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A novel theory to describe the formation of E! B flow patterns by radially propagating heat flux
waves is presented. A model for heat avalanche dynamics is extended to include a finite delay time
between the instantaneous heat flux and the mean flux, based on an analogy between heat avalanche
dynamics and traffic flow dynamics. The response time introduced here is an analogue of the drivers’
response time in traffic dynamics. The microscopic foundation for the time delay is the time for
mixing of the phase space density. The inclusion of the finite response time changes the model
equation for avalanche dynamics from Burgers equation to a nonlinear telegraph equation. Based on
the telegraph equation, the formation of heat flux jams is predicted. The growth rate and
typical interval of jams are calculated. The connection of the jam interval to the typical step size of
the E! B staircase is discussed.VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4872018]

I. INTRODUCTION

Formation of E! B flow patterns is often observed in
magnetized plasmas.1–3 Examples include, but are not limited
to, the formation of edge shear flows by transport bifurca-
tion,4,5 the formation of zonal flows in drift wave turbu-
lence,2,3 etc. Recently, a new class of E! B flow patterns, the
E! B staircase (Fig. 1), was observed in gyrokinetic simula-
tions of flux driven, full f ion temperature gradient (ITG) tur-
bulence using GYSELA.6 An E! B staircase is a quasi-
regular pattern of profile corrugations and shear flows. In the
regions between corrugations, transport is non-local,7–16

Q ¼ #
Ð
dx0vðx; x0ÞrTðx0Þ, with the kernel width D & Dc cor-

responding to the distance between steps. Here, Dc is the turbu-
lence correlation length. Transport in these regions is
dominated by stochastic avalanches,9,17–19 which are distributed
with outer scale D. The entire pattern of the corrugations and
the steps co-existing with avalanches was named the E! B
staircase, after potential vorticity (PV) staircases in geophysical
fluid dynamics.20,21

The emergence of E! B staircases in gyrokinetic simu-
lations is not so surprising, since it is a natural consequence
of phase space density mixing, which is analogous to poten-
tial vorticity mixing in geophysical fluid dynamics.20–27

What is surprising here is the fact that seemingly exclusive
phenomena, namely, strong E! B shear flows and stochastic
avalanches, co-exist. To see this, note that on one hand,
strong shear flows should reduce avalanche transport. On the
other, avalanches can be strong enough to smooth out corru-
gations by transporting heat, and thus may break the E! B
“barrier.” Surprisingly, these two mutually exclusive phe-
nomena can survive side-by-side in E! B staircases. The
co-existence is achieved by self-organizing the entire profile

into the two distinct regions, one where avalanches of the
size D & Dc dominate, and the other where corrugations and
shear flows are localized. However, the emergence of E! B
staircases cannot be described using the usual quasi-linear
modulation theory for E! B flow generations in magnetized
plasmas. For example, the “eigenfunction” idea3 seems inap-
propriate here, since staircases do not grow simultaneously
throughout the entire region. Rather, staircases start forming at
one location and then continue self-assembling step-by-step. A
more specific issue here is to explain the emergence of particu-
lar scales, such as the staircase step size. Here, we cannot
directly relate the typical scale to the Rhines scale,28 since that
scale has nothing to do with stochastic avalanches, and is based
on inverse cascade inertial range physics. We also note that
other theories18,19,29 do not account for the emergence of a par-
ticular scale apart from those already present in the models.

