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Abstract

High-Order Kernel-Based Finite Volume Methods for Systems of Hyperbolic

Conservation Laws

by

Ian C. T. May

Systems of hyperbolic conservation laws (HCLs) commonly arise as mathemati-

cal descriptors of the natural world, and are particularly ubiquitous in fluid dynamics.

These laws appear as complicated and highly nonlinear partial differential equations de-

scribing the evolution of fundamental conserved quantities such as mass, momentum,

and energy. Solving these equations analytically is entirely intractable for all but the

simplest cases, and investigating problems with real world importance falls to numeri-

cal approaches more and more frequently. Most HCLs exhibit rich dynamics with com-

plicated smooth flows and discontinuities coexisting, often with shocks arising from

initially smooth data. Designing numerical schemes that can efficiently and accurately

represent smooth phenomena, while also remaining robust and reliable in the vicin-

ity of shocks, is very challenging. Finite volume methods are one particularly useful

approach to designing such methods as conservation is enforced discretely, and discon-

tinuities can be represented quite naturally. An unfortunate drawback of these methods

is that achieving high-order accuracy in multiple space dimensions is difficult. This

dissertation overcomes these challenges by developing a kernel-based non-polynomial

xiv



reconstruction scheme that is manifestly multidimensional. This scheme is first posed

as a linear recovery problem in a reproducing kernel Hilbert space. This linear re-

construction method is then cast into a weighted essentially non-oscillatory (WENO)

framework so that it may represent both smooth and discontinuous data. This scheme

is then incorporated into solvers for the compressible Euler equations, compressible

Navier-Stokes equations, and ideal magnetohydrodynamics (MHD) equations. In do-

ing so, a novel set of variables that are more suited to multidimensional reconstruction,

dubbed the linearized primitive variables, are introduced. Troubled cell indicators are

developed that allow for a more accurate and efficient treatment of smooth solutions in

an entirely automatic fashion. Positivity preserving limiters are also incorporated, and

allow for the evolution of flows with extremely strong shocks. A highly parallel multi-

GPU implementation is provided, and the proposed method is tested against a variety

of stringent benchmark problems.
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Chapter 1

Introduction

Systems of hyperbolic conservation laws are ubiquitous throughout the mathemat-

ical description of the natural world around us, and are particularly prominent in fluid

dynamics. In d spatial dimensions these laws can be written as partial differential equa-

tions in divergence form as

∂UUU
∂t

+∇ ·F (UUU) = 0, (1.1)

where UUU ∈ Rn is a vector of n conserved quantities and F is a flux tensor that is

generally nonlinear with respect to UUU . Considering a Cartesian coordinate system,

xxx = (x1,x2, . . .), with fluxes F = (FFF1,FFF2, . . .), eq. (1.1) can be expanded into the asso-

ciated quasilinear form

∂UUU
∂t

+∑
j

AAA j
∂UUU
∂x j

= 0, AAA j =
∂FFF j

∂UUU
, (1.2)

1



by applying the chain rule to the flux derivatives. The conservation form in eq. (1.1) is a

more natural starting point for the development of many numerical methods, including

the finite volume method lying at the core of this manuscript. However, the quasilinear

form in eq. (1.2) allows for more direct discussion of some of the relevant mathematical

properties of these equations.

Let ηηη ∈ Rd be a unit vector and let FFFηηη = ∑
j

η jFFF j denote the flux in the ηηη direction.

The system in eq. (1.2) is called hyperbolic [104] if the flux Jacobian

AAAηηη

(
ŨUU
)
=

∂F ηηη

∂UUU

∣∣∣∣
ŨUU
= ∑

j
η j

∂FFF j

∂UUU

∣∣∣∣
ŨUU
= ∑

j
η jAAA j

(
ŨUU
)
, (1.3)

is diagonalizable with real eigenvalues for an arbitrary unit vector ηηη ∈ Rd , and all ad-

missible states ŨUU .1 There are several interesting refinements to this baseline definition

of hyperbolicity. Strict hyperbolicity further requires that the eigenvalues of AAAηηη

(
ŨUU
)

all be distinct. Symmetrizable hyperbolic systems are those whose flux Jacobians can

be made symmetric through an appropriate change of variables. These systems have

associated convex entropy functions which play a deep role in the well-posedness of

these equations [38]. In the other direction, weak hyperbolicity applies when all eigen-

values are real but there is not a complete set of linearly independent eigenvectors (see

e.g. [53]). This is particularly important in the consideration of non-conservative hy-

perbolic systems where the matrices AAAi in eq. (1.2) do not arise as the Jacobians of any

associated flux. The analysis of these equations is significantly more complicated (see
1From a purely mathematical perspective it may be more informative to require hyperbolicity then

determine the set of admissible states as those that preserve this property.
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e.g. [21, 75]).

Systems of hyperbolic conservation laws have a number of distinctive features.

First, and most obviously, is that the quantities UUU are conserved. This can be seen

directly by integrating eq. (1.1) over an arbitrary fixed volume Ω ⊂ Rd and applying

the divergence theorem to obtain

∂

∂t

∫
Ω

UUUdxxx+
∫

∂Ω

F ·dSSS = 0, (1.4)

where dSSS is a differential surface element oriented with the outward pointing normal.

Hence, the total amount of UUU in the region Ω can only change by flows of UUU through

the boundary ∂Ω. Second, information in these systems propagates at finite speeds

given by the eigenvalues of the flux Jacobian, earning them the more descriptive name

of wavespeeds. Finally, and perhaps most relevant to the remainder of this dissertation,

is that these systems naturally support discontinuous solutions in the weak sense, and

discontinuities can arise from initially smooth data in finite time.

Analytic solutions to systems of nonlinear hyperbolic conservation laws are exceed-

ingly rare, and numerical solutions are increasingly important as a tool for investigating

physical systems obeying such laws. These features together make the design of effi-

cient and trustworthy numerical solvers a challenging, but important, task. The remain-

der of this introduction will discuss the finite volume method as one such approach with

brief commentary on alternative approaches. Afterwards, an overview of the structure

and content of the ensuing dissertation will be given.
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1.1 An overview of the finite volume method

The finite volume method takes the integral form of the governing equations, as

written in eq. (1.4), as the fundamental starting point for discretization. The global

domain Ω where we seek to solve the equations is partitioned into a set of M disjoint

cells, {Ωh}M
h=1, such that Ω =

⋃
h

Ωh. Integrating eq. (1.1) over each Ωh and dividing

through by the volume of the cell ||Ωh|| yields

∂⟨UUU⟩h
∂t

+
1
||Ωh||

∫
∂Ωh

F̂
(
UUU−,UUU+

)
·dSSS = 0, (1.5)

where the cell-average value of UUU has been notated with angle brackets indexed at h,

and the flux has been replaced by a two argument flux. Here UUU− and UUU+ are the limiting

values of the solution UUU as the boundary is approached from inside and outside the

cell respectively. Crucially, because the solution may be discontinuous these limiting

values need not be equal. This two argument flux returns the physically relevant flux as

determined from an associated Riemann problem with states UUU− and UUU+, and serves

to couple neighboring cells together.

To this point no approximations have been made and the cell averages that evolve

via eq. (1.5) are identical to what would be obtained from averaging the solution of

eq. (1.4), though this is of course only possible if the boundary integral could be eval-

uated exactly. This formulation is the foundation of the finite volume method, and

arriving at a numerically tractable method primarily consists of finding an appropriate

discretization of this boundary integral.

4



To make this discussion concrete, consider a Cartesian coordinate system in three

dimensions with Ω= [0,Lx]× [0,Ly]× [0,Lz] partitioned into a uniform set of cubic cells

with side length ∆. Identifying the tuple (i, j,k) with the single index h enumerating

all cells allows the individual finite volumes to be written as Ωh = [xi±∆/2]× [y j±

∆/2]× [zk±∆/2] where the cell center is given by xi =
(
i+ 1

2

)
∆, y j =

(
j+ 1

2

)
∆, and

zk =
(
k+ 1

2

)
∆. Then, eq. (1.5) takes the form

∂⟨UUU⟩h
∂t

+
1
∆

(〈
F̂FF1

〉
(i+ 1

2 , j,k)
−
〈

F̂FF1

〉
(i− 1

2 , j,k)

)
+

1
∆

(〈
F̂FF2

〉
(i, j+ 1

2 ,k)
−
〈

F̂FF2

〉
(i, j− 1

2 ,k)

)
(1.6)

+
1
∆

(〈
F̂FF3

〉
(i, j,k+ 1

2 )
−
〈

F̂FF3

〉
(i, j,k− 1

2 )

)
= 0,

where the face-average flux in the x−direction is given by

〈
F̂FF1

〉
(i+ 1

2 , j,k)
=

1
∆2

y j+
∆

2∫
y j−∆

2

zk+
∆

2∫
zk−∆

2

F̂FF1

(
UUU−

(
xi +

∆

2
,y,z
)
,UUU+

(
xi +

∆

2
,y,z
))

dydz, (1.7)

with similar expressions for the face-averaged fluxes in the y− and z−directions. Note

that angle brackets located at half-indices have now been used to denote face aver-

ages. Due to the consideration of cubic cells, these integrals can easily be discretized

by a (tensor product in dimensions d > 2) Gauss-Legendre rule. Similar expressions

hold for more general cell shapes, though of course appropriate quadrature rules will

be needed. Regardless, the discretization of these surface integrals require the produc-

tion of point-valued estimates of the solution over the boundary of each cell. Hence,

eq. (1.6) becomes a genuine semi-discretization of eq. (1.1) if we can specify a proce-

5



dure for recovering these point values of the solution UUU given only the cell-averages

⟨UUU⟩h = ⟨UUU⟩(i, j,k), and subsequently producing single-valued fluxes from the inevitably

multi-valued traces.

The first procedure, called reconstruction, for converting cell-average data ⟨UUU⟩h into

pointwise data on cell interfaces, UUU±, lies at the core of the finite-volume method. De-

signing a robust, efficient, and accurate, reconstruction scheme in multiple dimensions

is highly challenging and comprises the bulk of the present dissertation. The latter

procedure for producing single valued fluxes is tied to the solution of an associated

Riemann problem as discussed in regards to eq. (1.5), which for efficiency will typi-

cally be done through the use of an approximate Riemann solver. While interesting,

this dissertation will not deliberate on these approximate Riemann solvers any more

than necessary. The interested reader is referred to [104], which provides an exhaus-

tive presentation of these solvers for the compressible Euler equations among several

others.

