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Abstract1

We question the need for recursion in human cognitive 
processing by arguing that a generally simpler and less 
resource demanding process – iteration – is sufficient to 
account for human natural language and arithmetic 
performance. We claim that the only motivation for recursion, 
the infinity in natural language and arithmetic competence, is 
equally approachable by iteration and recursion. Second, we 
submit that the infinity in natural language and arithmetic 
competence reduces to imagining infinite embedding or 
concatenation, which is completely independent from the 
ability to implement infinite computation, and thus, 
independent from both recursion and iteration. Furthermore, 
we show that natural language is a finite rather than infinite 
set. 

Keywords: recursion; iteration; language; brain; infinity; 
embedding; arithmetic. 

Recursion and embedding 
An influential line of thought claims that a hallmark of 
human cognitive processing is recursion (e.g. Fitch, Hauser, 
& Chomsky, 2005; Hauser, Chomsky, & Fitch, 2002; 
Premack, 2007). Hauser et al. (2002) drew a distinction 
between the whole language faculty, including the aspects 
shared with other species or faculties (the faculty of 
language in the broad sense) and the unique aspects of the 
language faculty (the faculty of language in the narrow 
sense). They hypothesized that the unique aspects of the 
language faculty comprise "only the core computational 
mechanisms of recursion as they appear in narrow syntax 
and the mappings to the Sensory-Motor and Conceptual-
Intentional interfaces" (Hauser et al., 2002, p. 1573). Lately, 
this hypothesis has been vigorously challenged (e.g. 
(Jackendoff & Pinker, 2005; Pinker & Jackendoff, 2005). 
Interestingly, none of the challenges question the infinity in 
natural language, and recursion is contested only in 
Lieberman (2008) and Bickerton (2009) from a 
neuroscientific and linguistic perspective, respectively. 

                                                           
1 An earlier version of this paper "The redundancy of recursion 

and infinity for natural language" appeared in Cognitive 
Processing (2011, 12 (1)). As compared to the earlier version, 
some inaccuracies have been corrected, loosely relevant parts 
omitted and new arguments added to the present paper. 

Recursion 
Defining recursion Rogers Jr. (1987, pp. 5-6) gives the 
following description of a Gödelian recursive definition: "A 
recursive definition for a function is, roughly speaking, a 
definition wherein values of the function for given 
arguments are directly related to values of the same function 
for "simpler" arguments or to values of "simpler" 
functions." For example, in the recursive function for 
defining Fibonacci numbers (for integers n>1), Fib(n) is 
directly related to Fib(n-1) and Fib(n-2): Fib(n) = Fib(n-1) + 
Fib(n-2). For the present discussion, the most imporant 
aspect of recursion lies in its ability to describe an infinity of 
(input,output) pairs by a finitely definable set of operations 
in an effectively computable manner (see Odifreddi, 1992, 
pp. 34-36, for details). 

Recursion differs from iteration (another form of 
repetition) in two essential respects. First, definitions 
employing iteration do not involve self-reference. Second, 
without self-reference, every (input,output) pair needs to be 
defined explicitly, rendering it impossible to define infinite 
sets by finite means other than by a control flow loop. 
Computationally, there is a clear difference between a 
procedure that invokes another instance of itself (recursion) 
and a procedure that repeats itself either mechanically or 
with a control flow loop (iteration). Recursion and iteration 
are the only computational solutions for handling repetition. 

As a rule, implementations of recursive functions are 
slower than those of iterative because recursive functions 
must allocate memory for their multiple instances. In 
Abelson et al. (1996), the difference between recursive and 
iterative processes is captured as follows. Recursive 
processes are characterized by a chain of deferred 
operations and require that the interpreter keep track of the 
operations to be performed later on. An iterative process is 
one whose state can be summarized by a fixed number of 
state variables, together with a fixed rule that describes how 
the state variables should be updated as the process moves 
from state to state. All this being said, recursive procedures 
(or definitions) tend to be formally and notationally more 
elegant than iterative ones. The difference between process 
and procedure is explained below. 

