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 18 

Abstract 19 

Materials synthesized by organisms, such as bones and wood, combine the ability to self-repair 20 

with remarkable mechanical properties. This multifunctionality arises from the presence of living 21 

cells within the material and hierarchical assembly of different components across nanometer to 22 

micron scales. While creating engineered analogs of these natural materials is of growing 23 

interest, our ability to hierarchically order materials using living cells largely relies on engineered 24 

1D protein filaments. Here, we lay the foundations for bottom-up assembly of engineered living 25 

material composites in 2D along the cell body using a synthetic biology approach. We engineer 26 

the paracrystalline surface-layer (S-layer) of Caulobacter crescentus to display SpyTag peptides 27 

that form irreversible isopeptide bonds to SpyCatcher-modified proteins, nanocrystals, and 28 

biopolymers on the extracellular surface. Using flow cytometry and confocal microscopy, we 29 

show that attachment of these materials to the cell surface is uniform, specific, and covalent, 30 

and its density can be controlled based on the location of the insertion within the S-layer protein, 31 

RsaA. Moreover, we leverage the irreversible nature of this attachment to demonstrate via SDS-32 

PAGE that the engineered S-layer can display a high density of materials, reaching 1 33 

attachment site per 288 nm2. Finally, we show that ligation of quantum dots to the cell surface 34 

does not impair cell viability and this composite material remains intact over a period of two 35 

weeks. Taken together, this work provides a platform for self-organization of soft and hard 36 

nanomaterials on a cell surface with precise control over 2D density, composition, and stability 37 

of the resulting composite, and is a key step towards building hierarchically ordered engineered 38 

living materials with emergent properties. 39 

 40 
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Living organisms hierarchically order soft and hard components to create biominerals 48 

that have multiple exceptional physical properties1. For example, the hierarchical structure of 49 

nacre creates its unusual combination of stiffness, toughness, and iridescence. Genetically 50 

manipulating living cells to arrange synthesized materials into engineered living materials 51 

(ELMs)2,3 opens a variety of applications in bioelectronics4, biosensing5, smart materials6, and 52 

catalysis3-7. Many of these approaches use surface display of 1D protein filaments8–11 or 53 

membrane proteins12,13 to arrange materials, while cell display methods that hierarchically order 54 

materials in 2D with controlled spatial positioning and density have yet to be fully developed. 55 

This gap limits the structural versatility and degree of control available to rationally engineer 56 

ELMs. 57 

Surface-layer (S-layer) proteins offer an attractive platform to scaffold materials in 2D on 58 

living cells due to their dense, periodic structures, which form lattices on the outermost surface 59 

of many prokaryotes14 and some eukaryotes15. These monomolecular arrays can have 60 

hexagonal (p3, p6)16-17, oblique (p1, p2)18-19, or tetragonal (p4)20 geometries and play critical 61 

roles in cell structure21-22, virulence23, protection24, adhesion25, and more. Recombinant S-layer 62 

proteins can replace the wild-type lattice in native hosts, or can be isolated and recrystallized in 63 

vitro, on solid supports, or as vesicles26. These have been used for a number of applications26, 64 

27, including bioremediation28 and therapeutics29 on cells.  65 

To date, only two S-layer proteins have solved atomic structures, allowing for sub-66 

nanometer precise positioning of attached materials: SbsB of Geobacillus stearothermophilus 67 

PV7218 and RsaA of Caulobacter crescentus CB1530. Of these two S-layer proteins, there is a 68 

well-established toolkit for the genetic modification of C. crescentus, as it has been studied 69 

extensively for its dimorphic cell cycle31. Additionally, C. crescentus  is a Gram-negative, 70 

oligotrophic bacterium that thrives in low-nutrient conditions, and while a strict aerobe, can 71 

survive micro-aeration32. Together, this makes C. crescentus particularly suitable as an ELM 72 

chassis. RsaA forms a p6 hexameric lattice with a 22-nm unit cell (Figure 1a,b) at an estimated 73 
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density of 45,000 monomers per bacterium33 and is amenable to peptide insertions34. Specific 74 

protein domains have been inserted in RsaA to bind lanthanide metal ions35 or viruses29. 75 

However, engineered RsaA variants currently lack the ability to assemble a variety of materials, 76 

in an irreversible fashion, and with well-characterized density - all key features needed for 77 

ELMs.  78 

Here we engineer RsaA as a modular docking point to ligate inorganic, polymeric, or 79 

biological materials to the cell surface of C. crescentus without disrupting cell viability. This 2D 80 

assembly system is specific, stable, and allows for control over the density of attached materials 81 

without the use of chemical cues, achieving a maximal coverage of ~25% of all possible sites, 82 

the highest density of cell-surface displayed proteins reported to our knowledge. This work 83 

forms the foundation for a new generation of hierarchically assembled ELMs. 84 
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 85 
Figure 1: RsaA forms a 2D hexameric lattice on the surface of C. crescentus. (a) Structure of the RsaA lattice.30 86 
(b) High resolution AFM images of the wild-type RsaA lattice (strain MFm111), (c) RsaA485:SpyTag (strain MFm 87 
118), (d) RsaA690:SpyTag (strain MFm 120) on the surface of C. crescentus cells. In all three cases, a well-ordered, 88 
hexagonal protein lattice is observed. The unit cell length (center-to-center distance between adjacent hexagons) is 89 
22 ± 1nm, which is the same as reported in literature. Scale bar is 40nm. See Methods for experimental details of 90 
AFM. 91 
 92 