1.1.1 Weighted Essentially Non-Oscillatory (WENO) methods in

one dimension

One dimensional reconstruction schemes are naturally much simpler to implement

and understand, and hence a discussion of this case will provide useful context for the

remaining text. As mentioned above, hyperbolic conservation laws generally support
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discontinuous solutions, and it is crucial that the developed reconstruction scheme ac-

counts for this possibility. Godunov’s theorem [46] states that no stable (monotone)

linear scheme can exist that also achieves greater than first-order accuracy. Here, lin-

earity does not imply that the reconstructed functions are linear, but rather that the

reconstructed values on the cell interfaces depend linearly on the nearby data. Notably,

this includes fitting polynomials locally to a given set of cell-average data.

The baseline notion behind WENO schemes is to simultaneously achieve high-order

accuracy (potentially of arbitrary order given some minor assumptions) and stability by

sacrificing linearity of the reconstruction procedure. In fact, as the major innovation

of WENO methods lies in the robust approximation of functions with mixed regularity

they have also seen use in applications having nothing to do with PDEs or Godunov’s

theorem [96, 81]. WENO methods have surged in popularity (see again the references

within [96]), so this section will only concern the fundamentals of WENO methods

rather than the full gamut of variations thereof.

These methods take a particularly simple approach to nonlinear reconstruction.

The fundamental idea is to consider several candidate linear reconstruction schemes,

and then form a combination of these in a data-dependent fashion. The simpler and

older case of essentially non-oscillatory (ENO) methods select one such reconstruction

from the candidates with the selection procedure introducing the necessary nonlinearity

[51, 49]. As in [71, 59, 96], consider a set of equispaced cells in one dimension with
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spacing ∆x and cell-averages ⟨UUU⟩i. Consider the stencil of values

{⟨UUU⟩i−2,⟨UUU⟩i−1,⟨UUU⟩i,⟨UUU⟩i+1,⟨UUU⟩i+2}. One could consider three different approxima-

tions of the point value UUU i+1/2 between two cells as

UUU (1)
i+1/2 =

1
3
⟨UUU⟩i−2−

7
6
⟨UUU⟩i−1 +

11
6
⟨UUU⟩i (1.8)

UUU (2)
i+1/2 =−

1
6
⟨UUU⟩i−1 +

5
6
⟨UUU⟩i +

1
3
⟨UUU⟩i+1 (1.9)

UUU (3)
i+1/2 =

1
3
⟨UUU⟩i +

5
6
⟨UUU⟩i+1−

1
6
⟨UUU⟩i+2 (1.10)

each obtained by fitting a quadratic polynomial to the associated cell-averages. For

smooth data these each provide 3rd-order accurate approximations. Alternatively, one

could use all available data to construct a single quartic polynomial. Evaluating this

yields the 5th-order approximation

UUU (4)
i+1/2 =

1
30
⟨UUU⟩i−2−

13
60
⟨UUU⟩i−1 +

47
60
⟨UUU⟩i +

9
20
⟨UUU⟩i+1−

1
20
⟨UUU⟩i+2. (1.11)

The 5th-order approximation can be recovered from the three 3rd-order approxima-

tions as

UUU (4)
i+1/2 = γ1UUU (1)

i+1/2 + γ1UUU (2)
i+1/2 + γ1UUU (3)

i+1/2, (1.12)

where the linear weights are

γ1 =
1

10
, γ2 =

3
5
, γ3 =

3
10

. (1.13)

Finally, these linear approximations are combined as

UUU i+1/2 = ω1UUU (1)
i+1/2 +ω1UUU (2)

i+1/2 +ω1UUU (3)
i+1/2, (1.14)
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where the nonlinear weights ωk are now chosen in a data-dependent fashion. For

smooth data each nonlinear weight should approach its linear counterpart so that eq. (1.12)

approaches eq. (1.14), and the scheme as a whole tends towards the 5th-order approx-

imation. Alternatively, when one of the substencils contains rough data its nonlin-

ear weight should tend towards zero to remove its contribution, which suppresses any

Gibbs’ type oscillations hence providing stability.

It is the calculation of these nonlinear weights that has enjoyed the greatest amount

of community effort and exploration. All schemes rely on some measure of smooth-

ness of the data contained within a substencil, and then form the nonlinear weights by

combining this information with the linear weights. The earliest scheme was intro-

duced by Jiang and Shu (WENO-JS) [59]. The WENO-Z [7, 13] and mapped WENO

[54, 32, 33, 111, 69, 70] methods modified these weights to improve the resolution near

critical points. Other directions considered adding in information from the full stencil,

such as WENO-AO [4]. Of most relevance to the present article are the kernel-based

methods of GP-WENO [82, 83], RBF-CWENO [55], and the optimal recovery finite

volume method from [98].

1.2 The content and structure of this dissertation

The remainder of this dissertation is split into three main chapters followed by a

conclusion with possible directions for future studies.
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Chapter 2: Linear and nonlinear kernel methods for function reconstruction

Based on: I. May and D. Lee [73]

Chapter 2 discusses kernel-based methods in the abstract. The reconstruction prob-

lem is posed as a recovery problem in a certain type of function space called a reproduc-

ing kernel Hilbert space (RKHS). These spaces are defined and the relevant properties

discussed. Symmetric and asymmetric formulations for reconstruction are presented

and the inclusion of additional polynomial subspaces is deliberated upon. Ultimately

this chapter builds to the development of a novel approach for nonlinear recovery in

these spaces yielding a fully multidimensional kernel-based weighted non-oscillatory

method, referred to hereafter as KFVM-WENO.

Chapter 3: A kernel-based finite volume method for the compressible Euler equations

Based on: I. May and D. Lee [73]

Chapter 3 discusses the compressible Euler equations and compressible Navier-

Stokes equations. The preceding KFVM-WENO method is formulated for scalar fields

and this chapter will discuss its adaptation to systems of conservation laws. Trans-

formations of variables for the sake of reconstruction are discussed including a newly

proposed approach using the so-called linearized primitive variables. A troubled cell

indicator, adapted from the KXRCF indicator [63], is presented and allows for the ef-

fective, but computationally demanding, WENO process to be sidestepped. Positivity

preservation, as necessary for the treatment of flows with extremely strong shocks, is
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incorporated into the method. A brief digression is made to discuss the time integration

methods chosen for this work, and the chapter is concluded with variety of illustrative

numerical results.

Chapter 4: A kernel-based finite volume method for ideal magnetohydrodynamics

Chapter 4 extends this machinery to the equations of ideal magnetohydrodynamics

(MHD). Special attention is paid to the solenoidal constraint on the magnetic field, lead-

ing ultimately to the selection of a method utilizing generalized Lagrange multipliers

(GLM). Reconstruction variables, troubled cell indicators, and positivity preservation

are again discussed with the relevant adaptations from the former chapter to the MHD

case. The choice to use a GLM style method requires an accurate treatment of relatively

complicated source terms, the discretization of which is discussed. The software writ-

ten to support the research presented in this dissertation is overviewed. Finally, a set of

numerical results are presented to showcase the capabilities of the proposed scheme.
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Chapter 2

Linear and nonlinear kernel methods

for function reconstruction

This chapter is based on the paper [73] submitted to the Astrophysical Journal.

2.1 Introduction

As discussed in Chapter 1, the ability to reconstruct point values of the solution

from a discrete set of cell-averages lies at the core of the finite volume method. More-

over, for systems supporting discontinuous solutions the only way to achieve greater

than first order accuracy while maintaining a stable scheme is to make this reconstruc-

tion procedure nonlinear with respect to the data[46]. Reconstruction in one spatial

dimension is mostly straightforward; the cell-averages can easily be fit with polynomi-
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als. The nonlinear limiting necessary to obtain stable schemes is now highly advanced

in the one-dimensional case, as evidenced by the plethora of schemes mentioned at the

close of Section 1.1.1.

Multidimensional reconstruction is significantly more challenging than its one di-

mensional counterpart. Fitting data scattered in multiple dimensions with polynomials

requires that the corresponding multivariate polynomial space be unisolvent with re-

spect to the layout of the known data [9, 81]. To ameliorate this one could seek to

fit lower degree polynomials in a least squares sense, weakening the dependence on

data layout but also making non-optimal use of all known information. Alternatively,

tensor-product representations could be used [5, 90], but these again utilize more data

than necessary to reach a given accuracy. Furthermore this approach strongly limits the

geometries that can be treated, and thus provides little benefit over simpler finite differ-

ence methods. As an aside, the tensor-product formulation does provide a great deal of

structure to the function approximation problem which can be leveraged to create very

efficient numerical methods despite the use of more information than strictly necessary;

this is particularly useful in the design of discontinuous Galerkin methods [43]. All of

these issues are strongly exacerbated in the context of nonlinear reconstruction.

In this chapter a rather different approach is taken. Instead of reconstructing func-

tions over multivariate polynomial spaces. the approximation problem will be posed

in reproducing kernel Hilbert spaces (RKHSs). This approach side steps many of the
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issues inherent to polynomial approximation, and furthermore allows a unified formu-

lation of the reconstruction process that is largely independent of the spatial dimension.

These methods have a long history in function approximation [89, 112, 37, 28], statis-

tics and machine learning [80], theory of partial differential equations [76], numerical

methods for partial differential equations [92, 29, 36] (particularly elliptic equations),

and undoubtedly many other fields.

This chapter begins by introducing the core concepts and properties of kernel-based

methods and RKHSs. This first section is necessarily more abstract than the subsequent

ones. The linear interpolation and reconstruction problems are posed in this framework

in symmetric and asymmetric forms in Sections 2.3 and 2.4 respectively. The sec-

tions beyond this build to a fully nonlinear reconstruction technique that generalizes

WENO methods to multidimensional non-polynomial techniques. This chapter will

only consider the reconstruction of scalar valued data, and the appropriate extensions

to multicomponent data will be made in subsequent chapters.

2.2 Reproducing kernel Hilbert spaces and optimal re-

covery

Let the domain Ω ⊂ Rd be open and not necessarily bounded, and let HK be a

Hilbert space, with inner product (·, ·)HK
, consisting of functions whose domain is Ω.
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Crucially, HK is properly a space of functions, and not of equivalence classes of func-

tions, precluding for instance Lebesgue spaces like L2(Ω). In such spaces, point evalu-

ation can be cast as a functional δxxx for all xxx ∈Ω such that δxxx f → f (xxx) for all f ∈HK . If

these point evaluation functionals are linear and continuous for all xxx ∈Ω, then δxxx ∈H ∗K

where H ∗K denotes the continuous dual of HK , and HK is called a reproducing kernel

Hilbert space (RKHS). Furthermore, by the Riesz representation theorem each evalua-

tion functional δxxx ∈H ∗K has an associated representative Kxxx ∈HK such that

δxxx f = (Kxxx, f )Hk
= f (xxx), ∀ f ∈HK, ∀xxx ∈Ω. (2.1)

A symmetric function K : Ω×Ω→ R is called a positive definite kernel if

∑
i, j

cic jK(xxxi,xxx j)≥ 0, (2.2)

for all distinct sets of points xxx1, . . . ,xxxn ∈ Ω and (nonzero) coefficients c1, . . . ,cn ∈ R.

