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Abstract

INTRODUCTION—The stereotypical progression of Alzheimer’s (AD) pathology is not fully 

understood. The selective impact of AD on distinct regions has led the field to question if innate 

vulnerability exists. This study aims to determine if the causative factors of regional vulnerability 

are dependent on cell-autonomous or transneuronal (non-cell autonomous) processes.

METHODS—Using mathematical and statistical models, we analyzed the contribution of cell-

autonomous and non-cell-autonomous factors to predictive linear models of AD pathology.

RESULTS—Results indicate gene expression as a weak contributor to predictive linear models of 

AD. Instead, the Network Diffusion Model acts as a strong predictor for observed AD atrophy and 

hypometabolism.

DISCUSSION—We propose a convenient methodology for identifying genes and their role in 

determining AD topography, in comparison with network-spread. Results reinforce the role of 

trans-neuronal network spread on disease progression, and suggest innate gene expression plays a 

secondary role in seeding and subsequent disease progression.
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1. INTRODUCTION

Alzheimer’s Disease (AD) is a neurodegenerative disease that affects millions of adults over 

the age of 65 [1]. Since the early 1900’s the pathological characteristics of AD are known to 

involve neuronal death, amyloid plaques and tau tangles [2]. AD tau pathology sequentially 

spreads from the entorhinal cortex to hippocampus, temporal cortices, posterior cingulate, 

precuneus, and eventually frontal cortices [3], in roughly that order. The observed 

stereotypical progression has led to a discussion on the innate vulnerability of regions 

affected by the disease.

The subject of selective regional vulnerability is extremely broad and widely reviewed 

[4,5,6,7]. Although the etiology and causative mechanisms behind observed selective 

vulnerability in AD are not fully known, current hypotheses have focused on two general 

concepts: a) cell type, cytoarchitecture, genetic or molecular factors, here referred to as cell-

autonomous factors [6] and b) processes dependent on cell-cell communication, network 

connectivity and topology, here referred to as non-cell autonomous factors [4]. Warren et al. 

proposed the term ‘molecular nexopathy’ to refer to a coherent conjunction of pathogenic 

protein and intrinsic neural network characteristics [8]. They enumerated a diverse set of 

potential mechanisms by which molecular dysfunction might interact with the neural 

architecture to produce observed disease topography in neurodegenerative diseases, 

including dysfunction of synaptic function or maintenance, axonal transport or repair, or a 

result of downstream trophic or cell–cell signaling. Protein transmission was highlighted as 

a prime mechanistic example of non-cell autonomous factors, whereas regional gene 

expression was considered a potential source of intrinsic vulnerability. Specifically, local 

profiles of protein expression were thought to confer selective vulnerability of network 

elements to particular neurodegenerative diseases, and their functional phenotypic signature 

[8].

In this paper, we address this issue rigorously using mathematical and statistical modeling. 

We use healthy regional gene expression of AD-implicated genes, obtained from the public 

Allen Brain Atlas (ABA) [9], as a surrogate of factors governing cell-autonomous (innate) 

vulnerability. Our study does not require our ABA cohort to have AD already since previous 

explorations of gene expression from healthy brains reveal a strong spatial clustering 

[10,11,12]. Therefore, if innate regional vulnerabilities drive AD pathology, the spatial 

patterns of healthy gene expression from ABA should recapitulate the spatial patterning of 

AD atrophy. To impart AD-specificity, we only considered genes or groups of genes that are 

associated with AD pathophysiology. ABA’s young healthy subjects have no AD-related 

comorbidities or evidence of AD pathology; hence their gene expression data putatively 

represents an innate vulnerability free from the influence of activity-, age-, environment- or 

transport-dependent expression of proteins.

Next, we capture cell non-autonomous processes using a general model of inter-regional 

communication, called the Network Diffusion Model (NDM) [13]. The NDM was proposed 

as a model of trans-neuronal spread of AD pathology and successfully recapitulated both 

cross-sectional and longitudinal patterns of AD atrophy and metabolism measured from 
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neuroimaging data [13,14]. Its effectiveness suggests a disease mechanism that 

stereotypically progresses along brain connectivity networks via cell-to-cell transmission.

We accordingly investigated whether cross-sectional MRI-derived regional atrophy 

measured from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database [15], is 

better explained by trans-neuronal models like the NDM, or by an innate vulnerability 

governed by healthy regional gene expression. A sequence of linear regression models was 

built, each having two covariates: a common NDM predictor, and a gene expression vector 

corresponding to specific implicated genes or a reduced dimensionality (PCA) vector of 

subsets of genes involved in a coherent functional domain. Although the network-centric 

NDM is based on pathology spread, here we apply it to model patterns of atrophy since (tau) 

pathology distribution is closely related to atrophy distribution, and the latter may be 

considered a direct consequence of the former [16,17]. However, atrophy is considered to 

represent a later stage of AD pathology than tau pathology, and in order to provide 

additional context we also used FDG-PET-derived regional metabolism maps as outcome 

variables in a separate analysis. Like the previous applications of the NDM model, we 

continue to use a static healthy connectome, under the assumption that the structural 

network serves merely as a conduit for transmitting proteinopathies, rather than being the 

first to be impaired itself (14).

