
UCSF
UC San Francisco Electronic Theses and Dissertations

Title
Semi-automatic Segmentation of the Prostate by MR Fat Fraction Map

Permalink
https://escholarship.org/uc/item/7bs8b8k1

Author
Korn, Natalie Johanna

Publication Date
2014
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7bs8b8k1
https://escholarship.org
http://www.cdlib.org/


 
 
 
 



ii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



iii 

Acknowledgments  
 
 
 
 
 
The author acknowledges dedicated support from the Committee in Charge, with 
specific regard for Dr. Susan Noworolski, Committee Chair. 
 
Additionally, the author acknowledges the input of Drs. Julio Carballido-Gamio and 
VIvek Swarnakar, instrumental in algorithm development. 
 
This document is based on work supported by the National Science Foundation under 
Grant No. R01 29840 and Grant No. R01 29670. 
 
 
 
Any opinions, findings, and conclusions or recommendations expressed in this material 
are those of the author and do not necessarily reflect the views of the National Science 
Foundation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



iv 

Semi-automatic Segmentation of the Prostate by MR Fat Fraction Map 
 

Natalie Korn 
 
 
The purpose of this study was to create a semi-automatic segmentation of the prostate 

for an accurate estimation of prostate volume and modeling of longitudinal changes in 

patient data. Segmentation algorithms are available based on axial T2-weighted 

imaging, but decrease in accuracy in abnormal or treated data, and can be expensive. 

In this work, we segment based on a fat fraction map (FF map), due to the smaller 

change in image intensities after treatment and large contrast between the prostate and 

surrounding fatty tissue. The algorithm consists of five parts: a global filtering of the 

image; region growth from a predetermined seed point; spline interpolation of the 

region-enclosing polygon; a comparison of distances between boundary points on 

adjacent slices; and backward mapping to an upsampled plane with a final volume 

extrusion. Image artifact is removed by morphological opening after the initial region 

growth, and by removing boundary points with a shortest distance to an adjacent slice 

boundary greater than a predetermined threshold. FF maps emphasizing low resolution 

in favor of high contrast (FF_hc maps), and FF maps emphasizing low contrast in favor 

of high resolution (FF_hr maps) using different acquisition parameters were tested for 

accuracy against a manual segmentation drawn on a T2-weighted image in fourteen 

patients receiving a multiparametric MR exam for confirmed or suspected prostate 

cancer. There was no significant difference in the volumes recorded from the trial data 

for the semi-automatic segmentation of the FF_hr map and manual segmentation of the 

axial T2-weighted image (n=14, p<0.84, paired students t-test), but FF_hr map 

segmentation had a trend to underestimate the size of the prostate gland. The FF_hc 
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map segmentation volumes were significantly different from those of the axial T2-

weighted images (n=14, p<0.03, paired student’s t-test). The segmentations of FF_hc 

maps showed psoas muscle invasion into the prostate region as the most common 

artifact due to the anatomic proximity and signal similarity, and both FF map types 

showed ambiguity as the prostate base abuts the bladder, leading to both over- and 

underestimation. This quick segmentation using FF_hr maps creates accurate prostate 

volume estimations and should be pursued. 
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Chapter 1: Introduction 
 
Prostate cancer is the second-most prevalent cancer diagnosed in American men. 

However, it is associated with very low mortality in comparison to other forms of 

cancer1, and can reside in the body for years without progression. The ability to 

distinguish between prostate cancers that will progress rapidly and those that will 

remain stagnant is an active area of research, and a combinatory assessment of blood 

work, pathology, and imaging is being explored to determine patient-specific cancerous 

potential. 

One of the most common methods of estimating prostate growth in diagnosed 

populations is through testing of serum prostate-specific antigen (PSA) levels. However, 

the usefulness of PSA tracking is controversial because of the ambiguous correlation of 

PSA levels with both cancerous and benign prostate growth2. A more robust metric 

gaining popularity in the clinic is PSA density (total PSA/ prostate volume). A high PSA 

in a large prostate (low density) is less likely to contain cancer than a similar PSA in a 

small prostate (high density) 2. However, an estimation of prostate volume is necessary 

to calculate PSA density. 

