). For all meth-

ods, we select the best snapshot on the validation set (early stopping) by minimizing the

hueristically-chosen score:

−
D∑

d=1

[
10 ∗ AUC(yd, xd, ϕ, η)− PerTokELBO(xd|ϕ, α)

]
. (4.15)

When datasets are fully labeled, we sensibly find that purely discriminative methods like

68

0.05 0.1 0.2 1.0
frac. labeled docs

3.8

4.0

4.2

4.4

4.6
-lo

g
p(

x)
 /

to
ke

n
K= 25 topics

0.05 0.1 0.2 1.0
frac. labeled docs

K=100 topics

0.05 0.1 0.2 1.0
frac. labeled docs

1.5

2.0

2.5

-lo
g

p(
x)

 /
to

ke
n

K= 25 topics

0.05 0.1 0.2 1.0
frac. labeled docs

K=100 topics

0.05 0.1 0.2 1.0
frac. labeled docs

0.65

0.7

0.75

0.8

0.85

he
ld

ou
t A

U
C

K= 25 topics

0.05 0.1 0.2 1.0
frac. labeled docs

K=100 topics

logistic_regr
PC_sLDA
BP_sLDA
MED_sLDA
Gibbs_LDA

0.05 0.1 0.2 1.0
frac. labeled docs

0.65

0.7

0.75

w
ifi

: h
el

do
ut

 A
U

C

K= 25 topics

0.05 0.1 0.2 1.0
frac. labeled docs

K=100 topics

logistic_regr
PC_sLDA
BP_sLDA
MED_sLDA
Gibbs_LDA

(a) Movie reviews (b) Yelp reviews

Figure 4.3: Movie and Yelp tasks: Performance metrics vs. fraction of labeled training
documents used for 25 and 100 topics. An extended version is in the supplement. Top
row: Heldout generative performance (negative likelihood, lower is better). Bottom row:
Heldout discriminative performance (AUC, higher is better). Note that improvements over
supervised learning algorithms, including logistic regression, are particularly large when the
fraction of labeled documents is small.

logistic regression (LR) or BP-sLDA often achieve the highest AUC values. But our PC-

sLDA is consistently competitive, matching LR on the Movie task in Fig. 4.3.

PC-sLDA predictions remain good when few documents have labels. For the Movie task,

PC-sLDA dominates the AUC metric for small fractions of labels (0.05, 0.1), beating even LR

when K=100. In this regime, unsupervised Gibbs-LDA with K = 100 topics has better AUC

than BP-sLDA and MED-sLDA, demonstrating the value of unlabeled data for prediction.

On Yelp, PC-sLDA predictions at small fractions are better than all but BP-sLDA.

The top row of Fig. 4.3 shows trends in heldout data negative log likelihood (lower is bet-

ter). As expected, unsupervised Gibbs-LDA consistently achieves the best scores, because

explaining data is its sole objective. MED-sLDA also does reasonably, in some cases bet-

ter than PC-sLDA, but usually in these cases MED-sLDA has worse AUC than PC-sLDA.

69

10 25 50 100
num. topics

2.0

3.0

4.0
- l

og
 p

(x
) /

 to
ke

n

10 25 50 100
num. topics

0.55

0.6

0.65

A
U

C
 (a

vg
 o

f 1
1

m
ed

s)

logistic_regr
PC_sLDA
ourBP_sLDA
Gibbs_LDA

Gibbs-LDA ηk = -1.6

0.083 office visit >=15min

0.045 office visit >=05min

0.026 routine physical

0.025 office visit >=25min

0.015 complete blood ct. test

0.015 office visit >=10min

0.013 flu vaccine

--

1.000 meningococcal vaccine

1.000 poliovirus vaccine

0.999 routine physical age5 -11

0.999 typhoid vaccine

PC-sLDA ηk =+0.3

0.137 office visit >=15min

0.037 office visit >=05min

0.030 office visit >=25min

0.029 routine physical exam

0.021 complete blood ct. test

0.021 routine blood collection

0.015 other malaise & fatigue

0.987 test for strep throat

0.982 hidradenitis skin cond

0.963 preventive counsel >=45min

0.963 need for typhoid vaccine

Figure 4.4: Antidepressant prediction task. Left: Heldout negative likelihood (generative
performance, lower is better). Center: Heldout AUC (discriminative, higher is better). We
use our own implementation of BP-sLDA for this multiple binary label prediction task. Both
PC-sLDA and BP-sLDA numbers here are the results of runs initialized from Gibbs. While
BP-sLDA exhibits severe overfitting (see supplement), our PC-sLDA improves on the baseline
Gibbs predictions reliably. Right: Comparison of topic #11 of K = 25 for both Gibbs-LDA
and our PC-sLDA when initialized from Gibbs. We show the regression coefficient ηk for
this topic when predicting patient success with drug citalopram. The top row is ranked
by p(word|topic). The bottom row is ranked by p(topic|word), indicating potential anchor
words. The original Gibbs topic is mostly about routine preventative care and vaccination.
PC-sLDA training evolves the topic to emphasize longer duration encounters focused on
counseling or behavior change, mixed together with a few infection words.

BP-sLDA is consistently poor, having per-token likelihoods about 0.1-1.0 nats higher than

others on full training sets. These results show that the solely discriminative approach of

BP-sLDA cannot explain the data well. In contrast, our PC-sLDA can capture essential

data properties while still predicting labels accurately.

4.4.2 Antidepressant prediction.

Finally, we predict which subset of 11 common antidepressants would successfully treat an

individual’s major depressive disorder given a count vector xd of the patient’s electronic

health record (EHR) code history. These are real de-identified data from tertiary care hos-

pitals, split into 29774/3721/3722 documents (one per patient) with V = 5126 codewords

which represent past diagnoses (ICD-9), procedures (CPT), and medications. Fig. 4.4 shows

the results of our comparison.

70

PC-LDA’s learned topic-word probabilities ϕ are interpretable for prediction. A key point of

our work is that our PC training estimates topic-word parameters ϕ to focus more on the label

prediction than unsupervised training would. On the Antidepressant task, Fig. 4.4 shows

that PC-sLDA initialized from Gibbs indeed causes an original Gibbs topic to significantly

evolve its regression weight ηk and associated top words. The original Gibbs topic is mostly

about routine outpatient preventative care and vaccination. The evolved PC-sLDA topic

prefers long-duration primary care encounters focused on behavior change (“counseling”).

With clinical collaborators, we hypothesize that this more focused topic leads to a positive

ηk value because the drug citalopram is often a treatment of choice for such patients (i.e.,

uncomplicated MDD diagnosed and treated in primary care).

71

Chapter 5

Prediction-Constrained Variational

Autoencoders

5.1 Variational Autoencoders

The variational autoencoder (VAE) [Kingma and Welling, 2014] is a deep latent variable

model that generates data via a neural-network parameterized likelihood together with a

Gaussian latent variable, hd = {zd}. In its most basic form the generative process can be

summarized as:

zd ∼ N (0, I) (5.1)

xd ∼ N (µ(zd, θ), σ(zd, θ)) .

Here µ(·) and σ(·) are parameterized functions that take in the value of the hidden variable

and a set of global parameters defining the function ξx = {θ}, and output the parameters

(mean and variance) of a Gaussian distribution for the observation, xd. In the case where

θ = {W,σ}, µ(zd, θ) = Wzd, and σ(zd, θ) = σI, this model is equivalent to probabilistic PCA

72

[Tipping and Bishop, 1999].

Notation.

For the rest of this work we will adopt the shorthand fθ(·) for a parameterized function, such

as a neural network, with parameters θ, such that fθ(x) ≜ f(x, θ). In general, functions of

this form are assumed to be non-linear neural network functions. In some cases we adopt a

further shorthand for distributions, pθ(x | z), to refer to a distribution where the parameters

are defined by a parameterized function of z, such that pθ(x | z) ≜ p(x | fθ(z)). We use

both forms interchangeably as needed for clarity. Distributions derived from pθ(x|z) may

similarly adopt this notation: pθ(x) ≜
∫
z
p(x | fθ(z))p(z)dz and pθ(z|x) ≜ p(x|fθ(z))p(z)∫

z p(x|fθ(z))p(z)dz
.

5.1.1 Generalized likelihoods.

We note that the Gaussian likelihood for xd can be replaced with a generic parameterized

distribution F(·) so long as it can be easily evaluated and differentiated. In this case µθ(·)

and σθ(·) would be replaced by an parameterized function fθ(·) that outputs appropriate

parameters for F given zd and θ. We refer to this as the decoder network. In our experi-

ments we consider both the Gaussian case and alternatives such as the continuous Bernoulli

distribution [Loaiza-Ganem and Cunningham, 2019] and discretized mixture of logistics [Sal-

imans et al., 2017]. We also note that the our assumption of a fixed Gaussian prior with no

learneable parameters (ξh = ∅, in our general LVM notation), can similarly be replaced with

a more expressive form for p(zd | ξh), but we do not explore this case.

73

For a VAE with likelihood family F , the joint log likelihood factorizes as:

log p(zd) = logN (zd | 0, I),

log pθ(xd | zd) = logF (xd | fθ (zd)) (5.2)

5.1.2 Variational inference for VAEs

For models with non-linear decoder [fθ(·)], marginalizing over zd is typically intractable, thus

directly optimizing the marginal likelihood log pθ(xd) is impossible. Instead we consider a

lower bound on the log marginal likelihood via an approximate posterior q(zd | νd) ≈ pθ(zd |

xd), with parameters νd. This bound can be written as:

log pθ(xd) = log

∫
zd

pθ(xd, zd)dzd (5.3)

≥ Eq(zd|νd)

[
log

pθ(xd, zd)

q(zd | νd)

]
= Eq(zd|νd)

[
log pθ(xd|zd)

]
−KL

(
q(zd|νd)

∣∣∣∣∣∣∣∣ p(zd)),
where KL(·||·) is the Kullback-Leibler divergence. This is known as the evidence lower

bound objective or ELBO. We use L(xd, θ, νd) to denote our optimization objective which is

the negative ELBO. To fit the global parameters of our model θ we jointly optimize negative

ELBO over the global parameters θ and local variational parameters ν.

min
θ,ν
L(x, θ, ν) =

D∑
d=1

Eq(zd|νd)

[
− log pθ(xd | zd)

]
+KL

(
q(zd | νd)

∣∣∣∣∣∣∣∣ p(zd)) (5.4)

As discussed in section 2.4.2, we can also write this in terms of an inner optimization func-

tion ν̂(xd, θ) that produces the optimal variational parameters for a given input and global

74

parameter:

ν̂(xd, θ) = argmin
νd

L(xd, θ, νd). (5.5)

In this setting, we can rewrite our objective as:

min
θ

D∑
d=1

Eq(zd|ν̂(xd,θ))

[
− log pθ(xd | zd)

]
+KL

(
q
(
zd | ν̂(xd, θ)

) ∣∣∣∣∣∣∣∣ p(zd)). (5.6)

As discussed previously, this lets us distinguish between prediction-constrained and posterior-

regularized objectives.

While q(zd | νd) can be any distribution with the same support as p(zd), in practice we match

the form of the prior, using a Gaussian: q(zd | νd) = N (zd | µνd , σνd), where νd = {µνd , σνd}.

5.1.3 Amortized inference for VAEs.

Optimizing individual variational parameters for each datum xd can be prohibitively expen-

sive in both computational and memory costs. To circumvent this issue the original authors

[Kingma and Welling, 2014] propose an amortized inference approach. In this framework,

observation-specific parameters, νd, are replaced with a parameterized function νϕ(xd) that

predicts the optimal variational parameters given the input. The global inference network

parameters ϕ can be jointly trained with the generative parameters θ using the corresponding

objective:

min
θ,ϕ
L(x, θ, ϕ) =

D∑
d=1

Eqϕ(zd|xd)

[
− log p

(
xd | fθ(zd)

)]
+KL

(
qϕ
(
zd | xd

) ∣∣∣∣∣∣∣∣ p(zd)).
(5.7)

75

Figure 5.1: Computational flow diagram of a variational autoencoder.

Consistent with our notation, qϕ(zd|xd) ≜ q(zd|νϕ(xd)). In effect, these networks are trained

to approximate the inner optimization function ν̂(·):

νϕ(xd) ≈ argmin
νd

L(xd, θ, νd), for xd ∈ {x1...xD} (5.8)

5.1.4 Hierarchical VAEs

Hierarchical variational autoencoders (HVAEs, Sønderby et al. [2016]) extend variational

autoencoders by partitioning the latent code into L disjoint groups zd = (zd0, zd1, ...zdL),

increasing the expressiveness of the generative model for complex data like images [Vah-

dat and Kautz, 2020, Child, 2021]. HVAEs generate these stochastic codes sequentially as

pθ(xd|zd) = pθ(zd0)(
∏L

ℓ=1 pθ(zdℓ | zd,<ℓ))pθ(xd | zdL), with a similar encoder: qϕ(zd|xd) =

qϕ(zd0 | xd)
∏L

ℓ=1 qϕ(zdℓ | zd<ℓ, xd). Each conditional in the decoder pθ(zdℓ|zd<ℓ), and the

76

encoder qϕ(zdℓ | zd,<ℓ, x), is typically Gaussian with mean and variance determined by (non-

linear) neural networks.