Results and Discussion 93 

Design and Construction of Caulobacter crescentus S-layer variants for surface display 94 

To display materials on the surface of C. crescentus cells, we designed a genetic 95 

module that meets four criteria: (i) a solution-exposed peptide that drives (ii) specific, stable, and 96 

stoichiometric attachment (iii) with tunable occupancy and (iv) that does not disrupt RsaA 97 

coverage. We hypothesized that varying the location of the binding peptide within RsaA might 98 

affect its solution accessibility leading to strains that have a range of occupancy. Therefore, we 99 

selected a panel of locations arrayed across the entire RsaA monomer (Figure 2a) to insert the 100 

peptide. Smit and colleagues previously identified two sites, at amino acid positions 723 and 101 

944, that allowed for surface display of peptides34, so we started with these positions. We then 102 

selected six additional sites that are known to be susceptible to proteolytic cleavage, 103 

presumably by the previously characterized S-layer Associated Protease (sapA)36. We 104 

hypothesized these additional sites, immediately following amino acid positions 277, 353, 467, 105 

485, 622, and 690, might be accessible in a ΔsapA strain which we created (abbreviated as 106 
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CB15NΔsapA). All subsequent engineering to the eight positions within rsaA was done in this 107 

background. 108 

To achieve specific, stoichiometric, and irreversible conjugation to RsaA, we employed 109 

the split-protein system SpyTag-SpyCatcher37,38, which forms an isopeptide bond between the 110 

SpyCatcher protein and SpyTag peptide. The RsaA S-layer can accommodate insertion of large 111 

peptide sequences29,35, which suggested that the 45-mer SpyTag peptide sequence, flanked on 112 

each side by a (GSSG)4 flexible linker for accessibility, may be integrated and displayed without 113 

disrupting S-layer assembly. This modified lattice should then allow the formation of a covalent 114 

isopeptide bond between any material displaying the SpyCatcher partner protein and the 115 

SpyTag on the cell surface.  116 

Since expression of RsaA from a p4-based plasmid in an ΔrsaA background formed a 117 

lattice structure indistinguishable from genomically-expressed RsaA (Figure 1b, we initially 118 

constructed p4-based plasmids39 that constitutively express RsaA-SpyTag fusions (Table S2) 119 

and transformed them into C. crescentus JS403839. Examination of the cell surface of two of 120 

these plasmid-bearing strains by AFM confirmed that RsaA-SpyTag was expressed and showed 121 

that the RsaA-SpyTag formed a S-layer lattice with the same nanoscale ordering as wild-type 122 

RsaA (Figure 1b-d). However, we observed significant growth defects, morphological changes, 123 

and unstable RsaA expression in all of the plasmid-bearing strains (Figure S1). For this reason, 124 

we integrated SpyTag and its linkers directly into the genomic copy of rsaA (Figure 2b) in the 125 

CB15NΔsapA background (Table S1). We notate these strains based on the SpyTag insertion 126 

site, e.g. rsaA690:SpyTag denotes insertion of the SpyTag and (GSSG)4 linkers immediately 127 

after amino acid 690. No growth defects or morphological changes are apparent in any of the 128 

engineered strains, implying that our genomic insertions do not affect cell viability, and therefore 129 

these strains were used for the rest of the study. These observations suggest the more 130 

regulated genomic expression of recombinant rsaA, a highly-transcribed gene, sidesteps growth 131 

impairments. 132 
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SDS-PAGE analysis of RsaA-SpyTag expression of wild-type (CB15NΔsapA) and 133 

engineered cells (rsaA:SpyTag variants) shows the expected band for wild-type RsaA at 110 134 

kDa (Figure 2c), in line with the observed migration of RsaA on SDS-PAGE40,30. Moreover, all 135 

eight engineered proteins have comparable expression levels to wild-type RsaA and show the 136 

small increase in molecular weight associated with SpyTag and its linkers (Figure 2c). These 137 

observations demonstrate that successful expression of SpyTag within RsaA at a range of 138 

different positions does not adversely affect RsaA expression levels.  139 

 140 
Figure 2: Design and expression of RsaA-SpyTag in C. crescentus. a) Ribbon diagram of the RsaA monomer 141 
structure30 indicating SpyTag insertion sites (orange). Inset shows a space-filling model of the RsaA hexamer. b) 142 
Design of engineered C. crescentus strains expressing RsaA-SpyTag. SpyTag flanked by upstream and downstream 143 
(GGSG)4 spacers was directly inserted into the genomic copy of rsaA. c) Immunoblot with anti-RsaA antibodies of C. 144 
crescentus strains whole cell lysate. The band corresponding to RsaA increases in molecular weight from wild-type 145 
RsaA (lane 2) to RsaA-SpyTag at the each insertion sites (lanes 3-10). 146 
 147 

Engineered S-layers specifically display proteins ligated to the cell surface 148 

To explore accessibility of the SpyTag peptide on the C. crescentus cell surface, we 149 

engineered and purified a fusion of SpyCatcher and mRFP141,42,43. We incubated the wild-type 150 
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and engineered rsaA690:SpyTag strains with the fluorescent SpyCatcher-mRFP1 protein or 151 

mRFP1 alone, washed away unbound protein, and visualized mRFP1 attachment to individual 152 

cells via confocal microscopy (Figure 3). No significant mRFP1 fluorescence is apparent in 153 

controls that used C. crescentus expressing wild-type RsaA or mRFP1 without SpyCatcher 154 