The influential paper by Hauser et al. (2002) was the first 
to explicitly formulate the view that recursion is a 
component of the language faculty (regrettably, no 
definition of recursion was given in the article). After 
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reviewing all statements about recursion in the paper the 
following definition emerges (numbers in brackets refer to 
the pages in Hauser et al. (2002)): recursion is a neurally 
implemented (p. 1574) computational mechanism (p. 1573) 
that yields a potentially infinite array of discrete expressions 
(pp. 1570, 1571, 1574) from a finite set of elements (p. 
1571). Crucially, a computational mechanism with finite 
input and potentially infinite output, described here, does 
not imply recursion, as it is possible to generate a 
potentially infinite output from a finite set of elements 
without recursive operation by implementing n→∞ 
operations iteratively. Hence, it is not clear whether the 
mechanism described by Hauser et al. (2002) is recursive or 
iterative. While it is plausible that the notion of recursion as 
applied by Hauser et al. (2002) refers to the 'recursion' in the 
Minimalist Program (Chomsky, 1995), the latter allows for 
a range of interpretations. Tomalin (2011, p. 308) has, 
usefully, distinguished between nine different 
interpretations of 'recursion' in formal sciences, with 
'inductive definition' as the most broad one (and thus the 
safest for syntactic theory). Tomalin's (2011) theoretic 
variants and computational equivalents of recursion (λ-
definability, Turing computability et al.) are more or less on 
the same level of abstraction but recursion can also be 
defined in five different levels (in the order of decreasing 
abstractness): 

 
Table 1. 'Recursion' in five different levels. 

 
1. Inductive (or recursive) definition: A definition 

with a base rule, specifying that certain "simple" 
objects are in the class, and an inductive (recursive) 
rule, stating that if certain objects are in the class, 
then so are certain other objects formed or derived 
from them (Minsky, 1972). 

2. Recursive definition for a function: A definition 
wherein values of the function for given arguments 
are directly related to values of the same function 
for "simpler" arguments or to values of "simpler" 
functions (Rogers Jr., 1987). 

3. Recursive function: A function that is defined 
recursively (see 2). 

4. Recursive procedure: A procedure that, when 
executed, invokes another instance of itself 
(Abelson, Sussman, & Sussman, 1996). 

5. Recursive process: An execution of a recursive 
procedure (see 4). 

 
We suggest that, for cognitive and neural modelling, the 
procedural level (4) is of central importance. For the 
following discussion, it is crucial that the recursion we are 
looking for is implemented in the brain (Hauser et al., p. 
1574), i.e. it is not something that is posited at the level of 
computational theory only (Marr's (1982) level 1 of his 
three levels of information processing). However, the 
situation is still very confusing, as it is possible to have 
neurally implemented recursion of level 1 that is 

implemented non-recursively (i.e. by iteration) at levels 4-5! 
In the next section we will give an example of this. It is also 
important to note that level 1 in Tab. 1 corresponds to 
Marr's level 1 (computational theory) and levels 4 and 5 in 
Tab. 1 correspond to Marr's level 2 (algorithm and 
input/output representation) of information processing. The 
following section examines whether and how any of the 
levels in Tab. 1 can be connected to Marr's level 3 
(hardware implementation) in the brain. 
 
Recursion, iteration, and inductive definition All open-
ended sets (e.g. language expressions, N) can be defined 
inductively, i.e. recursively in the broadest sense. For 
example, one can have the following inductive definition of 
'bear': (a) Ted is a bear; (b) All entities that share at least 
98% of Ted's genome are bears. Observe that, although the 
set of potential 'bears' is open-ended and inductively 
defined, no recursion is computationally necessary to 
determine its contents. An iterative process that compares 
Ted's genome to that of potential 'bears' would do the job. 
Importantly, the difference between iteration and recursion 
pertains to levels 4-5 only. Thus, even if recursion were 
used in levels 1-3, the involvement of a recursive process or 
procedure would not be implied, as it can be implemented 
with a purely iterative computational process (e.g. on a 
Turing machine). 

Below is a strip of iterative pseudocode (1) that defines 
the infinite set of finite strings ...[X[X[X[XY]]]] that is also 
defined by the recursive strip (2): 
 

(1) Y → XY (iteration) :  
s=Y   //assign Y to s 
while true:  //infinite loop: 
rw(Y,XY,s)             //rewrite Y as XY in s 
 

(2) Y → XY (recursion) :  
s=Y  //assign Y to s 
rec(s)  //declare function rec(s) 
{   //start definition of rec(s) 
rw(Y,XY,s) //rewrite Y as XY in s 
rec(s)  //call function rec(s) 
}   //end definition of rec(s) 

 
As one may observe, (1) and (2) are computationally 
equivalent – at the level of computational theory, both are 
described by the rewrite rule Y → XY. Incidentally, this 
also means that rewrite rules can be "recursive" only in the 
sense of "recursive definition" (level 1 in Tab 1., which 
corresponds to Marr's level 1). 

