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Vinylarenes**

Yang Yang and Prof. Dr. Stephen L. Buchwald
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Cambridge, MA 02139 (USA)

Stephen L. Buchwald: sbuchwal@mit.edu

Abstract

A copper-based catalytic technique for the regioselective ortho C–H cyanation of vinylarenes has

been developed. This method provides an effective means for the selective functionalization of

vinylarene derivatives. A copper-catalyzed cyanative dearomatization mechanism is proposed to

account for the regiochemical course of this reaction.
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Transition-metal-catalyzed direct C–H functionalization is an attractive strategy to

streamline chemical synthesis.[1,2] During the past decade, chelation-assisted C–H activation

has been employed to devise a range of synthetically useful functionalization reactions of

aromatic compounds.[1] In these processes, relatively strong σ-directing groups, such as

pyridines[1b,1c,1h] and carbonyls,[1a,1e,1f,1g] are usually required to coordinate to the

transition metal center, thereby enhancing reactivity as well as controlling site selectivity. In

contrast, weakly coordinating π-directing groups, such as C=C double bonds, have rarely

been utilized, and in particular, the ortho selective C–H functionalization of styrenes

remains a challenge.[3,4]

Herein we report a combined copper-catalyzed borylation/ortho C–H cyanation reaction of

vinylarenes. In this process, the C=C double bond is used as both a reaction site and a

‘directing group’ for the C–H functionalization event (Scheme 1). Overall, this method

introduces a synthetically versatile cyano group,[5] while simultaneously performing a

catalytic anti-Markovnikov hydrofunctionalization of the olefin.[6]
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As a part of our work to develop catalytic methods for the enantioselective

difunctionalization of olefins,[7,8] we sought to use the benzylcopper intermediate (II)

generated from hydrocupration[7] or borocupration[9] of styrenes (I) in a subsequent

electrophilic functionalization process. In an attempt to develop a cyanoborylation reaction,

we unexpectedly found that the ortho C–H functionalized product (3a) was generated in

90% yield upon treatment of 2-vinylnaphthalene (1) with the electrophilic cyanating agent

NCTS (2)[10] in the presence of a copper catalyst derived from CyJohnPhos[11] (L1) (Table

1, entries 1–2). Notably, cyanation at the less sterically congested C3 position (3b) was not

observed and benzylic cyanation product (3c) was obtained in <5% yield as indicated by 1H

NMR spectroscopy. Further experimentation revealed that replacement of the phosphine

bound cyclohexyl groups with phenyl (L2) or tert-butyl (L3) resulted in catalysts that were

less effective. Increasing the steric bulk of the ligand’s biaryl backbone did not lead to

further improvement (entries 5–6). Employing bidentate phosphine ligands such as dppp

(L6) also furnished the C1 cyanation product, albeit in lower yields, while the use of BINAP

(L7) provided <5% product under otherwise identical reaction conditions. Among various

bidentate phosphine ligands examined, DPPBz (L8) gave the best results, providing 3a in

95% yield along with <5% of 3c.[12] Other commonly used electrophilic cyanating agents

such as TsCN were ineffective for the current transformation (entry 11).

We next explored the substrate scope with respect to the vinylarene component (Scheme 2).

A variety of 2-vinylnaphthalenes bearing electron-donating or electron-withdrawing

functional groups were converted to the C1 cyanated product in good yields (4b–4h). C3

cyanation was not observed for any of the cases examined. Sterically hindered substrates

could be successfully transformed with this method (4i and 4j), and 1-vinylnaphthalenes

also represented excellent substrates (4k and 4l). Further, a heterocyclic vinylarene (4m) as

well as those bearing pendent heterocyclic motifs (4n–4p) were compatible. Using the L8-

based catalyst, α- and β-branched vinylnaphthalenes (4q and 4r) also reacted to provide the

cyanation products, although in lower yields (see the SI). Finally, styrene can also be

cyanated in a similar fashion (73%), although other simple aromatic substrates such as 4-

methoxystyrene afforded lower yields of the desired product (30–40%).

To demonstrate the synthetic versatility of the products derived from this method, several

derivatization reactions were performed (Scheme 3). Oxidation of the boronate afforded

alcohol 5a,[13] while the BCl3 mediated amination with benzyl azide provided amine 5b.[14]

Suzuki–Miyaura coupling using our RuPhos-based palladacycle precatalyst[15] delivered the

unsymmetrical 1,2-diarylethane bearing a heterocyclic core (5c). Furthermore, alcohol 5a
was converted to lactone 5d, amide 5e[16] and tetrazole 5f[17] in excellent yields.