The HVAE ELBO [Vahdat and Kautz, 2020] equals:

LH(xd, θ, ϕ) = Eqϕ(zd|xd)

[
log pθ(xd | zd)

]
−KL

(
qϕ(zd0 | xd) || pθ(zd1)

)
(5.9)

−
L∑

ℓ=1

Eqϕ(zd,<ℓ|x)

[
KL

(
qϕ(zdℓ | zd,<ℓ, x) || pθ(zℓ | zd,<ℓ)

)]
, (5.10)

where qϕ(zd,<ℓ | xd) =
∏ℓ−1

i=1 q(zdi | zd,<i, xd) is the approximate posterior up to latent group

(ℓ− 1). Reparameterization is then used to provide Monte Carlo gradient estimates.

We can rewrite the conditional prior and approximate posterior for layer ℓ to make the set

of relevant networks explicit:

pθ(zdℓ | zd,<ℓ) = N
(
zdℓ | µθℓ(zd,<ℓ), σθℓ(zd,<ℓ)

)
, (5.11)

qϕ(zdℓ | zd,<ℓ, xd) = N
(
zdℓ | µϕℓ

(hϕℓ
(xd), gϕℓ

(zd,<ℓ)
)
, σϕℓ

(...)).

Here, hϕℓ
and gϕℓ

are networks that extract feature representations of the observation xd and

the previous layers zd,<ℓ, respectively. These features determine the mean and scale of the

conditional Gaussian posterior via µϕℓ
, σϕℓ

. Networks µθℓ , σθℓ similarly generate the prior

parameters for layer ℓ.

77

5.2 Prediction-constrained training of VAEs

For prediction-constrained training of supervised VAEs, we once again focus on training

linear predictors with a probabilistic loss:

ŷ(zd, ξ
y) ≜ ĝ(ηT zd), ξy = {η}. (5.12)

ℓ(yd, ŷ(zd, η)) = − log p(yd | ŷ(zd, η)). (5.13)

Here again ξy are the global parameters of the prediction model which, for the linear case,

take the form of a vector of regression weights η. ℓ(·) is the predictions loss, which we assume

is probabilistic. ĝ(·) is a link function that transforms ηT zd into constrained parameters

appropriate for the form of p(yd| ·). We note again that the framework could easily

be applied to non-probabilistic losses and non-linear prediction functions. Our prediction-

constrained objective for supervised VAEs is therefore:

min
θ,η
−
[D∑

d=1

log pθ(xd)

]
+R(θ, η) (5.14)

subject to −
D∑

d=1

log pθ(yd | xd, η) ≤ ϵ.

The corresponding unconstrained objective is:

min
θ,η
−

D∑
d=1

[
log pθ

(
xd

)
+ λϵ log pθ

(
yd | xd, η

)]
+R(θ, η). (5.15)

As with prediction-constrained LDA, the necessary marginalization over zd is intractable.

We instead consider the form from Eq. (2.31), using the inner optimiation defined in Eq.

78

zd

xd yd

θ η

observed

data

target

label

latent

code

examples

d = 1,...,D

Figure 5.2: Graphical model representation of downstream supervised variational autoen-
coders.

(5.5) for inference:

min
θ,η
−

D∑
d=1

Eq(zd|ν̂(xd,θ))

[
log pθ

(
xd, zd

)
+ λϵ log p

(
yd | zd, η

)]
+R(θ, η), (5.16)

In practice, the inner optimization is extremely expensive to compute for VAEs, necessitating

the application of amortized variational inference for many applications. With amortization,

the prediction-constrained VAE objective becomes:

min
θ,η,ϕ
−

D∑
d=1

Eqϕ(zd|xd)

[
log pθ(xd | zd) + λϵ log p(yd | zd, η)

]
(5.17)

+KL

(
qϕ
(
zd | xd

) ∣∣∣∣∣∣∣∣ p(zd))+R(θ, η).

This objective does not perfectly capture asymmetric properties of the original prediction-

constrained objective, as the training of ϕ is informed by y, however the posterior approx-

imation network still only takes xd explicitly as input. Subsequent sections will introduce

methods to address the effects of this limitation.

79

Figure 5.3: Computational flow diagram of a prediction-constrained variational autoencoder.

Parameter learning with SGD

As with other models, we learn the parameters θ, η, ϕ of the prediction-constrained VAE by

using stochastic gradient descent to optimize the objective in Eq. (5.17). We also note that

we can optimize Eq. (5.16) with SGD, using implicit differentiation (as with LDA) to save

computational resources.

5.2.1 Semi-supervised learning with prediction-constrained VAEs

As with other prediction-constrained models we can train the prediction-constrained VAE

on partially-labeled data using the modification of the objective in Eq. (2.9) and likewise

optimizing with stochastic gradient descent.

Several prior works in semi-supervised deep learning [Kingma et al., 2014b, Oliver et al.,

2018] have employed a balanced stochastic gradient optimization approach where training

80

batches are selected to have equal numbers of labeled and unlabeled examples. This prevents

instances where batches have no labeled examples and reduces the variance of stochastic

training. We can implement a similar scheme for the prediction-constrained VAE without

changing the expectation of the objective.

Starting with the generic unconstrained PC-VAE objective for semi-supervised learning,

∑
d:DU∪DS

L
(
xd, θ, ϕ

)
+
∑
d:DS

λϵEqϕ(zd|xd)

[
ℓ
(
yd, ŷ(zd, η)

)]
, (5.18)

we can rewrite an equivalent objective, separating out the supervised and unsupervised

terms:

|DS|
|DS|

∑
d:DS

[
L
(
xd, θ, ϕ

)
+ λϵEqϕ(zd|xd)

[
ℓ
(
yd, ŷ(zd, η)

)]]
+
|DU |
|DU |

∑
d:DU

L
(
xd, θ, ϕ

)
. (5.19)

Rewriting in terms of expectations over the labeled and unlabeled datasets, leads to a natural

approach for optimizing via balanaced batches:

|DS| Ed:DS

[
L
(
xd, θ, ϕ

)
+ λϵEqϕ(zd|xd)

[
ℓ
(
yd, ŷ(zd, η)

)]]
+ |DU | Ed:DU

[
L
(
xd, θ, ϕ

)]
.

(5.20)

We see that in our stochastic optimization, we can get an unbiased estimate of the objective

and its gradient by sampling labeled and unlabeled batches separately. With batch size B

for both labeled and unlabeled batches our estimated objective becomes:

|DS|
B

∑
d:BS

[
L
(
xd, θ, ϕ

)
+ λϵEqϕ(zd|xd)

[
ℓ
(
yd, ŷ(zd, η)

)]]
+
|DU |
B

∑
d:BU

[
L(xd, θ, ϕ)

]
(5.21)

BS ∼ DS, BU ∼ DU

81

We may also normalize by an additional scale factor of 1
|DS |+|DU | to approximately remove

dependence on the dataset size.

5.3 Comparisons to Prior Work of Semi-supervised VAEs

5.3.1 Advantages over two-stage VAEs for semi-supervised learn-

ing

VAEs have previously been used for SSL via a two-stage “VAE + GLM” strategy [Kingma

et al., 2014b]. First, a VAE is trained to maximize the unsupervised likelihood in Eq. (5.3)

of all features x (both labeled DS and unlabeled DU). Second, fixing ϕ and using only

DS, a label-from-code predictor ŷ(zd, η) is learned that maps latent codes zd to prediction

scores. Our experiments use a generalized linear model (GLM) with weights η trained to

minimize the cross-entropy loss,
∑

d:DS Eqϕ(zd|xd) [ℓS(yd, ŷ(zd, η))]. While “VAE + GLM” is a

common baseline, labels are only used in the second stage, and thus misspecified generative

models (including deep neural network models of images or text) often lead to inaccurate

predictions.

5.3.2 Advantages over label-conditioned VAEs

Motivated by limitations of two-stage SSL, Kingma et al. [2014b] proposed a VAE-inspired

“M2” model for joint generative modeling of categorical labels y and data x. M2 first

generates labels y with frequencies π, and then features x: pθ(xd, yd, zd) = N (zd | 0, I) ·

Cat(yd | π) · F(xd | fθ(yd, zd)). M2 inference sets qϕ(yd, zd | xd) = qϕy|x(yd | xd)qϕz|x,y(zd |

xd, yd), where ϕ = {ϕy|x, ϕz|x,y}.

82

Kingma et al. [2014b] train M2 to minimize the joint objective:

min
θ,ϕy|x,ϕz|x,y

∑
d:DS LS(xd, yd, θ, ϕ

z|x,y) +
∑

d:DU LU(xd, θ, ϕ
y|x, ϕz|x,y). (5.22)

Like unsupervised VAEs, Eq. (5.22) and its gradients may be approximated via samples

from the variational posterior. The first, “supervised” term bounds the feature-and-label

joint likelihood:

log pθ(xd, yd) ≥ LS(xd, yd, θ, ϕ
z|x,y) = Eq

ϕz|x,y (zd|xd,yd)

[
log pθ(xd,yd,zd)

q
ϕz|x,y (zd|xd,yd)

]
.

The second, “unsupervised” term is a variational bound for the features-only likelihood

log pθ(xd):

LU(x, θ, ϕ) = Eqϕ(yd,zd|xd)

[
log

pθ(xd, yd, zd)

qϕ(yd, zd|xd)

]
(5.23)

=
∑
y∈Y

qϕy|x(yd | xd)
(
LS(xd, yd, θ, ϕ

z|x,y)− log qϕy|x(yd | xd)
)
.

Here Y is the set of possible categorical labels.

Several recent SSL methods adapt the same generative and inference networks as M2 [Li

et al., 2018a, Feng et al., 2021, Gordon and Hernández-Lobato, 2020]. The multi-layer

ADGM and SDGM [Maaløe et al., 2016] extend this structure with an auxiliary latent

variable.

All of these models are direct label-conditioned (DLC): x depends explicitly on y in the

generative network, and y depends directly on x in the inference network. Let notation

qϕ(y|x, ·) generically refer to the model-dependent variational factor used for to predict labels

y by DLC models.

83

VAE M2

Figure 5.4: Illustraion of the “M2” model. Left: A standard VAE, highlighting the inference
model used. Right: The M2 model of Kingma et al. [2014a], showing both inference networks
used.

DLC models require label marginalization.

When labels are unobserved, computing the DLC variational bound requires an expensive

marginalization over all |Y| possible class labels in Eq. (5.23). Experiments show that the

practical runtime of DLC models is roughly |Y|/2 times longer than our proposed approach.

Futhermore the runtime of this marginalization is exponential the the number of unobserved

labels associated with each observation. Some prior work has resorted to biased gradient

estimates due to this cost; Li et al. [2018a] approximate y by point estimate; Feng et al.

[2021] sample y via a continuous relaxation of qϕ(yd|xd, ·).

The DLC prediction dilemma and heuristic fix.

For test data x, DLC models predict labels via the inference model’s discriminator qϕy|x,·(yd |

xd, ·). However, the discriminator’s parameters ϕy|x,· are only informed by the unlabeled data

84

via the objective LU of Eq. (5.23); it is not used to compute LS. We cannot expect accurate

predictions from a parameter that does not touch any labeled training data.

To partially address this issue, Kingma et al. [2014b] and other DLC methods use a weighted

objective:

max
θ,ϕ

∑
d:DS

(
α log qϕy|x(yd | xd) + λLS(xd, yd, θ, ϕ

z|x,y)
)
+
∑

d:DU LU
(
xd, θ, ϕ

y|x, ϕz|x,y).
(5.24)

This objective pushes the inference discriminator qϕy|x(yd|xd) to predict training labels via

an extra loss term, weighted by hyperparameter α > 0. Kingma et al. [2014b] fixed λ = 1

and tuned α using validation data; Siddharth et al. [2017] tuned λ to balance supervised and

unsupervised data.

While the LS and LU terms in Eq. (5.24) have a rigorous justification as maximizing the

data likelihood, the first term (α log q(yd | xd)) is not justified by the generative model; it

is an extra regularizer for the inference network [Shu et al., 2018]. Problematically, when

the training data is fully labeled, we remove LU and the discriminator is trained only via

this additional loss. In DLC models without auxiliary variables, this implies a complete

decoupling of generator parameters θ, ϕz|x,y,· from discriminator parameters ϕy|x,· during su-

pervised training. This is deeply unsatisfying: we want a single model informed by both

generative and discriminative goals, not two separate models.

DLC models are fragile.