 At biopsy diagnosis of prostate cancer, advanced imaging techniques have been 

shown to better the ability to improve the assessment of cancer extent, as well as 

provide a measure of aggressiveness (Gleason grade). In particular, the multiparametric 

MRI (mpMRI) has been explored as a method of determining high-resolution anatomical 

changes, as well as cell density, metabolism, and perfusion throughout the prostate3. 

The addition of a semi-automatic segmentation of the prostate to create a volume 

estimate and monitor size changes may add to the information patients receive during 
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an MRI. Because MRI carries no radiation dosage, this exam is particularly useful for 

patients with low- and intermediate-grade cancer pursuing a treatment regimen known 

as active surveillance3. Active surveillance arose in popularity with the knowledge that 

because some prostate cancers do not progress and treatment commonly incurs 

negative side effects4, launching into therapy may be more detrimental to patients with 

low-risk disease than closely monitoring the trajectory of the cancer1. In a combination 

of serum and imaging data, patients pursuing active surveillance typically receive serial 

PSA testing, which could be matched to an MRI exam for accurate PSA density. 

A precise segmentation could also be combined with biopsy to improve 

pathological data collection. Currently, MR- and ultrasound-guided biopsies are used to 

more accurately sample the gland, but positioning is largely visual and prone to operator 

error5. A segmentation that could determine the placement and boundaries of the 

prostate gland could be created during an MR-guided biopsy and used to align the 

biopsy to a suspicious region. 

 Currently, estimates of prostatic volume in the clinic vary around a common 

theme of estimating an ellipsoid based on three manual measurements by a radiologist: 

a long-axis measurement in the oblique S/I direction, a short-axis measurement in the 

A/P direction, and a transverse measurement in the R/L direction6. An ellipsoidal 

volume is estimated from these measurements, but does not change in shape with 

abnormalities in the gland. 

 Creating a volume of the prostate based on the unique shape of each slice in an 

MR image accounts for slice-by-slice changes in the shape of the prostate. 

Furthermore, it will be particularly helpful in longitudinal studies. Using the standard 
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clinical practice, an increase in prostate volume cannot be localized to a specific part of 

the prostate. However, building a volume by individual slices can show changes in 

volume in localized regions between a patient’s past and current exam, and correlate 

with functional imaging data. Areas of gland expansion in between clinical visits could 

be targeted in MR-guided biopsies. 

 In this work, we present a method of semi-automatic prostate segmentation 

based on an MR fat fraction (FF) map. The FF map creates signal intensity based on 

amount of fat, leaving the low-fat prostate dark and surrounding visceral fat bright. This 

novel method uses region growth paired with spline interpolation to delineate the 

prostate from the surrounding fatty tissue. Each slice creates highly accurate area 

estimations, and the 3D volume can show overall gland shape, as well as changes in 

the gland in longitudinal studies. 
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Chapter 2: Materials and Methods 
 
2.1 Subjects 
 
This prospective study was approved by our institutional review board and was 

compliant with the Health Insurance Portability and Accountability Act. Written, informed 

consent was obtained from all participants. Fourteen patients receiving MR 

examinations of the prostate were studied between May and August of 2014. Patients 

presented with suspected prostate cancer, as indicated by either elevated levels of 

serum prostate-specific antigen (PSA) (median=6.49, range 1.50 to 10.31), biopsy-

proven prostate cancer, or both. The patients’ mean age was 66.6 years, ranging from 

55 to 78 years old. One patient had undergone hormone therapy; all other patients had 

received no treatment. Nine patients had a biopsy result of Gleason Score 3+3, two 

patients had a result of 3+4, one patient had a result of 4+3, and two patients had 

negative biopsies. 