From the viewpoint of effective calculability, general 
recursion and Turing computability are equivalent (Kleene 
1952, p. 300), and a universal Turing machine can 
enumerate any recursively enumerable formal language (an 
infinite set of finite strings) as can general recursion (Sipser, 
1997). Turing machine is based on iteration, whereas 
general recursion is based only on recursion. Over finite 
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outputs, recursion and infinite iteration are computationally 
equivalent (Turing-equivalent). 

Crucially, as there is no neural model of recursion (of 
whatever level), one is unable to identify it in the brain and, 
accordingly, unable to verify its existence. On the other 
hand, Lieberman (2008, p. 527) has recently suggested that 
"neural circuits linking local operations in the cortex and the 
basal ganglia confer reiterative capacities, expressed in 
seemingly unrelated human traits such as speech, syntax, 
adaptive actions to changing circumstances, dancing, and 
music", thus obviating the need for a neurally implemented 
recursion. Of course, the distinction between neurally 
implemented recursive and iterative processes is rather 
opaque for present-day methods, i.e. the possibility of a 
neurally implemented recursion cannot be ruled out. We 
argue for iteration only as a simpler and equipotent 
computational alternative to recursion. 

In sum, there would be no sense in (and no obvious way 
of) implementing level 1 (in Tab. 1) in the brain separately 
from levels 4 and 5. As for levels 2 and 3, it would be 
outlandish to assume that the brain somehow (and 
apparently redundantly) implements equations of the 
processes it carries out. Thus, implementations of these 
levels can be ruled out as well. We have also argued that 
implementations of levels 4 and 5 would be impossible to 
identify in the brain with present-day knowledge and 
methods. 
 
Recursion, induction and self-embedding: a confusion In 
computer science, on the procedural level, recursion denotes 
the syntactic property that a procedure definition refers to 
the procedure itself (Abelson et al., 1996). In Chomsky's 
(1956, 1971 [1957]) phrase structure grammar, recursion is 
a property of rewrite rules (all that is on the left side of the 
rewrite arrow repeats on the right side of the arrow, e.g. A 
→ AB) (Chomsky, 1956, 1971 [1957]). Essentially, this 
notion of recursion reduces to inductive definition. For 
some other theorists, recursion is a structural property: a 
situation where an instance of an item is embedded in 
another instance of the same item (e.g. Heine & Kuteva, 
2007; Jackendoff & Pinker, 2005). For clarity, let us call the 
three recursion, induction and self-embedding, respectively. 
Recursion and self-embedding are logically independent for 
the following reasons. First, a self-embedded structure (an 
NP within an NP, a box within a box etc.) does not have to 
be recursively generated. Jackendoff and Pinker (2005) 
submit a picture of a rectangular form within another 
rectangular form as an example of 'recursion in visual 
grouping'. Obviously, this has no bearing whatever on 
recursion. It would be outlandish to assume that recursion is 
necessary to put a box in a box, or for understanding that a 
box is in a box. Yet, for conspicuous (but nonetheless 
insufficient) reasons, this assumption is held with syntactic 
categories like sentence and NP. The reasons are, of course, 
the inductive rewrite rules of generative grammar (e.g. NP 
→ A NP), and they are insufficient as the type of induction 
can be generated iteratively as well (cf. (1)). Furthermore, 

iteration is defined as the repeated application of a 
transformation (Weisstein, 2003), which is something that 
Chomsky's (1956, p. 113) description of his early 
transformational version of generative grammar explicitly 
incoporates: "/---/ phrase structure is limited to a kernel of 
simple sentences from which all other sentences are 
constructed by repeated transformations". The confusion 
with recursion can be traced back to Chomsky (1971 [1957], 
p. 24; 1956, p. 115), who refers to loops as 'recursive 
devices'. The source that the formalism is taken from refers 
to the loops as 'circuits' ("a closed series of lines in the 
graph with all arrows on the lines pointing in the same 
orientation" – Shannon & Weaver, 1964 [1949], p. 47). The 
circuits pertain to a graphic representation of finite-state 
Markov chains, and to call them 'recursive' is jumping to the 
conclusion, as Markov chains do not prescribe an 
algorithmic realization for the circuits – Markov chains are 
confined to Marr's level 1 just like inductive definitions. In 
Chomsky (1959, p. 143), 'recursive function' is used as a 
synonym for 'Turing computable function'. Again, this is 
confusing, as computational equivalence does not imply 
algorithmic equivalence (which is absent in this case). In 
sum, the Chomskian notion of "recursion" is a case of 
confusing Marr's levels of information processing (1 and 2). 