Intuitively, DLC models can improve semi-supervised classification over purely discriminative

baselines only if improvements to the discriminative variational factor qϕ(yd | xd, ·) are nec-

essary to optimize the reconstruction loss Eqϕ(y,z,·|x) [log pθ(x|z, y, ·)]. However, as network (θ,

ϕ) or code (z) capacity increases, DLC models can improve reconstruction while functionally

85

VAE + GLM PC-VAE (2) CPC-VAE (2) M2 (C=2) M2 (14) CPC-VAE (14)

4 3 2 1 0 1 2 3 4

2

1

0

1

2

77.9%
4 3 2 1 0 1 2 3 4

2

1

0

1

2

78.1%
4 3 2 1 0 1 2 3 4

2

1

0

1

2

98.4%
4 3 2 1 0 1 2 3 4

2

1

0

1

2

98.1%
4 3 2 1 0 1 2 3 4

2

1

0

1

2

80.6%
4 3 2 1 0 1 2 3 4

2

1

0

1

2

98.5%

4 3 2 1 0 1 2 3

2

1

0

1

77.9%
4 3 2 1 0 1 2 3

2

1

0

1

98.2%
4 3 2 1 0 1 2 3

2

1

0

1

98.4%
4 3 2 1 0 1 2 3

2

1

0

1

98.1%
4 3 2 1 0 1 2 3

2

1

0

1

96.4%
4 3 2 1 0 1 2 3

2

1

0

1

98.1%

Figure 5.5: Predictions on half-moon classification (accuracy in corner) for semi-supervised
VAE learning. Dots are 2-dim. feature vectors colored by predicted probability of mostly
likely label, labeled examples are shown as larger diamonds. Titles indicate encoding size
C = 2 or C = 14. M2 [Kingma et al., 2014b] accuracy deterioriates when capacity increases
from C = 2 to 14 (drop from 98.1% to 80.6% accuracy). Our CPC-VAE is reliable at any
capacity via constraints that ensure prediction quality. Top row: Learning from 6 labeled
examples (diamonds) and 994 unlabeled examples. Bottom row: Learning from 100 labeled
examples and 900 unlabeled examples.

decoupling generative and discriminative learning, such that pθ(xd | zd, yd, ·) ≈ pθ(xd | zd, ·)

and qϕ(zd|xd, yd, ·) ≈ qϕ(zd|xd, ·). This is specifically encouraged because y can provide only

a few bits of information, and because qϕ(y | x, ·) must satisfy the additional heuristic pre-

diction loss.

Fig. 5.5 provides an intuitive example where, even with tuning of the prediction weight α in

Eq. (5.24), increased latent code capacity causes DLC predictions to deteriorate. We show

similar fragility for DLC models of real images in Table 5.3. This instability is a serious

obstacle to creating DLC variants of state-of-the-art “very deep” VAEs [Sønderby et al.,

2016, Child, 2021, Vahdat and Kautz, 2020], which have orders-of-magnitude more latent

variables than observations.

5.3.3 Other related work on SSL of VAEs

Gordon and Hernández-Lobato [2020] indirectly couple discriminative and generative VAEs

via a joint prior. Such “parameter coupling” [Lasserre et al., 2006] still requires expensive

86

label marginalization. Our experiments show directly integrating generative parameters in

predictions improves accuracy.

Other direct label-conditioned models.

Li et al. [2018a] propose MMCVA, a variant of M2 whose discriminator is trained via max-

margin principles, augmented with several additional losses from the SSL literature. They do

not analyze the relative importance of the various loss terms. The SHOT-VAE [Feng et al.,

2021] is a DLC model that seeks to better justify the discriminative loss in Eq. (5.24) by

applying label smoothing [Szegedy et al., 2016], inducing a “smoothed” variational objective

containing a KL-divergence incorporating log qϕ(y | x). The experiments of Feng et al.

suggest that the SSL accuracy of SHOT-VAE is primarily due to their addition of a variant

of Mixup data augmentation [Zhang et al., 2017]. The biases induced by this augmentation

significantly hurt generative performance. Maaløe et al. [2019] introduce BIVA, a very deep

VAE aimed at generative quality. SSL is not the focus of the paper; only a single MNIST

result is shown via a DLC architecture, and no SSL code is available.

Indirect label-conditioned models.

Some joint likelihood-based methods for SSL use indirect label-conditioned (ILC) models

where y is an ancestor, but not a direct parent, of x in the generative process. The M1+M2

model [Kingma et al., 2014b] is a greedily trained ILC model, where a pre-trained unsuper-

vised VAE encodes features for a separate M2 model. Kingma et al. found that end-to-end

training of M1+M2 was ineffective. The Characteristic-Capturing VAE (CCVAE, [Joy et al.,

2021]) optimizes a bound on p(xd, yd, zd) = p(yd)p(zd|yd)p(xd|zd). The CCVAE has improved

class-specific generative performance, but Joy et al. acknowledge that it does not signifi-

cantly improve SSL accuracy. Ilse et al. [2020] propose DIVA, a similar ILC model that

87

(a) Unsupervised VAE (b) CPC-VAE (c) M2

Figure 5.6: Class-conditional samples of the 10 possible digit classes in the MNIST dataset.
Each column shows multiple samples from one specific digit class. From left to right,
each panel shows samples from a standard unsupervised VAE, our CPC-VAE, and model
M2 [Kingma et al., 2014b]. All models use a 2-dimensional latent code, and are trained on
the MNIST dataset with 100 labeled examples (10 per class).

captures shifts in the data domain via multiple independent latent spaces. The SeGMA

model [Smieja et al., 2021] maps classes to Gaussian mixture components in the latent code

space, and adapts Wasserstein autoencoders to simplify training with mixtures.

5.4 Class-conditional Generation with PC-VAEs

A standard VAE generates data by sampling zs ∼ N (0, I), and then sampling xs ∼ F(fθ(zs)).

For the PC-VAE, we can further sample images conditioned on a particular class label. We

consider several ways to accomplish this. In all cases we consider how to sample zd given a

label of a particular discrete class, yd = c.

5.4.1 MCMC sampling.

For cases where our prediction-constraint is probabilistic and we have an explicit model

p(yd|zd, η), we can tractably compute the posterior density p(zd|yd = c, η) up to a constant:

p(zd | yd = c, η) ∝ p(yd = c, zd | η) = p(yd = c | zd, η)p(zd) (5.25)

88

The gradient of the log-posterior with respect to zd is therefore:

∇zd log p(zd | yd = c, η) = ∇zd log p(yd = c | zd, η) +∇zd log p(zd). (5.26)

Gradient-based MCMC methods such as Hamiltonian Monte Carlo [Neal et al., 2011] can

therefore be applied to sample from the posterior efficiently. Unfortunately, this approach

does not account for our asymmetric goals; it may be desirable to sample observations that

would be confidently predicted to be a certain class.

5.4.2 Rejection sampling.

A simple, general method to sample class-conditional observations is to use rejection sam-

pling. Our rejection sampler works by repeatedly sampling zs ∼ N (0, I) until a sample

meets the criteria: p(ys = c | zc, η) > 1 − ϵs, for some target threshold ϵs. We typically use

ϵs = 0.05 in our experiments (see fig. 5.18).

5.4.3 Model-based sampling.

An alternative approach is to fit a post-hoc model of p(z|y), using the trained VAE and

classifer. We accomplish this by fitting a multivariate Normal distribution for each class,

such that

p(zs|y = c) = N (µc,Σc) (5.27)

89

Figure 5.7: Class-conditional samples of the 10 possible digit classes in the SVHN dataset.
The generative model was trained on the fully labeled SVHN dataset with prediction and
consistency constraints. Samples were chosen via rejection sampling in the latent space with
a threshold of 95% confidence in the target class.

The mean and covariance of each class-conditional distribution are estimated from the set

of training examples predicted as that class, so

µc =
1

|Dc|
∑
d:Dc

zd, (5.28)

Σc =
1

|Dc| − 1

∑
d:Dc

(
zd − µc

)(
zd − µc

)T
,

Dc :=

{
zd

∣∣∣∣ argmax

(
ŷ
(
zd, η

))
= c, zd ∼ qϕz|x(zd | xd), xd ∈ DU ∪ DS,

}
.

With this model, class conditional sampling is trivial. We utilize this approach for the results

in table 5.1.

90

5.4.4 Results of Class-conditional Generation.

Fig. 5.10 shows 2-dimensional latent space encodings of the MNIST dataset [LeCun et al.,

2010] using several different models. We provide a complementary visualization of generative

models in Fig. 5.6, where we compare class-conditional samples for three of these models.

The unsupervised VAE’s encodings of some classes (e.g., 2’s and 4’s and 8’s and 9’s) are not

separated, and samples thus frequently appear to be the wrong class. Model M2 [Kingma

et al., 2014b] explicitly encodes the class label as a latent variable, but nevertheless many

sampled images do not visually match the conditioned class. In contrast, for our CPC-VAE

model almost all samples are easily recognized as the target class.

We illustrate class-conditional samples for our CPC-VAE model of SVHN [Netzer et al.,

2011] in Fig. 5.7, and for our CPC-VAE models of Celeb-A in Fig. 5.17. The SVHN samples

show rich variability while clearly retaining the digit identity. For both the standard and

very-deep CPC-VAE models of Celeb-A [Liu et al., 2015], the corresponding class can be

easily determined from the sampled images. We also see the clearly superior image detail

and realism that the state-of-the-art very-deep CPC-VAE architecture provides, which leads

to substantially improved reclassification accuracy in Table 5.1.

5.5 Consistency-Constrained Variational Autoencoders

While PC-VAEs are effective given sufficient labels, they may generalize poorly when labels

are very sparse (see Fig. 5.5). This fundamental problem arises because in the PC objective

of Eq. (5.14), the parameters η of the predictor ŷ(z, η) are only informed by the small labeled

training dataset. We show that a complementary consistency constraint arises naturally from

our modeling assumptions, and is an effective approach to SSL of VAEs. This approach has

connections to consistency regularization methods for discriminative SSL [Miyato et al.,

91

Figure 5.8: Computational flow diagram of a consistency-constrained variational autoen-
coder.

2019, Oliver et al., 2018].

5.5.1 Consistency Constraints via Generative Models

Let xd ∼ pθ(· | zd) and x̄d ∼ pθ(· | zd) be two observations sampled from the same code

zd. Even if the true label y of x is uncertain, we know that for this VAE to be useful for

prediction, x̄d must have the same label as xd. We formalize this (and dramatically boost

performance) via a consistency constraint requiring label predictions for common-code data

pairs (x, x̄) to approximately match (see Fig. 5.11).

Given xd, we predict labels ŷ(zd, η) via codes zd ∼ qϕ(zd | xd). Alternatively, given xd we

can simulate alternative features x̄d with matching code zd by sampling from the inference

and generative models, and then predict the label for x̄d. We force the label predictions for

xd, and for x̄d, to be similar via a (cross-entropy) consistency penalty ℓC(ŷ(zd, η), ŷ(z̄d, η))

92

0 1

p(y)

0

1

q(
y)

Cross entropy

0.2

0.4

0.6

0.8

1.0

1.2

1.4 0 1

p(y)

0

1

q(
y)

log Ep(y)p(y)[y = y]

0.2

0.4

0.6

0.8

1.0

1.2

1.4 0 1

p(y)

0

1

q(
y)

KL divergence

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 0 1

p(y)

0

1

q(
y)

MSE

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

ρp log ρq + (1 − ρp) log(1 − ρq) log(ρpρq + (1 − ρp)(1 − ρq)) KL(p(y)||q(y)) (ρp − ρq)
2

Figure 5.9: Visual comparison of consistency loss functions ℓC(p(y), q(y)) for binary classifi-
cation models. We use p(y) and q(y) to denote two Bernoulli distributions over y ∈ {0, 1}.
Each plot shows ℓC(p(y), q(y)) as a function of p(y = 1) ≜ ρp on the x-axis and q(y = 1) ≜ ρq
on the y-axis. From left, cross entropy, log-probability of equality, KL-divergence,
MSE.

applied to both unlabeled and labeled data as follows:

CU(xd, θ, ϕ, η) ≜ Eqϕ(zd|xd)

[
Epθ(x̄d|zd)

[
Eqϕ(z̄d|x̄d)

[
ℓC
(
ŷ(zd, η), ŷ(z̄d, η)

)]]]
,

CS(xd, yd, θ, ϕ, η) ≜ Eqϕ(zd|xd)

[
Epθ(x̄d|zd)

[
Eqϕ(z̄d|x̄d)

[
ℓC
(
yd, ŷ(z̄d, η)

)]]]
. (5.29)

Fig. 5.9 shows alternative consistency losses for binary classification.

Consistent PC: Unconstrained objective.

We use multiplier γ > 0 to enforce consistency constraints for both unlabeled and labeled

features, yielding the objective:

min
θ,ϕ,η

∑
d:DU∪DS

L(xd, θ, ϕ) +
∑
d:DU

γCU(xd, θ, ϕ, η) +
∑
d:DS

+λϵP(xd, yd, ϕ, η) + γCS(xd, yd; θ, ϕ, η),

where L is the unsupervised bound, P is the prediction loss: P(xd, yd, ϕ, η) ≜ Eqϕ(zd|xd)

[
log p(yd |

zd, η)
]
, and CU , CS are the consistency costs.

93

VAE + GLM Supervised VAE PC-VAE CPC-VAE M2 (“style” z)

3 2 1 0 1 2 3 4 5

6

4

2

0

2

54.9%
4 3 2 1 0 1 2 3

2

1

0

1

2

3

66.2%
4 2 0 2 4 6

4

2

0

2

4

74.1%
7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

8

6

4

2

0

2

4

6

8

0
1
2
3
4
5
6
7
8
981.1%

4 2 0 2 4
4

2

0

2

4

69.1%

Figure 5.10: Learned 2-dim. encodings of MNIST (accuracy in corner). All methods use
49,900 unlabeled and 100 labeled images. We show each image’s most likely encoding z,
colored by true label y, with decision boundaries if possible. Baselines: 2-stage unsupervised
VAE + GLM (Sec. 5.3.1) and a “supervised” VAE maximizing joint likelihood log p(x, y) (a
PC-VAE with λ = 1). Ours: PC-VAE with λ = 25 and CPC-VAE. Competitor: M2 [Kingma
et al., 2014b] intentionally decouples label y from “style” encoding z.