(Figure 3 a-c), indicating no significant non-specific binding of mRFP1 to the cell surface. When 155 

SpyTag is displayed on RsaA and SpyCatcher-mRFP1 is present, bright and uniform 156 

fluorescence is observed along the morphologically-normal, curved cell surface, including the 157 

stalk which is covered by the S-layer lattice17,30,33 (Figure 3d). These observations indicate 158 

engineering SpyTag into RsaA enables specific binding of a SpyCatcher fusion protein to the 159 

extracellular surface, and furthermore illustrates that engineering SpyTag into the S-layer does 160 

not substantially affect the morphology of C. crescentus. 161 
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 162 

Figure 3: SpyCatcher protein fusions ligate specifically to the surface of C. crescentus expressing RsaA-163 
SpyTag. a-d) Confocal fluorescence images of C. crescentus cells visualized in DAPI and RFP channels. Cells 164 
expressing wild-type RsaA incubated with a) mRFP1 or b) SpyCatcher-mRFP1. Cells expressing RsaA690-SpyTag 165 
with c) mRFP1 or d) SpyCatcher-mRFP1. Only when the SpyCatcher-mRFP1 probe is introduced to cells displaying 166 
SpyTag (d) is RFP fluorescence tightly associated with the cell membrane observed, including the stalk region. Scale 167 
bar = 3µm. 168 
 169 

Density of attached materials is controlled by insertion location 170 

Having demonstrated specific display of proteins on the surface, we turned to the 171 

hypothesis that the solution-accessibility of the eight insertion locations within the RsaA 172 

monomer would allow us to vary the density of attached materials. To quantify this relative 173 

accessibility, we again incubated the engineered strains with SpyCatcher-mRFP1, washed 174 

away unbound protein, and measured the fluorescence intensity per cell with flow cytometry. 175 
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The engineered strains show a >100-fold increase in fluorescent signal (Figure 4a) over the 176 

wild-type control, indicating that all eight positions can ligate significant amounts of SpyCatcher 177 

fusion protein. Among the eight engineered strains, there is a ~5-fold variation in the levels of 178 

ligation (Table 1), with rsaA467:SpyTag and rsaA485:SpyTag showing the highest and lowest 179 

densities of binding, respectively. These results unveil six new permissive insertion sites within 180 

RsaA and show that the amount of protein bound to the cell surface can be controlled by 181 

utilizing these different insertion points. 182 

To test that the fusion protein is irreversibly conjugated to RsaA-SpyTag, we incubated 183 

strain rsaA467:SpyTag, which showed the highest fluorescence by flow cytometry, with 184 

SpyCatcher-mRFP1, boiled the sample for 10 minutes with SDS and 2-mercaptoethanol, and 185 

visualized covalent attachment by SDS-PAGE (Figure 4b). The band corresponding to RsaA-186 

SpyTag (Figure 4b) decreases in intensity while the band corresponding to the RsaA-SpyTag-187 

SpyCatcher-mRFP1 assembly appears in as little as 1 hour and increases over 24 hours. 188 

Subsequent immunoblotting of this reaction with anti-RsaA polyclonal antibodies confirms that 189 

the assembly band contains RsaA (Figure S2). These observations indicate the binding is 190 

covalent. 191 

We leveraged the formation of this covalent bond to quantify the absolute density of 192 

SpyCatcher-mRFP1 displayed on the C. crescentus cell surface. The density of the RsaA band 193 

decreases by 23 ± 5% (n = 6, refer to Methods for the details of this calculation), indicating that 194 

nearly a quarter of the rsaA467:SpyTag protein is ligated to SpyCatcher-mRFP1 after 24 hours. 195 

Based on the estimate of 45,000 RsaA monomers per cell33, this translates to >11,000 copies of 196 

SpyCatcher-RFP displayed on the cell surface, an average density of 1.5 SpyCatcher-RFPs per 197 

RsaA hexamer, or 1 SpyCatcher-RFP per 288 nm2. Combining this information with the flow 198 

cytometry data, we calculated the percentage of the RsaA lattice that is covalently modified can 199 

be controlled over a range from 4-23% by varying the engineered location (Table 1, refer to 200 

Methods for the details of this calculation). These results provide quantitative information on 201 
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how to utilize position-dependent insertion of SpyTag in RsaA to tune the density of attached 202 

materials and thus substantially improve our ability to rational engineer ELMs.  203 

 204 

Figure 4: SpyCatcher protein fusions covalently bind to RsaA-SpyTag with variable occupancy according to 205 
the SpyTag location. a) Flow cytometry histograms of RFP fluorescence per cell for strains expressing wild-type 206 
RsaA (black) and RsaA-SpyTag (colored lines) incubated with SpyCatcher-mRFP1 for 1 hour. Baselines are offset for 207 
clarity. All eight strains displaying RsaA-SpyTag show an increase in the intensity of RFP fluorescence over the 208 
negative control with their intensity varying based on where SpyTag is inserted within RsaA. b) SDS-PAGE of whole 209 
cell lysates from the rsaA467:SpyTag strain incubated for 24 hours without (lane 2) and with (lane 3) SpyCatcher-210 
mRFP1 protein. Appearance of a higher molecular weight band only in the reaction containing SpyCatcher-mRFP1 211 
indicates covalent binding to RsaA-SpyTag. 212 
 213 

Table 1. Normalized and absolute levels of SpyCatcher-mRFP1 ligation.  214 
Location of 