FIG. 1. An E! B staircase. Here, temperature gradient is plotted against the
plasma radius. At steady state of the simulation, the temperature profile is
corrugated. The strong corrugations were accompanied by strong E! B
shears, as shown in the lower part of the figure. In the regions between the
corrugations, or “steps,” transport were found to be non-local and dominated
by avalanches.6

a)Paper JI2 1, Bull. Am. Phys. Soc. 58, 143 (2013).
b)Invited speaker.
c)Electronic mail: kosuga@riam.kyushu-u.ac.jp
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In this paper, we propose a model to describe the gener-
ation of E! B staircases by extending the theory for ava-
lanche dynamics. In developing the theory, we consider that
heat flux waves can “jam” to corrugate profiles and produce
shear layers. To reveal such an effect, a key is to consider
the finite time delay30,31 between the instantaneous heat flux
and the mean flux. As shown in Table I, the response time is
an analogue of the drivers’ reaction time in traffic flows.32,33

By including finite response time, the model for heat ava-
lanche dynamics is extended from Burgers equation to the
nonlinear telegraph equation (Fig. 2). As the telegraph equa-
tion has both a second time derivative due to the finite
response and a second spatial derivative due to ambient dif-
fusion, it naturally introduces waves into the dynamics of
meso-scale heat perturbations. The heat flux waves propa-
gate at a typical speed

ffiffiffiffiffiffiffiffiffi
v2=s

p
, where v2 is ambient thermal

diffusion and s is the response time. The waves are
immersed in the bath of propagating pulses at speed c0 '
kdT (Fig. 3). When the response time is short, and thus when
heat flux waves propagate faster than a pulse, the pulse is left
behind. The dynamics of the pulse is described by Burgers
equation. However, when the response time is long, pulses
can overtake the heat flux waves. In this case, a heat flux jam
can happen, just as a traffic jam can happen for a long driv-
ers’ reaction time.32,33 A heat flux jam may be thought of as
clustering instability,32,33 where the effective conductivity
v2 # c20s can be negative in the case of overtaking

(c0 >
ffiffiffiffiffiffiffiffiffi
v2=s

p
). The growth rate is calculated, which allows

prediction of a particular scale favored by the jam instability.
The scale for the maximal growth is obtained and is typically
D2 ' qi

ffiffiffiffiffiffiffi
v2s

p
. Here, D is determined by the geometric mean

of qi and
ffiffiffiffiffiffiffi
v2s

p
, the propagation length of the heat flux wave

in 1 response time. We quantitatively evaluate the scale for a
saturated state achieved via shearing feedback from the
resulting staircase. The result indicates that the typical scale
is D ' 10Dc, which is comparable to the spacing between
corrugations in staircases (Fig. 1).

The remainder of the paper is organized as follows. In
Sec. II, we discuss an extension of the model for heat ava-
lanche dynamics to include the finite response time. The
physical idea and microscopic foundation for the response
time are presented. In Sec. III, we present an analysis based
on the extended model. Heat perturbation dynamics is ana-
lyzed using the telegraph equation. Section IV contains the
conclusion and discussion.

II. MODEL

Here, we derive a model to describe avalanche dynam-
ics with a time delay between heat flux and temperature per-
turbations. We first present a brief summary of the
conventional avalanche dynamics theory based on the idea
of joint reflection symmetry.18,19 We then discuss the exten-
sion of the heat avalanche dynamics model to include finite
delay time. The physical idea behind the finite time delay is
explained, based on the analogy of the model to traffic jam
evolution. We also discuss the microscopic origin of the time
delay, by considering the mixing of phase space density.

In previous studies,18,19 theory of avalanche dynamics
was developed based on symmetry arguments. In this line of

TABLE I. Comparison of heat avalanche dynamics and traffic jam dynamics. In plasmas, the instantaneous heat flux can deviate from the mean flux around

the marginal state. The heat flux adjusts its value toward the mean value in a finite response time s. The response time is an analogue of drivers’ response time
in traffic, during which each driver adjusts speed to that of a mean background traffic flow.31

Heat avalanche Traffic flow

Dynamical variable

(order parameter)

Deviation from marginal profile dT Car density perturbation dq

Instantaneous flux Heat flux Q Traffic flow v
Mean Flux Q0½dT) !Mean flux near marginality determined by

symmetry constraints or! quasilinear flux
VðdqÞ # ð!=qÞ@xdq background traffic flow, determined
empirically or by general consideration