We aim to address the effects of cell-autonomous and non-cell autonomous factors on the 

disease mechanism that drives AD by using linear models to quantify their statistical 

significance as predictive variables of atrophy and metabolism. We hypothesize that our 

application of both imaging and gene expression data will provide consolidated support for 

the importance of transneuronal spread in neurodegenerative diseases like AD.

2. METHODS

The overall pipeline of our statistical approach is depicted in Figure 1, where expression 

patterns of implicated genes are tested alongside the prediction of the NDM. In order to 

ensure regionally unbiased analysis, we repeatedly (computationally) seeded the NDM at all 

brain regions, and chose the seed site that gave the best match against empirical atrophy 

data. The map of each region’s plausibility as a seed is referred to as the “seeding pattern” 

and is simply the maximum Pearson correlation it achieves against empirical data (see 

Figure 2). The gene and NDM patterns were used in a sequence of linear statistical models 

whose outcome variable was the cross-sectional atrophy of ADNI patients. The same 

process was performed on FDG-PET data of the same ADNI patient cohort for metabolism 

as the predicted outcome. Visual representations of regional atrophy, metabolism and gene 

expression patterns are shown with glass brains that were generated with an open source 

visualization tool called Brainography developed by our group [18].

2.1 ADNI Patient Data and Image Processing

ADNI provides subjects’ diagnosis labels at each longitudinal time point, into AD, MCI or 

normal control, based on natural history and cognitive assessment. T1-weighted images 

from the ADNI-2 database were obtained at 1.5 Tesla, using volumetric 3D MPRAGE or 

equivalent protocols with resolution of 1.25×1.25 mm in-plane spatial resolution and 1.2 
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mm-thick sagittal slices. Acquisition parameters were standardized and reported elsewhere 

[15]. We compared matched controls and AD patient groups (Table 1) whose regional 

atrophy was mapped to the same 86 regions as the gene expression data. Automated cortical 

and subcortical volume measures were performed with FreeSurfer software package, version 

5.3 (http://surfer.nmr.mgh.harvard.edu/fswiki) [19,20]. Group wide T-statistics were 

calculated for baseline atrophy measurements and were used in linear models.

2.2 Allen Brain Atlas Gene Data

Gene data was obtained from six healthy brains available from the ABA [9]. Of these six 

brains, four had data pertaining to only the right hemisphere while the other two contained 

information for both hemispheres (Table 2). This data is unrelated to our AD patient data, 

and is meant to convey information about only healthy gene expression. Although it would 

be revealing to observe spatial gene expression and AD pathology in the same set of 

subjects, the current experimental design is appropriate for testing the role of innate, as 

compared to disease-induced, gene expression in AD. Gene expression data initially 

consisted of 926 brain regions, each one having a set of 58,692 probes that correspond to 

29,181 distinct genes. The 926 brain regions were mapped to 86 regions of the Desikan 

atlas. The ABA and Desikan are in the same stereotactic space, this was done by collecting 

all sample locations from ABA that fell within the same Desikan region, using the sample 

co-ordinates supplied by the ABA. White matter tracts were not mapped and were excluded 

from analysis as done in previous research that successfully linked gene expression to AD 

vulnerability [21]. ABA samples that were within a 1 voxel margin of GM were assigned to 

the nearest GM region. All samples within the same region were averaged for each gene, and 

all probes corresponding to a single gene were averaged. Gene expression values were 

averaged across the 6 individuals. Our final regional expression data was an 86 × 29181 

table.

2.3 Selecting AD-implicated genes

Following Freer et al., 2016 [21], we selected several genes that are closely associated with 

AD including: APP, amyloid precursor protein; MAPT, microtubule associated protein tau, 

which codes for tau protein, whose misfolding is a hallmark of AD [22]; PRNP, prion 

protein, which has been studied for insights on the prion-like transmission of non-prion 

proteins like amyloid and tau but has also been associated to some AD cases [23]; and 

Apolipoprotein, APOE, which is the most common genetic risk factor of AD [24].

Following Freer et al., 2016 [21], these and several other genes were enumerated into 

separate gene lists corresponding to specific functional domains: Metastable Subproteome, 

Aggregation Promoters, and Aggregation Protectors. An additional “AD Associated” gene 

list was compiled which encompassed all the genes from the above-mentioned lists 

including genes related to tau expression. A separate “Transsynaptic” gene list was compiled 

from an extensive literature search that focused on cell-to-cell communication factors that 

were implicated in neurodegenerative diseases like AD. Lastly, a short list of genes 

implicated from a regionally analyzed Genome Wide Associated Study (RAGWAS) was also 

assembled [25]. A list of all the genes used in this study can be found in the supplementary 

data.
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We added the expression of these genes as a single predictor of empirical cross-sectional 

atrophy to a linear regression model. Each test corresponded to gene expression as a 

predictor (g) and cross sectional atrophy or metabolism t-statistics (aAD) as the outcome 

variable. The R-squared value for the whole model and p-values for the t-statistic of the gene 

predictor variable were calculated with MATLAB’s LinearModel.Fit() function (Table 3).