Fitch (2010) claims that iterative functions are inadequate 
for generating center- and/or self-embedding. As an 
example of the superiority of recursion over iteration, he 
presents a recursive center-embedding program generating 
AnBn. Below is an iterative pseudocode that does the same: 

 
C = ""  //evaluate C to the empty string "" 
for i = 0 to n do: //loop n times 
C = concatenate("A",C,"B")     //concatenate "A", C and 

//"B", and assign the result to C 
 
The program embeds C between "A" and "B" n times, with i 
indicating the depth of embedding in each cycle of the loop. 
It is true that "recursive functions take their own past output 
as their next input" (Fitch 2010, p. 75) but this feature is not 
unique to recursion – in our above examples, concatenate() 
coupled with iteration does the same. 

As for confusing recursion with self-embedding 
(characteristic to most linguists but not to Chomsky), the 
two are already in principle very different. Recursion 
pertains to a process or procedure, self-embedding pertains 
to a structure. A recursive process or procedure is something 
that, more often than not, cannot be directly observed. Self-
embedding, on the other hand, is usually salient and a 
subcase of a cognitive phenomenon we term 'hierarchical 
interpretation'. A defining difference between hierarchical 
and non-hierarchical interpretation is that only the former 
allows the same unit to be interpreted simultaneously as a 
type (i.e. category) and as a token (i.e. instance), hence 
implying additional interpretative correlates not present in 
the input. The type/token distinction is a precondition for 
self-embedding, where tokens are embedded under the same 
type (e.g. NP or clause). An example of hierarchical 
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interpretation is natural language. Linguistic interpretation 
is compounding, merging smaller units that are per se 
meaningful in the code (Chomsky, 1995; Hauser et al., 
2002). As far as we know, linguistic code is unique among 
natural communication systems in stipulating semantic 
compositionality, whereby meaningful units are combined 
into diversely meaningful higher-order units (e.g., words 
into phrases, sentences and compound words, phrases into 
sentences and higher-order phrases, etc.). 

As an illustration that self-embedding is possible in 
hierarchical interpretation only, consider the following 
example: the inductive center-embedding rule AB→AABB 
generates the strings AABB, AAABBB etc. It is impossible 
to tell by looking at these strings whether their generation 
procedure (or process) was recursion, iteration or neither 
(cf. Fitch, 2010, and the example above). Furthermore, it is 
impossible to tell whether the strings exhibit self-
embedding. Without any a priori assumptions about the 
generative mechanism (e.g. stipulation of a certain phrase 
structure grammar), it is undecidable whether a string 
…AABB... is embedded, concatenated, or elementary 
(assuming that different generative mechanisms may allow 
for different elementary strings). 

Embedding 
Embedding is a situation where an item is embedded in any 
item (with infinity not implied). Embedding is logically 
independent from recursion (i.e. there can be one without 
the other). First, embedding does not have to be generated 
by a recursive rule. It can be created iteratively or by any 
other function with relevant output. Second, a recursive 
process or procedure does not have to yield (relevant) 
output. Assuming that we cannot witness a recursive 
process or procedure in situ (e.g. in the brain), two 
conditions must be met for attesting it: (1) it must generate 
output, and (2) there must be a one-to-one correspondence 
between the values of the recursive procedure and its output. 
Logically, self-embedding is a situation where an instance 
of an item is embedded in another instance of the same item 
(with infinity not implied); thus, self-embedding is a proper 
subset of embedding. The fact that embedding is 
hierarchical has frequently raised speculations about a 
putative underlying recursive process or procedure (or more 
unfortunately, resulted in confusing embedding with 
recursion). As explained above, a hierarchical or embedded 
structure is insufficient to decide on its generative 
mechanism. 

Infinity in natural language and arithmetic 
competence 

The central claim of Hauser et al. (2002) and Chomsky 
(2010) is that a neurally implemented recursive process 
introduces infinity to natural language and arithmetic. An 
example of (potential) infinity in natural language and 
arithmetic competence is the knowledge that one can add 1 
to n, append a natural language expression to text or embed 
clauses indefinitely. Of course, we are incapable of 

performing infinitely in any of these tasks (hence the 
famous competence/performance distinction – Chomsky, 
1995).

