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Coordination Chemistry of Metal Surfaces-

Carbon Monoxide Chemisorption States on Pt(iii) 

C.M. Friend, R.M. Gavin*,  E.L.  Muetterties*, 

and Min-Chi Thai 

Materials and Molecular Research Laboratory 

Lawrence Berkeley Laboratory and 

Department of Chemistry, University of 

California, Berkeley, CA 94720 

Abstract 

A simple experimental blank procedure is described whereby the chemistry 

associated with single crystal metal surfaces can be unambiguously differentiated from 

chemistry associated with the sides or back of the crystal or the large inner surface 

of a conventional ultra high vacuum chamber. Using this blank procedure along with 

chemical and spectroscopic information, the two CO chemisorption states for a real, 

carefully prepared Pt(111) surface re ascribed to imperfection sites (terminal 

Pt-C-O) and to the (iii) platinum sites (bridging Pt-C-O). The generality of this 

experimental and interpretational approach to characterization of chemisorption states 

is discussed. 
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Coordination Chemistry of Metal Surfaces- 

Carbon Monoxide Chemisorption States on Pt(111) 

Sir: 

Delineation 

crystallography under 

activity. 
1-3

Here we 

istry ascribed to the 

of the coordination chemistry of metal surfaces with defined 

"clean" conditions is now a viable and extremely active research 

describe a valuable experimental procedure to insure that chern-

flat, crystallographically defined surface is, in fact, just 

that chemistry--particularly for experiments based on thermal desorption and chemi-

cal displacement3 ' 5  reactions. Through such experiments, we have shown that surface 

imperfections, 6  invariably, present even in carefully prepared crystal samples, play 

an important and detectable role in the spectroscopic and chemical. behavior of a real 

crystal surface. In addition, we call attention to an alternative interpretation of 

vibrational spectroscopic data for such conceptually simple systems as chemisorbed CO 

on the close-packed platinum (iii) surface. 

A common observation in spectroscopic, diffraction and thermal desorption 

studies is the apparent presence of two or more chemisorbed states even at coverages 

that are substantially lower than one half monolayer. Consider the well studied example 

of CO on the Pt(111) surface. All results from thermal desorption studies are identi-

cal within experimental error 7 : there are two well separated desorption curves, one 

of variable intensity at 180
0c which shifts to 1500C as initial CO surface coverage 

increases and one of relatively fixed intensity and position at approximately 240
0
C 

(Figure 1). With substantial CO coverage, the former desorption peak is the larger 

(ca. 80-90% of the total CO desorption). The higher temperature desorption peak is 

present in thermal .desorption experiments with Pt(111) after 15-30 minute exposures 

of the.crystal to the ambient atmosphere of 10
-10 

 to 10
-11 
 torr which atmosphere large- 

ly consists of H2  and CO. The major desorption peak has been ascribed unifirmly to 
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a CO chemisorption state on a Pt(111) surfaëe and the minor peak has been variously 

ascciated with desorptions from other parts of the ultra high vacuum system, to the 

edge areas of the crystal and to the ubiquitous imperfections 6  of a real Pt(iii) sur-

face. We have established the last explanation to be the correct one. 

In our surface studies, 3  thermal desorptionl+  and chemical 

reactions play a major role in establishing the surface coordination chemistry. Wit1- 	11 

out an experimental blank, there is a major uncertainty as to whether observed therm-

al desorpticns or chemical displacements occur at the crystallographically defined sur-

face of the very small metal crystal. We have devised a blank experiment based on 

a crystal, of the metal in study, that has the flat exposed face of experimental study 

covered by a layer of gold (in the platinum system, the blank was prepared from a con-

ventional platinum crystal wafer by vapor deposition of a thin copper layer followed 

by a thin gold layer--the sides and back of the crystal were masked during the depo-

sition). By using such metal crystal blanks, we have found it possible to establish 

with certainty the origin of any molecules displaced in thermal desorption or chemical 

displacement reactions from metal surfaces. Only in three cases have we seen any chem-

istry associated with the gold surface in the temperature range of 25 to 1400
0
C: meth-

yl isocyanide expectedly was chemisorbed strongly on gold with a thermal desorption 

maximum at -130
0c, pyridinhehaved similarly, and CH3CN desorbed at 90 0

C. 

Our blank studies demonstrated that the observed thermal desorption of CO 

from the Pt(111) surface is totally associated with the real exposed crystal surface--

not with the sides or back of the crystal or other parts of the vacuum system. The 

gold plated crystal blank experiment showed no CO desorption in the 25 to 1400°c region. 

Accordingly, the desorption maximum at 21400C must be ascribed to thermal desorption 

from the front surface of the prepared crystal; and because of the high temperature 

of this desorption process, desorption from surface imperfection sites is the logical 

process for this desorption phenomenon. It may be of electronic and structural sig- 
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nificance to the issue of imperfection sites that a stepped Pt crystal (e.g. Pt 6(111) 

x (111)) exhibits a more intense 240 0  thermal desorption maximum and a less intense 

peak in the 150-1800C  range!' 9  Crystals with steps and kinks behave simiiariy . 7b 

(Thus, there is no evidence of different activation energies for CO desorption from 

steps and kinks). Likewise,. for comparable exposures of CO, the intensity of the energy 

l3ss peak at 2080 cm. 	is much greater from the stepped surface(6(111):(111)) than 

from the (111) surface.7a  That is, as steps are added '  to the imperfections which are 

always present, the intensity of the loss at 2080 cm. compared to the 18.50 cm. 

loss increases. We suggest that the most common imiierfections  on a carefully prepared, 

cleaned and annealed Pt(iii) surface will be steps and kinks. 