2.4 Principle Component Analysis of AD Genes of Interest

Dimensionality reduction was performed on gene data sets via principle component analysis 

(PCA). The first principle component of our gene lists portrays the expression of genes with 

the highest variance (Percentage of variance: Transsynaptic PCA = 57%; AD Associated 

PCA = 39%; RAGWAS PCA = 54%), which reduces the influence of multicollinearity. 

Given that the first component captures a large amount of variance, it was used in 

subsequent analysis as a dimensionality-reduced stand-in for the entire gene set it was 

computed from. The first principle components were calculated with MATLAB’s PCA() 
function and were covaried against imaging-derived regional statistics in linear regression 

analysis. Linear models included the first principle component as a predictor with the 

dependent variable being the observed atrophy or metabolism as calculated from imaging 

data.

2.5 Predicting Atrophy with The Network Diffusion Model

The NDM can be mathematically represented by Equation 1, which describes the spread 

dynamics of a pathologic entity given by the 86×1 vector x(t), starting from its initial pattern 

x0, also 86×1 vector. Elements of x(t) and x0 represent the amount of pathology or atrophy at 

each of the brain’s 86 GM regions, as predicted by a model that assumes diffusion on the 

network defined by the (86×86) structural connectivity matrix. The pattern and rate of 

spread is governed by the diffusion kernel (e−βHt) [13,14]. Here H is the network Laplacian 

matrix [13].

x(t) = e−βHtx0 (1)

Let aAD be the 86×1 atrophy vector whose elements contain the t-statistic of a t-test that 

compares cross sectional regional volume of AD subjects to age-matched healthy subjects. 

As the NDM proceeds following Eq (1) for t>0, at some point the NDM predicted pattern 

x(t) will begin to resemble the empirical atrophy pattern aAD, and at t = tmax it will give the 

model time at which the best match of the NDM model is observed against empirical 

atrophy data, as the model evaluates network diffusion following the seed configuration x0. 

Hence

tmax = arg max
t

corr(x(t), aAD) (2)

The NDM models a trans-neuronal spread of AD pathology along the entire brain network 

connectivity. Eqs (1) and (2) were repeated 43 times, each time allowing x0 to be 1 at a 

single brain region (both hemispheres), and zero elsewhere. The correlation strength Rmax = 
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corr(x(tmax),aAD), of repeated bilateral seeding followed by NDM was tabulated to 

determine the region of origin that best explains AD onset [14] (Supplementary Table 1). 

Then, the NDM predicted atrophy vector x(tmax) was used as a covariate in linear regression 

analysis that predicts cross sectional end-of-study atrophy. Lastly, in order to address another 

form of observed AD phenotype at an earlier stage than atrophy, we repeated the above-

mentioned NDM and linear models on metabolism maps from FDG-PET data.

3. RESULTS

3.1 Single Regional Seeding of The NDM Indicates Heterogeneous Onset of AD Pathology 
Amongst Patients

Bilateral seeding was repeated for all 86 regions of interest and the predicted atrophy 

pattern, x(t), was calculated with the NDM over time (Figure 2). The Entorhinal Cortex (EC) 

emerged as the seeding region that best predicted cross-sectional atrophy patterns, with the 

highest Pearson’s correlation coefficient (Rmax = 0.56, p = 2.03E-08) (Figure 3a). The 

Pearson correlation coefficients for seeding at all 86 regions is shown in Supplementary 

Table 1. Although the EC’s correlation strength of Rmax = 0.56 is high enough to distinguish 

important regions of onset like the EC from other regions; it also implies that single regional 

seeding of the NDM only partially recapitulates the observed pathology in AD patients, 

suggesting a heterogeneous onset of AD pathology. However, since the subsequent analysis 

requires group averages, we chose not to allow individual subjects to have a different seed 

location even if they would have given better Rmax compared to the canonical seed at EC. 

This way, a common group averaged NDM vector x(tmax), seeded at the EC, could be used 

as a canonical NDM predictor in further analyses. This design choice probably under-

estimates the effect of network-driven effects, as heterogeneous onset would have been 

better captured by subject-specific seeds. Multiple comparisons correction was not used in 

reporting R and p during these repeated seeding experiments. The reason is that repeated 

seedings are not independent from each other, and we are not interested in determining 

significance amongst these seedings. We are only interested in obtaining the most plausible 

seed region (here, EC), after which point we discard all other seeding results. Hence 

multiple comparisons correction was not deemed necessary.