The squared exponential kernel

K(xxx,yyy) = e−
||xxx−yyy||2

2ℓ2 , (2.3)

is one such example. Noting the presence of the non-strict inequality in eq. (2.2) one can

see that positive definite is a slight misnomer, and perhaps that positive semi-definite

kernel would be more apt nomenclature. The former is more prevalent in the broader

literature, mostly for historical reasons [76].

Interestingly, for RKHSs the HK representatives of point evaluation functionals al-

ways correspond to such a kernel function in that Kxxx(·) = K(xxx, ·). In fact, for any linear
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functional µ(xxx) ∈ H ∗K the function in HK representing it will be µ(xxx)K(xxx, ·), and for any

pair of linear functionals µ(xxx),λ(xxx) ∈H ∗K the induced H ∗K inner product can be evaluated

as (
µ(xxx),λ(xxx)

)
H ∗K

=
(

µ(xxx)K(xxx, ·),λ(xxx)K(xxx, ·)
)

HK
= µ(xxx)λ(yyy)K(xxx,yyy). (2.4)

The superscripts on each functional are present to indicate which variable the functional

is being applied with respect to, and temporary dummy variables may be inserted as

needed. There are two fundamental results from functional analysis regarding these

spaces: (i) every RKHS has a unique1 reproducing kernel function, though its precise

form may be unknown [76, 87], and (ii) every symmetric positive definite kernel func-

tion generates an associated RKHS. This second result is the content of the celebrated

Moore-Aronszajn theorem [76].

This machinery is rather abstract, but lays a solid foundation for function approxi-

mation in multiple dimensions. Before formulating the interpolation and reconstruction

problems concretely, it is worth deliberating on a result from multivariate interpolation

as a whole. An implication of the Mairhuber-Curtis theorem [29] is that interpolation

over a scattered set of points in Rd with respect to an n-dimensional linear space of

functions is only generically possible if either d or n is equal to 1 (or trivially both

d = n = 1). This is the theoretic underpinning of the earlier discussion on the difficul-

ties inherent to interpolation by multivariate polynomials. The essential failure in the

1This uniqueness holds up to choice of norm. Multiple RKHSs may contain the same set of functions,
but have different norms and hence be different spaces with different associated kernel functions.
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multivariate polynomial case is that in dimensions d > 1 one can always find sets of

distinct points xxx1, . . . ,xxxn ∈ Ω which are roots of some polynomial in the space. Hence

interpolation is not uniquely defined as arbitrary multiples of this polynomial could

be added to any interpolant. As will be seen in the next two sections, kernel-based

interpolation/reconstruction avoids this issue in a rather unique fashion.

2.3 Symmetric kernel approximation

The selection of a kernel function K, such as the squared exponential kernel in

eq. (2.3), implicitly selects a RKHS HK where function approximation can be done

[76, 87]. The interpolation and reconstruction problems can be naturally cast as op-

timization problems in this RKHS. The interpolation problem is simpler to formulate

and builds useful intuition for the slightly more complicated reconstruction problem,

hence it is considered first despite not being useful in and of itself for the finite volume

method presently being investigated. The process of building a function in HK to match

some given data is then generalized and discussed in the context of optimal recovery.

2.3.1 Symmetric kernel-based interpolation

Consider a finite set of distinct points, xxx1, . . . ,xxxn ∈ Ω, and collocated real valued

data g1, . . . ,gn ∈ R. A function f ∈Hk is an interpolant for this data if

δxxxh f = gh, ∀h = 1, . . . ,n, (2.5)
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holds. There are infinitely many such interpolants, but one privileged interpolant, f̃ ,

can be found by minimizing the HK−norm2

f̃ = argmin
δxxxh f=gh

h=1,n

|| f ||HK
. (2.6)

Recall that on HK the evaluation functionals δxxx are linear and continuous, and hence

also bounded. This means that the values a function can take are bounded as

∣∣∣ f̃ (xxx)∣∣∣= ∣∣∣δxxx f̃
∣∣∣≤CK

∣∣∣∣∣∣ f̃ ∣∣∣∣∣∣
HK

, (2.7)

where CK is a constant dependent on the kernel function and the set of points xxx1, . . . ,xxxn,

but independent of f̃ . Minimizing the norm of the interpolant thus constrains the behav-

ior of the interpolant between data locations. This is qualitatively similar to seeking the

minimum degree interpolant in univariate polynomial fitting; one could find infinitely

many polynomial interpolants for a given problem, but the most natural choice is the

unique interpolant of minimal degree.

Finding f̃ requires solving an optimization problem posed over an infinite dimen-

sional space, which at first glance may seem like a challenging problem. Fortunately

this optimization problem is easy to solve. The representer theorem [76] asserts that

f̃ lies in the subspace H = span{K(·,xxxl)|l = 1, . . . ,n)} ⊂ HK , hence we seek an inter-

polant of the form

f̃ (xxx) =
n

∑
l=1

alK(xxx,xxxl). (2.8)

2This norm is associated to the HK inner product in the usual fashion with || f ||2HK
:= ( f , f )HK

.
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Enforcing the interpolation conditions, δxxxh f̃ = gh, and gathering the coefficients and

known data into the vectors aaa and ggg respectively, yields the linear system of equations

KKKaaa = ggg, (2.9)

where the entries of the matrix are Khl = K(xxxh,xxxl). By eq. (2.2) we can immediately

see that KKK is symmetric positive definite, and hence invertible, for any strictly positive

definite kernel function K(xxx,yyy). This means that the interpolation problem is always

well-posed, and we can now appreciate how kernel-based methods avoid the implica-

tions of the Mairhuber-Curtis theorem. Crucially, the basis functions used in writing the

interpolant, K(·,xxxl), are intrinsically tied to the points where the data lives, and hence

there is not a single fixed finite dimensional space of functions used for all interpola-

tion problems. This can be contrasted with the situation for multivariate polynomial

interpolation which is only well-posed for particular sets of points. In the kernel-based

approach the space of functions where interpolants are sought is always adapted to the

set of points being used.

2.3.2 Optimal recovery

The minimum norm interpolant discussed above, and its particular form given in

eq. (2.8) via the representer theorem, is a specific construction from the broader topic

of optimal recovery [55, 89, 98, 29]. The more general optimal recovery framework will

provide a more natural setting for the reconstruction problem. Consider a set of linearly
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independent functionals
{

λ
(xxx)
l

}n

l=1
, where as above the superscript (xxx) is present to

indicate which variable the functional is being applied to. Let f ∈ HK be a function

for which the values λ
(xxx)
l f are known. A quasi-interpolant S f ∈ HK for f can then be

written as

S f (xxx) =
n

∑
l=1

vl(xxx)λ
(xxx)
l f (xxx), (2.10)

where the basis functions vl ∈HK are linearly independent, but otherwise arbitrary. The

process of constructing this quasi-interpolant is called linear recovery, meaning that the

recovery of S f from f respects the linear structure3 of HK . In particular, if these basis

functions are cardinal with respect to the data functionals

λ
(xxx)
h vl(xxx) = δhl =


1, h = l

0, h ̸= l

, (2.11)

then eq. (2.10) will be a proper interpolant. Since S f ∈ HK the difference
(

f −S f
)
∈

HK , and the pointwise error at any xxx ∈Ω can be written as

f (xxx)−S f (xxx) = δxxx f −
n

∑
l=1

vl(xxx)λ
(xxx)
l f (2.12)

=

(
δxxx−

n

∑
l=1

vl(xxx)λ
(xxx)
l

)
f (2.13)

= εxxx f (2.14)

where the parenthetical term in the second line has been identified with the error func-

tional εxxx. Evaluating εxxx f is generally impossible as that would require perfect knowl-
3E.g. for f ,g ∈HK and a,b ∈ R one finds that S(a f+bg) = aS f +bSg.
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edge of f , hence nullifying the need for a (quasi-)interpolant.

However, just as the minimum norm interpolant was argued for above, one can

instead seek the norm of this functional and use that to bound the possible error accrued

by the linear recovery process that builds the (quasi-)interpolant in eq. (2.10). The norm

of the error functional is dependent on the evaluation point xxx and the set of functionals{
λ
(xxx)
l

}n

l=1
, but independent of the function f [87]. This information is embodied by

the power function defined as P(xxx) = ||εxxx||HK
, though note that generally P ̸∈HK . This

norm can be evaluated directly as

P2(xxx) = (εxxx,εxxx)H ∗K
(2.15)

= (δxxx,δxxx)H ∗K
−2

(
δxxx,

n

∑
l=1

vl(xxx)λ
(xxx)
l

)
H ∗K

+

(
n

∑
h=1

vh(xxx)λ
(xxx)
h ,

n

∑
l=1

vl(xxx)λ
(xxx)
l

)
H ∗K

= K(xxx,xxx)−2
n

∑
l=1

vl(xxx)λ
(yyy)
l K(xxx,yyy)+

n

∑
h=1

n

∑
l=1

vh(xxx)vl(xxx)λ
(yyy)
h λ

(zzz)
l K(yyy,zzz), (2.16)

where in passing from the second to the third line the dual space inner products have

been evaluated via eq. (2.4). Finally one obtains the error bound

∣∣ f (xxx)−S f (xxx)
∣∣= |εxxx f | ≤ P(xxx) || f ||HK

. (2.17)

This discussion of error functionals and the associated power function holds for

any linear recovery process, including ones that are not kernel-based [88]. A natural

question is whether a privileged set of basis functions {vl}n
l=1 can be found that mini-

mizes the power function, and hence minimizes the pointwise error of S f , for a given

set of data functionals
{

λ
(xxx)
l

}n

l=1
. Fortunately, the quadratic form P2(xxx) in eq. (2.16)
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can be minimized with respect to the basis functions [89, 88], and yields two key facts.