Since there is a significant (ca. 13-20%) concentration of chemisorbed CO 

at imperfections on the Pt(ill) surface and since.theré is a substantial difference, 

about 5 kcal./mole, in the activation energies for desorption from the (ill) surface 

and for..imperfection sites, vibrational studies should detect (resolve) both states. 

The first detectable state should be the more tightly bound state associated with CO 

at imperfection sites. In fact, two states are detected by electron loss studies 10 

the first to appear in the energy region characteristic of losses due to CO stretching 

excitation is a loss at 2080 cm. and the second at 1850 cm., regions character-

istic of terminal M-CO and bridging M-CO metal carbonyls, respectively. The current 

interpretation of these data is that CO first chamisorbs on single platinum atoms in 

the (111) plane.(terminal and linear M-C-O) and at higher coverages bridging sites are 

occupied. 'However, CO chemisorption apparently occurs.first at bridging sites on 

the (111) surfaces of the closely related metals, nickel and palladium, a stereo-

chemical feature fully consonant with coordination chemistry principles since mnximal 

interaction of the CO carbon atom with surface metal atoms should lower most effect-

ively thesurface potential energy at low CO surface coverages on close packed (111) 

or (001) surfaces. 11,12 
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In the interpretation of the vibrational data for CO on Pt(iii), serious 

consideration 6hould be given to the possibility that the energy loss at 2080 cm. 

arises from CO chemisorbed at imperfections on a real Pt(111) crystal face, 13  and that 

the CO chemisorbed on the Pt(111) plane has a CO stretching frequency at 1850 crn. 

a region characteristic of a bridging carbonyl--as expected by analogy to the CO chemi-

sorption states on. Ni and Pd(111) surfaces and from coordination chemistry princip1es. 11 ! -' 

In addition, we submit that another feature of the vibrational data for CO 

on Pt(lll) supports the thesis that CO is on bridging sites (the state associated with 

the 1850 cm. 	loss) for platinum atoms in a (111) environment. For a given chemisorp- 

tion state of a molecule or a molecular fragment on a metal surface, the average binding 

energy for the molecules bound to metal atoms in environments characteristic of the 

prepared surface plane should decrease generally to some small but detectable degree 

as the separation between individual surface molecules decreases (i.e. as the surface 

coverage increases). In some instances these slight energy changes may be detectable 

spectroscopically. In sharp contrast, chemisorption states of molecules on imperfection 

sites of a well prepared crystal surface should be less perturbed by coverage changes---

the imperfections sites generally will not be ordered,contiguous or subject to cor-

relation effects. For the general case of CO chemisorption states, characteristic of 

the prepared metal surface plane, electron transfer from metal to 1f  CO orbitals should 

be less extensive as CO coverage increases and the 	characteristic of this state
CO  

should increase--available data from electron loss and infrared reflectance studies of 

CO on metal surfaces can be so interpretted.?a 	Thus, the chemisorption state which 

gives rise to the nearly coverage invariant 2080 crn. energy loss for CO on Pt(iii) 
r 

is best ascribed to CO at surface imperfection sites. The chemisorption state which 

yields the lower energy (1850 cm. '  - 1880 cm.) CO stretching loss. 

whose position is coverage dependent with a 	shift to higher energy with increasing 

coverage is best ascribed to CO bridge bonded to platinum atoms in a (lii) surface 

environment. 
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Although imperfections on single crystal surfaces present substantial diffi-

culties in the interpretation of chemical and spectroscopic data for chemisorption 

states, we believe that the above described blank experiments coupled with a careful 

assessment of the coordination chemistry as a function of surface crystallography can 

evontually unravel the intimate features of metal surface coordination chemistry. The 

implications presented here for platinum surfaces have substantial breadth, e.g., for-

mally analogous phenomena have been established for the chemisorption of bénzene on a 

Pt(iil) surface. 15  In contrast, we have not sensed apDarent chemisorption states due 

to crystal imperfections on Ni(111) with a variety of small molecules--a result in 

keeping with the greater ease of preparing "nearly' 1  perfect surfaces with nickel than 

with platinum. In the specific case of CO on nickel, both the (ill) surface and a 

stepped surface show a single desorption maximum, at temperatures separated by only 

o 16 
20 C. 	Therefore, thermal desorption experiments would not detect step-like imper- 

fections on a Ni(111) surface. 
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Figure 1. Thermal desorption spectra for CO from a Pt(iii) crystal surface. In (a) 

is shown the spectrum obtained for mass 28 after exposure for 50 minutes to the am-

bient gas present in the vacuum chamber. Spectra for CO desorptions from CO states 

with coverages of 0.1 and 0.2, as measured from Auger intensities, are given in (b) 

and (c), respectively. 
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