3.2 Regional expression patterns of implicated genes are weak predictors of regional 
atrophy

The regional expression pattern of genes APOE, APP, MAPT, and PRNP is displayed in 

“glass brain” rendering to provide a visual depiction of brain regions encased within a semi-

transparent rendering of the cortical surface (Figure 4). Correlation strengths for linear 

models that predict empirical end-of-study atrophy from a single gene predictor variable 

ranged from R2 = 0.006 to 0.13 with only APP, MAPT and PRNP genes being statistically 

significant predictor variables (p < 0.05) (Table 3). This suggests that cell-autonomous 

processes driven by healthy gene expression have weak relative contribution to regional 

atrophy patterns. In particular, APOE, whose protein product is known to be highly involved 

in upstream pathogenesis, gives very weak and non-significant predictors. However, APP, 

MAPT and PRNP present a low (R2 = 0.07, R2 = 0.13 and R2 = 0.06, respectively) but 

significant association. Given that MAPT and PRNP genes are involved in transport and 
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cell-cell communication, this could also indirectly highlight the contribution of both cell-

autonomous and non-cell-autonomous processes.

3.3 The NDM Model Explains AD Pathology Better Than Single Gene Predictors

We establish the ability of the NDM model to predict regional atrophy in AD by testing a 

statistical model with the NDM predicted atrophy as the single predictor of empirical end-

of-study atrophy. The model, aAD = a + c * x(tmax) resulted in an R-squared value of 0.34 (p 

= 3.84e-09, for the t-statistic of the NDM predictor in the model described).

We next explored whether linear models that include both regional gene expression patterns 

and the NDM seeded at the EC as predictors can improve the above associations with 

observed AD pathology. This test evaluates the relative contribution to regional atrophy 

patterns of cell-autonomous processes (putatively driven by healthy gene expression) and of 

non-cell-autonomous processes driven by cell-to-cell communication, modeled by the NDM. 

In all cases, the NDM predictor was a much stronger and statistically more significant 

predictor (p < 0.05) with p-values ranging from 1.27e-09 to 1.90e-08 compared to single 

gene expression with p-values ranging from 0.00046 to 0.84 (Table 4).

Since our weak finding for APOE is somewhat inconsistent with its known role as the 

highest risk factor for AD, we probed deeper into this aspect by comparing atrophy patterns 

between those subgroups in ADNI that have 0, 1 or 2 e-4 alleles of APOE. We found 

indistinguishable differences between APOE subgroups, indicating that allele status does not 

change atrophy patterns in patients (Supplementary Figure 1). A linear model with the 

APOE gene and NDM as predictors of AD pathology for different APOE subgroups also did 

not indicate the APOE gene as a significant predictor of atrophy for any APOE subgroup in 

comparison to the NDM (Supplementary Table 3).

3.4 NDM Explains AD Pathology Better Than PCA of multiple Genes

We reinforce the above results by considering a larger set of genes. We chose to investigate 

the contributions of multiple gene sets associated with AD by regional gene expression from 

lists including Transsynaptic, AD Associated, RAGWAS, Metastable Subproteome, 

Aggregation Promoter, and Aggregation Protector genes (Figure 4).

A series of linear models were used with the first principal components of each gene list 

(gPCA) as a predictor variable and cross sectional atrophy t-statistics (aAD) as the outcome 

variable (Table 3). The regression analysis resulted in low correlation strengths, ranging 

from R2 = 8.22e-04 – 0.16; with Transsynaptic, AD Associated, Metastable Subproteome, 

and Aggregation Protector gene lists being statistically significant (p < 0.05, for t-statistic of 

gene predictors). Results also indicate that Aggregation Promoter and RAGWAS genes have 

no statistically significant contribution to the observed cross-sectional atrophy in AD 

patients.

We investigated the contribution of the NDM to these linear models by adding the NDM 

model prediction x(tmax) as a second predictor variable to above models (Table 4). Results 

for the PCA of gene lists were similar to what was observed for single gene predictor models 

in that the addition of the NDM increased the correlation strength of the whole model. These 
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results suggest the NDM has a greater contribution to regional AD atrophy than regional 

expression of single genes and multiple gene sets. The best overall model was a combination 

of NDM and the transsynaptic genes, followed by NDM combined with the subproteome 

genes.

3.5 Network Transmission of Statistically Significant Gene Predictors

Even though regional patterns of single genes, and their domain-specific principal 

components are weak contributors, it is possible that the proteins they code are themselves 

subject to network-based spread, and hence strictly local associations might hide certain 

gene-driven effects. In order to investigate this, we use regional gene expression as the initial 

pattern, x0, in the NDM equation (1), and assess the ability of this joint model to predict 

cross-sectional AD. If the correlation coefficient improves as model time increases from 

zero, it would suggest that the expression of these genes causes local production of disease 

factors that then propagates in a trans-neuronal fashion and recapitulates AD topography. 

Such a finding would support the idea that while early selective vulnerability of brain 

regions may be explained by healthy gene expression of the statistically significant genes, 

the observed patterns of AD atrophy are better explained by subsequent axonal transport. 

However, our results show the correlation coefficients of the gene-seeded NDM model do 

not improve over model time for any of the selected genes in this study (Figure 5a). Hence, 

neither do these genes directly cause selective regional vulnerability in AD, nor do they lead 

to protein products whose subsequent network transmission recapitulates regional 

vulnerability in AD.