SpyTag 
insertion 

Absolute intensity of 
bound SpyCatcher-

mRFP1, Iloc 
(Mean ± SEM) 

Relative 
SpyCatcher-mRFP1 

binding, Iloc, rel 
(Mean ± SEM) 

Percentage of RsaA-
SpyTag covalently 
modified (%), Ploc 
(Percentage, SEM) 

277 373.9 ± 3.6x10-01 0.43 ± 5.5x10-04 9.9 ± 2.4 

353 606.8 ± 8.5x10-01 0.70 ± 1.1x10-03 16.0 ± 4.9 

467 871.6 ± 7.3x10-01 1.00 ± 1.2x10-03 23.0 ± 2.0 

485 170.3 ± 2.3x10-01 0.20 ± 3.2x10-04 4.5 ± 1.3  

622 778.1 ± 8.6x10-01 0.89 ± 1.2x10-03 20.5 ± 5.4 

690 316.3 ± 3.3x10-01 0.36 ± 4.9x10-04 8.3 ± 2.1 

723 536.0 ± 4.8x10-01 0.61 ± 7.5x10-04 14.1 ± 3.3 

944 668.9 ± 6.1x10-01 0.77 ± 9.6x10-04 17.6 ± 4.2 
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 215 

Arraying hard and soft materials on the surface of engineered cells 216 

Next we sought to test whether engineered RsaA could assemble soft materials on the 217 

surface of C. crescentus. We selected elastin-like polypeptide (ELP) as our model soft material 218 

because it is well-studied, easily expressed recombinantly, and exhibits interesting temperature-219 

dependent phase behavior44. We incubated a SpyCatcher-ELP-mCherry fusion protein45 with 220 

the wild-type and rsaA690:SpyTag strains, washed away unbound protein, and imaged 221 

individual cells by confocal microscopy. As before, we observe no significant mCherry 222 

fluorescence from incubations lacking either SpyTag or SpyCatcher (Figure 5a,b), indicating 223 

there is no significant non-specific binding of ELP-mCherry to the C. crescentus surface. When 224 

both SpyTag and SpyCatcher are present, we observe significant mCherry fluorescence that 225 

uniformly covers the cell surface (Figure 5c). This work indicates that the engineered RsaA 226 

lattice can assemble polymeric materials to the cell surface (Figure 5).  227 
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 228 
Figure 5: Engineered RsaA assembles biopolymers on the C. crescentus cell surface. a-c) Confocal 229 
fluorescence images of C. crescentus cells incubated with ELP-mCherry fusion proteins visualized in DAPI and 230 
mCherry channels. Cells expressing a) wild-type RsaA incubated with SpyCatcher-ELP-mCherry and b) expressing 231 
RsaA690:SpyTag incubated with ELP-mCherry. Only the rsaA690:SpyTag strain incubated with SpyCatcher-ELP-232 
mCherry (c) shows signal along the cell membrane in the mCherry channel, indicating specific assembly on the cell 233 
surface. Scale bar = 5µm. 234 
 235 

To explore the diversity of structures that can be created at the cell surface using 236 

SpyCatcher-SpyTag ligation, we tested the capacity of engineered bacteria to conjugate 237 

CdSe/ZnS semiconductor quantum dots (QDs)46,47. SpyCatcher-functionalized QDs were 238 

generated through attachment of a heterobifunctional PEG linker molecule to an amphiphilic 239 

polymer encapsulating the QD surface. Subsequent incubation with SpyCatcher-Ser35Cys 240 

single cysteine mutant protein yielded QDs with surface-displayed SpyCatcher protein. We 241 

incubated PEGylated QDs and SpyCatcher-conjugated QDs (see Supporting Information) with 242 

wild-type and rsaA690:SpyTag strains, performed a wash, and visualized individual cells via 243 

confocal microscopy. There is significant QD fluorescence along the cell body in samples 244 

containing SpyCatcher-QDs and the engineered strain, while there is no significant fluorescence 245 

with the wild-type strain (Figure 6) or the PEGylated QDs. This demonstrates that hard 246 

nanomaterials can also be specifically attached to the engineered RsaA lattice. 247 
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 248 

Figure 6: Engineered RsaA assembles inorganic nanocrystals on the C. crescentus cell surface. a-c) IRM and 249 
confocal fluorescence images of C. crescentus cells incubated with QDs. Cells expressing a) wild-type RsaA 250 
incubated with SpyCatcher-QDs and b) expressing RsaA690:SpyTag incubated with PEG-QDs. c) Cells expressing 251 
RsaA690:SpyTag incubated with SpyCatcher-QDs show QD fluorescence along the cell surface, indicating specific 252 
assembly of SpyCatcher-QDs by the engineered strain. Scale bar = 5µm. 253 
 254 