Response time Mixing time during which instantaneous

heat flux relaxes to the mean flux

Drivers’ response time during which drivers adjust their speed to the

surrounding traffic speed

FIG. 2. Extension of heat evolution equation from diffusion/Burgers equa-
tion to the nonlinear telegraph equation. Here, the extension is made by
introducing the finite response time s, during which plasmas adjust the heat
flux toward the mean value. Physically, the response time is an analogue of
drivers’ response time. Formally, it is a natural consequence of phase space
density mixing. Note that the latter lays the microscopic foundation for
introducing the response time.

FIG. 3. A schematic drawing for a pulse propagating at c0 and a heat flux wave
train propagating at

ffiffiffiffiffiffiffiffiffi
v2=s

p
. Depending on pulse amplitude (c0 / dT) and the

response time, one of these two can propagate faster than the other. For short
response time limit, heat flux waves propagate faster. For long response
time, the heat flux wave speed becomes slower and finally pulses can over-
take the wave front.
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approach, the deviation from the marginal profile serves as a
conserved order parameter. For example, the evolution of the
temperature deviation is given by

@tdT þ @xQ½dT) ¼ 0: (1)

Here, Q½dT) is the turbulent heat flux. The total heat flux is
determined by the sum of the turbulent flux and the neoclass-
ical flux, Qtot ¼ Qþ Qneo. Here, we consider a regime where
the transport is due to turbulence, so Qneo is negligible. Thus,
this model does not apply to transport within an already
existing ITB. To close the equation, we need a specific form
of Q½dT). To determine its form, we require that the net
transport must be down the gradient (Fig. 4). This requires
that blobs (local excess) must propagate outward, while
holes (local deficit) must propagate inward. In order to allow
these types of solutions, the basic equation must be invariant
under the transformations x ! #x and dT ! #dT. The gen-
eral form that satisfies joint reflection symmetry is

Q½dT) ¼
X

p;q;r

fA2pðdTÞ2p þ Bq;r@
q
xdT

r þ :::g; (2)

where p, q, and r are integers and qþ r must be even. The
simplest, non-trivial flux is

Q0½dT) ¼
k
2
ðdTÞ2 # v2@xdT þ v4@

3
xdT: (3)

To the lowest non-trivial order, the dynamics of the tempera-
ture deviation is given as

@tdT þ kdT@xdT ¼ v2@
2
xdT: (4)

This is a Burgers equation for the deviation from the mar-
ginal profile. The dynamics of heat avalanches was analyzed
based on Eq. (4).18,19 It was argued that large avalanches of
system size a dominate transport.

Here, as an extension of the heat avalanche model, we
admit the possibility of a finite time deviation of the instanta-
neous heat flux Q from the mean heat flux Q0, where the lat-
ter is determined by the symmetry constraint. As
demonstrated by simulations,6,34 the heat flux has intrinsic
variability around a mean value. Thus, the instantaneous
heat flux can differ from the mean heat flux. This difference
relaxes due to phase space density mixing. The dynamics of
such heat flux evolution can be modeled as

@tQ ¼ # 1

s
ðQ# Q0½dT)Þ: (5)

Here, s is the plasma response time during which the instan-
taneous heat flux relaxes toward the specified mean value.
The physical idea behind the model extension may be clari-
fied by invoking the similarity of heat avalanche dynamics to
traffic flow dynamics (Table I). A well known simple
model32,33,35 for 1D traffic flow dynamics is given by

@tqþ @xðqvÞ ¼ 0; (6)

@tvþ v@xv ¼ # 1

s
v# VðqÞ þ !