A great deal of effort has been devoted to the selective functionalization of the biaryl

backbone of BINOL in an attempt to access new catalysts for enantioselective

transformations. However, the regioselective C–H functionalization of BINOL derivatives at

the C4 or C5 position remains underdeveloped (Scheme 4).[18] To further demonstrate the

utility of our method, we converted 6a and 6b into the corresponding cyanated products 7a
and 7b, respectively. In both examples, a single C–H cyanated isomer was generated.
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Additionally, the fully substituted and differentiated benzene ring of 7b is generated with

acceptable yield.[19]

We were also able to effect the formal ortho C–H cyanation of 2-vinylnaphthalenes by

treating 5a with DBU in the presence of MsCl at room temperature to furnish 8 in 85% yield

(Scheme 5). By regenerating the olefin, the C1 selectivity that we observe complements that

of other directed C–H activation processes, where the functionalization of less sterically

hindered C3 carbon is usually favored.[20]

In order to gain insight into the reaction mechanism of this process, we prepared 1-

deutero-2-vinylnaphthalene (9) and subjected it to the standard reaction conditions (Scheme

6). It was found that 88% of the deuterium of 9 was incorporated into 10 at the benzylic

position, indicating that a formal 1,3-hydrogen transposition has taken place. In addition, we

were able to demonstrate that this hydrogen migration is likely an intramolecular process

with respect to the vinylnaphthalene substrate by performing a crossover experiment using 9
and 11. After confirming that 9 and 11 react at similar rates, we found that converting 11 to

4h in the presence of 9 did not result in deuterium incorporation, while the amount of

deuterium incorporated in 10 was unaffected. Furthermore, a competition experiment

between 9 and 1 showed a kinetic isotope effect (KIE) of 0.98±0.02, which is suggestive

that the rate-determining step precedes hydrogen migration.

Based on these results, we propose that the current reaction proceeds through a cyanative

dearomatization mechanism (Scheme 7). Transmetalation of the phosphine-ligated copper

catalyst 12 with the diboron reagent provides 13, which undergoes subsequent borocupration

to afford benzylcopper 14a.[9a,h] Electrophilic cyanation of 14a with NCTS (2) proceeds in

an SE2′ fashion, delivering the dearomatized intermediate 16, which then undergoes a rapid

hydrogen transfer to generate the C1 cyanated product.[21–24] Cyanation at the C3 position

(17) would disrupt the aromaticity of both benzene rings and is therefore disfavored. At this

point the exact reason for the favorable C1 cyanation over benzylic cyanation remains

unclear; we are performing computational studies to gain an accurate understanding into this

regiochemical outcome.

In conclusion, we have developed a copper-catalyzed ortho C–H cyanation of vinylarenes.

This protocol provides an effective means to access an array of synthetically versatile

building blocks that can be easily transformed into a variety of complex molecules. This C–

H functionalization process features unique site selectivity, which originates from a copper-

catalyzed electrophilic cyanative dearomatization mechanism. Designing new catalysts to

broaden the substrate scope, developing enantioselective variants of the current

transformation and engaging other electrophiles of significant synthetic utility in this process

are topics of ongoing investigations in our laboratory.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Scheme 1.
Copper-Catalyzed Borylation/ortho C–H Cyanation of Styrenes.
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Scheme 2.
Substrate Scope of Vinylarenes. aReaction conditions: vinylarene (0.20–1.0 mmol), 2 (1.2

equiv), B2Pin2 (1.1–1.2 equiv), LiOtBu (1.5 equiv), CuCl (20 mol %), L1 (22 mol %),

dioxane (0.30 M), 80 °C or L8 (22 mol %), THF (0.40 M), 60 °C, 12 h. Yields reported are

that of isolated material. Yields in parentheses were determined by 1H NMR analysis of the

crude reaction mixture using 1,1,2,2-tetrachloroethane as internal standard. Isolated yields

were lower than 1H NMR yields because of product decomposition on silica gel.
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Scheme 3.
Derivatization of Borylation/Cyanation Products. Conditions: a. NaOH/H2O2, RT, 2 h

(85%). b. BCl3, CH2Cl2, RT, 4 h, then BnN3, 0 °C, 16 h (63%). c. ArCl, 5 mol% RuPhos

Precat, 5 mol% RuPhos, K3PO4, toluene/H2O, 80 °C, 12 h (60%). d. conc. HCl/MeOH, 60

°C, 12 h (95%). e. NiCl2·6H2O, NaBH4, Boc2O, MeOH, 0 °C to RT, 1 h (65%). f. NaN3,

ZnBr2, H2O/iPrOH, 100 °C, 48 h (92%).
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Scheme 4.
Regioselective Cyanation of BINOL Scaffolds.
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Scheme 5.
“Unmasking” the Boronic Ester: Formal ortho C–H Cyanation of Vinylarenes.
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Scheme 6.
Mechanistic Studies.
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Scheme 7.
Mechanistic Proposal.
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Table 1

Optimization of Reaction Conditionsa.

entry L yield of 3a yield of 3b

1 L1 84% 0.5%

2[b] L1 90% 0%

3 L2 55% 10%

4 L3 70% 6%

5 L4 25% 7%

6 L5 59% 11%

7 L6 63% 9%

8 L7 0% 0%

9 L8 95% 0%

10[c] L8 88% 2%

11[d] L8 0% 0%

12[e] - 0% 0%

[a]
Reaction conditions: 1 (0.20 mmol), 2 (0.30 mmol), CuCl (0.040 mmol), L (0.044 mmol), LiOtBu (0.31 mmol), THF (0.50 mL), 60 °C, 12 h.

Yields of 3a–3d were determined by 1H NMR analysis of the crude reaction mixture using 1,1,2,2-tetrachloroethane as an internal standard.

[b]
Dioxane (0.70 mL), 80 °C, 12 h.

[c]
CuCl (5 mol %), L8 (6 mol %), 1.0 mmol scale.

[d]
TsCN was used in lieu of 2.

[e]
In the absence of CuCl and ligand.
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