Nanoparticle attachment does not affect cell viability 255 

Finally, we explored the effect of coating the surface of the C. crescentus cells with 256 

nanoparticles on their viability, as this is key to creating hybrid living materials that remain 257 

metabolically active over time48. We incubated control wild-type (CB15NΔsapA) and engineered 258 

rsaA467:SpyTag cells with or without SpyCatcher-QDs for two weeks, sampled the cultures 259 

periodically, and enumerated the living cells (CFU/mL). We also imaged the samples using 260 

confocal microscopy to determine whether the SpyCatcher-QDs remained stably bound to the 261 

engineered S-layer. Under all conditions, the total cell numbers decrease over the two week 262 

duration, which is expected since nutrients are not replenished (Figure 7a). More importantly, 263 

the number of viable cells in the wild-type culture without QDs is not significantly different from 264 

the wild-type with unbound SpyCatcher-QDs, the rsaA467:SpyTag culture without QDs, or the 265 

rsaA467:SpyTag culture with QDs (Figure 7a). These results indicate that neither unbound 266 
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SpyCatcher-QDs in the wild-type culture nor surface-bound SpyCatcher-QDs on the engineered 267 

cells affect viability, and there is no notable difference in viability between the wild-type and 268 

engineered cells. One possible interpretation of this cell viability is that the S-layer acts as an 269 

effective barrier, preventing disruption of the outer cell membrane, fulfilling one of its key 270 

evolutionary roles49–51. Imaging reveals that SpyCatcher-QDs remain attached to the cell 271 

surface over two weeks (Figure 7B) and non-specific binding of SpyCatcher-QDs on the surface 272 

of wild-type cells is not observed (Figure S5), once again highlighting the specificity and stability 273 

of the SpyTag-SpyCatcher system on S-layers. We do note that QD emission decreases over 274 

the course of the experiment, which may be due to non-specific cleavage of bonds between 275 

RsaA and the QD, turnover of the RsaA protein, or slow QD quenching in biological media. 276 

SpyCatcher-QDs incubated alone in M2G buffer show a ca. 30% decrease in emission over 14 277 

days (Figure S6), which suggests QD quenching is the likely cause of observed emission 278 

decrease in QD-RsaA conjugates. Nonetheless, these results demonstrate that engineered 279 

RsaA can be used to generate stable living materials that require cells to remain viable for 280 

extended periods of time. 281 

 282 
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Figure 7: Engineered C. crescentus with ligated SpyCatcher-QDs remain viable over two weeks. a) Viability of 283 
CB15NΔsapA (wild-type) and CB15NΔsapA rsaA467:SpyTag strains incubated without or with SpyCatcher-QDs (+ 284 
SC-QD) was assessed by quantifying colony forming units/mL (CFU/mL) as described in the Methods section. Data 285 
shown represent mean ± standard deviation of three replicates per condition. The CFU/mL of cells with SC-QDs is 286 
very similar to that of cells grown without SC-QDs. b) Confocal images of rsaA467:Spytag + SC-QD show QD 287 
fluorescence over the two week duration indicating sustained attachment of SpyCatcher-QDs to the engineered 288 
strain. Scale bar = 3µm.  289 

 290 

Advancement of RsaA S-layer as a platform for controlled material assembly 291 

In summary, we show that the S-layer of C. crescentus, RsaA, is a versatile platform for 292 

cell surface attachment of proteins, biopolymers, and inorganic materials when combined with 293 

the Spy conjugation system. We demonstrate that eight sites are available for peptide insertion 294 

within RsaA and that the insertion location tunes the attachment density. Ligation to the RsaA-295 

SpyTag lattice is highly specific and covalent, with the absolute level of density of RsaA-296 

displayed proteins reaching ~25% of the total RsaA, or 1 site per 288 nm2, which is the highest 297 

density of cell-surface displayed proteins reported to our knowledge. Moreover, we show that 298 

QD-C. crescentus composites assembled via RsaA-SpyTag form engineered living materials 299 

that persist for at least two weeks. In the following, we discuss possible reasons for the site-300 

dependent variation in attachment density, specific applications for cell-display using the RsaA 301 

platform, and the broader opportunities it opens in the area of ELMs.  302 

We observed that the relative ligation efficiency varies ~5-fold across the eight 303 

permissive sites, with rsaA467:SpyTag affording the densest array of SpyCatcher-mRFP1. This 304 

variance is not due to protein expression levels, which do not vary significantly between strains 305 

(Figure 2c), and is unlikely to be caused by disruption to the S-layer lattice as our findings 306 

indicate that SpyTag insertions to not alter the structure on the nanometer scale (Figure 1b-d) 307 

but may be due to solvent-accessibility within the RsaA, steric clashes between sites on nearby 308 

RsaA monomers, or a combination of these factors. The most efficient binding site, 309 

RsaA467:SpyTag, is in an unstructured loop in a gap in the hexamer (Figure 2a), potentially 310 

giving more freedom for the SpyTag peptide to access a SpyCatcher-fusion. Since 311 
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RsaA485:SpyTag and RsaA690:SpyTag are in an alpha-helix and a calcium-binding pocket, 312 

respectively (Figure 2a), these insertions could be causing local disruption in structure, leading 313 

to the lower occupancy we observe (Table 1). Additionally, position 277 is located near the pore 314 

of the hexamer, resulting in the five neighboring positions being between 1.4 and 2.8 nm away. 315 

Since the entire engineered linkage to mRFP1, i.e. (GSSG)4-SpyTag-SpyCatcher-mRFP1, is 316 

roughly 2.9 by 2.5 by 15 nm in dimensions, it is likely that some of the neighboring sites are 317 

sterically inaccessible once a single mRFP1 is bound. Further investigation will be required to 318 

untangle these possibilities.  319 

 320 

Engineered C. crescentus opens new possibilities for hierarchical assembly of hybrid living 321 

materials  322 

The engineered S-layer system described here offers immediate opportunities for 323 

engineering enzyme cascades on cells and encapsulation in hydrogels. By eliminating the need 324 

for direct fusion of enzymes to the S-layer, we avoid potential enzyme activity inhibition caused 325 

by expressing the protein in tandem with the S-layer monomer52. In addition, the varied ligation 326 

density and SpyTag spatial positioning engineered in our strains provides flexibility to attach 327 

enzymes in the most ideal pattern. As another potential application, bacterial cells are frequently 328 

encapsulated in hydrogels to enhance their stability as probiotics53,  as adjuvants to plant 329 

growth in agriculture54, or as biostimulants in wastewater treatment55. Typically no specific 330 

adherence mechanism is engineered between bacterial cells and the hydrogel, and many 331 

factors can affect gel stiffness56, including number or type of cells and media content. By using 332 

direct attachments between the S-layer and hydrogel polymers, we may achieve more stability 333 

and unique mechanical properties due to the sheer number of covalent crosslinks the between 334 

the engineered S-layer and the hydrogel matrix. 335 

 Our work more broadly introduces several foundational aspects useful for engineering 336 