First the recovery process must be interpolatory, so eq. (2.11) must hold. Second, all

of the basis functions can be written as linear combinations of functions of the form

λ
(yyy)
l K(xxx,yyy). This second fact implies that S f (xxx), via equation eq. (2.10), is also a linear

combination of such functions and hence one may take

S f (xxx) =
n

∑
l=1

alλ
(yyy)
l K(xxx,yyy), (2.18)

as the starting form for the recovered function. Letting gh = λ
(xxx)
h f (xxx) denote the given

data, and enforcing that λ
(xxx)
h S f (xxx) = gh again yields a linear system of equations for the

coefficients aaa

CCCaaa = yyy, (2.19)

where now the entries of the matrix are Chl = λ
(xxx)
h λ

(yyy)
l K(xxx,yyy). Note that this reduces to

eq. (2.9) when the data functionals
{

λ
(xxx)
l

}n

l=1
are all point evaluations.

Interpolatory processes, those with λ
(xxx)
h vl(xxx) = δhl , allow for several useful simpli-

fications. The double sum in eq. (2.16) can be absorbed into the former single sum

yielding

P2(xxx) = K(xxx,xxx)−
n

∑
l=1

vl(xxx)λ
(yyy)
l K(xxx,yyy). (2.20)

Furthermore, by letting EEE be a vector with entries El = λ
(yyy)
l K(xxx,yyy) the power function

can be written more compactly as

P2(xxx) = K(xxx,xxx)−EEETCCC−1EEE. (2.21)
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This is obtained from eq. (2.20) by expanding the cardinal functions vl(xxx) in the stan-

dard basis of functions λ
(yyy)
l K(xxx,yyy) and recognizing that the expansion coefficients lie

in the associated columns of CCC−1. Finally, since all given data are matched exactly

the interpolant of the residual satisfies S( f−S f ) = 0, and the bound in eq. (2.17) can be

iterated to obtain ∣∣ f (xxx)−S f (xxx)
∣∣≤ P(xxx)

∣∣∣∣ f −S f
∣∣∣∣

HK
. (2.22)

Moreover, the residual ( f −S f ) is HK−orthogonal to the subspace

H = span
{

λ
(yyy)
l K(xxx,yyy)

}
, bearing striking similarity to Galerkin methods [43]. This

implies that
∣∣∣∣ f −S f

∣∣∣∣
HK

< || f ||HK
holds, and that the bound in eq. (2.22) is tighter

than that in eq. (2.17). In fact, the notion of power functions is applicable to more than

just the treatment of kernel-based methods as discussed here, and can be formulated for

many other recovery processes including standard polynomial methods [88].

This discussion is very general and applies to any set of linearly independent func-

tionals describing the known data for some function f ∈ HK . More practically these

functionals will take one of a few forms, and the recovery process will be referred

to by special names to reflect this. If all of the data functionals are point evaluations

then this process is simply called interpolation as discussed in Section 2.3.1. If these

functionals additionally consist of point evaluations of derivatives this process is called

Hermite-Birkhoff interpolation. In the case relevant to finite volume methods the data
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functionals correspond to cell-averaging

λ
(xxx)
h ·=

1
||Ωh||

∫
Ωh

·dxxx, (2.23)

and the process is called reconstruction. This is the only case to be considered in the

remainder of this dissertation, and hereafter eq. (2.23) is taken as the definition for each

λ
(xxx)
h over the set of cells {Ωh}M

h=1.

2.3.3 Inclusion of polynomials

The use of kernel-based methods for multidimensional interpolation and reconstruc-

tion was motivated primarily by the deficiencies of multivariate polynomials. However,

the existence of these deficiencies does not imply that multivariate polynomials have no

utility in multidimensional interpolation and reconstruction. Consider adding a poly-

nomial tail to the sought reconstruction function in eq. (2.18) yielding the form

S f (xxx) =
n

∑
l=1

alλ
(yyy)
l K(xxx,yyy)+ ∑

|ααα(v)|≤p
bvxxxααα(v). (2.24)

Here ααα(v) ∈ Nd
0 is a multiindex, where |ααα| = ∑

i
αi, and exponentiation is applied com-

ponentwise such that xxxααα = ∏
i

xαi
i . In fact there are kernels in which this tail is required

for the interpolation and reconstruction processes to be well posed, which are the so-

called conditionally positive definite kernels [87], though these will not be considered

any further here.

Enforcing that eq. (2.24) match the known data now results in an under-determined
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system of equations for the vectors of coefficients aaa and bbb given by

CCCaaa+PPPbbb = ggg (2.25)

Chl = λ
(xxx)
h λ

(yyy)
l K(xxx,yyy) (2.26)

Phv = λ
(xxx)
h xxxααα(v). (2.27)

By including this polynomial tail the reconstruction process can be made exact for all

polynomials p(xxx) ∈ Pd
p, that is, for all d−variate polynomials of total degree less than

or equal to p. To force the reconstruction process to be exact for these polynomials the

coefficients aaa associated with the kernel part of eq. (2.24) must be set to zero whenever

the given data ggg can be described by the polynomial part. More specifically, aaa must

be zero whenever ggg lies in the columnspace of PPP, hence the condition PPPT aaa = 000 can be

added yielding the following block linear system for the vectors of coefficients aaa and bbb CCC PPP

PPPT 000


aaa

bbb

=

ggg

000

 . (2.28)

For the relatively small systems of interest in the subsequent sections it will be

easiest numerically to treat eq. (2.28), or its asymmetric version in eq. (2.32), as one

large system ignoring the block structure. On the other hand, interpreting the behavior

of this reconstruction scheme is well served by examining this block structure more

closely.

Consider solving eq. (2.28) block-wise where the Schur complement first gives the
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polynomial coefficients, bbb, as the solution of

(
PPPTCCC−1PPP

)
bbb = PPPTCCC−1ggg, (2.29)

and subsequently the kernel coefficients, aaa, as the solution of

CCCaaa = ggg−PPPbbb. (2.30)

Ignoring the kernel-based nature of the reconstruction scheme for a moment, consider

the case where CCC = III. Under this restriction eq. (2.29) simply reduces to the normal

equations for standard least-squares fitting. Slightly more generally one could consider

replacing CCC by some diagonal matrix with positive entries, in which case eq. (2.29)

would reduce to weighted least-squares.

This yields a useful interpretation of this reconstruction process. First, a general-

ized least-squares problem is solved with respect to the (generally full) weight matrix

CCC. Second, regular kernel-based reconstruction is applied to the residual (ggg−PPPbbb) in

eq. (2.30). Together these components yield a reconstructed function that matches the

supplied data exactly.

2.4 Asymmetric kernel approximation

The symmetric reconstruction procedure described in the preceding sections has an

elegant and well understood theory. Unfortunately this approach is somewhat unwieldy

due to the application of the cell-averaging functionals λ
(xxx)
l to the kernel function within
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the approximant in eq. (2.24). This process can be simplified by seeking an approxi-

mant in the form

S f (xxx) =
n

∑
l=1

alK(xxx,xxxl)+ ∑
|ααα(v)|≤p

bvxxxααα(v). (2.31)

Enforcing that this match the given, cell-averaged, data now yields the block linear

system  QQQ PPP

PPPT 000


aaa

bbb

=

ggg

000

 , (2.32)

where the matrix QQQ has entries Qhl = λ
(xxx)
h K(xxx,xxxl) and may no longer be symmetric

since generally λ
(xxx)
h K(xxx,xxxl) ̸= λ

(xxx)
l K(xxx,xxxh). Note that polynomial exactness is enforced

in precisely the same way as before. This simplification is beneficial in that integrating

the kernel function can be challenging, and may require the use of numerical quadra-

ture. In particular, the entries Chl = λ
(xxx)
h λ

(yyy)
l K(xxx,yyy) involve integrals in Ω×Ω⊂R(d+d).

These can be analytically computed for the squared exponential kernel in eq. (2.3) and

in the d = 1 case are already quite complicated [82]. This kernel has the remarkable

property of being separable, and for simple cell shapes (rectangles in d = 2 and cuboids

in d = 3) the higher dimensional integrals can be written as products of integrals in

R(1+1). On the other hand, many other kernels of interest are not separable, and worse

yet may not be integrable in closed form. In these cases one would need to employ

quadrature rules in R(d+d) which is quite cumbersome.

This simplification can be further appreciated by considering the evaluation of the
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reconstructed function and its derivatives. Evaluation of eq. (2.31) at the point xxx∗, given

that the coefficient vectors have already been obtained from eq. (2.32), can be written

as

S f (xxx∗) = TTT T aaa+SSST bbb (2.33)

Tl = K(xxx∗,xxxl) (2.34)

Sv = xxx
ααα(v)
∗ , (2.35)

where TTT and SSS will be called sample vectors4, which notably do not include the cell-

averaging functionals. Moreover, the entries of TTT and SSS could be replaced with deriva-

tives of the kernel function and monomials to obtain derivatives of the reconstructed

function.

As a final refinement it is beneficial to observe that reconstructing a point value

from given data consists of computing

S f (xxx∗) =

TTT

SSS


T  QQQ PPP

PPPT 000


−1ggg

000

 , (2.36)

and noting that most of this process is completely independent of the data. Reorganizing

this slightly to first solve QQQT PPP

PPPT 000


 rrr

www

=

TTT

SSS

 , (2.37)

4This terminology is borrowed from Gaussian processes, though it is a small misnomer due to the
additional polynomial terms.
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then allows point evaluation to proceed as

S f (xxx∗) = rrrT yyy. (2.38)

Hence, the reconstruction vector rrr can be computed once ahead of time, and subse-

quently any data can be quickly reconstructed to the point xxx∗ through a simple dot

product. This recasting of the process is crucial for time-dependent problems. Note

also that www does not participate in evaluating the reconstructed function, and that the

cost of applying eq. (2.38) is independent of the presence of the polynomial terms in

eq. (2.31). The contents of www are Lagrange multipliers that serve to enforce the polyno-

mial exactness constraints, which have now been encoded into rrr.

2.5 Nonlinear reconstruction for functions with poor reg-

ularity

All of the preceding sections concern linear recovery processes, irrespective of

whether interpolation, symmetric reconstruction, or asymmetric reconstruction is be-

ing performed. In all cases the generated function matching the given data depends

linearly on that data, and by extension all evaluations of that function depend linearly

on the given data. However, as mentioned in Section 1.1 Godunov’s theorem [44] as-

serts that linear processes yielding greater than first order accuracy can not be used in

the treatment of generic hyperbolic conservation laws. These equations support discon-
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tinuous solutions and the essential failure of these linear recovery processes is the onset

of Gibbs type oscillations that feedback nonlinearly, hence ruining stability.