The decision network of Fig. 5.11 formalizes the integration of consistency constraints with

the VAE generative model. All decisions incorporate the same inference network qϕ(z|x),

explicitly coupling generative and discriminative learning. Figure 5.5 and Table 5.3 show

that our CPC-VAE is more robust to over-parameterized architectures than DLC models.

Our CPC framework is agnostic to the choice of prediction and consistency penalties. While

we focus on SSL image classification, extensions to continuous or multi-label prediction are

promising.

Encoding visualizations.

To provide intuition for model differences, Fig. 5.10 shows VAE encodings of MNIST digits

with latent dimension C = 2, given only 10 labeled examples per class. M2 has poor accuracy

and (by design) no relation between encoding z and label y, while our CPC-VAE is more

accurate and interpretable than all baselines.

94

z

̂ywȳw ℓSℓC
ℓA

ȳw

z

M Labeled Data N Unlabeled Data
πy

qϕ(z |x)
Inference Net. Decision Prediction

Constraint
Random

Variable

Consistency

Constraint

Aggregate

Constraint

̂yw

ℒ

θ

ELBO

x xx̄ x̄

ℓC

Figure 5.11: Formalization of our CPC-VAE as a decision network [Cowell et al., 2006]. Cir-
cular nodes are random variables, including latent codes z and observed features x. Shaded
nodes are observed, including the class labels y for some data (left). Square decision nodes
indicate label predictions ŷw via the inference network qϕ(z | x), and diamonds indicate
losses. (a) Generative likelihood: Like standard VAEs, we seek generative parameters θ and
variational posteriors qϕ that maximize the variational bound L (orange). (b) Prediction
accuracy: Unlike previous semi-supervised VAEs, we do not model the probability of labels
y given z or x. Instead, we treat label prediction as a decision problem, with task-motivated
loss ℓS (red) that constrains the encoder qϕ(z|x) (and thus the generative model). (c) Pre-
diction consistency: For unlabeled data (right), we know that two observations x and x̄
generated from the same latent code z should have identical labels; otherwise, the model
cannot have high accuracy. The loss ℓC (blue) enforces this consistency. (d) Aggregate con-
sistency: The predicted label frequencies for unlabeled data should be close to the empirical
frequencies π of labeled data. The loss ℓA (green) enforces this, penalizing degenerate solu-
tions to ℓC that use the same label ŷw for most unlabeled data.

95

5.5.2 Aggregate label consistency.

Because the unsupervised consistency constraint CU may be trivially satisfied by predict-

ing the same class for all ambiguous examples, consistency-based training is susceptible to

local optima where classes “collapse”. Without careful balancing of constraint multipliers,

CPC-VAEs may become trapped in degenerate solutions early in training. Discriminative

consistency regularizers may also be susceptible to this issue.

We address class collapse via a simple but natural assumption: unknown labels should

approximately follow a known target distribution π. This target π may be the empirical

distribution of the labeled data DS, or another distribution to facilitate domain adaptation.

We then regularize predictions via an aggregate label consistency constraint that forces the

distribution of label predictions to be close to π,

ℓA

(
π,Ed∼DU

[
Eq(zd|xd)

[
ŷ(zd, η)

]])
, (5.30)

where ℓA is the cross-entropy. Importantly, this aggregate consistency constraint does not

penalize individual predictions for being confident. Prior work on SSL classifiers [Grandvalet

and Bengio, 2004, Oliver et al., 2018] suggests that encouraging confident predictions on

unlabeled data may be useful.

5.5.3 Sensitivity to constraint multiplier hyperparameters

We compare the test accuracy for our consistency-constrained model for MNIST over a range

of values for both λ (the prediction constraint multiplier) and γ (the consistency constraint

multiplier) in Figure 5.12. All runs used our best consistency-constrained model for MNIST

using dense networks.

96

10 1 100 101 102

 (lambda)

84

86

88

90

92

94
Te

st
 a

cc
ur

ac
y

(%
)

CPC-VAE, = 4.25
M2

(a) Sensitivity to λ

10 1 100 101 102

 (gamma)

84

86

88

90

92

94

96

Te
st

 a
cc

ur
ac

y
(%

)

CPC-VAE, = 25
M2

(b) Sensitivity to γ

Figure 5.12: Sensitivity of test accuracy to the constraint (Lagrange multiplier) hyperpa-
rameters λ and γ, evaluated on MNIST [LeCun et al., 2010].

We see that the resulting test accuracy smoothly varies across several orders of magnitude,

with the optimal result being at or near the values we chose for our experiments. Performance

is superior to the M2 baseline model for a wide range of hyperparameter values.

5.5.4 Training time comparison

Figure 5.13 below provides an empirical comparison of the average training time cost per step

using the MNIST models summarized in our main paper’s Table 2. Our CPC-VAE imple-

mentation runs both the encoder and decoder networks twice to compute the objective (once

0 50 100 150 200 250 300
Training time per step

M2

CPC-VAE

PC-VAE

M
od

el

254.0 ms

80.7 ms

38.0 ms

Figure 5.13: Comparison of training time per update step of stochastic gradient descent.
Each model was trained on the semi-supervised MNIST with 100 labels using hyperparameter
settings identical to those used in Table 2. Experiments were run on an RTX Titan GPU,
using a common codebase built on top of Tensorflow [Abadi et al., 2015] that implements
all methods. Each time reported is the average training step time over the second epoch.

97

for the standard VAE loss and an additional time to compute the consistency reconstruction

and prediction), thus the runtime is approximately twice that of the PC-VAE: the PC-VAE

requires 38 milliseconds per training step, while the CPC-VAE requires 80.7 milliseconds.

Furthermore, our empirical findings show that training M2 is more expensive than our pro-

posed CPC-VAE in practice, which we expect given the theoretical runtime analysis. The

M2 model must run the encoder and decoder networks once per class in order to compute

the loss, due to the marginalization of the labels required for the unsupervised loss in Eq. (4).

This increases the runtime by a factor equivalent to the number of classes. In our empirical

test, we see that the training time per step is 6.7x that of the PC-VAE model, close to the

10x slowdown we would expect for the 10 digit classes of MNIST. In our experiments, we did

not find substantial differences in the size of networks or number of training steps needed to

train each of these models effectively.

5.5.5 Related Work on Constrained Learning

Li et al. [2018a]’s MMVA uses an objective like (5.14) for training VAEs from fully-supervised

data with a max-margin loss. They favor a different DLC architecture, MMCVA, for semi-

supervised learning.

Our unconstrained PC objective (5.15) has connections to the multi-conditional objective

of McCallum et al. [2006], which was extended to deep generative models (both explicit

VAEs and implicit GANs) by Kuleshov and Ermon [2017]. This prior work does not use

consistency, does not present our constraint-based view of SSL, and exclusively uses implicit

GANs in SSL experiments.

Recent non-generative image classifiers have used loss functions that encourage both accu-

racy and a notion of consistency on unlabeled data.Virtual Adversarial Training enforces

98

consistency under adversarial perturbations [Miyato et al., 2019]. MixMatch enforces con-

sistency under feature interpolations [Berthelot et al., 2019b]. Unsupervised Data Augmen-

tation (UDA, Xie et al. [2020]) achieves state-of-the-art vision and text SSL classification by

enforcing label consistency on augmented perturbations of unlabeled features, but requires

highly-engineered augmentation routines (e.g., image processing libraries). In contrast, we

learn a generative model that samples features whose label predictions need to be consis-

tent. Our CPC-VAE applies to new domains where augmentation routines are unavailable;

the learned generator provides augmentations. Other related work includes FixMatch [Sohn

et al., 2020], ReMixMatch [Berthelot et al., 2019a], and SimMatch [Zheng et al., 2022].

Consistent with the literature on SSL of VAEs, we do not compare to discriminative methods

that require external data augmentation libraries. Conceivably such methods could be used

to boost the SSL performance of all generative models, including our own CPC-VAE. But

note that in our experiments, we find that one method using data augmentation (the SHOT-

VAE) has poor generative performance.

More broadly, “cycle-consistency” has improved generative adversarial learning for images [Zhu

et al., 2017, Zhou et al., 2016] and biomedical data [McDermott et al., 2018]. Others have de-

veloped cycle-consistent [Jha et al., 2018, Cemgil et al., 2020] and transform-consistent [Sinha

and Dieng, 2021] objectives for VAEs that make the encodings z consistent. Miller et al.

[2019] consider feature-to-label prediction in VAEs and enforce consistency with recon-

structed predictions on fully-labeled data. In contrast, our work focuses on SSL and enforces

consistency in code-to-label prediction.

99

Figure 5.14: Sampled reconstructions used to compute the consistency loss during training.
Top: Original image. Middle: Sampled reconstructions using a “Noise-Normal” likelihood.
Bottom: Sampled reconstructions with spatial affine transformations sampled from the prior.

Figure 5.15: Visualization of spatial transform CPC-VAE reconstructions (trained with full
labels). Each triplet shows left: the original image, center: the reconstructed image, and
right: the ”aligned” reconstruction obtained by setting the affine transform dimensions of
the latent code to the prior mean. We see that the model learns a canonical orientation for
each digit.

5.6 Generative Model Innovations

By design, the performance of our CPC-VAE is tied to the quality of the generative model,

and we may boost semi-supervised learning performance by incorporating generative model

advances (unlike more fragile DLC models). Conversely, if samples are poor consistency

constraints may be ineffective. Our experiments explore two extensions of the basic VAE:

affine transformations for poorly-aligned data, and “very deep” VAEs with many stochastic

layers [Child, 2021].

5.6.1 Spatial Transformer VAE.

Our CPC-VAE framework for SSL exploits the spatial transformer’s interpretable structure.

Assuming small spatial transforms preserve the image class, our consistency constraints

match z∗ but sample zt when generating x̄ to improve diversity.

100

In our experiments, the first 6 latent dimensions zdt are associated with affine transformation

parameters capturing image translation, rotation, scaling, and shear:

• z(1)

dt → horizontal translation,

• z(2)

dt → vertical translation,

• z(3)

dt → rotation,

• z(4)

dt → shear,

• z(5)

dt → horizontal scale,

• z(6)

dt → vertical scale.

The remainder of the latent code, zd∗, generates parameters for independent per-pixel like-

lihoods.

To constrain our transformations to a fixed range of plausible values, we construct Mdt

using parameters z̄
(i)
dt = tanh(z

(i)
dt) that are first mapped to the interval [−1,+1], and then

linearly rescaled to an appropriate range via hyperparameters α(1), . . . , α(6). Figure 5.16

illustrates that the induced prior for z̄
(i)
dt is heaviest for extreme values, encouraging aggressive

augmentation when sampling from the prior. The mapping function could be changed to

modify this distribution for other applications.

Given these latent transformation parameters, we define an affine transformation matrix

Mdt:

Mdt =

[
1 0 α(1)z̄

(1)
dt

0 1 α(2)z̄
(2)
dt

0 0 1

]
·

[
cos(α(3)z̄

(3)
dt

) − sin(α(3)z̄
(3)
dt

α(4)z̄
(4)
dt

) 0

sin(α(3)z̄
(3)
dt

) cos(α(3)z̄
(3)
dt

α(4)z̄
(4)
dt

) 0

0 0 1

]
·

[
(α(5))

z̄(5)

dt 0 0

0 (α(6))
z̄(6)

dt 0

0 0 1

]
(5.31)

To determine the parameters of the likelihood function for the pixel at coordinate (i, j), we

101

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

Figure 5.16: Prior distribution for latent parameters z̄
(i)
dt = tanh(z

(i)
dt) used to represent affine

transformations.

use the generative model (or decoder) output at the pixel (i′, j′) for which


i

j

1

 = Mdt


i′

j′

1

 . (5.32)

This corresponds to applying horizontal and vertical scaling, followed by rotation and shear,

followed by translation. As (i′, j′) may not correspond to integer coordinates, a spatial

transformer layer [Jaderberg et al., 2015] uses bilinear interpolation of the non-transformed

likelihood parameters, appropriately padding the boundaries of the decoder output. Related

approaches in prior work have been proposed by: Skafte and Hauberg [2019], Bidart and

Wong [2019], Bepler et al. [2019] and Ding et al. [2020].

Our approach could also be extended to other defined transforms of images or other types

of data such as color shifts.

102

(a) Single stochastic-layer VAE (b) ”Very-deep” VAE

Figure 5.17: Comparison of class-conditional samples of Celeb-A from a standard VAE and
the deep VAE. From left to right, classes are woman-neutral, man-neutral, woman-smiling,
man-smiling. Both models were trained as a semi-supervised CPC-VAE with 1000 labels.
Samples from the single-layer VAE show the mean output for each pixel, samples from the
very-deep model are fully sampled including at the pixel level.

5.6.2 Very Deep VAEs.

We can apply prediction and consistency constraints to a state-of-the-art “very deep” hi-

erarchical VAE [Child, 2021], which defines an encoder-decoder architecture with “ladder”

connections [Sønderby et al., 2016] that enable learning with dozens of latent stochastic lay-

ers. Child’s Deep VAE achieves generative likelihoods that match or exceed state-of-the-art

autoregressive models, while also enabling fast generative sampling in a coarse-to-fine fash-

ion. Efficient simulation is critical for learning with our consistency constraints, to allow

stochastic estimation of (5.29).