2.2 MR Acquisition Methods 
 
All images were acquired using a 3T MR scanner (GE Healthcare, Waukesha, WI, USA) 

equipped with an eight-channel phased-array for the pelvis and an endorectal coil 

encased in a balloon probe (Bayer Healthcare, Warrendale, Pa, USA). A 

perfluorocarbon compound (3M, St. Paul, MN, USA) was used to inflate the balloon 

probe to reduce artifacts due to susceptibility7. 

 The mpMRI examination of the prostate included high-resolution anatomic 

imaging provided by a three-dimensional fast spin-echo (FSE) pulse sequence with 

parallel imaging and extended echo train acquisition (CUBE)8, reconstructed in the 

sagittal, coronal, and oblique axial views. Along with the CUBE imaging, an oblique 
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axial T2-weighted image (512x512, TR/TE=6350/103 ms) was acquired through the 

prostate to use for prescribing and visualizing anatomy correlated with the functional 

imaging sequences. 

 The mpMRI also includes three types of functional imaging, measured in the 

oblique axial direction: diffusion-weighted imaging (DWI), dynamic contrast-enhanced 

(DCE) imaging, and spectroscopy. DWI measures water motion, depending on gradient 

strength and duration known as a ‘b-value’. It is useful in differentiating high-grade 

tumors from healthy tissue, as high cell density, a characteristic of high-grade tumors, 

restricts water motion9. DCE measures uptake and washout of an injected contrast 

agent over time, and is valuable in detecting both low-grade and high-grade cancers, as 

both initial breakdown of the prostate’s glandular basement membrane (typical of low-

grade disease) and angiogenesis (typical of high-grade disease) increase the rate of 

uptake and washout10. Spectroscopy provides complimentary information on the 

metabolic activity throughout the prostate, with Gleason score increasing with increases 

in the ratio of choline and creatine concentrations over citrate concentration11. 

 An oblique axial 3D Iterative Decomposition and Echo Asymmetry with Least-

squares estimation (IDEAL) sequence12 was used to create high contrast between the 

prostate and surrounding tissue, to segment the prostate and to align with functional 

imaging metrics. The IDEAL sequences’ prescriptions are copied from the oblique axial 

T2-weighted image to correlate with the anatomy. The IDEAL sequence was selected 

for segmentation of the prostate due to its utility in creating a fat fraction map that 

accounts for both B0 and B1 inhomogeneities by acquiring three images with relative 

phases of fat and water12. This three-point Dixon method is optimized in IDEAL imaging 
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for maximal signal in the resultant fat-only and water-only images. The FF map exploits 

the anatomic fat margins surrounding the prostate, which create a bright boundary. The 

prostate gland has a very low fat content, and appears dark in contrast, as in Figure 1. 

 
Figure 1: An a) oblique axial T2-weighted image of the prostate on an untreated patient 
from the sample population, and b) an oblique axial FF map created in the same 

location on the same patient.             
 

The IDEAL sequence implemented needed to be sufficiently short such that it 

could be incorporated into a clinical mpMRI exam without significantly lengthening the 

exam duration. The initial IDEAL sequence parameters (TR/TE=6900/min full ms; 

256x128; echo train length=3; 32 locations/slab; phase acceleration=2, NEX=.75) used 

a field of view (FOV) of 50 cm, phase FOV of .6, and slice thickness of 3 mm. Scanning 

required 28 seconds, and prescans required from 15 to 60 seconds, for a total added 

time of 88 seconds, which was clinically feasible. This sequence created images with 

high image contrast but had a low spatial resolution (high-contrast: IDEAL_hc).  

However, due to a need to have an improved delineation of the prostate 

boundaries in-plane, the IDEAL sequence was tested with higher resolution (high 

resolution: IDEAL_hr). The IDEAL_hr sequence parameters (TR/TE = 7800/min full ms; 

256x128; echo train length=3; 32 locations/slab; phase acceleration=2, NEX=1) used an 
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FOV of 36 cm, phase FOV of .8, and slice thickness of 3 mm. The scan time was 54 

seconds, and prescans required from 15 to 60 seconds, for a total added time of 114 

seconds. To determine the improvement in segmentation provided by higher spatial 

resolution IDEAL imaging, both the original, high contrast sequence (IDEAL_hc) and the 

higher resolution sequence (IDEAL_hr) were acquired on all 14 patients. 