To achieve greater than first order accuracy one needs an inherently nonlinear means

of reconstructing functions from given data. This section concerns the extension of

the asymmetric reconstruction scheme to a weighted non-oscillatory (WENO) scheme

that is appropriate for handling data arising from functions with poor regularity. The

preceding sections have all been generic to handle mostly arbitrary layouts of cells

and arbitrary evaluation points. From now the discussion will be more concrete, and

concern only cells coming from uniform Cartesian grids. At the same time, most of

what is presented can still be extended to unstructured grids with minimal changes to

the underlying mathematical formulation5.

2.5.1 Stencils and substencils

The first step in making the reconstruction procedures concrete is to select sets of

cells whose solution averages will be used as the given data. In the usual parlance

these sets will be called stencils. WENO type methods rely also on subsets of data, and

these stencils must also be broken into several substencils. This section is dedicated

to stencil layout on Cartesian grids, and the designed stencils should thus exhibit the

same symmetries as this grid to avoid having directional preferences. Similarly, the

5Though, the implementation will be much more complicated, hence the ignorance of unstructured
grids within this work.
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Figure 2.1: The full radius-2 stencil S0 is shown on the left with its five substencils,
Sq,q = 1, . . . ,5, on the right. The cell with the diamond in each (sub) stencil indicates
the central cell where reconstruction is performed. The full stencil S0 has 13 cells,
while each of the substencils has five.

substencils should be arranged in a fashion that also respects this underlying symmetry.

The design of these (sub)stencils is relatively simple due to the geometric flexibility

of kernel-based reconstruction methods. This work utilizes stencils that are roughly

circular in two space dimensions and roughly spherical in three space dimensions. The

radius of a stencil is denoted by the integer R, which in this work takes the values R = 2

and R = 3.

The stencil descriptions will make use of local grid-based indices where (0,0)

or (0,0,0) will denote the central cell where reconstruction is being performed, and

(i, j) ∈ Z2 or (i, j,k) ∈ Z3 will label cells relative to the center. The application of for-

mulas from previous sections will naturally require the cells in each (sub)stencil to be

enumerated such that they may be referred to by a single index. In two dimensions the
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Figure 2.2: The full radius-3 stencil S0 is shown on the left with its five substencils,
Sq,q = 1, . . . ,5, on the right. The cell with the diamond in each (sub)stencil indicates
the central cell where reconstruction is being performed. The full stencil S0 has 29 cells,
the central substencil S1 has 13 cells, and each of the remaining biased substencils,
S2, . . . ,S5, has 10.

full stencil consists of the cells S0 =
{
(i, j) : (i2 + j2)≤ R2}, and in three dimensions

the full stencil consists of the cells S0 =
{
(i, j,k) : (i2 + j2 + k2)≤ R2}. The substen-

cils, Sq labeled by q, consist of one central substencil of smaller radius and 2d biased

conical substencils aligned with the positive and negative axis directions for each di-

mension.
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In two dimensions there are 5 substencils defined as

S1 = {(i, j) ∈ S0 : (i2 + j2)≤ (R−1)2},

S2 = {(i, j) ∈ S0 : | j| ≤ i},

S3 = {(i, j) ∈ S0 : | j| ≤ −i},

S4 = {(i, j) ∈ S0 : |i| ≤ j},

S5 = {(i, j) ∈ S0 : |i| ≤ − j}.

For radius R = 2 the full stencil has 13 cells and all of the substencils have 5 cells. For

radius R = 3 the full stencil has 29 cells, the central substencil has 13 cells, and the

biased substencils each have 10 cells. The two dimensional radius R = 2 and R = 3

stencils and substencils can be seen in Figures 2.1 and 2.2 respectively. Similarly, in

three dimensions there are 7 substencils defined as

S1 = {(i, j,k) ∈ S0 : (i2 + j2 + k2)≤ (R−1)2},

S2 = {(i, j,k) ∈ S0 : | j| ≤ i, |k| ≤ i},

S3 = {(i, j,k) ∈ S0 : | j| ≤ −i, |k| ≤ −i},

S4 = {(i, j,k) ∈ S0 : |i| ≤ j, |k| ≤ j},

S5 = {(i, j,k) ∈ S0 : |i| ≤ − j, |k| ≤ − j},

S6 = {(i, j,k) ∈ S0 : |i| ≤ k, | j| ≤ k},

S7 = {(i, j,k) ∈ S0 : |i| ≤ −k, | j| ≤ −k}.
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For radius R = 2 the full stencil has 33 cells, the central substencil has 7 cells, and the

biased substencils each have 11 cells. For radius R = 3 the full stencil has 123 cells, the

central substencil has 33 cells, and the biased substencils each have 32 cells.

Due to the use of a Cartesian grid these stencils can be applied to any cell in the

domain, as evidenced by the use of local grid indices. On an unstructured grid the

stencil selection process would need to be done on a cell-by-cell basis, and the layout of

biased stencils may be particularly difficult. The geometric flexibility of these kernel-

based methods will again show their utility, and this stencil selection procedure will

inevitably be simpler than the corresponding polynomial cases.

The final item to specify regarding the (sub)stencils is the total degree of polyno-

mials to be used in the tail of eq. (2.31). Importantly, these maximal degrees can be

specified after setting the shapes of the stencils to avoid having any predisposed re-

quirements on layout from their presence. This work follows the approach advocated

for in [35] and the degree for each substencil is set as high as possible while maintain-

ing unisolvence. For radius R = 2 stencils this amounts to setting the maximal degrees

as p = 3 for the full stencil and p = 1 for the substencils. For radius R = 3 stencils the

maximal degrees are set as p = 5 for the full stencil, p = 3 for the central substencil,

and p = 2 for the biased substencils.
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2.5.2 Adaptive order WENO

With the stencil and substencil layouts fixed from the previous section, the kernel-

based weighted essentially non-oscillatory (WENO) method can finally be described.

The overall goal of WENO schemes is to perform several reconstructions for each cell

over a set of substencils. A weighted combination of these reconstructions is then eval-

uated to generate the Riemann states on the interfaces between cells, and possibly at

any interior points for the evaluation of source terms. For smooth data these weights

should take some optimal values that serve to maximize the accuracy. Alternatively, for

rough data these weights should be chosen in a way that effectively removes the contri-

butions of the substencils containing this data, ultimately yielding a reconstruction that

is (essentially) non-oscillatory.

Traditional WENO schemes in one space dimension, e.g. those in [59, 7, 13, 54],

perform reconstruction only over the substencils, and through cleverly chosen optimal

weights recover the accuracy of the full stencils reconstruction implicitly. The existence

of such optimal weights is not guaranteed. Alternatively, they may exist but with some

weights being negative, which is a source of numerical instability requiring elaborate

splitting schemes for use in practical applications [93].

Consider again the goal of reconstructing a point value of the solution at xxx∗. There

are now multiple reconstruction vectors that arise from solving the system eq. (2.37)

over each substencil. Let rrr(q) denote the reconstruction vector over the qth substencil,
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and similarly let ggg(q) denote the restriction of the given data to that substencil. The

optimal weights γk ∈ R must then satisfy

rrr(0)ggg(0) =
Ns

∑
q=1

γqrrr(q)ggg(q), (2.39)

for arbitrary given data ggg. If r̃rr(q) denotes padded versions of the substencil reconstruc-

tion vectors to match the full stencil, with zeros added for all cells not in a particular

substencil, then the existence of such optimal weights is equivalent to the statement

rrr(0) ∈ span
{

r̃rr(q)
}

for q = 1, . . . ,Ns. These requirements generally do not hold for

kernel-based reconstruction methods. Traditional one-dimensional WENO schemes

have been extended to kernel-based reconstruction schemes by instead finding the op-

timal weights approximately in the least-squares sense [82]. This works in part be-

cause the approximating functions constructed in the kernel-based methods tend to-

wards polynomials in the limit of large length scales presuming that an appropriate

kernel is used [25].

In multiple dimensions the situation worsens. Not only will exact optimal weights

satisfying eq. (2.39) generally fail to exist, but also approximate weights found through

a least-squares procedure similar to that in [82] will not yield satisfactory results and the

accuracy of the full stencil will not be realized by the combined substencils. Addition-

ally, the optimal weights depend on the evaluation point xxx∗, hence even if such optimal

weights could exist their use would complicate the implementation substantially.

Clearly traditional WENO approaches are inappropriate for use in the sought mul-
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tidimensional reconstruction scheme. Fortunately, a fix is readily available. Instead of

attempting to reproduce the action of the full stencil reconstruction implicitly through

the substencil reconstructions, one can simply include the full stencil reconstruction

explicitly. One immediate benefit is that a single function can be built that provides a

valid reconstruction throughout a cell, which can then be evaluated at all points where

Riemann states or interior points are needed. This sidesteps the issue of having differ-

ent sets of optimal weights for different evaluation points, or indeed the non-existence

of such weights. This work utilizes the adaptive order WENO (WENO-AO) formula-

tion from [4], though it also bears similarity to the related central WENO (CWENO)

methods [20, 19].

Ultimately a point value at xxx∗ is reconstructed as

f̃ (xxx∗) =
ω0

γ0
rrrT
(0)ggg(0)+

NS

∑
q=1

(
ωq−ω0

γq

γ0

)
rrrT
(q)ggg(q), (2.40)

where ωq are the nonlinear weights and γq are the linear weights6. The linear weights

are fixed constants that can be chosen solely for the sake of stability, with the only

constraints being that they are positive and sum to one. Adapting the guidance from [4]

6In the traditional WENO literature the terms optimal weights and linear weights are often used
interchangeably. Here the term linear weights is preferred since optimal weights do not exist, though the
notation is intentionally reused.
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to the multidimensional setting, the linear weights are set as

γ0 = γhi (2.41)

γ1 = (1− γhi)γlo (2.42)

γq =
1

2d
(1− γhi)(1− γlo) , q > 1, (2.43)

where γhi = γlo = 0.75 are tunable constants. This approach places more weight on

the full and central (sub)stencils, then divides the remaining weights equally among all

of the biased substencils. The nonlinear weights serve to remove (sub)stencils from

contributing when they contain rough data, and their construction is the topic of the

next section.

2.5.3 Smoothness indicators and nonlinear weights

The nonlinear weights, ωq, introduced in the previous section lie at the core of

any WENO method, and are responsible for many of their desirable properties. These

nonlinear weights need to constructed to have two limiting behaviors. First, for smooth

data each nonlinear weight should approach the corresponding linear weight, ωq→ γq.