ELMs. First, our results (Figure 3, 5, 6) suggest any material on which SpyCatcher can be 337 
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conjugated can be self-assembled on the modified 2D S-layer lattice, thus avoiding the labor-338 

intensive reengineering of RsaA with peptides designed for specific targets. This makes our 339 

strain a versatile starting point for building an array of ELMs. Second, while ELMs with 340 

impressive functionality have been assembled via 1D curli fiber proteins and the type III 341 

secretion apparatus57, the 2D structure of the S-layer lattice yields another dimension of spatial 342 

control. Because hierarchical ordering underlies the exceptional physical properties of many 343 

natural biocomposites, the ability to regulate spacing of different components in multiple 344 

dimensions is key to rationally designing predictable ELMs. Third, we can attach materials 345 

densely to the cell surface; here we demonstrate ligation of ~11,000 copies of a protein to the C. 346 

crescentus cell surface, or 1 attached protein per 288 nm2. This is the highest density of surface 347 

arrayed proteins reported in a bacterium to our knowledge. Being able to access high densities 348 

is important because it ensures well-ordered structures while the ability to tune density may 349 

result in control over material properties. Lastly, the combined robustness of the covalent 350 

SpyCatcher-SpyTag system, the RsaA S-layer, and C. crescentus enables long-term 351 

persistence of the assembled structure and cell viability in an ELM even under low aeration and 352 

nutrient conditions. We envision this robustness will enable ELMs that can function in nutrient-353 

poor environments with minimal intervention. Thus, the RsaA platform described here offers a 354 

modular, stable platform for assembling materials densely in 2D that opens new possibilities for 355 

constructing ELMs. 356 

 357 

Conclusions 358 

In closing, hierarchically ordered hybrid materials could allow for the rational design of 359 

materials with the emergent properties seen in natural materials. A bottom-up approach towards 360 

these engineered living materials is controlled attachment of materials to the cell surface in 2D, 361 

which we achieved by engineering the C. crescentus S-layer with the Spy conjugation system 362 
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for specific attachment of hard, soft, and biological materials at controllable densities. This 363 

modular base could lead to higher ordered materials that combine the functions of inorganic 364 

materials with the self-assembly and self-healing properties of living cells for applications that 365 

span medicine, infrastructure, and devices. 366 

 367 

Methods 368 

Strains: 369 

All strains used in this study are listed in Table S1. C. crescentus strains were grown in 370 

PYE media at 30°C with aeration. E. coli strains were grown in LB media at 37°C with aeration. 371 

When required, antibiotics were included at the following concentrations: For E. coli, 50µg/ml 372 

ampicillin, 20µg/ml chloramphenicol, 30µg/ml kanamycin. For C. crescentus, 10µg/ml (liquid) or 373 

50mg/ml (plate) ampicillin, 2µg/ml (liquid) or 1µg/ml (plate) chloramphenicol, 5µg/ml (liquid) or 374 

25µg/ml (plate) kanamycin. Diaminopimelic acid (DAP) was supplemented at 300µM and 375 

sucrose at 3% w/v for conjugation and recombination methods respectively. All chemicals were 376 

purchased from Sigma-Aldrich or VWR. 377 

 378 

Plasmid Construction:  379 

A list of all strains, plasmids, and primers used in this study is available in Tables S1-3. 380 

Details on construction of p4B expression plasmids, pNPTS138 integration plasmids, and 381 

protein purification plasmids can be found in Supporting Information.	Plasmids were introduced 382 

to E. coli using standard transformation techniques with chemically competent or 383 

electrocompetent cells, and to C. crescentus using conjugation via E. coli strain WM3064. 384 

 385 
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Genome Engineering of C. crescentus: 386 

The (GGSG)4-SpyTag-(GGSG)4 sequence was integrated into the genomic copy of rsaA 387 

using a 2-step recombination technique and sucrose counterselection. The pNPTS-388 

rsaA(SpyTag) integration plasmids were conjugated into C. crescentus CB15NΔsap and plated 389 

on PYE with kanamycin to select for integration of the plasmid. Successful integrants were 390 

incubated in liquid media overnight and plated on PYE supplemented with 3% (w/v) sucrose to 391 

select for excision of the plasmid and sacB gene, leaving the SpyTag sequence behind. 392 

Colonies were then spotted on PYE with kanamycin plates to confirm loss of plasmid-borne 393 

kanamycin gene. Integration of the SpyTag sequence and removal of the sacB gene was 394 

confirmed by colony PCR with OneTaq Hot Start Quick-Load 2x Master Mix with GC buffer 395 