 The IDEAL sequence produces FF maps by isolating signals of fat and water 

from the various echo times, and combining into a percentage—or fraction—of fat. 

Because fat and water are the most prevalent signals acquired, the fat fraction is 

defined as the signal from fat divided by the product of the signals from fat and water.  

Production of a FF map is accomplished using GE service software. The FF map was 

generated for each patient from the IDEAL_hc sequence emphasizing high contrast 

(FF_hc), and the high-resolution sequence IDEAL_hr (FF_hr). 

 To compare the volumes created from the semi-automatic segmentation 

algorithm, a gold standard of manual segmentation was performed on an axial T2-

weighted image for each patient. The T2-weighted image was chosen for maximal 

anatomic detail easily visible to the human eye. In the manual segmentation, a region of 

interest (ROI) was drawn on every slice of the prostate as determined by the user. The 

volume was recorded and added to the slice stack to form the full volume of the 

prostate. A single user performed all manual segmentations to correct for interoperator 

variability.  

4.3 Algorithm Design 

The segmentation algorithm developed in this work was composed of five steps, 

including methods of boundary delineation and methods for artifact reduction. The 
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image setup contains all user input and global filtering. Following setup, a region growth 

method was used to formulate a general outline of the prostate region. From the shape 

defined by the region growth, a piecewise cubic spline interpolation smoothens the 

enclosing polygon. The spline of each image slice was tested for its lateral distance 

from the boundary of an adjacent slice. Lastly, a volume calculation was made after 

upsampling in three dimensions and converting pixel area to physical space. The 

algorithm was written in MatLab (MatLab R2012a, The MathWorks Natick, MA 2012) 

and executable at the command line. The full algorithm outline is shown in Figure 2. 

To begin image setup, the algorithm requires input of an image stack, which is 

zoomed to the center 50x50 pixels for the viewing ease of the user. The user is 

prompted to input the two slice numbers representing the furthest extents of the 

prostate: noted ‘start’ and ‘end’. The remainder of the algorithm will only be executed on 

image slices included and between start and end positions provided. Following the user 

input, a 3x3 median filter is employed to smooth and connect the fatty boundary 

surrounding the prostate. The median filter was chosen for its ability to remove signal 

outliers without averaging noise into the resulting intensity, as shown in Figure 3. It is 

therefore useful when noisy pixels deviate largely compared to true signal values. The 

size of the median filter was determined by the typical width in pixels of the fatty tissue 

between the prostate and surrounding musculature. 

The smoothed image is fed to a region growth technique13, which begins at a 

predefined seed point 20 pixels anterior to image center. The seed point is optimized 

from observation of image prescription, wherein the technologist places the image 

center in the rectum. Because all exams include use of the endorectal probe inflated  
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Figure 2: Semiautomatic segmentation algorithm in full. Italicized steps require user 
input, and dashed boxes indicate steps that eliminate artifact. 
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with a perfluorocarbon compound7, the rectal size and location in the image is 

reproducible. Because the prostate sits immediately above the inflated rectum in this 

oblique axial prescription, the prostate is typically located at 10 pixels anterior to the 

center. 20 pixels anterior to image center was chosen so that the seed lands in the apex 

of the prostate, which can be small and located farther from the rectum. 

 
Figure 3: An a) FF_hc map, and b) the same image, median-filtered to smooth the 
boundaries of the prostate. Dark horizontal lines in the connective tissue of a) become 

smoothed signal after filtering.             
     
 From the predefined seed point, neighbouring pixels varying less than 5% in 

intensity from the seed are included in the region. This threshold is standard for region 

growth13, and is appropriate to this application given the average range of variation 

inside the prostate is 0-3.8%--based on values of FF maps from manually segmented 

ROIs. The goal of the region growth method is to include all portions of the prostate, at 
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the calculated risk of including areas surrounding the prostate, which can be excluded 

further in the algorithm. 