3.6 Gene Expression are Better Predictors of Hypometabolism Than Atrophy

As was done for atrophy, single regional seeding of the NDM was conducted for FDG-PET-

derived hypometabolism from the ADNI AD patient group (Figure 3b). The Precuneus had 

the highest Pearson’s correlation coefficient (Rmax = 0.49, p = 2.01e-06), indicating its 

importance as a region linked to AD hypometabolism. However, seeding at the Precuneus 

only partially recapitulates the observed pathology in AD patients. Linear models of 

observed AD hypometabolism indicated that the NDM was a more statistically significant 

predictor with p-values ranging from 1.18e-08 to 1.27e-05, in comparison to gene 

expression whose p-values ranged from 2.13e07 to 0.12 (p < 0.05) (Table 4). On the other 

hand, gene expression was more statistically significant for metabolism (p = 2.13e-07 - 0.12) 

than what we observed for atrophy (p varied in the range 6.55e-05 - 0.84) (Table 4). The 

APOE gene’s predictive role specifically for regional FDG-PET metabolism is improved in 

patient groups with one or no e4 allele. Nevertheless, the NDM still outperforms gene 

expression. However, linear models indicated some differences in gene expression’s 

predictive capabilities between APOE groups (Supplementary Table 3). Similar to AD 

atrophy, we used the NDM to predict network transmission of gene predictors used in our 

linear models of metabolism. Again, we found that the correlation coefficients of the gene-

seeded NDM model do not improve over model time for any of the selected genes (Figure 

5b).
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3.7 Selective vulnerability of seed regions does not arise from innate gene expression

Since our results indicate that the EC and Precuneus are the most likely seeds for atrophy 

and metabolism, respectively, we investigated whether their specific vulnerability to initial 

insult has a molecular basis. Hence we assessed whether these regions stand out from other 

regions in terms of gene expression by computing Z-scores of the EC and Precuneus 

compared to the other 85 regions. We found that no single gene or subset of genes used in 

this study showed a significant difference of expression in the seed region in comparison to 

other regions, with z-scores ranging from −0.73 to 0.38 for the EC and −0.28 to 0.96 for the 

Precuneus (Supplementary Table 4). No result gave p < 0.05. Therefore, the role of EC or 

Precuneus as seed regions is not rooted in innate gene expression.

4. DISCUSSION

The goal of our study was to explore the molecular basis of regional variation in AD 

vulnerability and compare it against an alternative hypothesis that relies on network-based 

spread of disease. The study was designed to answer specifically: what role does healthy (as 

compared to environment- or age-induced) gene expression, as a proxy for innate molecular 

properties of brain regions, plays in governing their selective vulnerability to AD? The key 

assumption underlying this work is if cell-autonomous factors dependent on innate 

biomolecular composition of vulnerable regions is responsible for observed AD topography, 

then the genetic proxy for such a composition in the healthy brain must be able to track the 

spatial patterning of observed AD topography. Otherwise, non-cell-autonomous processes 

unrelated to innate vulnerability must be partially or wholly responsible. Here we 

specifically explore the role of cell-cell interaction based on network connectivity, using a 

mathematical model of transneuronal spread called the Network Diffusion Model (NDM). 

Our goal was not primarily to uncover the genetic correlates of AD; although we report 

several prominent genes and their effect on regional vulnerability, these are of secondary 

concern, meant to establish convergence with prior studies on specific genes and to propose 

targets for future in-depth interrogation. A full exploration of the genetic correlates of AD 

would require a much more comprehensive study design and genomic data on patients that 

are not yet available.

4.1 Summary of Main Results

Our main contribution is showing that selective regional vulnerability in AD can be tested 

using preferential gene expression in healthy brains. By selecting AD associated genes, we 

maintain pathological relevance of our investigation without suffering from high 

dimensionality, where conventional dimensionality reductions are ineffective [26]. The 

statistically significant single gene predictors were APP, MAPT and PRNP (p < 0.05), 

indicating a more relevant functional role of these proteins, which are involved in protein 

misfolding, over APOE in AD pathology. The NDM was implemented on the healthy 

connectome, and was repeatedly seeded at each region in turn. The best result was found 

after seeding the EC, hence EC-seeded NDM was used in subsequent analysis. When the 

selected genes were entered into a linear model along with EC-seeded NDM, in all cases the 

NDM predictor was a much stronger and statistically more significant predictor (p < 0.05) 

with p-values ranging from 1.27e-09 to 1.90e-08 compared to single gene expression with p-
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values ranging from 0.00046 to 0.84 (Table 4). The use of PCA on larger gene sets allows us 

to examine a large set of functionally related genes, without requiring correction for multiple 

comparisons. Dimensionality-reduced gene sets (AD Associated, RAGWAS, Transsynaptic. 

Metastable Subproteome, Aggregation Promoter, Aggregation Protector) also did not 

perform better as predictors of AD atrophy (Table 4). However, adding the NDM as a second 

predictor variable greatly improved the linear model’s correlation strength (Table 4), making 

the NDM a far better predictor of AD atrophy.