Chomsky's derivation of neurally implemented recursion 
for operating on N is as follows. A) Any formal definition 
of the set of natural numbers N incorporates recursion by 
means of the successor function, where 1 = S(0); 2 = S(S(0)) 
etc. B) We have knowledge of the properties of N (i.e., 
given enough time and space, we can compute the sum of 
two numbers, and distinguish the right from the wrong 
answer). From premises A and B he conjectures that 
neurally implemented recursion is required for operating on 
N (e.g. for adding 4555 to 7884). Thus, we have the 
following: (a) infinity in natural language and arithmetic 
competence (to motivate neurally implemented recursive 
process in the first place), (b) neurally implemented 
recursion is required to operate on N, and (c) N is an 
offshoot of the language faculty. From these premises, it 
follows that (d) neurally implemented recursion underlies 
both N and natural language. 

On the face of it, the above argument for neurally 
implemented recursion is consistent and logically sound. 
However, premises (a)-(b) are false, and in section 
"Arithmetic performance" we argue in more detail that 
neurally implemented recursion is not necessary to operate 
on N. As explained below, infinity in natural language and 
arithmetic competence reduces to imagining infinite 
embedding or concatenation, and thus does not qualify as an 
output of a recursive process or procedure (as there is no 
reason to assume that conceptualizing infinity requires 
recursion). The concept of neurally implemented recursion 
is largely motivated by the 'discrete infinity' property of 
natural language (Chomsky, 1995; Hauser et al., 2002). In 
fact, the whole distinction between the broad and the narrow 
language faculties, as originally proposed by Hauser et al. 
(2002), can be derived from this property. Importantly, the 
infinity of natural language has been always taken as 
axiomatic and never proven. The last instance that Chomsky 
appeals to in this question is Wilhelm von Humboldt (1999 
[1836]) who simply states the infinity of natural language as 
a fact. 

One might start from the observation that the maximum 
possible natural language "corpus" – everything that has 
ever been and will be processed – is not infinite but a finite, 
just physically uncountable set. We propose that this is 
precisely the nature of language as it should be accounted 
for. In fact, the very spacetime that can support physical 
computational systems is finite (Krauss & Starkman, 2000). 
This substantial correction (physically uncountable finity 
instead of infinity) is suggested for the sake of unambiguity 
and exactitude. Physically uncountable sets can be finite or 
infinite. Set-theoretically, potential and actual infinity 
(Moore, 1990) are proper subsets of physical uncountability. 
The evidence that Hauser et al. (2002, p. 1571) submit for 
discrete infinity covers also physically uncountable finity: 
"There is no longest sentence (any candidate sentence can 
be trumped by /---/ embedding it in "Mary thinks that ...)". It 
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would be a contradiction to assume that the size of a finite, 
physically uncountable array can be compared to the size of 
all others, or that such array can be embedded (the mere fact 
that we can imagine embedding such an array does not 
account for its capacity of being embedded). "There is no 
non-arbitrary upper bound to sentence length." This is as 
true for an infinite as it is for a finite, physically 
uncountable array. 

The finity of natural language can be also derived 
logically, without invoking physically instantiated 
computation: 

 
1. Natural language has a limit which is either infinite or 
finite. 
2. Natural language computation takes time. 
3. From 1 and 2 it follows that, for any given moment in 
time, there is an infinite number of finite limits that are 
never reached. 
4. Assuming that the cardinalities of natural language and 
N are equal2, there is only one infinite limit that is never 
reached. 
5. For any finite limit that is never reached, the 
probability of natural language having it is > 0. 
6. From 3-5 it follows that the probability of natural 
language having the infinite limit is 0. 

Arithmetic performance 
If recursion were involved in conceptualizing numbers, our 
brain would execute something like a successor function 
…S(S(S(S(0))))… for natural numbers and maybe also 
n*n*n*n… for base-n integer exponents (since we normally 
use base-10 numeral system, n would normally equal 10). 
While n*n*n*n… can be coded and implemented 
recursively as well as iteratively, it is unlikely that anything 
approximating …S(S(S(S(0))))… or n*n*n*n… would be 
run in our brains for conceptualizing numbers and 
performing arithmetic on them. If it were, our arithmetic 
performance should be significantly better than it tends to 
be. If, on the other hand, our inferior arithmetic skills are 
down to general performance limitations and/or penalties 
for (other) arithmetic operations, there would be no apparent 
use for running these procedures for our mathematical 
capacity. The only remaining justification for 
…S(S(S(S(0))))… and n*n*n*n… would be recursion in the 
language faculty. However, for this concession to make 
sense, there would first have to be some  evidence for 
recursion in the language faculty. As we have argued at 
length above, at present we have merely conjectures built on 
invalid premises (see section "Infinity…"). 