If all substencils have smooth data and all of the nonlinear weights approach their linear

counterparts, then the factor ω0/γ0 in eq. (2.40) will tend to one, and the parenthetical

term in each summand will drop to zero. In this limit only the full stencil reconstruction

remains and full accuracy is achieved. Second, for rough data the substencils containing

it should have weights that drop to zero. Naturally, if any substencil contains rough data
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then the full stencil will also contain that rough data and ω0 should also fall towards

zero. Returning again to eq. (2.40), in this case the factors ω0
γ0

and ω0
γq
γ0

will both

approach zero, and only those substencils with non-negligible weights will survive.

In order to build up this behavior for the nonlinear weights there first needs to be

some way to quantify the smoothness or roughness of the data on a given substencil.

These quantities, called smoothness indicators, attempt to capture how oscillatory the

reconstructed function on a particular substencil is. One particular method for deter-

mining this roughness is to use a (scaled) Sobolev semi-norm, such as

| f̃q|2Hp
= ∑

0<|ααα|≤p
∆

2|ααα|−d
∫

Ωh

(
∂|ααα| f̃q

∂xxxααα

)2

dxxx, (2.44)

where Ωh is the cell where reconstruction is being performed, f̃q(xxx) is the function

reconstructed with respect to Sq, and ααα ∈ Nd is a multiindex. The integral captures

the cell-averages of the squares of all partial derivatives up to some maximal order p.

Experimentally, p has been set equal to the stencil radius as it seems to give the best

results, though a more nuanced approach would be considering in the future.

There are two scalings present here, one is the term ∆−d = ||Ωh||−1 which is present

for cell-averaging, and second is the term ∆2|ααα| which makes the smoothness indicators

scale-invariant. This second scaling means that the relative roughness of a set of data is

independent of the cell sizes present, and operates in essentially the same fashion as the

undivided differences present in standard polynomial WENO schemes (see e.g. [96]).

These semi-norms can not be evaluated in closed form, and instead need to be ap-
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proximated. Fortunately their exact values are unnecessary for their intended purpose

here, which is simply to quantify the relative roughness of some given data. To simplify

this approximation it is useful to first make the change of variables x̂xx = (xxx− xxxh)∆ and

transform Ωh to Ω̂ =
[
−1

2 ,
1
2

]d
to absorb the cell-averaging factors

| f̃q|2Hp
= ∑

0<|ααα|≤p
∆

2|ααα|
∫
Ω̂

(
∂|ααα| f̃q

∂x̂xxααα

)2

dx̂xx. (2.45)

The ultimate smoothness indicators βq associated with each substencil can then be

formed by approximating these integrals through a simple midpoint quadrature rule

βq = ∑
0<|ααα|≤p

∆
2|ααα|

(
∂|ααα| f̃q

∂x̂xxααα

∣∣∣∣∣
000

)2

, (2.46)

noting that the cell center been shifted to the origin by the given change of variables.

This in turn requires a way to evaluate arbitrary derivatives of the reconstructed

functions. This can easily be achieved by revisiting eq. (2.34) and eq. (2.35) then

replacing the point evaluation sample vector TTT by evaluations of the desired derivative

TTT l =
∂|ααα|K(x̂xx, x̂xxl)

∂x̂xxααα

∣∣∣∣∣
000

, (2.47)

with a similar replacement for the SSS vector, and subsequently finding a derivative re-

construction vector via eq. (2.37). Notably, this process needs to be repeated for each

partial derivative indexed by ααα.

Finally, the smoothness indicators can be used to produce the nonlinear weights in

a variety of ways. Indeed both the definitions of the smoothness indicators [55, 84]
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and nonlinear weights [54, 8, 14] have given rise to vigorous research efforts over the

last several years. This work considers the simplest case of the WENO-JS weights [59]

with a minor modification

ω̃q =
γq

β2
q + ε

, ωq =
ω̃q

∑
q

ω̃q
, (2.48)

where ε in the denominator of the unnormalized weights ω̃q is present to prevent divi-

sion by zero in the case of vanishing smoothness indicators. The standard WENO-JS

weights take this denominator to be
(
βq + ε

)2. It has been found that it is more robust

to move the power onto βq directly, and take ε = 10−40 at a much smaller value than

the typical WENO-JS case.
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Chapter 3

A kernel-based finite volume method

for the compressible Euler equations

This chapter is based on the paper [73] submitted to the Astrophysical Journal.

3.1 Introduction

This chapter is concerned with the solution of the compressible Euler equations

UUU =


ρ

ρui

E

 , FFF j =


ρu j

ρuiu j + pδi j

u j(E +P)

 , (3.1)

where the n = 5 conserved quantities are the density ρ, linear momenta ρui, and total

energy E, respectively. This equation is closed by the adiabatic equation of state for the
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pressure, p = (γ−1)
(
E− 1

2ρukuk
)
, where γ is the ratio of specific heats, and Einstein

summation notation has been adopted. It should be noted that the use of the adiabatic

equation of state is not an essential requirement for the methods presented herein, but

is rather a useful restriction to allow focus to remain on the core numerical methods.

The preceding chapter deliberated on kernel-based reconstruction methods for scalar

valued data. These reconstruction techniques, both the linear and nonlinear versions,

form an important foundation for the development of the finite volume method de-

scribed in this chapter. However, as the equations of interest in this work are systems

of conservation laws, such as eq. (3.1), these scalar valued reconstruction schemes will

need to be adapted to treat multicomponent data.

This chapter will proceed by first performing this adaptation to the multicomponent

case by discussing choices of reconstruction variables in Section 3.2. WENO style

nonlinear reconstruction is notably more expensive than linear reconstruction, and Sec-

tion 3.3 will present a cheap local indicator that can flag whether a given cell can safely

fall back to a cheaper linear reconstruction or not. One motivation behind the develop-

ment of these new methods is the ability to simulate extreme phenomena. In these cases

special attention must be paid to the numerical preservation of positive density and

pressure, which is discussed in Section 3.4. A brief aside will be made in Section 3.5

to discuss the chosen time integrators. Finally, a suite of informative and challenging

benchmark problems will be solved and presented in Section 3.6.
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3.2 Selection of reconstruction variables

The most natural approach to the reconstruction of multicomponent data is to sim-

ply treat each component separately with a standard scalar valued method, such as those

presented in Chapter 2. Unfortunately, component-by-component reconstruction over

the conservative variables generally leads to poor results, and the use of WENO is in-

sufficient to suppress the onset of unacceptable oscillations [108]. The resolution of this

lies in the observation that arbitrary linear combinations of conserved quantities are also

conserved, and that the cell-averaging procedure respects these linear combinations.

While the standard conservative variables (e.g. density, linear momenta, and total

energy for the Euler equations) may give poor results, there may be some other equiva-

lent set of variables that can give useful results. These alternative variables will only be

locally defined, hence one could not simply transform the governing equations ahead

of time, though this is plenty sufficient as the reconstruction process is local anyway.

Let ⟨UUU⟩h denote the vector of cell-averaged conservative variables on cell Ωh ∈ S0.

The cell averages of a corresponding set of so-called reconstruction variables, ⟨WWW ⟩h,

can be obtained as

⟨WWW ⟩h = ΦΦΦ⟨UUU⟩h, ∀Ωh ∈ S0. (3.2)

where ΦΦΦ ∈ Rn×n is a constant invertible matrix. The WENO method described in

Section 2.5 can then be applied componentwise to these variables. If WWW s denotes the

vector of point values at some xxxs obtained from this process, then the corresponding
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conservative variables can be found as

UUU s = ΦΦΦ
−1WWW s. (3.3)

It is crucial that the transformation encoded by ΦΦΦ be linear and constant over the

whole stencil. This assures that the reconstruction variables produced by eq. (3.2) truly

are cell-averaged quantities, preserving the accuracy of the underlying reconstruction

scheme. Nonlinear transformations, such as the conversion from conservative variables

to primitive variables (e.g. (ρ,ρui,E)→ (ρ,ui, p) for the Euler equations), will irre-

versibly reduce the reconstruction to second-order accuracy at most because the cell-

averaging procedure is not respected. For example, consider the cell average velocity

and note that generally ∫
Ωh

uidxxx ̸=

∫
Ωh

ρuidxxx∫
Ωh

ρdxxx
. (3.4)

Replacing these integrals with midpoint quadrature rules recovers equality, but induces

the mentioned decay to second-order accuracy. Similar arguments hold for the recovery

of the pressure, or for other more general nonlinear transformations.

The following sections outline two useful sets of reconstruction variables. First the

classic choice of characteristic variables is presented and used to motivate why local lin-

ear transformations can yield superior results. While these variables are locally optimal

in some sense [108], nut also exhibit a few notable deficiencies that will be cataloged.

After this a new set of reconstruction variables, dubbed the linearized primitive vari-

ables, are presented that attempt to circumvent these deficiencies without sacrificing
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reconstruction quality.

3.2.1 Characteristic variables

As discussed in the introduction, the spectral properties of the flux Jacobians eq. (1.3)

associated to a system of conservation laws have deep implications on the nature and

behavior of the system. Moreover, the eigenvectors of these flux Jacobians yield sets of

variables that are ideal candidates for the reconstruction process. Recall again eq. (1.3)

where AAAηηη denotes the flux Jacobian in the direction ηηη evaluated with respect to the

reference state ŨUU

AAAηηη =
∂FFFηηη

∂UUU

∣∣∣∣
ŨUU
, (3.5)

and consider using the eigendecomposition of the flux Jacobian to set transformations

in eq. (3.2) as

AAAηηη = RRRΛΛΛLLL, ΦΦΦ = LLL, ΦΦΦ
−1 = RRR. (3.6)

The utility of this change of variables can be appreciated by first considering the special

case of a linear and constant-coefficient hyperbolic system in one space dimension. In

this case the governing equation is simply

∂UUU
∂t

+
∂

∂x
(AAAUUU) = 0 ⇒ ∂UUU

∂t
+AAA

∂UUU
∂x

= 0. (3.7)
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Inserting AAA = RRRΛΛΛLLL one finds

∂UUU
∂t

+RRRΛΛΛLLL
∂UUU
∂x

= 0, (3.8)

LLL
∂UUU
∂t

+ΛΛΛLLL
∂UUU
∂x

= 0, (3.9)

∂WWW
∂t

+ΛΛΛ
∂WWW
∂x

= 0, (3.10)

which indicates that this change of variables factors the system of conservation laws

into a set of decoupled transport equations. The restriction to the linear constant-

coefficient case is critical to this particular manipulation.