q
@xq

# $
: (7)

Here, q is the local car density, v is the speed of each car,
VðqÞ is the mean background traffic flow, ! is the diffusivity,
and s is the drivers response time. The similarity between
traffic flow dynamics and heat avalanche dynamics is clear.
In traffic flow, the instantaneous speed of individual cars can
deviate from the mean background traffic flow. When the
two speeds are different, drivers respond to the difference by
adjusting their speed toward the mean value in a time s.
Similarly, in plasmas, the instantaneous heat flux Q can devi-
ate from the mean heat flux. We show that plasmas adjust
the heat flux toward the mean value in the plasma response
time s. The plasma response time s is the analogue of the
drivers’ response time. As we will show later, the plasma
response time originates from phase space density mixing.
When the response time is long, traffic jams can form.32 The
process of traffic jam formation results from a clustering
instability, which occurs when s > !=c20, where c0 is the ini-
tial streaming speed. Later, we show that the heat flux can
also jam in the limit of long plasma response time.

While the heuristic argument given above clarifies the
physical picture of the response time, its microscopic origin
and quantitative features also must be established. In order to
answer this question, here we present a more formal derivation
of the response time from microscopic physics. To proceed,
we note that plasma turbulence conserves phase space density,
df=dt ¼ 0, up to collisions. A relaxation process mixes phase
space density and enhances turbulent fluctuations. That pro-
cess leads to the production of fluctuation “phasetrophy,”36 as
measured by the 2 point phase space density correlation
hdf ð1Þdf ð2Þiþ. Here, the average is over the center of mass
coordinate xþ ¼ ðx1 þ x2Þ=2. To be more specific, here we
consider a simplified model for gyrokinetic turbulence37

@tf þ vD "E@yf þ evE!B + rf ¼ 0; (8)

where vD "E is the energy dependent drift. For this model, the
phasetrophy evolution is given as

@thdf ð1Þdf ð2Þiþ þ 1

smix
hdf ð1Þdf ð2Þiþ ¼ Pð1; 2Þ (9)

and

Pð1; 2Þ ¼ #hevxð1Þdf ð2Þiþhf i
0ð1Þ # hevxð2Þdf ð1Þiþhf i

0ð2Þ:
(10)

FIG. 4. Schematics for blobs propagating outward and holes propagating
inward. These are allowed to have net transport down the gradient. To have
both solutions, equation must be invariant under the simultaneous transfor-
mation of x ! #x and dT ! #dT.
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Here, Pð1; 2Þ describes the production of fluctuation phase-
trophy by the relaxation of free energy in the system. smix is
the mixing time of phasetrophy, which is determined by syn-
ergy of the drift and E! B mixing38

1

smix
hdf ð1Þdf ð2Þiþ ¼ vDiE1

@

@y1
hdf ð1Þdf ð2Þiþ

þr1 + hevð1Þdf ð1Þdf ð2Þiþ þ ð1 $ 2Þ:
(11)

Here, ð1 $ 2Þ denotes the terms with the arguments
exchanged. smix is typically on the order of the turbulent
phase space density correlation time.38 Associated with pha-
setrophy mixing, the heat flux is also relaxing toward a
specified value. This can be seen by differentiating Eq. (9)
with respect to y2, multiplying E1, and then taking the veloc-
ity moment to obtain

@t

ð
d3v1d3v2E1hdf ð1Þ@y2df ð2Þiþ

þ 1

smix

ð
d3v1d3v2E1hdf ð1Þ@y2df ð2Þiþ

¼
ð
d3v1d3v2E1@y2Pð1; 2Þ: (12)

Noting
Ð
d3v@ydf ¼ @ydn / evx for adiabatic electrons

(dn ' e/) and considering flat density (i.e.,
Ð
dv32hf i0ð2Þ ! 0)

for simplicity, we have

@tQ ¼ # 1

smix
ðQ# Q0Þ; (13)

where Q ¼ hevxdTiþ is the turbulent heat flux and Q0 ¼
#smixhev2xihTi0 is the mean heat flux, here described by Fick’s
law. Thus, the heat flux evolves in time during the phase
space density mixing process. It is important to note that the
above consideration reveals that the typical scale of the
response time is on the order of the turbulent mixing rate.
Also, the microscopic origin of the response time is now
clear. The deviation of instantaneous heat flux from the
specified mean flux is a natural consequence of phase space
density mixing.