(New England BioLabs) using a Touchdown thermocycling protocol with an annealing 396 

temperature ranging from 72°-62°C, decreasing 1° per cycle.  397 

Successful RsaA-SpyTag protein expression was confirmed by band shift in whole cell 398 

lysate in Laemmli buffer and 0.05% 2-mercaptoethanol on a BioRad Criterion Stain-free 4-20% 399 

SDS-PAGE. The gel was UV-activated for 5 minutes before imaging on a ProteinSimple 400 

FluorChem E system. As RsaA was migrating higher than expected, western blot was 401 

performed for confirmation. A Bio-Rad Trans-Blot Turbo system with nitrocellulose membrane 402 

was used to transfer protein from the SDS-PAGE gel and the membrane incubated in Thermo-403 

Fisher SuperBlock buffer for 1 hr. The protein of interest was first labeled during a 30 min 404 

incubation with Rabbit-C Terminal Anti-RsaA polyclonal antibody58 (Courtesy of the Smit lab. 405 

1:5000 in TBST, Tris-Buffered Saline with 0.1-0.05% Tween-20), followed by another 30 min 406 

incubation with Goat-Anti Rabbit-HRP (Sigma-Aldrich. 1:5000 in TBST). BioRad Precision Plus 407 

Protein Standards (Bio-Rad) were labeled with Precision Protein StrepTactin-HRP conjugate 408 

antibodies (Bio-Rad. 1:5000 in TBST). HRP fluorescence was activated with Thermo-Fisher 409 

SuperSignal West Pico Chemiluminescent Substrate and imaged in chemiluminescent mode. 410 

TBST washes were performed between each incubation step. The relative molecular weight of 411 
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bands quantified against the BioRad Precision Plus Protein Standards using ProteinSimple’s 412 

AlphaView software.  413 

 414 

Monitoring Ligation of SpyCatcher-fusions to C. crescentus: 415 

For flow cytometry experiments, cells were grown at 25°C to mid-log phase and cells 416 

containing the pBXMCS-2-RFP plasmid were induced for 1-2 hours with 0.03% xylose to serve 417 

as a positive control. A population of ~108 cells (determined by optical density measurement 418 

where OD600 of 0.05 contains 108 cells) were harvested by centrifugation at 8,000 RCF for 5-10 419 

minutes and resuspended in PBS+0.5mM CaCl2. Using the cell density as determined by OD600 420 

and assuming assuming 4.5×104 RsaA monomers/cell33, we added SpyCatcher-mRPF1 to a 421 

final molar ratio of 1:20 - RsaA protein to SpyCatcher-mRFP1 . The reaction was then incubated 422 

for 1 hour at room temperature with rotation. All samples were protected from light with 423 

aluminum foil during the procedure and washed twice with 1ml of PBS+0.5mM CaCl2 buffer prior 424 

to imaging to remove any unbound protein. Cells were diluted to 106 cells/ml and analyzed on a 425 

BD LSR Fortessa. Data on forward scatter (area and height), side scatter, and PE Texas Red 426 

(561mm laser, 600 LP 610/20 filter) was collected. A total of 150,000 events for each strain was 427 

measured over three experiments.  428 

For each strain, the total population was gated using scatter measurements to remove 429 

events corresponding to aggregates and debris. All events from the resulting main population 430 

were used to create histograms of the fluorescence intensity of bound SpyCatcher-mRPF1 for 431 

each strain expressing RsaA (wild-type control) or RsaA-SpyTag (Figure 4A). These 432 

fluorescence intensity values were also used to calculate the absolute intensity of bound of 433 

SpyCatcher-mRFP1 for RsaA-SpyTag insertion location (Iloc) shown in Table 1. The relative 434 

SpyCatcher-mRFP1 binding (Iloc,rel) was calculated by normalizing (Iloc) by the absolute intensity 435 

at location 467: 436 
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𝐼!"#,!"# =
!!"#
!!"#

     Eqn. 1 437 

For confocal microscopy, cells were grown to mid-log phase and ~108 cells (again 438 

determined by OD600 measurement) harvested by centrifugation at 8,000 RCF for 5-10 minutes. 439 

They were then resuspended in PBS+0.5mM CaCl2 and, as in the flow cytometry experiments, 440 

a 1:20 ratio of RsaA protein to fluorescent probe, i.e. mRFP1, SpyCatcher-mRFP1, SpyCatcher-441 

ELP-mCherry, or ELP-mCherry was added. The reaction was then incubated for 1 hour at room 442 

temperature with rotation for the mRFP1 probes and 24 hours at 4°C for the ELP-mCherry 443 

probes. 2x107 cells were incubated with 100nM QDs for 24 hours at 4°C with rotation. All 444 

samples were protected from light with aluminum foil during the procedure and washed twice 445 

with 1ml of buffer prior to imaging to remove any unbound protein. After the wash, cells with 446 

fluorescent probes were stained with 1µM of DAPI ((4',6-diamidino-2-phenylindole). All samples 447 

were spotted onto agarose pads (1.5% w/v agarose in distilled water) and mounted between 448 

glass slides and glass coverslips. Immersol 518F immersion oil with a refractive index of 1.518 449 

was placed between the sample and the 100x oil immersion objective (Plan-Apochromat, 1.40 450 

NA) prior to imaging. Fluorescence and IRM images were collected using a Zeiss LSM 710 451 

confocal microscope (Carl Zeiss Micro Imaging, Thornwood, NY) with the Zen Black software. 452 

For fluorescent imaging, a 561nm laser was used for RFP/mCherry excitation and 405nm for 453 