 The region growth outputs both a masked image and an enclosing polygon. A 

morphological image opening is immediately applied to each slice after region growth, 

and all regions disconnected from the region containing the seed point are erased. 

Opening is the process of removing border pixels from an image object—known as 

erosion—followed by expanding the border of the image object—known as dilation. It 

has the effect of disconnecting objects joined by a small number of pixels determined by 

the size of the structuring element. This image opening uses a filled, symmetric 3x3-

structuring element. The region growth is then repeated, keeping only the region 

containing the original seed point, as shown in Figure 4. 

 
Figure 4: A midgland slice in a) original FF map, b) initial region growth output, and c) 
enclosing polygon after opening.  In this slice, the circular rectal wall below to the 

prostate has invaded the prostate region, and is removed by opening.            
 

The enclosing polygon is then interpolated into a 2D spline, curving the edges 

into a more anatomic shape, as shown in Figure 5. A point-to-point distance array for 

each point on the polygon is calculated to produce a piecewise cubic spline 

interpolation. The spline will take the shape that minimizes the order of its governing 

equations.  
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Figure 5: Examples slices of a) apex [from Figure 4], b) midgland, and c) 
base region growth outputs after opening, and the corresponding d) apex, 
e) midgland, and f) base splines for those slices. 

 

 
After each image slice’s segmentation undergoes region growth and spline 

interpolation, the use of 3D information enhances the agreement between slices. As the 

final semi-automatic step to measure shape agreement between contiguous slices, the 

spline for each slice is shown and the user selects a reference slice with an accurate 

segmentation. The slice adjacent to the reference slice—known as the floating slice—is 

then probed for differences in shape. The basis of determining artifact is the closest 

Euclidean distance between the each border point on the floating slice and its closest 

border point on the reference slice. By experimentation, points on the spline with 

distances to the reference slice border larger than the mean distance by greater than 

25% of a standard deviation are typically indicative of image artifact. However, in slices 

where the distances to the reference border are very similar among floating border 

points, increases in distance can be indicative of true gland growth, and removing these 

points can eliminate true prostate border points. By experimentation, only slices with a 
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range of distances greater than 5 pixels typically contain image artifact, as opposed to 

true growth or shrinkage of the gland between slices. Therefore, only in slices with a 

range of distances greater than 5 are points possibly erased, as shown in Figure 6. 

After this comparison, the spline is closed and concatenated with the other slices to 

prepare for 3D extrusion. The floating slice becomes the reference slice for the next 

contiguous slice. 

 
Figure 6: a) The reference slice, b) the floating slice before measuring distances to the 
reference slice border, and c) the floating slice after removing points of artifact based on 
distance to the reference slice border. In this example, the range of values was 21.26, 
and standard deviation was 9.19. Seven points on the floating slice had minimum 
distance to the reference slice border above 25% of the standard deviation, and were 

deleted from image (b) to form image (c).                       
 
 Once each slice is probed for artifact, the spline of each slice is converted to a 

binary image, and the shortest Euclidean distance from the object border is calculated 

for each pixel, in positive quantities for pixels in the object and negative quantities for 

pixels in the background. While a binary image only informs whether the pixel belongs 

to the object or background, this distance transform encodes each pixel with two units of 

information: belonging to image or background (as positive or negative values), and 

Euclidean distance from the border between (as the pixel intensity value). 

 The information added from the distance transform is employed in upsampling 

the image in three dimensions before display as a completed volume. To upsample, the 

image pixels are converted to physical space by multiplication with the image resolution. 
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These ‘physical coordinates’ are then mapped to a blank image plane of doubled 

resolution. This method, called forward mapping, is robust in increasing image 

resolution after acquisition, but can lead to holes in the image if no original pixels map to 

a given location in the upsampled image. To combat this, the process is accomplished 

in reverse, with each blank pixel on the upsampled plane converting to physical 

coordinates and locating the closest pixel in the original image space. This procedure, 

known as backward mapping, ensures that no pixel in the resulting image plane is blank 

after registration. Because the algorithm upsamples the image in 3D, an intermediary 

blank image space is created between each contiguous original image slice. Each pixel 

is matched to its closest neighbours in its parent image slices, and is linearly 

interpolated to the intermediary image space, shown in Figure 7. The result increases 

resolution in the axial image plane as well as along the superior-inferior axis. 