Given the physical picture and microscopic foundation,
an extended model for heat avalanche dynamics emerges as

@tdT þ @xQ ¼ 0; (14)

@tQ ¼ # 1

s
ðQ# Q0½dT)Þ; (15)

where Q0½dT) is the mean flux determined by joint reflection
symmetry (Eq. (3)). Eliminating the heat flux, we obtain the
evolution equation for the temperature perturbation as

@tdT þ kdT@xdT ¼ v2@
2
xdT # v4@

4
x # s@2

t dT: (16)

Equation (16) describes the dynamics of the temperature
deviation from the marginal profile, including a finite
response time. Comparing to previous models for avalanche
dynamics, here the equation has developed from a Burgers

equation to a nonlinear telegraph equation (See Fig. 2). We
note that the telegraph equation has been also derived for
drift wave-zonal flow turbulence.39 In that study, a telegraph
equation was derived for zonal flow shear evolution by
including finite response time in the momentum flux evolu-
tion. The telegraph equation was used to describe a novel os-
cillatory behavior of drift wave-zonal flow turbulence.

III. ANALYSIS

Here, we present the analysis of the telegraph equation.
At the outset, it is important to note that there are two char-
acteristic speeds in the telegraph equation (Fig. 3). Since
there are two characteristic speeds in the problem, the behav-
ior of solutions can differ, depending which speed is faster.
Here, we discuss the characteristic behavior of heat perturba-
tions in both limits.

We start with the familiar limit with short response
time, where heat flux waves propagate faster than heat
pulses. Since telegraph equations reduce to Burgers equa-
tions in this limit, we expect that front-like solutions can be
found. Indeed, we can find propagating exact solutions
as follows. To find propagating solutions, we substitute
dTðx# ctÞ into the telegraph equation, to obtain

#cdT0 þ kdTdT0 ¼ ðv2 # c2sÞdT00: (17)

Here, the prime denotes derivative with respect to
n , x# ct. Note that the same relation is obtained from
Burgers equation with viscosity replaced by v2 # c2s.
Indeed, in the short response time limit, the mathematical
structure is identical to that of Burgers. Equation (17) can be
integrated using the methods for Burgers equation. For the
boundary conditions such that dT0 ! 0, dT ! dT6 as
n ! 61, and dT# > dTþ, Eq. (17) can be integrated to
give

dT ¼
dT# þ dTþ exp

k
2

dT# # dTþ
v2 # cs2

n
# $

1þ exp
k
2

dT# # dTþ
v2 # cs2

n
# $ : (18)

Here, c ¼ ðk=2ÞðdT# þ dTþÞ. Equation (18) describes ballis-
tically propagating front solutions. Typical propagating pat-
terns are shown in Fig. 5. If dT# > 0 and dTþ ! 0,
c ¼ kdT#=2 > 0 and Eq. (18) describes a hot front propagat-
ing outward. This is a blob-like solution.10,11 On the other
hand, if dT# ! 0 and dTþ ¼ #jdTþj < 0, we have c ¼
#kjdTþj=2 < 0 and thus Eq. (18) describes a cold front

FIG. 5. A schematic drawing for front solutions. For dT# > 0 and dTþ ! 0,
we have heat excess propagating outward at c ¼ kdT#=2 > 0. For dT# ! 0
and dTþ < 0, we have heat deficit propagating inward at c ¼ #kjdTþj=2 < 0.

055701-4 Kosuga et al. Phys. Plasmas 21, 055701 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
132.239.66.163 On: Wed, 07 May 2014 16:20:22



(void) propagating inward. In both cases, the propagation
speeds are proportional to amplitude. Thus, hotter blobs or
colder holes propagate faster. This is analogous to the behav-
ior of front-like solutions in Burgers turbulence.