For nonlinear systems these variables act in a qualitatively similar fashion. While

the governing equations can not be exactly decoupled, this transformation still yields

a set of variables that are locally decoupled. This is beneficial for the reconstruction

process in that discontinuities are isolated to only the necessary fields, and it is in this

sense that these variables are the optimal choice for reconstruction.

Unfortunately, these reconstruction variables also come with a few troublesome

drawbacks. First, the eigendecomposition either needs to be known symbolically or a

numerical decomposition routine must be used. For simple systems, like the compress-

ible Euler equations closed with an adiabatic equation of state, this decomposition is

known analytically. Other equations, or even just the Euler equations with other equa-

tions of state1, require this decomposition to be re-derived which can be difficult or

even impossible. Using numerical routines for this eigendecomposition avoids the dif-
1This is because the pressure appears in the flux but the Jacobian is taken with respect to the conser-

vative variables, and hence the pressure as a function of the conservative variables must be known.
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ficulty of the symbolic derivation, but introduces a potentially expensive routine in the

deepest level of the method. Worse yet, routines for eigendecomposition are iterative

by nature, and running these in parallel on architectures that operate in lock-step (like

GPUs) could be challenging.

Another deficiency of characteristic variables is unique to the case of multidimen-

sional reconstruction. Crucially, as indicated in eq. (3.6), the flux Jacobian and hence its

decomposition is tied to a particular direction ηηη. This means that different sets of char-

acteristic variables are needed depending on what point is being reconstructed. That

is, Riemann states on x−faces, y−faces, and z−faces, will each be reconstructed using

their own sets of characteristic variables aligned with their respective face normals2. As

a result the smoothness indicators and nonlinear weights within the WENO procedure

have to be recomputed multiple times per cell. This is the single most expensive step

in the hydrodynamic solver, so doubling or tripling its cost is unacceptable. Further-

more, one of the driving motivations for pursuing multidimensional reconstruction is

the ability to build all Riemann states simultaneously.

3.2.2 Linearized primitive variables

The deficiencies of characteristic variables, particularly as relevant for multidimen-

sional reconstruction, motivates the investigation of other choices of reconstruction

2As a small aside, it is also unclear how to use characteristic variables when reconstructing internal
states as there is no preferred direction to consider.

48



variables. One of the defining features of characteristic variables is that discontinu-

ities are isolated to only the necessary fields. Primitive variables share this property

to some extent, which is best illustrated by considering an isolated contact disconti-

nuity. Here the density will be discontinuous while the normal velocity and pressure

remain continuous. Better yet, primitive variables are naturally direction-independent

and are thus significantly more economical for use in multidimensional reconstruction

schemes.

Of course, primitive variables can not be used directly for reconstruction without de-

caying to second-order accuracy as mentioned in Section 3.2 and illustrated in eq. (3.4).

To retain the benefits of primitive variables while also maintaining high-order accuracy

one could instead consider a linearization of the map from conservative variables. Let

UUU denote the vector of conservative variables as before, and let VVV similarly denote the

vector of primitive variables. For the Euler equations one finds that VVV (UUU) is

VVV (UUU) =



ρ

ρu1
ρ

ρu2
ρ

ρu3
ρ

(γ−1)
(

E− (ρu1)
2+(ρu2)

2+(ρu3)
2

2ρ

)


=



ρ

u1

u2

u3

p


. (3.11)

Fix ŨUU as a reference state in conservative variables, which is set to the cell-average state

in the cell where reconstruction is being performed just as before. The transformation
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in eq. (3.11) is linearized around ŨUU as

VVV (UUU)≈VVV (ŨUU)+
∂VVV
∂UUU

∣∣∣∣
ŨUU

(
UUU−ŨUU

)
, (3.12)

which can be suggestively rearranged to

VVV (UUU)≈ ∂VVV
∂UUU

∣∣∣∣
ŨUU

UUU +

(
VVV (ŨUU)− ∂VVV

∂UUU

∣∣∣∣
ŨUU

ŨUU
)
. (3.13)

Notably, the term in parentheses is constant and hence plays no role in the calculation

of the smoothness indicators in eq. (2.46).

This motivates the particular choice of transformation matrix

ΦΦΦ =
∂VVV
∂UUU

∣∣∣∣
ŨUU
=



1 0 0 0 0

−ũ1/ρ̃ 1/ρ̃ 0 0 0

−ũ2/ρ̃ 0 1/ρ̃ 0 0

−ũ3/ρ̃ 0 0 1/ρ̃ 0

(γ−1)||ũ||2/2 (1− γ)ũ1 (1− γ)ũ2 (1− γ)ũ3 (γ−1)


, (3.14)

where tildes again indicate values obtained from the reference state ŨUU . Note that the

velocities ũi = ρ̃ui/ρ̃ and ||ũuu||2 =
(

ũ1
2 + ũ2

2 + ũ3
2
)

are only second-order accurate

representations since they are naively calculated from the conservative variables in the

reference state. Just as in the previous section, the accuracy of these quantities has

no impact on the accuracy of the reconstruction. The inverse transformation is easily

obtained as the Jacobian of the inverse map UUU(VVV ) evaluated at the reference primitive
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state VVV (ŨUU), and takes the particular form

ΦΦΦ
−1 =

∂UUU
∂VVV

∣∣∣∣
VVV (ŨUU)

=



1 0 0 0 0

ũ1 ρ̃ 0 0 0

ũ2 0 ρ̃ 0 0

ũ3 0 0 ρ̃ 0

||ũ||2/2 ũ1 ũ2 ũ3 1/(γ−1)


. (3.15)

While the primary motivation for developing these alternative reconstruction vari-

ables was the need for directional independence in multidimensional reconstruction,

they have some additional useful properties that could make them an interesting choice

even for one dimensional reconstruction schemes.

They are particularly simple to formulate and extend naturally to other hyperbolic

systems. For instance, the ideal magnetohydrodynamics equations considered in the

following chapter have degenerate characteristic variables [85] due to the fact that the

governing equations are only weakly hyperbolic. These linearized primitive variables

have no dependence on the hyperbolicity of the governing equations, and hence require

no special attention or special cases for different reference states.

Returning to the compressible Euler equations, it should be noted that the equation

of state only influences the final row of the forward and inverse transformation ma-

trices. This means that swapping out other equations of state becomes a fairly simple

matter so long as the partial derivatives ∂P
∂UUU and ∂UUU

∂P can be computed. Furthermore, only

one of these partials are really needed (say ∂P
∂UUU ) and the inverse transformation easily
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backed out by substitution against the final row of ΦΦΦ. This extends the utility of these

variables even to cases where the equation of state is tabulated, and thus ∂P
∂UUU is only

known approximately.

3.3 Avoiding WENO via a KXRCF indicator

The high computational cost of evaluating the smoothness indicators (eq. (2.46))

and nonlinear weights (eq. (2.48)) for WENO was mentioned in the previous section

regarding reconstruction variables. The presented linearized primitive variables miti-

gate this cost by ensuring that smoothness indicators are only computed once for each

cell and component. These methods also have a problematically large memory foot-

print, particularly when using multidimensional reconstruction. Reconstruction vari-

ables are set on a per-cell basis since they utilize the local state as a reference when

creating the transformation matrices ΦΦΦ and ΦΦΦ
−1. This means that the reconstruction

procedure on each cell needs a full copy of the values on its local stencil to apply these

transformations to. This memory overhead becomes problematic on highly parallel co-

processors (such as graphics processing units) which can process huge numbers of cells

simultaneously, but are lacking in on-device storage3.

However, it is also true that many cells do not need to utilize WENO at all. Higher

accuracy and lower computational expense could simultaneously be obtained if a some

3These architectures often also have limited register space, so even clever use of stack allocated
workspace is unlikely to help.
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criteria to determine the necessity of WENO could be evaluated. Crucially, this criteria

should be cheap enough to evaluate that the overhead it adds is mitigated by the savings

that it affords. Schemes that adaptively mix high-order accurate linear reconstruction

with more stable nonlinear reconstruction are termed hybrid schemes, and have been

investigated both in the context of finite volume and finite difference methods [50, 116,

15] and discontinuous Galerkin (DG) methods [63, 39, 3] among others.

WENO type schemes fall into the broader category of a-priori methods, mean-

ing that limitation is performed before any forward integration in time is applied.

In contrast, a-posteriori methods, such as multidimensional optimal order detection

(MOOD), only apply limitation after attempting, and potentially failing, to integrate

forward in time. Broadly speaking, MOOD methods seek to use a high-order accu-

rate linear scheme everywhere in space irrespective of the local data. Elaborate accep-

tance/rejection criteria are then applied to each cell to determine if the resulting solution

is valid, and inevitably some cells will have invalid solutions. The offending cells are

rolled back to the previous time step, and the spatial discretization is locally reduced to

one of lower order. This may be repeated several times, ultimately cascading to a sta-

ble first-order accurate scheme as needed. See [18] and [24] for an introduction to the

MOOD method. More recently MOOD has been incorporated into a kernel-based ap-

proach in [9]. The essential deficiency of MOOD methods, or any a-posteriori method

for that matter, is that they can be challenging to implement for highly parallel archi-
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tectures. Hybrid WENO schemes essentially try to mimic this behavior in an a-priori

manner.

The KXRCF indicator, introduced in [63] and subsequently refined and recast in

[39], is designed for use in DG methods but also happens to be well suited for the

multidimensional reconstruction schemes presented herein. The total reconstruction

process proceeds in three steps. First, high-order linear reconstruction is performed

on all cells, which can be applied directly over the conservative variables. Second,

the KXRCF indicator is computed for each cell by considering its Riemann states as

compared to neighboring states. Finally, all cells where the indicator is too large are

flagged, and reconstruction is redone using the WENO method.

The KXRCF indicator itself is defined as follows. Let s be an index that labels all

quadrature points on all faces of a given cell. Let q(UUU) be some yet to be determined

indicator variable given as a function of the conservative variables, and let q(−)s and

q(+)
s denote its values inside and outside the cell respectively at the quadrature point

indexed by s. The essential action of the KXRCF indicator is to flag cells where jumps

in this indicator variable are too large. To this end, any cell satisfying

max
s

{∣∣∣q(+)
s −q(−)s

∣∣∣}
q
(

ŨUU
) > ∆

3/2, (3.16)

is set to use WENO. The denominator is evaluated using the cell-average state of the

cell in consideration (ŨUU = ⟨UUU⟩h), and serves to normalize the jumps in q present in the

numerator. The grid scale factor of ∆3/2 can be appreciated by considering two cases.
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First consider a rth-order accurate reconstruction scheme applied on two neighboring

cells having smooth data locally. Then each q(±)s on the shared face should be accurate

to O(∆r), and the normalized jumps on the left side of eq. (3.16) should also be of size

O(∆r). Alternatively, if one or both cells have stencils containing discontinuous data

then the values q(±)s will generally decay to only first order accuracy, and the normalized

jumps will scale like O(∆)−O(1).