 
Figure 7: Masked images of the original slice a) 9 and b) adjacent slice 
10, input into the upsampling algorithm. Output c) slice 9, d) the new 
slice (9.5) and e) slice 10 upsampled by a factor of 2. Images c) and  

e) are generated by upsampling in the axial image plane, and image d) is generated by 
upsampling in the superior-inferior plane. 
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 Once each slice is upsampled, the slices are displayed as a 3D block—with 

depth equivalent to slice thickness, and the volume is calculated on the binary image 

created from the final spline of each slice. The number of pixels equal to 1 in each 

binary image is totaled and multiplied by the new upsampled image resolution. The 

volume extrusion, shown in Figure 8, is useful for visualizing the prostate shape, as well 

as image artifact. 

 
Figure 8: 3D upsampled extrusions shown in isometric projections of a) the prostate 
segmented by the initial region growth, opening, and spline interpolation, and b) the 
same prostate after testing the distance of each spline point to a neighboring slice and 

removing points with distances above the threshold.         
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Chapter 3: Results and Discussion 

There was no significant difference in the volumes recorded from the trial data for the 

semi-automatic segmentation of the FF_hr map and manual segmentation of the axial 

T2-weighted image (n=14, p<0.84, paired students t-test). However, the semi-automatic 

segmentation had a trend to underestimate the size of the prostate gland as compared 

to the manual segmentation. The mean difference in volume was 5.3 cc with a standard 

deviation of 7.9 cc. One true outlier had a difference of 39.3 cc (n=14, p<0.01, z=3.19, 

Grubb’s test). By visual inspection, the T2-weighted image of the outlier shows a gland 

abutting the bladder for several slices. However, the signal difference between the 

prostate gland and bladder on T2-weighted imaging allows the user to easily determine 

the prostate boundaries. This is not visible on the FF map because the bladder and 

prostate both contain very low fat and show similar signal, and is likely responsible for 

the drastic difference in volumes. Excluding the outlier, the mean difference in volume in 

the cohort was 3.4 cc, with a standard deviation of 3.3 cc (n=13). 

 The MR FF_hc map segmentation volumes were significantly different from those 

of the axial T2-weighted images (n=14, p<0.03, paired student’s t-test). By visual 

inspection, the segmentations of FF_hc maps showed invasion of the psoas muscle into 

the prostate region during region growth as the most common artifact in this population 

due to the anatomic proximity and signal similarity. The anatomy of the oblique axial 

view of the male pelvis on an FF map, as well as artifact removal techniques of opening 

and comparing distances between borders to erase the psoas muscle, are shown in 

Figure 9: 



17 

 
Figure 9: a) An example FF map slice showing the psoas muscles and 
prostate, along with anatomic markers of the rectum and fat. Output 
from the algorithm, we see b) both psoas muscles in the prostate region 

 

after region growth, c) the right psoas removed by image opening, d) the border 
smoothed by spline interpolation, and e) the left psoas removed after comparing 
distances with a reference slice. 
 

While some of these were removed in the image opening and distance 

comparison, some non-prostatic regions were included in the final volume, as shown in 

Figure 10. The increased resolution of the FF_hr map better differentiates the fat 

surrounding the prostate, leading to more accurate segmentations, and a more well-

defined border between the prostate and psoas. This is primarily due to partial voluming 

effect: signals from two structures in a single voxel will merge into an averaging of the 

two structures’ signal intensities. Although the bigger voxels in the FF_hc map show a 

higher signal-to-noise ratio (SNR) in voxels within organs, the voxels that straddle the 
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prostate border and fatty tissue have a mix of signals and show weaker signal 

enhancement from the fat. On the FF_hr map, because the voxels are smaller, there is 

a larger chance of having voxels composed entirely of fat, forming a distinct border. 