In the original very-deep VAE, the initial “bottom-up” encoder produces parameters for the

variational posterior of the topmost stochastic layer qϕ(zd0 | xd), while intermediate out-

103

Class Samples Consistency Reconstructions

Method log p(x) FID Reclass. Acc.

Deep CPC -1.47 42.1 92.9
CPC-VAE -4.27 53.7 88.0
SDGM -5.50 70.4 25.6
M2 -4.43 65.1 69.0
VAE + GLM -4.25 51.6 80.0
CC-VAE 75.7 82.2
SHOT-VAE 207.5 54.7

Figure 5.18: Evaluation of CPC-VAE’s generative performance on CelebA. Due to the enor-
mous computational cost of experiments in Child [2021], we use a smaller-scale variant of the
very-deep architecture that nevertheless improves substantially on conventional VAEs. Left
image: Samples from the learned (very) Deep CPC-VAE model conditioned on class (by
column: neutral woman, neutral man, smiling woman, smiling man). Samples are chosen
via rejection sampling in the latent space with a threshold of 95% confidence in the target
class. Right image: Reconstructions of test images. Each pair shows an image and sample
sharing only the deepest stochastic layer, sampling other layers. Our consistency constraints
force these pairs, which differ in more subtle ways than standard image transforms, to have
the same label. Table: Quantitative evaluation of generative performance on CelebA. Held-
out likelihood (log p(x), higher is better): We report log-likehoods per dimension, estimated
using 500 importance samples [Burda et al., 2015] on 2000 test images. For CC-VAE and
SHOT-VAE, author-provided code did not produce directly comparable likelihoods. FID
(lower is better): We compare generated (unconditional) samples from each model to the
test set using the Frechet Inception Distance metric [Heusel et al., 2017]. Reclassification
accuracy (higher is better): Following Joy et al. [2021], we ask whether generative models
(trained with only 1000 labels) produce samples from a target class recognizable by an in-
dependent classifier. We use a discriminative WRN trained on all CelebA training data,
reaching 90% accuracy on CelebA’s test set. CPC-VAE and VAE+GLM class-conditional
samples are generated by post-hoc fitting of a model of p(z | y), similar to the CCVAE; see
Appendix for details.

puts from this network are used as ladder connections influencing corresponding variational

distributions for intermediate stochastic layers. Figure 5.19(left) illustrates this structure,

where ddK , . . . , dd1, dd0 are (deterministic) layer outputs from the bottom up encoder net-

work. We let K equal the number of intermediate stochastic layers (2 for the simplified

model in Fig. 5.19, many more in our experiments).

For our very-deep CPC-VAE we modify this structure by splitting the bottom-up encoder

into two separate networks. We retain the ladder-structured bottom up network (parameters

104

ϕ) to influence the approximate posteriors for intermediate layers (qϕ(zd1|xd), qϕ(zd2|xd), . . .).

We do not modify the architecture of this network, but we do not use its final output

qϕ(zd0|xd). Instead we introduce a separate encoder network for qϕ(zd0|xd), with parameters

denoted ϕ0. For this network we use the same WRN architecture employed in our single

stochastic layer VAE experiments. Figure 5.19 (right) illustrates this modified encoder struc-

ture. The generative model remains unchanged, as it is not influenced by ladder connections.

We find that this model architecture helps encourage consistency that affects the entire gen-

erative hierarchy, leading to higher test accuracy. Note that this change also does not affect

the bottom-up factorization of the variational distribution. As in prior work, pθ(zd) and

qϕ(zd|xd) are factorized as follows:

pθ(zd) = p(zd0)pθ(zd1|zd0) · · · pθ(zdK | zd,<K)), (5.33)

qϕ,ϕ0(z) = qϕ0(zd0|xd)qϕ(zd1|zd0, xd)...qϕ(zdK |zd,<K , xd).

PC-VAE Architecture:

For the PC-VAE and CPC-VAE the prediction constraint is applied only to a subset of the

latent variables, specifically those of the topmost stochastic layer (zd0), so that the constraint

only affects a small number of global latent variables. With this structure, implicit label

information is accessible at every scale in the generative process. Our (constrained) PC-

VAE objective becomes:

max
θ,ϕ,η

∑
d:DU∪DS

LVAE(xd, θ, ϕ
0, ϕ, subj. to:

1

M

∑
x,y∈DS

Eqϕ(zd0|x)[ℓS(yd, ŷ(zd0, η))]︸ ︷︷ ︸
P(xd,yd;ϕ0,η)

≤ ϵ.

(5.34)

This design simplifies the classification structure and limits over-fitting. Due to the multi-

105

x

z2

z1

z0

z2

z1

z0

d2

d1

xx

z2

z1

z0

z2

z1

z0

d2

d1

x

d0

y

Shared

Shared Shared

Shared

Prediction-constraint

Encoder Decoder
Encoder Decoder

Very-Deep VAE Modified Deep VAE (ours)

Figure 5.19: Comparison of the VAE model architecture proposed by [Child, 2021] and the
modified version used by our CPC-VAE, which applies prediction and consistency constraints
to z0. Shaded nodes indicate observed variables, while diamond nodes are deterministic
intermediate outputs of the encoder network. As in [Child, 2021], portions of the network
structure are shared between the encoder and decoder.

scale structure of the very-deep VAE, latent variables lower in the hierarchy are highly

localized, making them less suitable as features for predicting global image classes.

CPC-VAE Architecture:

When applying our consistency constraint, we follow our assumption that zd0 should fully

determine the class of an image and thus we condition our consistency reconstruction only

on the topmost stochastic layer, zd0. In practice, this preserves the global representation

relevant to the class label, while allowing consistency reconstructions to exhibit significant

local variations. The distribution for ”neighboring” images x̄d assumed to have consistent

106

class labels is defined as:

pθ(x̄d|zd0) ∝ pθ(x̄d|zd,≤K)pθ(zdK |zd,<K)...pθ(zd1|zd0), (5.35)

qϕ,θ(x̄d|xd) = pθ(x̄d|zd0)qϕ(zd0|xd). (5.36)

Our corresponding supervised and unsupervised consistency losses are then defined as:

CU(xdθ, ϕ
0, ϕ, η) ≜ Eqϕ(zd0|xd)

[
Epθ(x̄d|zd0)

[
Eqϕ(z̄d0|x̄d) [ℓC(ŷ(zd, η), ŷ(z̄d0, η))]

]]
, (5.37)

CS(xd, yd, θ, ϕ
0, ϕ, η) ≜ Eqϕ(zd0|xd)

[
Epθ(x̄d|zd0)

[
Eqϕ(z̄d0|x̄d) [ℓC(yd, ŷ(z̄d0, η))]

]]
. (5.38)

5.7 Applications: PC-VAE

We compare our CPC-VAE to baselines on two goals: generative modeling of images x and

classification accuracy of y given x. We use networks based on the WRN-28-2 architec-

ture [Zagoruyko and Komodakis, 2016], train with Adam [Kingma and Ba, 2014], balance

minibatches with 50% labeled and 50% unlabeled data, and search hyperparameters via

Optuna [Akiba et al., 2019] to maximize validation accuracy.

Datasets.

For the CelebA dataset [Liu et al., 2015] with 1000 labeled and 159,770 unlabeled images,

we predict 4 classes that combine gender (woman/man) and facial expression (neutral/smil-

ing). We also test Street-View Housing Numbers (SVHN, Netzer et al. [2011], |DS|=1000,

|DU |=62257, 10 classes) and MNIST (LeCun et al. [2010], |DS|=100, |DU |=49900, 10 classes).

107

SSL? Gen? Source Method MNIST (100) SVHN (1000) Celeb (1000)

✓ ✓ ours CPC-VAE 98.86 (±0.18) 94.22 (±0.62) 86.22
✓ ✓ Tab. 1-2 of Kingma et al. M1 + M2 96.67 (±0.14) 63.98 (±0.10) 79.28
✓ ✓ Tab. 6-7 of Li et al. MMCVA 98.76 (±0.54) 95.05 (±0.18) -
✓ ✓ Tab. 2 of Maaløe et al. SDGM 98.68 (±0.07) 83.39 (±0.24) 83.56
✓ ✓ Tab. 3 of Feng et al. SHOT-VAE 96.88 (±0.22) 71.18 (±0.49) 77.10
✓ ✓ Tab. 2 of Smieja et al. SeGMA 87.3 77.6 75.4
✓ ✓ Tab. 6 of Joy et al. CCVAE 92.7 (200 labels) - 84.20

✓ Tab. 3-4 of Miyato et al. VAT 98.64 (±0.03) 94.23 (±0.32) 81.48

ours Discrim. 73.91 (±1.45) 87.70 (±1.02) 76.10

Table 5.2: SSL image classification results. We report mean test set accuracy (+/- std.
dev.) across 10 runs on distinct random samples of the labeled set; only 1 run is feasible on
large CelebA. Check in first column indicates the method uses both unlabeled and labeled
data. Check in second column indicates the method is a generative model. Italicized entries
indicate our own experimental results using the cited methods, matching architectures and
pre-processing to our CPC-VAE. CPC-VAE results on CelebA do not use spatial transforms.

Method MNIST (100) Method MNIST (100) Method MNIST (100)

CPC (2 Layer) 96.68 (±0.54) M2§(1 L, α=0.1, B) 88.03 (±1.71) MMVA (1 L, α=∗) 80.50 (±2.56)
CPC (2 L, w/o A) 94.27 (±3.78) M2 (2 L, α=0.1, B) 83.32 (±5.22) MMVA (2 L, α=∗) 83.50 (±2.51)
CPC (2 L, w/o ST) 91.93 (±1.65) M2 (4 L, α=0.1, B) 47.05 (±8.13) MMVA (2 L, α=.1) 58.27 (±5.82)
CPC (4 L, w/o ST) 93.78 (±2.25) M2 (4 L, α=∗, B) 68.15 (±3.43)
PC (2 L) 80.49 (±3.31) M2 (1 L, α=0.1, N) 73.93 (±8.12) VAE + GLM (2 L) 72.90 (±1.98)

Table 5.3: Ablation study on MNIST comparing our SSL VAEs to M2 [Kingma et al., 2014b]
and MMVA [Li et al., 2018a]. We use our own implementation, except for entry marked §

from Kingma et al. [2014b]. We use a common MLP architecture with C = 50 and 1000 units
per hidden layer. We indicate the likelihood: Noise-Normal (N, used by all CPC runs) or
Bernoulli (B, used by M2 and MMVA). Left: Our innovations (consistency, spatial transforms
(ST), and aggregate loss (A)) improve accuracy. Center: M2’s accuracy deteriorates with
larger networks, even after tuning α (α=∗) instead of Kingma et al.’s default (α=0.1). CPC
results are stable as size increases. Right: MMVA results are worse than CPC’s.

SSL assessment in Table 5.2.

We compare the classification accuracy of our CPC-VAE to 6 state-of-the-art SSL VAE

approaches, as well as two discriminative neural net baselines: VAT, a SSL method [Miyato

et al., 2019], and Discrim., a WideResNet trained only on the labeled data.

108

Figure 5.20: Comparison of consistency-constrained, prediction-constrained and 2-stage VAE
test accuracy as a function of the number of labels observed. We train all models on the
MNIST dataset using the full dataset as unlabeled data.

Ablation studies in Table 5.3.

We compare variants of CPC, M2, and MMVA [Li et al., 2018a] for SSL training on MNIST

using a common architecture. We try CPC without consistency and without spatial trans-

formations. For M2 and MMVA, we vary the number of layers and α penalties.

Generative assessment in Fig. 5.18 and Tab. 5.1.

This figure shows the quality of CelebA samples from our Deep CPC-VAE. The table com-

pares our CPC-VAE and Deep CPC-VAE to other SSL VAEs on three metrics for generative

model quality.

109

5.7.1 Findings and Analysis of Results

CPC-VAEs improve SSL classification accuracy.

In Tab. 5.2, CPC achieves the top accuracy among all methods (6 VAEs, 2 discriminative-

only baselines) on two datasets: CelebA (86.22%) and MNIST (98.96%). On SVHN, CPC

is close (within 1%) to MMCVA and matches the non-generative VAT.

CPC-VAEs generate high-quality images.

Samples and reconstructions from our Deep CPC-VAE are visually rich (Fig. 5.18) and

achieve top predictive likelihoods by a wide margin. Among not-very-deep VAEs, our CPC-

VAE achieves predictive likelihoods and FID scores in Table 5.1 closest to an unsupervised

VAE. This suggests that prediction and consistency constraints have only minor impact on

generative performance, toward our goal of simultaneous generation and discrimination.

CPC-VAE samples can be reclassified well.

Likelihoods do not fully capture generative quality [Theis et al., 2016], so to evaluate how well

our models capture label characteristics, we use a reclassification paradigm adapted from

Joy et al. [2021]. Table 5.1 reports the reclassification accuracy of using an independent

classifier to recognize samples as examples of the intended class. Our CPC-VAE gets 88%

and the (very) Deep CPC-VAE gets 92.9% accuracy; no other method tops 82%.

Flexible architectures improve CPC predictions, but may harm DLC models.