It is easy to demonstrate that conceptualizing a principle 
(recursion) for producing a pattern of output (N or self-

                                                           
2 Since we are interested in an upper bound of 

computation/processing time, ℵ0 is sufficient. It is difficult to 
develop the argument here but the very fact that time intervals 
seem to exist suggests that time is not infinitely divisible (ℵ1 and 
beyond). Other indications of this are e.g. Achilles and the tortoise 
paradox and Planck time. 

embedding) does not entail (1) that the principle is 
necessary for producing the pattern (as N or self-embedding 
can be also produced iteratively), and (2) that the principle 
itself must be neurally implemented for us to be able to 
conceptualize it. For example, we can conceive that all 
natural numbers are derived from the number 20098 by +/-1 
operations, i.e. each time we conceptualize a natural number 
x that is less than 20098, we subtract 1 from 20098 until we 
get x and each time we conceptualize a natural number y 
that is greater than 20098, we add 1 from 20098 until we get 
y. We can conceive this principle. Does it follow that the 
"20098 +/-1" principle must be neurally implemented for us 
to be able to conceive it in the first place? Surely not. 
Observe that the situation with the "20098 +/-1" principle is 
similar to the recursive one: we can conceptualize the 
principles but both are at odds with human arithmetic 
performance. To circumvent the latter problem in the 
neurally implemented recursion hypothesis, the 
competence/performance distinction has been called into 
effect. However, a competence/performance distinction 
could be also invoked for explaining why our performance 
is at odds with the "20098 +/-1" principle. Besides, the 
distinction raises a non-parsimonious psychological duality 
as to the conceptualization of relevant syntactic and 
arithmetic properties – we can conceptualize that the 
properties are given to us by a recursive principle, but we do 
not seem to follow the principle neither in linguistic nor 
arithmetic processing/performance. Furthermore, it seems 
inconsistent to explain the apparent discontinuity between 
competence and performance in arithmetic and language by 
e.g. limitations in primary memory – what potential 
advantage could a neurally implemented recursive principle 
bestow if its effects are subject to so severe constraints? 

Conclusion 
We conclude with the following points. First, both recursion 
and iteration allow for finite definitions of infinite sets. 
Moreover, iterative solutions are frequently less resource 
demanding than recursive ones (cf. section "Defining 
recursion"). Second, three logically independent notions of 
"recursion" are being conflated and confused in linguistics 
(e.g. Chomsky, 1956, 1971 [1957]; Heine & Kuteva, 2007; 
Jackendoff & Pinker, 2005): (A) recursive algorithm (Marr's 
level 2), (B) recursive (or better, inductive) definition 
(Marr's level 1), and (C) an instance of an item embedded in 
another instance of the same item. We suggest a 
terminological way out of the confusion, by reserving 
'recursion' for (A) for which there are no alternative terms, 
and designating (B) and (C) 'induction' and 'self-
embedding', respectively. Third, the technical preciseness of 
the notion of recursion makes it next to impossible to find 
evidence for it in the brain with the present-day methods, 
and there is no reason to assume neurally implemented 
recursion by default (see below). Fourth, contrary to 
Chomsky (Chomsky, 1995; Hauser et al., 2002) and many 
others, we argue that a property of natural language is not 
discrete infinity but physically uncountable finity. Fifth, we 
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reject the received opinion, articulated by Chomsky et al. 
(Chomsky, 2010; Fitch et al., 2005; Hauser et al., 2002), 
that neurally implemented recursion is necessary to explain 
natural language and arithmetic competence and 
performance. The only motivation for neurally implemented 
recursion is infinity in natural language and arithmetic 
competence (e.g. the knowledge that one can add 1 to n, 
append a natural language expression to text or embed 
clauses indefinitely). We claim that infinity in natural 
language and arithmetic competence reduces to imagining 
infinite embedding or concatenation, which is completely 
independent from an algorithmic capacity for infinite 
computation, and hence, completely independent from 
neurally implemented recursion or iteration. In sum, there is 
no infinity in natural language and arithmetic processing, 
but even if there were, iteration would be sufficient for 
generating it. 
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