The same procedure was repeated for FDG-PET-derived hypometabolism from the ADNI 

AD patient group (Figure 3b), and the best seed was the Precuneus (Rmax = 0.49, p = 

2.01e-06), which is known as one of the earliest regions to display hypometabolism in AD 

(27); and individual genes’ contributions were also somewhat different and generally 

stronger (p varied in the range 2.13e-07 to 0.12) than for atrophy (p-range: 6.55e-05 - 0.84) 

(Table 4). This is expected, as the molecular mechanisms leading to hypometabolism are 

likely to be different from that for atrophy. While Precuneus-seeded NDM only partially 

recapitulates observed hypometabolism, the conclusion that molecular vulnerability is a poor 

predictor of AD topography in comparison to NDM, is as true for hypometabolism as it is 

for atrophy. The exact role of hypometabolism in the AD trajectory is controversial, but our 

data suggest that it may have a stronger underpinning in cell-autonomous processes 

compared to atrophy.

4.2 Selective vulnerability does not appear to arise from innate gene expression

Taken together, our results favor the contribution of non-cell-autonomous processes (NDM 

predicted atrophy), over cell-autonomous processes (healthy gene expression), when 

identifying key players in the development and progression of AD regional patterns. 

Intriguingly, the best overall model for both atrophy and hypometabolism was a combination 

of NDM and the trans-synaptic genes (R2 = 0.44, 0.45, resp. in Table 4). The latter are 

thought to be involved in cell-cell interactions that mediate protein transmission between 

cells. Therefore, their involvement indirectly supports the network-spread hypothesis. We 

also tested a joint model, whereby protein products of selected genes would subsequently 

transmit trans-neuronally through brain circuits. This approach did not fit empirical data, 

suggesting that sporadic or heterogeneous processes underlie regional vulnerability. 

Although we showed that NDM is a far better predictor of atrophy and hypometabolism than 

innate gene expression, perhaps the empirically identified seed regions (EC and Precuneus, 

respectively) are themselves selectively vulnerable to initial pathological insult and 

infiltration due to innate genetic or molecular factors. To our surprise, we found that neither 

EC nor Precuneus stands out from the other 85 regions in expression of any single gene or 

subset of genes used in this study, with z-scores ranging from -0.73 to 0.38 for the EC and 

−0.28 to 0.96 for the Precuneus (Supplementary Table 4). No result gave p < 0.05. 

Essentially, the privileged role of the Entorhinal cortex or Precuneus as the most plausible 

seeding location cannot be explained by innate genetic or molecular factors. However, 

several caveats apply, as enumerated in Limitations section.
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4.3 Comparison with literature on AD genetics and imaging genetics

APP and MAPT have been targets of intensive study due to their pathological aggregation 

and transmission in AD [28,22]. However, PRNP has been studied less for its direct 

contribution to AD and more for insight into the prion-like transmission of Amyloid beta 

and Tau [23]. The implication of our results that PRNP is a functionally relevant AD gene is 

supported by the role of PRNP in previously studied AD cases [29,30] and the essential role 

of PRNP gene variants in genetic interactions that mediate signaling, survival and synapse 

loss in AD transgenic model mice [31].

The weak finding for APOE as a predictor of AD atrophy is somewhat surprising, as it is 

known to be the highest risk factor for AD. A possibility is that gene expression from 

cohorts at highest risk of AD (two e4 alleles) might have emerged as better predictors than 

was observed in our study. This possibility cannot be directly tested since APOE allele status 

is absent in gene expression data from ABA. However, the ADNI AD cohort provides allele 

status, hence we compared atrophy patterns between APOE subgroups in ADNI. We found 

indistinguishable differences between APOE subgroups, indicating that allele status does not 

change atrophy patterns in patients (Supplementary Figure 1). Additional linear models were 

tested with the APOE gene and NDM as predictors of AD pathology for different APOE 

subgroups. Findings indicate the APOE gene is a weak predictor of atrophy for all APOE 

subgroups in comparison to the NDM.

Due to the sporadic nature of most AD cases, an exclusively deterministic role for genetics 

is not expected in AD, where environmental factors [32] or aging [33] can be important. 

Recent work has begun to uncover the role of gene expression and its connection to gray 

matter atrophy, cognition, and topological activity, with imaging tools like MRI and PET 

[34,35,36,25]. A sophisticated statistical framework was developed by Zhao et al. [25] to 

tackle the numerically and statistically challenging problem of combining high dimensional 

data from GWAS and image voxels. However, no previous study has sought to determine the 

relative contribution to selective regional AD vulnerability of gene expression against 

network models like NDM.

4.4 Implications

This study supports the hypothesis of trans-neuronal transmission of AD pathology, which is 

a complex mechanism that is not yet fully explained. The role of statistically significant gene 

predictors like MAPT, PRNP, and transsynaptic signaling genes in transportation and 

synaptic dysfunction [37], provide support for relevance of trans-neuronal communication 

and network models in neurodegenerative diseases like AD. Other statistically significant 

genes involved with clearance (Metastable Subproteome) and aggregation protection 

(Aggregation Protector) support a prominent role for protein misfolding, aggregation and 

clearance: processes that are highly relevant to trans-neuronal spread in AD progression.