Adding spatial transforms boosts CPC accuracy on MNIST from 89.5% to 97.5%, while more

expressive (WRN) networks grant a similar performance boost. In contrast, M2 is fragile

110

with accuracy that gets worse as generative capacity increases, dropping from 83% with 2

layers to 68% with 4 layers in Tab. 5.3.

Both consistency and prediction constraints are needed for high accuracy.

In Tab. 5.3, using only prediction constraints (PC) gets 80% accuracy on MNIST; adding

consistency yields 97.5%. On CelebA, consistency improves accuracy from 78% to 86%.

111

Chapter 6

Future Directions

Throughout this thesis we have shown that prediction-constrained training effectively lever-

ages latent variable models for better semi-supervised learning, more interpretable prediction

and label-aware generation. In this final chapter we explore possible avenues for expanding

on and improving prediction constrained training in future work.

6.1 Prediction-Guided Imputation.

In many real-world applications data is partially-observed with missing features, as shown

in the ICU mortality-prediction experiments in chapter 3. In this case, vital signs and lab

measurements are only observed at a subset of times during each patient’s stay, and not every

patient receives the same set of tests. As discussed in that chapter, the prediction-constrained

latent variable model framework provides a robust method for making accurate predictions

in the presence of missing features. A complementary task is imputation, predicting the

values of missing features given the observed features. This means modeling the conditional

distribution p(xM |xO), where xO is the feature subset of the full data observation x that is

112

observed and xM is the missing subset.

Latent variable models have been widely used for imputation, particularly in the image

domain via Markov random field and variational autoencoder models. Recent work has

shown that a particularly effective approach is to apply traditional, non-amortized variational

inference to variational autoencoders. This approach, known as query-adaptive variational

inference (QAVI) [Agarwal et al., 2023], fits a per-image approximate posterior for the joint

set missing and latent features: q(xM , z). This posterior is optimized using a lower bound

on the marginal likelihood of observed features,

log p(xO) ≥ Eq(xM ,z)

[
log

p(xO, xM , z)

q(xM , z)

]
. (6.1)

Future work could combine this effective inpainting technique with prediction and consistency-

constrained VAEs, allowing for label-informed imputations. For example, given a supervised

VAE trained with prediction constraints, one approach could be to optimize the imputation

approximate posterior subject to the same prediction-constraint on the latent representation.

This would yield the following constrained objective:

max
q(xM ,z)

Eq(xM ,z)

[
log

p(xO, xM , z)

q(xM , z)

]
(6.2)

subject to Eq(xM ,z) [log p(ys|z)] ≤ ϵs, (6.3)

where ys is the target label. This approach could potentially be applied to both single-layer

and hierarchical prediction and consistency constrained VAEs.

113

Walking Sitting

Posing Taking photo

States predictive of walking States predictive of sitting States predictive of posing States predictive of photo Other common states Uncommon states

Figure 6.1: The SVAE SLDS segments each sequence of human motion, which we display as a
sequence of discrete colors. Discrete variables are interpretable: Below each segmentation,
we show 5 segmentations of other subjects performing the same action, noting similarity across
semantically similar series. Discrete variables are compact representations: Samples from
the generative model conditioned on ground-truth segmentations yield the stick figures in grey,
which track closely with the observed data.

6.2 Prediction-Constrained Structured Variational Au-

toencoders.

The structured variational autoencoder (SVAE) [Johnson et al., 2016b] is a framework for

combining discrete latent variable models, such as mixture models, topic models and hidden

Markov models, with the deep neural network-defined likelihoods of variational autoencoders.

In general, the generative model for a structured variational autoencoder variant of a discrete

latent variable model has the same structure as the corresponding non-deep model, but the

original set of observations, denoted as x in previous sections, are assumed to be unobserved

and a new variable w now denotes the observed data. Analogous to the original variational

autoencoder, w is modeled as conditional on x through a neural-network parameterized

likelihood: pθ(w | x) = F(w | fθ(x)), for a given likelihood family F and a function f with

parameters θ.

The joint distribution of the SVAE thus factorizes as pθ(w, x, h | ξ) = p(h | ξh)p(x |

h, ξx)pθ(w | x). The corresponding evidence lower bound objective (ELBO) for the ap-

114

proximate posterior qλ(h, x) = qλh(h)qλx(x) is:

log p(w) ≥ Eq
λh

(h)qλx (x)

[
log

p(h | ξh)p(x | h, ξx)pθ(w | x)
qλh(h)qλx(x)

]
. (6.4)

The structured VAE uses a modified form of amortized variational inference that may be

referred to as likelihood-amortized variational inference. In this approach the variational

factors for a given observation w are fit according to a modified objective:

λh, λx = argmax
λh,λx

Eq
λh

(h)qλx (x)

[
log

p(h | ξh)p(x | h, ξx)ℓϕ(x|w)
qλh(h)qλx(x)

]
. (6.5)

Here ℓϕ(x|w) is the amortized inference network with parameters ϕ that takes in the ob-

servation w and outputs the parameters of an appropriate conjugate likelihood for x. This

pseudo-objective can then be optimized with respect to the variational parameters λh, λx

with coordinate-ascent variational inference. Treating this internal variational optimization

as a function of model parameters and observation, we can re-write the ELBO as:

log p(w) ≥ Eqϕ(h,x|w,ξ)

[
log

p(h | ξh)p(x | h, ξx)pθ(w | x)
qϕ(h, x | w, ξ)

]
. (6.6)

This objective can be optimized end-to-end using standard gradient descent.

A natural extension to prediction and consistency-constrained VAEs, would be to apply

prediction (and consistency) constraints to the structured VAE model. In this setup the

constrained objective would be:

min
ϕ,ξ
−Eqϕ(h,x|w,ξ)

[
log

p(h | ξh)p(x | h, ξx)pθ(w | x)
qϕ(h, x | w, ξ)

]
(6.7)

subject to:− Eqϕ(h,x|w,ξ) [log p(y | h, η)] ≤ ϵ. (6.8)

115

This model could allow for natural extensions of prediction-constrained variational autoen-

coders to structured data, such as timeseries or geo-spatial data.

Fig. 6.1 shows an example of results from a structured variational autoencoder with a

switching linear dynamical system discrete model (SVAE-SLDS). This model was train and

evalutated on the H3.6M dataset [Ionescu et al., 2014]. The discrete states are an inter-

pretable, compact representation of each sequence that could be used for classification.

116

Bibliography

M. Abadi, A. Agarwal, P. Barham, et al. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow.org.

S. Agarwal, G. Hope, A. Younis, and E. Sudderth. A decoder suffices for query-adaptive
variational inference. In The 39th Conference on Uncertainty in Artificial Intelligence,
2023. URL https://openreview.net/forum?id=xqNCTr9kqg.

T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. Optuna: A next-generation
hyperparameter optimization framework. In Proceedings of the 25rd ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, 2019.

S. H. Al-Harbi and V. J. Rayward-Smith. Adapting k-means for supervised clustering.
Applied Intelligence, 24(3):219–226, 2006.

C. Andrieu, N. De Freitas, A. Doucet, and M. I. Jordan. An introduction to MCMC for
machine learning. Machine Learning, 50(1-2):5–43, 2003.

D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz. A Public Domain Dataset
for Human Activity Recognition using Smartphones. In ESANN, 2013.

A. D. Baha, T. Z. I. Fendoglu, N. Kokturk, H. Kilic, H. C. Hasanoglu, S. Arslan, M. Gulhan,
N. Ogan, E. E. Akpinar, and A. Alhan. The effect of blood urea nitrogen/albumin ratio
in the short-term prognosis of chronic obstructive pulmonary disease. Erciyes Medical
Journal, 43(2):184–189, 2021.

T. Bepler, E. Zhong, K. Kelley, E. Brignole, and B. Berger. Explicitly disentangling image
content from translation and rotation with spatial-vae. Advances in Neural Information
Processing Systems, 2019.

J. Bergstra, D. Yamins, and D. D. Cox. Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision architectures. In International Confer-
ence on Machine Learning, 2013.

D. Berthelot, N. Carlini, E. D. Cubuk, A. Kurakin, K. Sohn, H. Zhang, and C. Raffel.
Remixmatch: Semi-supervised learning with distribution alignment and augmentation
anchoring. arXiv preprint arXiv:1911.09785, 2019a.

117

https://openreview.net/forum?id=xqNCTr9kqg

D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliver, and C. Raffel. MixMatch:
A Holistic Approach to Semi-Supervised Learning. In Advances in Neural Information
Processing Systems, 2019b. URL http://arxiv.org/abs/1905.02249.

R. Bidart and A. Wong. Affine variational autoencoders. In International Conference on
Image Analysis and Recognition, pages 461–472. Springer, 2019.

D. M. Blei. Probabilistic topic models. Communications of the ACM, 55(4):77–84, 2012.

D. M. Blei and J. D. Lafferty. Dynamic topic models. In International Conference on
Machine Learning, 2006.

K. H. Brodersen, C. S. Ong, K. E. Stephan, and J. M. Buhmann. The balanced accuracy
and its posterior distribution. In International Conference on Pattern Recognition, 2010.

Y. Burda, R. Grosse, and R. Salakhutdinov. Importance weighted autoencoders. arXiv
preprint arXiv:1509.00519, 2015.

W. Cao, D. Wang, J. Li, H. Zhou, L. Li, and Y. Li. BRITS: Bidirec-
tional Recurrent Imputation for Time Series. In Advances in Neural Informa-
tion Processing Systems, 2018. URL https://papers.nips.cc/paper/2018/file/

734e6bfcd358e25ac1db0a4241b95651-Paper.pdf.

T. Cemgil, S. Ghaisas, K. Dvijotham, S. Gowal, and P. Kohli. The autoencoding variational
autoencoder. Advances in Neural Information Processing Systems, 33, 2020.

M.-W. Chang, L. Ratinov, and D. Roth. Guiding semi-supervision with constraint-driven
learning. In Proc. of the Annual Meeting of the Association for Computational Linguistics,
2007.

J. Chen, J. He, Y. Shen, L. Xiao, X. He, J. Gao, X. Song, and L. Deng. End-to-end learning of
LDA by mirror-descent back propagation over a deep architecture. In Neural Information
Processing Systems, 2015.

R. Child. Very deep VAEs generalize autoregressive models and can outperform them on
images. ICLR conference paper, arXiv:2011.10650v2, 2021.

K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio. Learning Phrase Representations using RNN Encoder-Decoder for Statistical
Machine Translation. In Empirical Methods in Natural Language Processing, 2014. URL
http://arxiv.org/abs/1406.1078.

R. G. Cowell, P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter. Probabilistic networks and
expert systems: Exact computational methods for Bayesian networks. Springer Science &
Business Media, 2006.

E. De Brouwer, J. Simm, A. Arany, and Y. Moreau. GRU-ODE-Bayes: Continuous mod-
eling of sporadically-observed time series. In Advances in Neural Information Processing
Systems (NeurIPS), 2019.

118

http://arxiv.org/abs/1905.02249
https://papers.nips.cc/paper/2018/file/734e6bfcd358e25ac1db0a4241b95651-Paper.pdf
https://papers.nips.cc/paper/2018/file/734e6bfcd358e25ac1db0a4241b95651-Paper.pdf
http://arxiv.org/abs/1406.1078

A. Dhurandhar, M. Ackerman, and X. Wang. Uncovering group level insights with accordant
clustering. arXiv preprint 1704.02378, 2017.

T. M. DiCicco and R. Patel. Machine classification of prosodic control in dysarthria. Journal
of medical speech-language pathology, 18(4):35, 2010.

Z. Ding, Y. Xu, W. Xu, G. Parmar, Y. Yang, M. Welling, and Z. Tu. Guided variational
autoencoder for disentanglement learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 7920–7929, 2020.

C. F. Eick, N. Zeidat, and Z. Zhao. Supervised clustering-algorithms and benefits. In Tools
with Artificial Intelligence, 2004. ICTAI 2004. 16th IEEE International Conference on,
pages 774–776. IEEE, 2004.

B. S. Everitt and D. Hand. Finite mixture distributions. Chapman and Hall, 1981. ISBN
0412224208.

H.-Z. Feng, K. Kong, M. Chen, T. Zhang, M. Zhu, and W. Chen. SHOT-VAE: Semi-
supervised Deep Generative Models With Label-aware ELBO Approximations. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, number 8, 2021. URL
https://ojs.aaai.org/index.php/AAAI/article/view/16909.

T. Finley and T. Joachims. Supervised clustering with support vector machines. In Pro-
ceedings of the 22nd international conference on Machine learning, pages 217–224. ACM,
2005.

N. Flammarion, B. Palaniappan, and F. Bach. Robust discriminative clustering with sparse
regularizers. arXiv preprint 1608.08052, 2016.

K. Ganchev, J. Graça, J. Gillenwater, and B. Taskar. Posterior regularization for structured
latent variable models. Journal of Machine Learning Research, 11:2001–2049, Aug. 2010.

Z. Ghahramani and G. E. Hinton. Parameter estimation for linear dynamical systems.
Technical Report CRG-TR-96-2, University of Toronto Dept. of Computer Science, 1996.

Z. Ghahramani and M. I. Jordan. Supervised learning from incomplete data via an em
approach. In Neural Information Processing Systems, 1993.