 
Figure 10: In an example slice, a) the FF_hc map, b) the initial region 
growth, c) the region after opening, and d) the region after interpolation   
and border distance testing with a portion of the left psoas muscle in the prostate 
region. The e) FF_hr map, f) initial region growth showing left psoas invasion as well as 
rectal invasion, g) the region after opening, with the psoas and rectum removed from 
the image, and h) the interpolated shape. The fat between the prostate and psoas 
muscle is easily visible in the FF_hr map (e) and less defined in the FF_hc map (a). 
 
 While the FF_hc maps increase prostate definition in 2D slices, they do not 

correct the signal similarity between the prostate and bladder. Because neither gland 

contains fat, both appear with very low signal intensities on any FF map. In cases where 

the prostate abuts the bladder, the prostate size can be grossly overestimated. 

Determination of a correction factor between either FF map segmentation and manual 

T2-weighted image segmentation is not feasible based on this dataset due to the range 

of segmentation differences. 
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 As visible in Figure 11, the FF_hc maps led to a consistently overestimated 

prostate volume. This is likely because the undifferentiated psoas muscle increased 

individual slice areas. However, the FF_hr maps have a close correlation with the 

manual segmented. In the outlier case, number 13, these maps overestimate the 

prostate volume when the prostate base extends into the bladder. 

 
Figure 11: The final volumes of high-contrast (hc) and high-resolution (hr) FF map 
images compared with the manually-segmented volumes on T2-weighted images. 
 

The manual segmentation on the corresponding T2-weighted image is sensitive 

to the edge of the prostate adjacent to the bladder in the base as well as where the 

urethra extends past the apex. Motion artifact was not present in T2-weighted images of 

any of the patients in this population, leading to a reliable standard against which the 

semi-automatic segmentation can be measured. However, the T2-weighted image and 

he IDEAL scans were separated by approximately 23 minutes during each scan, and 

both movement of the patient and filling of the bladder between these scans may 

account for perceived differences in prostate size. 

Prior segmentation methods in the literature have used atlas-based models to 

define the prostatic boundaries14,15,16,17. However, most methods consistently 

underestimate the prostatic volume15,16,17. A popular technique is to estimate the 
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prostate size based on a midgland slice, which does not translate well to abnormally 

shaped prostates15,16 or in the presence of image artifact. The slice chosen is also a 

major factor in the size estimation. It is also typical for segmentation methods to include 

the seminal vesicles, as they are located adjacent to the prostate and are of similar 

intensity on most images14,17. However the size of the seminal vesicles has no clinical 

importance, and no functional information is gained by adding seminal vesicles to the 

size14. Segmentation methods from the literature also commonly use volunteer data in 

testing15,16, which differs from patient data both in average size and symmetry. 

Abnormal prostate growth, from prostate cancer or BPH, can cause the prostate to take 

an asymmetric shape, making atlases based on volunteer data prone to false 

segmentation in a diseased population. Although varying in approach, all of these 

techniques become less accurate in large or abnormally shaped prostates14,15,16,17.  

 Recently, an industry-created approach to semi-automatic prostate segmentation 

has become available to clinical sites18. This segmentation consists of an algorithmic 

estimation of prostate size followed by an option for clinical practitioners to modify the 

shape. This approach is easily usable, however the software fundamentally limits the 

modification allowable by a user. Manual alterations must be at least 5 mm in distance, 

and cannot exceed a curvature of 50° 18.  Additionally, the software cannot be 

implemented in real-time, meaning a segmentation useful for aligning prescriptions 

during the MR examination or a biopsy procedure is not feasible. Furthermore, it is not 

possible to extract the shape boundaries to use the shape outside of the software. 

Therefore experimental research methods, such as combining with a time lapse of 
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perfusion enhancement or a longitudinal study of growth in a single patient cannot be 

explored. 