Our approach can provide new insights and treatments for diseases beyond AD, such as 

Parkinson’s Disease, various tauopathies, Epilepsy, and Creutzfeldt-Jakob. If the above data 

are reproduced in AD and related dementias, it might help to rule out innate molecular 

composition of vulnerable regions as the sole mediator of selective vulnerability in 
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neurodegeneration and would encourage the exploration of alternate explanations like aging-

associated phenomena like lifetime [38,39], oxidative stress [6], and spread of AD pathology 

along white matter connectivity pathways [40,13,25].

Our results are concordant with the “molecular nexopathy” paradigm [8] in that a central 

role is noted for network spread, but also discordant in that we find no evidence for selective 

vulnerability based on cell-type, architectonic and other intrinsic properties of brain regions 

that may be reflected in innate gene expression. It is noteworthy however that the nexopathy 

paradigm enumerates a far more diverse set of potential mechanisms by which molecular 

dysfunction might interact with the neural architecture (e.g. see below), than is possible to 

explore in a single study. Possibly, the seed regions inferred by our NDM approach (EC for 

atrophy and Precuneus for hypometabolism) may have specific molecular vulnerability, e.g. 

to tau and amyloid, that remained undiscovered by our study design, despite Table S4 that 

shows no gene-related effect.

4.5 Limitations

Many other genetic influences that could potentially play a role in AD pathogenesis and in 

increasing a person’s susceptibility to AD remain outside the purview of this study. Gene 

expression in different tissues can change with age [41], stress and environment, such as 

epigenetic effects like DNA methylation. There can be other sources of regional variability, 

e.g. oxidative stress, vascular effects, etc. Epigenetic or post-translational modifications 

caused by these regionally variable causes will produce gene expression in diseased groups 

that are different from healthy subjects studied here, and therefore are not possible to study 

using the current approach. However, the primary goal of uncovering the molecular versus 

network correlates of AD topography may be largely unaffected by these additional factors, 

since they are either unlikely to have spatial gradients (e.g. age, environment) or have non-

AD-like spatial patterning (oxidative/vascular stress).

Related to this is the possibility that our results are influenced by significant group 

differences in size or background of ABA and ADNI cohorts. Ideally, we would like to have 

access to regional gene expression at the SNP level in a large number of patients and age-

matched controls. In practice, ABA is the only publicly available gene expression data that is 

regionally sampled at sufficient number of brain regions. As and when new regionally 

sampled data becomes available on genetic, epigenetic, metabolomic and other -omics, some 

of these questions will become possible to answer. To date, ABA represents our best chance 

of using regional expression data to address an important issue in a substantive if not 

complete manner.

Our weak finding for APOE as a predictor of AD atrophy may be due to the absence of 

APOE allele status in gene expression data from ABA, as noted earlier. Although our 

suggest that e4 allele status does not change atrophy patterns in patients (Figure S1), further 

investigation with SNP data would be needed to fully address this matter.

Another possible limitation of this study is our reliance on atrophy data, which are late-stage 

in the AD trajectory in comparison to other biomarkers. The use of atrophy is appropriate for 

our goal of understanding the basis for spatial patterning in AD. It is well known that 
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regional atrophy is strongly associated with regional pathology [16,17], which is an early 

event. We partially addressed this limitation by showing analogous results for FDG-PET 

hypometabolism, which is thought to be an earlier event than atrophy. Other imaging data 

like functional MRI could provide insight on earlier disease stages that might be closer to 

the intrinsic pathophysiology.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A methodology that uses regional imaging and gene expression data as 

proxies for transneuronal and cell-autonomous processes and as predictors of 

Alzheimer’s pathology in simple linear models is proposed.

• Onset of Alzheimer’s pathology is heterogeneous but can be best partially 

recapitulated by seeding at the Entorhinal Cortex

• Contrary to APOE, single gene predictors like APP, MAPT, and PRNP are 

statistically significant predictors of cross-sectional atrophy in Alzheimer’s

• Regional expression of genes whose functional roles are involved in 

transsynaptic transmission, are better predictors of cross-sectional atrophy 

than other Alzheimer’s associated genes

• Subsequent network transmission of protein products from selected gene’s 

regional expression does not recapitulate regional vulnerability in 

Alzheimer’s
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Research in Context

Systematic review: Authors reviewed previous literature that combines imaging and gene 

expression data to provide valuable insight on known neurodegenerative disease 

pathologies. From previous literature, which are appropriately cited, gene lists were 

formed and regional gene expression and atrophy measurements were mapped to study 

the role of transneuronal and cell-autonomous processes on innate vulnerability.

Interpretation: Our findings led to the hypothesis that simple linear models and statistics 

could identify transneuronal and cell-autonomous processes as predictors of observed 

regional atrophy in Alzheimer’s.