M. Ghassemi, M.Wu, M. C. Hughes, P. Szolovits, and F. Doshi-Velez. Predicting intervention
onset in the icu with switching state space models. AMIA Summits on Translational
Science Proceedings, 2017:82, 2017.

J. Gordon and J. M. Hernández-Lobato. Combining deep generative and discriminative
models for Bayesian semi-supervised learning. Pattern Recognition, 100, 2020.

J. Graça, K. Ganchev, and B. Taskar. Expectation maximization and posterior constraints.
In Neural Information Processing Systems, 2008.

119

https://ojs.aaai.org/index.php/AAAI/article/view/16909

Y. Grandvalet and Y. Bengio. Semi-supervised learning by entropy minimization. In Pro-
ceedings of the 17th International Conference on Neural Information Processing Systems,
NIPS’04, page 529–536, Cambridge, MA, USA, 2004. MIT Press.

M. Grbovic, N. Djuric, S. Guo, and S. Vucetic. Supervised clustering of label ranking data
using label preference information. Machine learning, 93(2-3):191–225, 2013.

G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset. Technical report,
California Institute of Technology, 2007.

T. L. Griffiths and M. Steyvers. Finding scientific topics. Proceedings of the National
Academy of Sciences, 2004.

L. A. Hannah, D. M. Blei, and W. B. Powell. Dirichlet process mixtures of generalized linear
models. Journal of Machine Learning Research, 12(Jun):1923–1953, 2011.

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. Gans trained by
a two time-scale update rule converge to a local nash equilibrium. Advances in Neural
Information Processing Systems, 30, 2017.

S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Computation, 9(8),
1997. URL https://www.bioinf.jku.at/publications/older/2604.pdf.

M. Ilse, J. M. Tomczak, C. Louizos, and M. Welling. DIVA: Domain Invariant Variational
Autoencoders. In Proceedings of the Third Conference on Medical Imaging with Deep
Learning, pages 322–348. PMLR, 2020. URL https://proceedings.mlr.press/v121/

ilse20a.html.

C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu. Human3.6m: Large scale datasets
and predictive methods for 3d human sensing in natural environments. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 36(7):1325–1339, jul 2014.

O. A. Ismaili, V. Lemaire, and A. Cornuéjols. Supervised pre-processings are useful for
supervised clustering. In Analysis of Large and Complex Data, pages 147–157. Springer,
2016.

T. S. Jaakkola, M. Meila, and T. Jebara. Maximum entropy discrimination. Technical
Report AITR-1668, Artificial Intelligence Laboratory at the Massachusetts Institute of
Technology, 1999a. URL http://people.csail.mit.edu/tommi/papers/maxent.ps.

T. S. Jaakkola, M. Meila, and T. Jebara. Maximum entropy discrimination. In Neural
Information Processing Systems, 1999b.

M. Jaderberg, K. Simonyan, A. Zisserman, and k. kavukcuoglu. Spatial transformer networks.
In Advances in Neural Information Processing Systems, 2015. URL http://papers.nips.

cc/paper/5854-spatial-transformer-networks.pdf.

T. Jebara. Discriminative, generative and imitative learning. PhD thesis, Massachusetts
Institute of Technology, 2001.

120

https://www.bioinf.jku.at/publications/older/2604.pdf
https://proceedings.mlr.press/v121/ilse20a.html
https://proceedings.mlr.press/v121/ilse20a.html
http://people.csail.mit.edu/tommi/papers/maxent.ps
http://papers.nips.cc/paper/5854-spatial-transformer-networks.pdf
http://papers.nips.cc/paper/5854-spatial-transformer-networks.pdf

T. Jebara and A. Pentland. Maximum conditional likelihood via bound maximization and
the CEM algorithm. In Neural Information Processing Systems, 1999.

A. H. Jha, S. Anand, M. Singh, and V. S. R. Veeravasarapu. Disentangling Factors of
Variation with Cycle-Consistent Variational Auto-encoders. In European Conference on
Computer Vision (ECCV). Springer International Publishing, 2018.

A. Johnson, L. Bulgarelli, T. Pollard, S. Horng, L. A. Celi, and R. Mark. Mimic-iv. Phys-
ioNet. Available online at: https://physionet. org/content/mimiciv/1.0/(accessed August
23, 2021), 2020.

A. E. Johnson, T. J. Pollard, L. Shen, L.-w. H. Lehman, M. Feng, M. Ghassemi, B. Moody,
P. Szolovits, L. A. Celi, and R. G. Mark. Mimic-iii, a freely accessible critical care database.
Scientific data, 3, 2016a.

M. Johnson, D. K. Duvenaud, A. Wiltschko, R. P. Adams, and S. R. Datta. Com-
posing graphical models with neural networks for structured representations and
fast inference. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett, editors, Advances in Neural Information Processing Systems, pages
2946–2954. Curran Associates, Inc., 2016b. URL http://papers.nips.cc/paper/

6379-composing-graphical-models-with-neural-networks-for-structured-representations-and-fast-inference.

pdf.

M. J. Johnson, D. K. Duvenaud, A. Wiltschko, R. P. Adams, and S. R. Datta. Composing
graphical models with neural networks for structured representations and fast inference.
Advances in neural information processing systems, 29, 2016c.

T. Joy, S. Schmon, P. Torr, S. N, and T. Rainforth. Capturing Label Characteristics in
VAEs. In International Conference on Learning Representations, 2021. URL https:

//openreview.net/forum?id=wQRlSUZ5V7B.

C. Kemp, J. B. Tenenbaum, T. L. Griffiths, T. Yamada, and N. Ueda. Learning systems of
concepts with an infinite relational model. In AAAI Conference on Artificial Intelligence,
2006.

D. Kingma and M. Welling. Auto-encoding variational Bayes. In The International Confer-
ence on Learning Representations (ICLR), 2014.

D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. arXiv:1412.6980
[cs], 2014. URL http://arxiv.org/abs/1412.6980.

D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling. Semi-supervised learning with
deep generative models. In Neural Information Processing Systems, 2014a.

D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling. Semi-supervised
learning with deep generative models. In Advances in Neural Informa-
tion Processing Systems, 2014b. URL https://papers.nips.cc/paper/

5352-semi-supervised-learning-with-deep-generative-models.pdf.

121

http://papers.nips.cc/paper/6379-composing-graphical-models-with-neural-networks-for-structured-representations-and-fast-inference.pdf
http://papers.nips.cc/paper/6379-composing-graphical-models-with-neural-networks-for-structured-representations-and-fast-inference.pdf
http://papers.nips.cc/paper/6379-composing-graphical-models-with-neural-networks-for-structured-representations-and-fast-inference.pdf
https://openreview.net/forum?id=wQRlSUZ5V7B
https://openreview.net/forum?id=wQRlSUZ5V7B
http://arxiv.org/abs/1412.6980
https://papers.nips.cc/paper/5352-semi-supervised-learning-with-deep-generative-models.pdf
https://papers.nips.cc/paper/5352-semi-supervised-learning-with-deep-generative-models.pdf

J. Kivinen and M. K. Warmuth. Exponentiated gradient versus gradient descent for linear
predictors. Information and Computation, 132(1):1–63, 1997.

O. Koller, S. Zargaran, and H. Ney. Re-sign: Re-aligned end-to-end sequence modelling with
deep recurrent CNN-HMMs. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

S. G. Krantz and H. R. Parks. The implicit function theorem: history, theory, and applica-
tions. Springer Science & Business Media, 2002.

A. Krause, P. Perona, and R. G. Gomes. Discriminative clustering by regularized information
maximization. In Advances in neural information processing systems, pages 775–783, 2010.

H. Kuehne, A. Richard, and J. Gall. A hybrid rnn-hmm approach for weakly supervised
temporal action segmentation. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 2018. doi: 10.1109/TPAMI.2018.2884469.

H. W. Kuhn and A. W. Tucker. Nonlinear programming. In Traces and emergence of
nonlinear programming, pages 247–258. Springer, 2013.

V. Kuleshov and S. Ermon. Deep Hybrid Models: Bridging Discriminative and Generative
Approaches. In Uncertainty in Artificial Intelligence, page 10, 2017.

S. Lacoste-Julien, F. Sha, and M. I. Jordan. DiscLDA: Discriminative learning for dimen-
sionality reduction and classification. In Neural Information Processing Systems, 2009.

J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. In International Conference on Machine Learning,
pages 282–289. Morgan Kaufmann, 2001.

J. A. Lasserre, C. M. Bishop, and T. P. Minka. Principled Hybrids of Generative and
Discriminative Models. In Proceedings of the 2006 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition - Volume 1, CVPR ’06, pages 87–94, USA,
2006. IEEE Computer Society.

Y. LeCun, C. Cortes, and C. Burges. MNIST handwritten digit database, 2010. URL
http://yann.lecun.com/exdb/mnist/.

C. Li, J. Zhu, and B. Zhang. Max-Margin Deep Generative Models for (Semi-)Supervised
Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(11):2762–
2775, 2018a.

F. Li, K. Shirahama, M. Nisar, L. Köping, and M. Grzegorzek. Comparison of feature
learning methods for human activity recognition using wearable sensors. Sensors, 18(2):
679, 2018b.

Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV), December 2015.

122

http://yann.lecun.com/exdb/mnist/

S. Liverani, D. Hastie, L. Azizi, M. Papathomas, and S. Richardson. PReMiuM: An R pack-
age for profile regression mixture models using Dirichlet processes. Journal of Statistical
Software, 64(7):1–30, 2015. URL https://www.jstatsoft.org/v064/i07.

G. Loaiza-Ganem and J. P. Cunningham. The continuous bernoulli: fixing a pervasive error
in variational autoencoders. Advances in Neural Information Processing Systems, 2019.

L. Maaløe, C. K. Sønderby, S. K. Sønderby, and O. Winther. Auxiliary Deep Generative
Models. arXiv:1602.05473 [cs, stat], 2016. URL http://arxiv.org/abs/1602.05473.

L. Maaløe, M. Fraccaro, V. Liévin, and O. Winther. Biva: A very deep hierarchy of latent
variables for generative modeling. In Proceedings of the 33rd International Conference on
Neural Information Processing Systems, 2019.

D. J. C. MacKay. Ensemble learning for hidden Markov models. Technical report, Depart-
ment of Physics, University of Cambridge, 1997.

J. Malmaud, J. Huang, V. Rathod, N. Johnston, A. Rabinovich, and K. Murphy. What’s
cookin’? interpreting cooking videos using text, speech and vision. In Proceedings of the
2015 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, 2015.

G. S. Mann and A. McCallum. Simple, robust, scalable semi-supervised learning via expec-
tation regularization. In International Conference on Machine Learning, 2007.

G. S. Mann and A. McCallum. Generalized expectation criteria for semi-supervised learning
with weakly labeled data. Journal of Machine Learning Research, 11(Feb):955–984, 2010.

J. D. McAuliffe and D. M. Blei. Supervised topic models. In Neural Information Processing
Systems, pages 121–128, 2008.

A. McCallum, C. Pal, G. Druck, and X. Wang. Multi-Conditional Learning: Generative/Dis-
criminative Training for Clustering and Classification. In AAAI Conference on Artificial
Intelligence, 2006. URL https://www.aaai.org/Papers/AAAI/2006/AAAI06-069.pdf.

A. K. McCallum. MALLET: Machine learning for language toolkit. mallet.cs.umass.edu,
2002.

M. B. A. McDermott, T. Yan, T. Naumann, N. Hunt, H. Suresh, P. Szolovits, and
M. Ghassemi. Semi-Supervised Biomedical Translation with Cycle Wasserstein Re-
gression GANs. In Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-
18), page 8, 2018. URL https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/

viewFile/16938/15951.

D. Micucci, M. Mobilio, and P. Napoletano. Unimib shar: A dataset for human activity
recognition using acceleration data from smartphones. Applied Sciences, 7(10), 2017.
ISSN 2076-3417. doi: 10.3390/app7101101. URL http://www.mdpi.com/2076-3417/7/

10/1101.

123

https://www.jstatsoft.org/v064/i07
http://arxiv.org/abs/1602.05473
https://www.aaai.org/Papers/AAAI/2006/AAAI06-069.pdf
mallet.cs.umass.edu
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewFile/16938/15951
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewFile/16938/15951
http://www.mdpi.com/2076-3417/7/10/1101
http://www.mdpi.com/2076-3417/7/10/1101

A. C. Miller, Z. Obermeyer, J. P. Cunningham, and S. Mullainathan. Discriminative Regu-
larization for Latent Variable Models with Applications to Electrocardiography. In Inter-
national Conference on Machine Learning, page 10, 2019. URL https://proceedings.

mlr.press/v97/miller19a/miller19a.pdf.

D. Mimno and A. McCallum. Topic models conditioned on arbitrary features with Dirichlet-
multinomial regression. In Uncertainty in Artificial Intelligence, 2008.

T. Miyato, S.-I. Maeda, M. Koyama, and S. Ishii. Virtual Adversarial Training: A
Regularization Method for Supervised and Semi-Supervised Learning. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 41(8):1979–1993, 2019. URL
https://ieeexplore.ieee.org/document/8417973/.

J. Molitor, M. Papathomas, M. Jerrett, and S. Richardson. Bayesian profile regression with
an application to the national survey of children’s health. Biostatistics, 11(3):484–498,
2010.