DAPI. For IRM, a 514nm laser was reflected into the sample using a mBST80/R20 plate, then 454 

the reflected light collected and imaged onto the detector. Images were false colored and 455 

brightness/contrast adjusted using ImageJ59.  456 

To quantify the binding of SpyCatcher-mRFP1 to RsaA-SpyTag, the same procedure 457 

was used as above except with a 1:2 ratio of RsaA to RFP was used and incubation for 24 458 

hours at 4°C with rotation. The reaction was visualized on a BioRad Criterion Stain-free 7.5% 459 

SDS-PAGE in Laemmli buffer with 0.05% 2-mercaptoethanol and the molecular weight of bands 460 

quantified against BioRad Precision Plus Protein Standards using Protein Simple’s AlphaView 461 
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software. ). The measurements were made in triplicate on two separate occasions and all six 462 

results averaged for the final percentage reported. For each experiment, the density of bands 463 

was measured using ImageJ59. Background subtraction was applied to the entire image and the 464 

background-subtracted integrated density within an equal area was determined for each RsaA-465 

SpyTag protein band. The integrated density of the bands from triplicate reactions lacking 466 

SpyCatcher were averaged to give Iunreact. To calculate the percentage of RsaA467:SpyTag 467 

ligated to SpyCatcher-mRFP1 for each experiment, we calculated the difference in density 468 

between each RsaA-SpyTag band from reactions with SpyCatcher-mRFP1 (Ireact,1, Ireact,2, Ireact,3) 469 

relative to the unreacted control (Iunreact) and normalized this value by the unreacted control 470 

(Iunreact): 471 

𝑃!"# =
!
!

!!"#$%&'!!!"#$%,!
!!"#$%&'

!
!!!    Eqn. 2 472 

The reported value (P467) is an average of the two experiments. We then used the absolute 473 

percentage of ligation at location 467 (P467) and the relative binding of SpyCatcher-mRFP1 at 474 

each location to calculate the percentage of ligation for all the insertion positions. 475 

𝑃!"# = 𝐼!"#,!"#×𝑃!"#    Eqn. 3 476 

The values of Ploc are shown in Table 1. 477 

 478 

Cell viability assay: 479 
 480 

Cell viability in the presence of SpyCatcher-QDs was determined using the viable plate 481 

count method. Approximately 4x108 mid-log phase cells (day 0) (cell number determined by 482 

OD600 measurement) were first incubated with 100nM SpyCatcher-QDs in M2G buffer (1X M2 483 

salts without NH4Cl to prevent extensive cell growth, 1mM MgSO4, 0.5mM CaCl2, 2% glucose) 484 

for 24 hours at 4°C with rotation to allow QD ligation to the cell surface. Post-binding (day 1), the 485 

cultures were transferred to a 25°C humidified incubator and left stationary for two weeks. 486 

Cultures were sampled at different time points (days 2, 7, and 14), serially diluted, and titered on 487 
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PYE agar plates (0.2% peptone, 0.1% yeast extract, 1mM MgSO4, 0.5mM CaCl2, 1.5% agar), 488 

which were incubated at 30°C for two days. Colonies on the plates were counted and cell 489 

viability was quantified by enumeration of Colony Forming Units/mL as follows:  490 

CFU/mL = Number of colonies / Dilution x Volume plated (mL) 491 

At the specified time points, 30µl of culture was removed from the tube and centrifuged 492 

at 16,000 x g for 1 minute. The supernatant was discarded and the cells were resuspended in 493 

3µl M2G buffer. A 1.5% agarose pad was prepared on a 25x75mm glass slide and 0.6µl of the 494 

resuspended culture was placed on it. An 18x18mm coverslip was then placed on the pad, and 495 

the trapped cells were imaged and processed using as outlined above. 496 

 497 

In situ atomic force microscope (AFM) imaging: 498 

Mid-log cultures of C. crescentus JS4038 carrying p4B-rsaA600, p4B-rsaA600690: 499 

(GGSG)4-spytag-(GGSG)4, or p4B-rsaA600690: (GGSG)4-spytag-(GGSG)4, were harvested at 500 

8000 rpm for 5 minutes and the pellet resuspended in PBS + 5mM CaCl2 buffer. The JS4038 501 

strain is defective in capsular polysaccharide synthesis. This is necessary for AFM imaging as 502 

the the capsular polysaccharide layer obscures the S-layer lattice. The cells were washed three 503 

times to remove any debris. 100µL of the washed cell culture was applied to a poly-L-lysine 504 

coated glass coverslip (12mm cover glasses, BioCoat from VWR) which was pre-mounted onto 505 

a metal puck. The sample was incubated at room temperature for 1 hr to allow sufficient cell 506 

attachment and then 1mL of PBS + 5mM CaCl2 buffer was used to wash away unbound cells 507 

from the glass surface. 50µL of PBS + 5mM CaCl2 buffer was added to the resulting glass 508 

surface, and the sample was transferred onto the sample stage for imaging. 509 

In situ AFM imaging was performed on a Bruker Multimode AFM using PeakForce 510 

Tapping mode in liquid. An Olympus Biolever-mini cantilever (BL-AC40TS) was used for high 511 

resolution imaging. The following set of parameters was normally employed to ensure the best 512 
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image quality: 0.2 to 0.5Hz scanning rate, 512 × 512 scanning lines, 15nm peak force 513 

amplitude, and 50 to 100 pN peak force setpoint. 514 

 515 

Further methods on plasmid construction, protein purification, and QD synthesis can be 516 

found in Supporting Information. 517 
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