Future Directions: We propose a methodology in which two powerful pieces of 

information compiled from MRI and gene expression data can be regionally assessed and 

used to predict pathology in neurodegenerative diseases. Future directions rule out innate 

molecular composition of vulnerable regions as the sole mediator of selective 

vulnerability in neurodegeneration to explore alternate explanations including 1) Aging-

associated phenomena or 2) oxidative stress, which could explain Alzheimer’s 

topography without assuming innate vulnerability.
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Figure 1. 
The presented methodology in which brain network connectivity models like the NDM and 

healthy gene expression can be used as proxies in the analysis of non-cell autonomous and 

cell-autonomous processes as contributors to the observed regional AD atrophy. Selected 

genes were compiled (AD Associated) and separated into functional subsets including (a) 

single genes APOE, MAPT, APP, PRNP (b) genes that were obtained from a regionally 

analyzed genome wide analysis (RAGWAS) (c) genes that play a role in cell to cell 

transmission (Transsynaptic) (d) genes that have a role in cell clearance (Metastable 
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Subproteome) (e) genes that protect from aggregation (Aggregation Protector) and (f) genes 

that promote aggregation (Aggregation Promoter).
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Figure 2. 
Glass Brain representation of NDM predicted atrophy over time (t). The blue spheres depict 

the affected regions and indicate a propagation of AD pathology that can be partially 

recapitulated by a single regional seed at the entorhinal cortex of the NDM. Regional 

seeding with the NDM propagates into atrophy patterns that have a high correspondence to 

cross-sectional atrophy of AD patients. Seeding for all regions were conducted; however, the 

figure represents seeding at the Entorhinal Cortex which resulted in a high correlation 

strength (Rmax = 0.56, p = 2.03 E-08).
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Figure 3. 
Glass Brain representations of (a) cross-sectional atrophy and (b) metabolism for ADNI 

patients at the start and end of study are indicated in green and yellow, respectively. Regional 

seeding of the NDM at 86 regions of interest are indicated in pink and blue spheres. Pink 

spheres represent bilateral seeding of the (a) EC and (b) Precuneus with the highest 

correlation strength while blue spheres indicate other regions with lower correlation 

strengths. Orange indicates the NDM predicted pathology from the best time point, x(tmax), 

which highly correlated with observed (a) cross-sectional atrophy measurements, R = 0.56 

(p = 2.03E-08) and (b) metabolism from FDG-PET measurements, R = 0.49 (p = 2.01E-06).
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Figure 4. 
Glass brain representation of the regional gene expression of single genes and the first 

principle component of gene lists among 86 regions of interest. Gene lists including: 

Transsynaptic, AD Associated, RAGWAS, Metastable Subproteome, Aggregation Promoter, 

and Aggregation Protector genes were all selected from literature that implicates their 

functional roles in AD. Red spheres represent regions whose gene expression levels are 

above the mean. Yellow spheres represent regions whose gene expression are below the 

mean.
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Figure 5. 
Analyzing the contribution of the NDM to the local production of selected gene expression 

with Pearson correlation coefficients that assess the interdependence between gene product 

diffusion and (5a) empirical atrophy or (5b) metabolism. Neither single genes (APP, MAPT, 

PRNP) or gene list (Transsynaptic, AD Associated, Metastable Subproteome, Aggregation 

Protector) appears to benefit from the contribution of the NDM.
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Table 1

ADNI Demographic info

Disease Stage Group Size (Age) M (Age) F (Age) MMSE

Control 232 (75.14 ± 6.92) 110 (76.37 ± 7.00) 122 (74.03 ± 6.68) 28.79 ± 1.14

AD 153 (75.06 ± 8.07) 87 (76.19 ± 7.90) 66 (73.57 ± 8.12) 20.92 ± 4.08

EMCI 327 (71.85 ± 7.46) 179 (72.47 ± 7.20) 148 (71.09 ± 7.73) 27.96 ± 1.71

MCI 2 (85.45 ± 6.01) 1 (89.7 ± 0) 1 (81.2 ± 0) 16 ± 12.73

LMCI 201 (73.59 ± 7.77) 113 (75 ± 7.52) 87 (71.66 ± 7.71) 26.06 ± 3.09

*
None of the ADNI patients have confirmed pathology. Patients who did not pass Freesurfer analysis were not included in the study. ADNI 

demographic info can be found at: http://adni.loni.usc.edu/wp-content/uploads/2012/08/ADNI_Enroll_Demographics.pdf
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Table 2

ABA Gene Data Information

Subject Number of Sampling Locations Half or Whole Brain

H0351.1009 363 Half

H0351.1012 529 Half

H0351.1015 470 Half

H0351.1016 501 Half

H0351.2001 946 Whole

H0351.2002 893 Whole
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Table 3

Gene Vector Predictors of cross sectional End-of-Study Atrophy

Model
aAD = a + b * g APOE APP MAPT PRNP

R2 0.006 0.070 0.13 0.060

p-value 0.48 0.014 0.00063 0.023

Model
aAD = a + b * gPCA

Transsynaptic (T) AD Associated (ADA) RAGWAS

R2 0.16 0.11 8.22E-04

p-value 0.00012819 1.97E-03 0.79325

Model
aAD = a + b * gPCA

Metastable Subproteome (MS) Aggregation Promoter (APM) Aggregation Protector (APT)

R2 0.07 0.0014 0.056

p-value 0.018 0.73 0.028

*Variable g is meant to represent a given gene or PCA of genes. Red font denotes results which did not pass a significance threshold (p = 0.05); no 
multiple comparisons correction.
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