On the other hand, in the limit of the long response time,
pulses can overtake heat flux waves (Fig. 3). As we see
below, heat flux jams can happen in this situation. This is
physically plausible, since this limit is analogous to flows of
traffic where the drivers have a long response time. In order
to analyze such effects, we consider an avalanche initially
propagating at the speed c0 ¼ kdT0 and examine whether a
perturbation on it grows or not. The perturbation evolves in
time as

@tfdT þ c0@xfdT ¼ v2@
2
x
fdT # v4@

4
x
fdT # s@2

t
fdT : (19)

In the frame of the pulse, the righthand side reads as

ðv2 # c20sÞ@2
x
fdT # v4@

4
x
fdT . Thus in the long response time

limit, the effective conductivity can be negative and we
expect an instability to develop. This is analogous to a clus-
tering instability of cars in traffic, i.e., a “pile-up.” Here,
heat perturbations can cluster to form a “heat flux jam.”
Note also that the negative conductivity instability is analo-
gous to the familiar negative viscosity for zonal flow forma-
tion.3 In the case of zonal flow formation, zonal flows arise
as secondary modes formed by an ensemble of primary drift
waves. In the case of jam formation, heat flux jams, or
“jamitons,”33 evolve as a secondary mode driven by the pri-
mary ensemble of avalanches.

The growth rate of heat jam formation is obtained by
Fourier analyzing Eq. (19)

xr;k ¼ 6
1

2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r # 1

2
þ 2sv2k2 1þ v4k2

v2

# $s

; (20)

ck ¼ # 1

2s
þ 1

2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r þ 1

2
# 2sv2k2 1þ v4k2

v2

# $s

; (21)

where r ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4sv2k2 1þ v4k2=v2ð Þ # 1

& '2 þ 16c20k
2s2

q
. From

this, we can see that the critical, minimal time delay required
for jam growth is

s >
v2
c20

1þ v4k
2

v2

 !

: (22)

Importantly, the growth rate introduces a scale dependence
of heat flux jams -, i.e., we see that there is a particular scale
which is optimal for heat jam formation. Note that this iden-
tifies an emergent scale in the problem, which is not one of
the basic scales of the model. The scale for maximum
growth rate can be obtained by solving @ck=@k

2 ¼ 0, which
gives

8s
v24
v2

k6 þ 4sv4k
4 þ 2

v4
v2

k2 þ 1# c20s
v2

¼ 0: (23)

Assuming k2 < v2=v4 to avoid stabilizing v4 effects gives

k2max ffi
v2
v4

ffiffiffiffiffiffiffiffiffi
v4c20
4v32

s

¼ kdT0
2

ffiffiffiffiffiffiffiffiffi
v2v4

p : (24)

From this, we can calculate the scale for the maximal growth
and jamming instability wavelength, which set the inter-jam
spacing (Fig. 6)

D2
max ¼ k#2

max ¼
2

ffiffiffiffiffiffiffiffiffi
v2v4

p

kdT0
; (25)

cmax ffi
1

2s

ffiffiffiffiffiffiffi
c20s
v2

s

¼ kdT0
2

ffiffiffiffiffiffiffi
v2s

p : (26)

Here, we note that the spacing can be a function of ampli-
tude. Thus, the larger the corrugation amplitudes are, the nar-
rower the spacing is. This property is analogous to that of
typical solitons, such as for ion acoustic waves.40 We also
note that there are two characteristic scales in the nonlinear
pattern shown in Fig. 6, i.e., one for the inter-jam spacing
and the other for the scale of corrugations. Here, we calcu-
late the inter-jam spacing D. In most cases, this scale is of
greater interest since it sets the size of the largest avalanches.