Most segmentation algorithms utilize a T2-weighted image14,15,16,17,18. For the 

proposed technique, the fat fraction map was selected due to the bright signal from fat 

bordering the prostate, and low signal intensity inside the prostate. While robust 

methods exist for estimating prostate volume, this method may be implementable in 

real-time applications, has a prostate mold that is extractable from the algorithm for 

research purposes, and is available as an open source platform. 
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Chapter 5: Future Work 

To use the current FF map for a reliable segmentation of the prostate, the most 

important improvement is an estimation of the volume if the base of the prostate abuts 

the bladder. Inclusion of the bladder or exclusion of the base of the prostate leads to 

grossly over or underestimated prostate volumes, respectively. However, abdominal 

organs move significantly during MR scans, and registering on a steady object like the 

femoral head or rectum does not necessarily register the prostate gland. Furthermore, 

the bladder is likely to fill between the acquisition of the T2-weighted image and the 

IDEAL sequence which generates the FF map. Alignment could be improved by 

acquiring these two scans in succession. Alternatively, the curvature of the base can be 

estimated by the sizes of consecutive midgland slices. However, because the prostate 

shape is very deformable, this modeling is unlikely to account for growth abnormalities 

in the base. During the semi-automatic segmentation, users could select the region to 

include the prostate and bladder to avoid underestimation of the volume. Existing 

software to register T2-weighted images and functional techniques based on rectal 

alignments will be used to register the FF map to the T2-weighted image. Multiplying the 

binary mask of the segmentation to a registered T2-weighted image will allow a second 

region growth to separate the bladder and prostate gland by intensity. 

 It is also necessary to test the proposed segmentation algorithm on a large 

number of patients with various treatments for prostate cancer. In particular, 

transurethral resection of the prostate (TURP) poses an issue for current segmentation 

algorithms14,15,16,17,18. This is typically due to the inability to distinguish where the 

prostate apex begins, and the wide range of intensities and shapes of the urethra after 
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the surgery. On the FF map, the urethra has a very similar intensity to the prostate, 

leading to an easier registration for the proposed algorithm. However, this acquisition 

has not been tested on a patient after TURP. 

 Brachytherapy seed implants also cause distortion and wide ranges of intensities 

within the prostate gland, and can cause segmentation failures in current 

algorithms14,15,16,17,18. However, this acquisition has not been tested on a patient with 

brachytherapy seed implants.  

 Inclusion of the bladder or surrounding structures in treated or large and 

abnormal glands does not hinder the algorithm from being used in localization during 

MR-guided prostate biopsies. This procedure currently uses qualitative methods of 

localization by trained personnel, and could likely benefit greatly from the inclusion of 

localization and boundaries of the prostate and bladder for use during prescription. 

Conclusion 

The proposed segmentation algorithm using the FF_hr map creates a reliably accurate 

prostate volume in this population. As part of an mpMRI exam, the segmentation is 

particularly useful for localization of the prostate gland relative to functional data. This 

technique should be tested in an extensive population including patients on a variety of 

treatment regimens, and should be explored further. 
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Appendix I: Definitions 
 
BPH: Benign Prostatic Hyperplasia 
DCE: Dynamic Contrast-Enhanced Imaging 
DWI: Diffusion-Weighted Imaging 
FF: Fat Fraction 
FF_hc: The FF map made from the IDEAL sequence for high contrast 
FF_hr: The FF map made from the IDEAL sequence for high resolution 
FSE: Fast Spin-Echo 
IDEAL: Iterative Decomposition and Echo Asymmetry with Least-squares Estimation 
IDEAL_hc: The IDEAL sequence with parameters optimized for high contrast 
IDEAL_hr: The IDEAL sequence with parameters optimized for high resolution 
mpMRI: Multiparametric MRI 
MR: Magnetic Resonance 
MRI: Magnetic Resonance Imaging 
PSA: Prostate-Specific Antigen 
ROI: Region Of Ineterest 
SNR: Signal-to-Noise Ratio 
TURP: TransUrethral Resection of the Prostate 
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