R. M. Neal et al. Mcmc using hamiltonian dynamics. Handbook of markov chain monte
carlo, 2(11):2, 2011.

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading Digits in Natural
Images with Unsupervised Feature Learning. In NeurIPS Workshop on Deep Learning and
Unsupervised Feature Learning, 2011. URL http://ufldl.stanford.edu/housenumbers.

K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Learning to classify text from labeled
and unla- beled documents. In AAAI Conference on Artificial Intelligence, 1998.

S. Nowozin and C. H. Lampert. Structured learning and prediction in computer vision.
Foundations and Trends in Computer Graphics and Vision, 6(3–4):185–365, 2011.

S. M. Oh, J. M. Rehg, T. Balch, and F. Dellaert. Learning and inferring motion patterns
using parametric segmental switching linear dynamic systems. International Journal of
Computer Vision, 77(1-3):103–124, 2008.

A. Oliver, A. Odena, C. A. Raffel, E. D. Cubuk, and I. Goodfellow. Realistic evaluation of
deep semi-supervised learning algorithms. In Advances in Neural Information Processing
Systems, pages 3235–3246, 2018.

B. Pang and L. Lee. Seeing stars: Exploiting class relationships for sentiment categorization
with respect to rating scales. In Proc. of the Annual Meeting of the Association for
Computational Linguistics, 2005.

B. Peralta, P. Espinace, and A. Soto. Enhancing k-means using class labels. Intelligent Data
Analysis, 17(6):1023–1039, 2013.

B. Peralta, A. Caro, and A. Soto. A proposal for supervised clustering with dirichlet process
using labels. Pattern Recognition Letters, 80:52–57, 2016.

124

https://proceedings.mlr.press/v97/miller19a/miller19a.pdf
https://proceedings.mlr.press/v97/miller19a/miller19a.pdf
https://ieeexplore.ieee.org/document/8417973/
http://ufldl.stanford.edu/housenumbers

T. J. Pollard, A. E. Johnson, J. D. Raffa, L. A. Celi, R. G. Mark, and O. Badawi. The eicu
collaborative research database, a freely available multi-center database for critical care
research. Scientific data, 5(1):1–13, 2018.

L. R. Rabiner and B.-H. Juang. An introduction to hidden markov models. ASSP Magazine,
IEEE, 3(1):4–16, 1986a.

L. R. Rabiner and B.-H. Juang. An introduction to hidden Markov models. ASSP Magazine,
IEEE, 3(1):4–16, 1986b.

D. Ramage, D. Hall, R. Nallapati, and C. D. Manning. Labeled LDA: A supervised topic
model for credit attribution in multi-labeled corpora. In Proceedings of the 2009 Conference
on Empirical Methods in Natural Language Processing: Volume 1-Volume 1, pages 248–
256. Association for Computational Linguistics, 2009.

R. G. Ramani and S. G. Jacob. Improved classification of lung cancer tumors based on
structural and physicochemical properties of proteins using data mining models. PloS
one, 8(3):e58772, 2013.

Y. Ren, Y. Wang, and J. Zhu. Spectral learning for supervised topic models. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2017.

T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma. Pixelcnn++: Improving the pix-
elcnn with discretized logistic mixture likelihood and other modifications. arXiv preprint
arXiv:1701.05517, 2017.

B. Shahbaba and R. Neal. Nonlinear models using dirichlet process mixtures. Journal of
Machine Learning Research, 10(Aug):1829–1850, 2009.

R. Shu, H. H. Bui, S. Zhao, M. J. Kochenderfer, and S. Ermon. Amor-
tized Inference Regularization. In Advances in Neural Information Process-
ing Systems, 2018. URL https://proceedings.neurips.cc/paper/2018/file/

1819932ff5cf474f4f19e7c7024640c2-Paper.pdf.

R. H. Shumway and D. S. Stoffer. An approach to time series smoothing and forecasting
using the EM algorithm. Journal of Time Series Analysis, 3(4):253–264, 1982.

N. Siddharth, B. Paige, J.-W. van de Meent, A. Desmaison, N. D. Goodman, P. Kohli,
F. Wood, and P. H. S. Torr. Learning Disentangled Representations with Semi-Supervised
Deep Generative Models. In Advances in Neural Information Processing Systems, 2017.
URL http://arxiv.org/abs/1706.00400.

S. Sinha and A. B. Dieng. Consistency regularization for variational auto-encoders. arXiv
preprint arXiv:2105.14859, 2021.

N. Skafte and S. Hauberg. Explicit disentanglement of appearance and perspective in gen-
erative models. Advances in Neural Information Processing Systems, 32, 2019.

125

https://proceedings.neurips.cc/paper/2018/file/1819932ff5cf474f4f19e7c7024640c2-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/1819932ff5cf474f4f19e7c7024640c2-Paper.pdf
http://arxiv.org/abs/1706.00400

M. Smieja, M. Wolczyk, J. Tabor, and B. C. Geiger. SeGMA: Semi-Supervised Gaussian
Mixture Autoencoder. IEEE transactions on neural networks and learning systems, 32(9):
3930–3941, 2021.

K. Sohn, D. Berthelot, C.-L. Li, Z. Zhang, N. Carlini, E. D. Cubuk, A. Kurakin, H. Zhang,
and C. Raffel. Fixmatch: Simplifying semi-supervised learning with consistency and con-
fidence. arXiv preprint arXiv:2001.07685, 2020.

C. K. Sønderby, T. Raiko, L. Maaløe, S. K. Sønderby, and O. Winther. Lad-
der Variational Autoencoders. In Advances in Neural Information Process-
ing Systems, 2016. URL https://proceedings.neurips.cc/paper/2016/file/

6ae07dcb33ec3b7c814df797cbda0f87-Paper.pdf.

D. Sontag and D. Roy. Complexity of inference in latent dirichlet allocation. In Neural
Information Processing Systems, 2011.

C. Sutton and A. McCallum. An introduction to conditional random fields. Foundations
and Trends in Machine Learning, 4(4):267—-373, 2012.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception
architecture for computer vision. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2818–2826, 2016.

M. Taddy. On estimation and selection for topic models. In Artificial Intelligence and
Statistics, 2012.

B. Taskar, C. Guestrin, and D. Koller. Max-margin markov networks. In Neural Information
Processing Systems, pages 25–32, 2004.

L. Theis, A. van den Oord, and M. Bethge. A note on the evaluation of generative models.
In 4th International Conference on Learning Representations, 2016. URL http://arxiv.

org/abs/1511.01844.

M. E. Tipping and C. M. Bishop. Probabilistic principal component analysis. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 61(3):611–622, 1999.

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine learning
for interdependent and structured output spaces. In International Conference on Machine
Learning, pages 104–112, 2004.

A. Vahdat and J. Kautz. Nvae: A deep hierarchical variational autoencoder. arXiv preprint
arXiv:2007.03898, 2020.

M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and variational
inference. Foundations and Trends® in Machine Learning, 1(1-2):1–305, 2008.

C. Wang, D. Blei, and F.-F. Li. Simultaneous image classification and annotation. In IEEE
Conf. on Computer Vision and Pattern Recognition, 2009.

126

https://proceedings.neurips.cc/paper/2016/file/6ae07dcb33ec3b7c814df797cbda0f87-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/6ae07dcb33ec3b7c814df797cbda0f87-Paper.pdf
http://arxiv.org/abs/1511.01844
http://arxiv.org/abs/1511.01844

S. Wang, M. B. McDermott, G. Chauhan, M. Ghassemi, M. C. Hughes, and T. Naumann.
Code for eicu extract. https://github.com/MLforHealth/MIMIC_Extract/tree/eICU_
Extract, 2020.

Y. Wang and J. Zhu. Spectral methods for supervised topic models. In Advances in Neural
Information Processing Systems, 2014.

Y. J. Wang and G. Y. Wong. Stochastic blockmodels for directed graphs. Journal of the
American Statistical Association, 82(397):8–19, 1987.

Q. Xie, Z. Dai, E. Hovy, M.-T. Luong, and Q. V. Le. Unsupervised data augmentation for
consistency training. In Advances in Neural Information Processing Systems, 2020.

Yelp Dataset Challenge. Yelp dataset challenge. https://www.yelp.com/dataset_

challenge, 2016. Accessed: 2016-03.

J. Yoon, A. M. Alaa, M. Cadeiras, and M. van der Schaar. Personalized donor-recipient
matching for organ transplantation. arXiv preprint arXiv:1611.03934, 2016.

S. Zagoruyko and N. Komodakis. Wide residual networks. In E. R. H. Richard C. Wilson and
W. A. P. Smith, editors, Proceedings of the British Machine Vision Conference (BMVC),
pages 87.1–87.12. BMVA Press, September 2016. ISBN 1-901725-59-6. doi: 10.5244/C.30.
87. URL https://dx.doi.org/10.5244/C.30.87.

C. Zhang and H. Kjellström. How to supervise topic models. In ECCV Workshop on
Graphical Models in Computer Vision, 2014.

H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz. mixup: Beyond empirical risk
minimization. arXiv preprint arXiv:1710.09412, 2017.

M. Zheng, S. You, L. Huang, F. Wang, C. Qian, and C. Xu. Simmatch: Semi-supervised
learning with similarity matching. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 14471–14481, 2022.

T. Zhou, P. Krahenbuhl, M. Aubry, Q. Huang, and A. A. Efros. Learning Dense Correspon-
dence via 3D-Guided Cycle Consistency. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 117–126, Las Vegas, NV, USA, 2016. IEEE.

J. Zhu, A. Ahmed, and E. P. Xing. MedLDA: maximum margin supervised topic models.
The Journal of Machine Learning Research, 13(1):2237–2278, 2012.

J. Zhu, N. Chen, H. Perkins, and B. Zhang. Gibbs max-margin topic models with fast
sampling algorithms. In International Conference on Machine Learning, 2013.

J. Zhu, N. Chen, and E. P. Xing. Bayesian inference with posterior regularization and
applications to infinite latent svms. Journal of Machine Learning Research, 15(1):1799–
1847, 2014.

J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired Image-to-Image Translation Us-
ing Cycle-Consistent Adversarial Networks. In 2017 IEEE International Conference on
Computer Vision (ICCV), pages 2242–2251, Venice, 2017. IEEE.

127

https://github.com/MLforHealth/MIMIC_Extract/tree/eICU_Extract
https://github.com/MLforHealth/MIMIC_Extract/tree/eICU_Extract
https://www.yelp.com/dataset_challenge
https://www.yelp.com/dataset_challenge
https://dx.doi.org/10.5244/C.30.87

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Overview of Contributions

	Prediction-Constrained Training of Latent Variable Models.
	Supervised Latent Variable Models
	Regularized Maximum Likelihood Optimization for Training Global Parameters

	Prediction-Constrained Optimization for Training Global Parameters
	Semi-supervised prediction constraints for data with missing labels
	Constraints on a general expected loss

	Relationship to Other Supervised Learning Frameworks
	Advantages over standard joint likelihood training
	Advantages over maximum conditional likelihood training
	Advantages over label replication
	Advantages over posterior regularization
	Advantages over maximum entropy discrimination and regularized Bayes
	Relationship to Semi-supervised Learning Frameworks

	Generalized Prediction-Constraints
	Approximating constraints
	Constraints on posterior approximations

	Prediction-constrained Mixture Models
	Objective function evaluation and parameter estimation.
	Toy Example: Why Asymmetry Matters
	Toy Example: Advantage of Semisupervised PC Training

	Prediction-Constrained Hidden Markov Models
	Hidden Markov Models
	Supervised Hidden Markov Models
	Sequence classification.
	Event detection.

	Prediction-Constrained Learning of HMMs
	Toy example: PC-HMM

	Applications: PC-HMM
	Baselines
	Dancing Honey Bee Segmentation.
	Human activity recognition.
	Ventilator need in the ICU.
	ICU Mortality.
	MIMIC-IV.
	Interpreting learned PC-HMM models.

	Prediction-Constrained Topic Models
	Latent Dirichlet Allocation
	Supervised Topic Models
	Prediction-constrained Training of LDA
	Inference and Learning for PC-LDA
	Toy example: PC-LDA

	Applications: PC-LDA
	Movie and restaurant review analysis.
	Antidepressant prediction.

	Prediction-Constrained Variational Autoencoders
	Variational Autoencoders
	Generalized likelihoods.
	Variational inference for VAEs
	Amortized inference for VAEs.
	Hierarchical VAEs

	Prediction-constrained training of VAEs
	Semi-supervised learning with prediction-constrained VAEs

	Comparisons to Prior Work of Semi-supervised VAEs
	Advantages over two-stage VAEs for semi-supervised learning
	Advantages over label-conditioned VAEs
	Other related work on SSL of VAEs

	Class-conditional Generation with PC-VAEs
	MCMC sampling.
	Rejection sampling.
	Model-based sampling.
	Results of Class-conditional Generation.

	Consistency-Constrained Variational Autoencoders
	Consistency Constraints via Generative Models
	Aggregate label consistency.
	Sensitivity to constraint multiplier hyperparameters
	Training time comparison
	Related Work on Constrained Learning

	Generative Model Innovations
	Spatial Transformer VAE.
	Very Deep VAEs.

	Applications: PC-VAE
	Findings and Analysis of Results

	Future Directions
	Prediction-Guided Imputation.
	Prediction-Constrained Structured Variational Autoencoders.

	Bibliography