In order to estimate the typical value for the scale, we
assume that heat flux jam instability feedbacks on itself, by
producing strong corrugations and E! B shear flows
(Fig. 7). The idea behind this assumption is that strong corru-
gation in the profile resembles “the transport barrier” in
fusion plasmas. In these cases, the steep gradient in the pro-
file can give rise to a strong v0E!B, which is often associated
with the suppression of instability. As a crude estimate, this
feedback may be expected when the E! B shear becomes
comparable to the maximal growth rate,41 i.e., cmax ' v0E!B.
Here, v0E!B is supported via corrugated profiles as

v0E!B ffi c

eB
dT00 ffi cdT

eBD2
max

' xciq2i kTi
2

ffiffiffiffiffiffiffiffiffi
v2v4

p
dT
Ti

# $2

: (27)

In this case, the scale for the maximum can be evaluated as

D2
max '

2vthi
kTi

ffiffiffiffiffiffiffi
v2s

p
qi: (28)

FIG. 6. A schematic view of jam growth. Heat flux waves (indicated in
blue), immersed in stochastic avalanches (indicated in red), grow due to
overtaking and form jams. Once the first shear layer is produced by jam-
ming, the second layer starts to develop. The process continues. Finally, the
system self-assembles into a nonlinear pattern, with sharp corrugations inter-
spersed by D. D is closely related to the spacing in staircases.
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Note that the emergence of a scale not initially embedded in
the theory! The typical scale is given by the geometric mean
of the correlation length ('qi) and the propagation length for

heat flux waves in 1 response time ð
ffiffiffiffiffiffiffiffiffi
v2=s

p
Þs ¼ ffiffiffiffiffiffiffi

v2s
p

. Using

typical values, Ti ' 1 keV, n ' 1013 cm#3, B ' 104 Gauss,
"0 ' 1=3, and assuming kTi ' a pulse propagation speed

' 100 cm=0:1 s ' 103 cm=s, s ' Dx#1 ' 10#5 s, v2 ' vneo
' !iiq2i ="

3=2
0 ' 1:4! 102 cm2=s, and Dc ' 1:5 cm for k?qi

' 0:2, we have Dmax ' 12! Dc ' 18 cm. Thus, Dmax is the
typical of the meso-scale range, i.e., Dc . D < a. Dmax is also
comparable to the size of staircase steps in simulations.6,42

IV. CONCLUSION AND DISCUSSION

In this paper, we presented an extension of the heat ava-
lanche model and its application to the formation of the E! B
staircase. The principal results of the paper are as follows.

1. We discussed an extension of the model of heat ava-
lanches to account for the finite time delay between the
instantaneous flux and the mean flux

Q0½dT) ¼
k
2
dT2 # v2@xdT # v4@

3
xdT;

) @tQ ¼ # 1

s
ðQ# Q0½dT)Þ: (29)

Here, s is the response time for plasmas to relax the in-
stantaneous heat flux to the mean flux. The response time
is an analogue of drivers’ response time in traffic flow.
The microscopic foundation for the response time was
developed by considering the mixing of phase space den-
sity. The microscopic consideration also reveals that the
response time is of the order of the E! B mixing time or
the turbulence correlation time.

2. As a consequence of the finite response time, heat evolu-
tion is described by a nonlinear telegraph equation

s@2
t dT þ @tdT þ kdT@xdT ¼ v2@

2
xdT # v4@

4
xdT: (30)

Here, the response time enters the second time derivative
term. This, together with the diffusion term, introduces
wave dynamics into the heat equation with wave speed
c ¼

ffiffiffiffiffiffiffiffiffi
v2=s

p
.

3. When the response time is long, heat pulses can overtake
heat flux waves. Alternatively, just as traffic jams can

form when the drivers’ response time is long, here a heat
flux jam can form when the plasma response time is long.
The typical scale associated with maximal growth was
calculated (Eq. (26)). The typical value of the scale was
estimated for a saturated state, which is achieved when
the feedback from the E! B flow shear (from a corru-
gated profile) becomes comparable to the original jam
growth rate. The result is D2

max ' ð2vthi=kTiÞ
ffiffiffiffiffiffiffi
v2s

p
qi. The

scale is set by the geometric mean of the Larmor radius
and the heat wave propagation length in 1 response time.
The result is consistent with the typical step spacing of
staircases, as observed in simulations.6,42

Having summarized the theoretical ideas, we now discuss the
connection to both numerical and physical experiments. To
digitally test the theory presented here, it may be useful to
study how the staircase structures respond to varying the
source intensity. Assuming the source intensity and the tem-
perature variability are correlated, we expect that the staircase
spacing would shrink as the power input increases (Eq. (26)).
Another interesting test is to examine how the staircase
responds to varying the ambient diffusion v2 ' vneo. By
increasing the ambient diffusion, we expect heat flux waves
to propagate faster and so overtaking to become more diffi-
cult. Thus, from the view point of jam formation, the staircase
structure may not develop for large enough v2. Finally, we
note that probing the locations of profile corrugations is an
interesting test as well. As the theory does not include the
effect of sheared magnetic fields, the location of corrugations
in the model is not tied to the low q (the safety factor) rational
surfaces. The similar tendency is obtained at least in the for-
mer simulation study.6 More tests on the location may be use-
ful as a basic characterization of staircases.

For physical experiments, an ideal venue in which to
probe avalanche jams is plasma near the marginal state.9 In
plasmas near marginality, one might excite heat flux waves
and add noise. One way to identify such heat flux waves
would be to characterize the pulse propagation speed and
compare it to

ffiffiffiffiffiffiffiffiffi
v2=s

p
. If heat flux waves exist in plasmas,

then we can induce modulations and can examine whether
heat flux jams form or not. These may be a possible step for
identifying heat flux jamming effects in experiments.

In the future, both application of theory to different
problems and further extension of the basic theory merit
attention. One relevant application of the theory may be to
the problem of pulse propagation studies in fusion
plasmas.7–16 Recalling that the telegraph equation naturally
introduces a propagation speed c ¼

ffiffiffiffiffiffiffiffiffi
v2=s

p
and that it sug-

gests the existence of propagating solutions of the form
f ðx# ctÞ, we expect that the telegraph equation may be use-
ful for analyzing pulse propagation phenomena. Indeed, the
characteristic speed

ffiffiffiffiffiffiffiffiffi
v2=s

p
is similar to that of the front in a

Fisher reaction-diffusion system.29,43–46 This is
ffiffiffiffiffiffi
cD

p
, where

c is growth rate and D is ambient diffusivity. Note that the
latter is often invoked in the study of pulse propagation phe-
nomena. The telegraph equation may also be applied to char-
acterize typical propagation speeds. Further extension of the
basic theory is important as well. One relevant extension is
to treat the response time self-consistently. While we treated

FIG. 7. A feedback loop for the jam instability leading to E! B staircases.
Once jamming instability is initiated, the profile starts corrugating to pro-
duce E! B staircases. The resultant E! B shear can feedback to the original
jam instability.
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s as a parameter on the order of E! B mixing time, it is, in
fact, a function of the turbulence amplitude, so sðEÞ. Thus,
some understanding of the dynamics of the turbulence inten-
sity is required. The extension to the self-consistent response
time may be important to fully represent the effect of the
“deviation” of the system from marginality. There are sev-
eral other extensions, such as nonlinear analysis of the jam
evolution beyond the linear regime, consideration of noise
effects in the telegraph equation, and calculating the critical
exponents18,19 for jamming front propagation. In particular,
the nonlinear analysis of the jam evolution, including the
coupling to the dynamics of ambient turbulence and zonal
flows, may merit more attention. Such analysis would allow
more detailed feedback analysis on jam instability beyond
the simple E! B shear feedback as invoked above calcula-
tion. These will be pursued in the future.
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