There is little guiding theory on how to choose the indicator variable q(UUU). For the

compressible Euler equations it should be discontinuous across shocks at a minimum.

The form proposed in eq. (3.16) is simplest to apply if q is non-zero, and better yet if

q(UUU)> 0 for all admissible states UUU . This work considers the entropy

q(UUU) = S =
p
ργ
, (3.17)

which is also jumps across contact discontinuities. One reasonable alternative would be

to simply use the pressure, q = p, which would not flag contacts. It has been observed

both in MOOD methods [9] and in previous hybrid method studies [17] that order

reduction may be unnecessary near contacts. Another reasonable alternative would be

to use the density, q = ρ. This is trivial to evaluate and minimizes the overhead of

flagging cells, but has a tendency to mark cells for WENO too often.

The power of 3/2 on ∆ present in the cutoff of eq. (3.16) was chosen empirically

to provide meaningful computational savings while also avoiding mischaracterizing

cells. Ultimately it is better to incorrectly flags cells as needing WENO than to miss
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cells and obtain unreliable results. Compared to [63] and [39], eq. (3.16) provides a

more conservative indicator that tags cells as needing WENO likely more often than

necessary. Refining this indicator would be one interesting avenue for future work.

3.4 Positivity preservation

The previous section discussed the avoidance of WENO reconstruction when nearby

data is sufficiently smooth. In the opposite extreme, there may be data with strong

enough discontinuities that even WENO is incapable of providing sufficient limitation.

These cases are particularly salient in astrophysical applications where densities and

pressures may easily jump several orders of magnitude across a shock. It is crucial for

the well-posedness of eq. (3.1) (e.g. preservation of hyperbolicity), and similarly im-

portant for their numerical solution, that density and pressure remain positive. WENO

methods are only essentially non-oscillatory, and small oscillations near discontinuities

are to be expected. Unfortunately, oscillations that are small in comparison to a strong

discontinuity can still easily overshoot towards negative densities and pressures.

So-called positivity preserving schemes are those that generate solutions with pos-

itive density and pressure given any admissible initial state. Naively one could simply

enforce minimum values for these quantities. This simple approach of placing floors on

these quantities generally yields poor and scientifically dubious results. The primary

issue is that naively placing a floor on these quantities destroys conservation, as either
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mass or internal energy must be locally injected to bring the state back to valid limits

[2].

Alternatively, one can seek corrections to Riemann states such that the future cell

average remains admissible. Being that this correction happens prior to the calculation

of the fluxes the method will naturally remain conservative. However, the criteria for

selecting corrections to the Riemann states is phrased in terms of the future cell-average

state after a time integration step, hence coupling neighboring cells together. Further-

more, this could only be a feasible approach with some restrictions on how the resulting

flux is found from these corrected Riemann states.

In [56] and [115] a general framework for developing positivity preserving schemes

for the compressible Euler equations was presented. The action of this framework is

most obvious for DG schemes, though remains extensible to the finite volume case

through carefully chosen quadrature rules on the cells that are compatible with the

reconstruction scheme. These methods were further elaborated upon in [2] where limits

on the allowed ranges of density and pressure are selected adaptively from the local

data.

The limiter employed in this work mostly follows that of [2] with minor modifica-

tions. It is presumed that the cell average values all contain valid states and that only the

reconstructed Riemann states are in need of correction. The limiter seeks to constrain

the fluid density from above and below, and constrains the pressure only from below.
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Allowable bounds on these quantities are determined by first examining their ranges in

terms of the local cell-averages.

Let the cell where limitation is being applied be indexed by (0,0,0), and take (i, j,k)

to be locally defined grid indices4. The tightest bounds on these quantities are

ρ̃max = max
−1≤i, j,k≤1

{
⟨ρ⟩(i, j,k)

}
, (3.18)

ρ̃min = min
−1≤i, j,k≤1

{
⟨ρ⟩(i, j,k)

}
, (3.19)

p̃min = min
−1≤i, j,k≤1

{
⟨p⟩(i, j,k)

}
, (3.20)

where the overlines indicate that these are obtained from cell-averages. Naturally

⟨p⟩(i, j,k) is only a second-order accurate representation of the average pressure, but

accuracy is largely irrelevant here as only a workable bound on pressure is needed.

Forcing all of the Riemann states to obey these bounds would be far too restrictive.

Indeed, this would aggressively clip smooth extrema and limit the solver to only first-

order accuracy. These tight bounds are subsequently loosened to

ρmax = ρ̃max (1+κ2−κ2η) , (3.21)

ρmin = ρ̃min (1−κ2 +κ2η) , (3.22)

pmin = p̃min (1−κ2 +κ2η) . (3.23)

4The presentation here is shown for d = 3 space dimensions, but the action of the limiter is easily
restricted to d = 2 space dimensions.
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Here η is a flattener variable defined as

η = min
{

1,max
{

0,−κ1c̃min +(∇ · ⟨uuu⟩)∆

κ1c̃min

}}
, (3.24)

where c̃min is the minimum local speed of sound determined in the same fashion as the

bounds in eq. (3.18) - eq. (3.20), and (∇ · ⟨uuu⟩)∆ is the local velocity divergence com-

puted from the cell-average quantities. The scale factor of ∆ makes this an undivided

difference, and hence independent of the grid scale on the whole. Finally, κ1 and κ2 are

tunable parameters which are set to κ1 = κ2 = 0.3 just as in [2].

The flattener variable and the κ constants work together to set useful, data-dependent,

bounds on the density and pressure. When η→ 0 the bounds in eq. (3.21) - eq. (3.23)

are loosened according to κ2, with the minima scaled by (1−κ2) and the maximum

scaled by (1+κ2), and permit the widest range of values without limitation. Alter-

natively, as η→ 1 the bounds are tightened and tend towards the local minima and

maxima, hence disallowing any under/overshoots. The flattener eq. (3.24) serves to

sense locally compressive velocity fields to tighten the bounds in shocked regions, and

the constant κ1 residing within weights the relative strength of compression required to

activate the flattener.

The reconstructed point values must now be corrected to lie within these bounds

on density and pressure, and it is here that a minor modification is made to the overall

action of the limiter as described in [2]. To truly be positivity-preserving one needs to

not only correct the Riemann states, but also a set of interior values (on the cleverly
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chosen quadrature points mentioned above) even if source terms are not present in the

system being solved. This strengthens the limiter, and the necessity of these additional

corrections was proved in [56]. It is this strengthening of the limiter that assures all

future states are also valid under some assumptions on the numerical flux. Herein,

these additional corrections are elided in cases where source terms are not present as

a minor optimization, which is justified for two reasons. First, the proof of positivity

preservation is intimately tied to polynomial reconstruction and does not directly apply

to the present case, and second, the pathological cases requiring this extra limitation

do not seem to be particularly common in practice. The present implementation does

support this stronger form of limitation if desired.

3.4.1 Constraining density

Corrections to the Riemann states on a cell, if needed, are applied in two stages.

The density is corrected first, which will naturally change the kinetic energy and hence

the pressure. As in Section 3.3, let s index all of the Riemann states on all faces of the

cell in consideration (as well as internal states if present). The density of each state, ρs,

should obey ρmin ≤ ρs ≤ ρmax.

Corrections are applied by hybridizing the Riemann states UUU s with the cell-average

state ⟨UUU⟩0. The strongest required correction is given by

θρ = min
s

{
1,
⟨ρ⟩0−ρmin

⟨ρ⟩0−ρs
,
ρmax−⟨ρ⟩0
ρs−⟨ρ⟩0

}
, (3.25)
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and is applied via

UUU s← ⟨UUU⟩0 +θρ (UUU s−⟨UUU⟩0) , ∀s. (3.26)

Note that the correction is applied to all Riemann states to ensure conservation and

consistency. Additionally, if all states initially satisfy the required bounds θρ will be

one, and no correction will be applied.

3.4.2 Constraining pressure

The corrections applied in eq. (3.26) will change all of the Riemann states and hence

also change the pressure, p = (γ−1)
(

E− ||ρuuu||2
2ρ

)
, so the pressure bound is only tested

after this initial round of correction. Again, the states will be corrected by mixing in a

first order contribution

UUU s← ⟨UUU⟩0 +θp (UUU s−⟨UUU⟩0) , (3.27)

though now the strength of the correction, θp, is slightly harder to obtain.

For an individual Riemann state that violates the pressure minimum one could con-

sider the corrected state in eq. (3.27) and solve

p(⟨UUU⟩0 +θp;s (UUU s−⟨UUU⟩0)) = pmin, (3.28)

for θp;s as the sth correction strength. Expanding the above ultimately yields a quadratic

equation for θp;s which can be seen in [2]. The applied correction is then formed using

the smallest valid θp;s

θp = min
s

{
θp;s | 0≤ θp;s ≤ 1

}
. (3.29)
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This relies on one crucial fact: the set of all admissible states UUU is convex. The

corrections in eq. (3.27) are thus lines in state space connecting the valid reference

state UUU0 to the potentially invalid states UUU s parameterized by θp. Convexity yields that

there is precisely one value of θp where this line crosses the boundary of the admissible

set. Moreover, smaller values of θp always yield valid states, and applying the most

restrictive value as selected in eq. (3.29) throughout the cell will naturally yield all

valid Riemann states. These notions regarding convexity of the admissible set of states

are not specific to the compressible Euler equations, and recently there has been some

effort in formulating a broader theory of positivity preservation in geometric terms

[114].

3.5 An aside on time integrators

The present work is primarily focused on the spatial discretization of systems of hy-

perbolic conservation laws, and has to this moment left time continuous in accordance

with the method of lines. There are however a few critical factors to consider when

selecting a time integrator that are worth discussing in some detail.

Fortunately, hyperbolic problems typically are not stiff and explicit time integrators

are well suited to their solution. There may be widely varying time scales throughout

the full history of a problem, so the selected scheme should be able to easily adjust to

variable time step sizes. Great care has been put into the development of highly accurate
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spatial schemes and the considered time integrators should also exhibit reasonably high-

order accuracy. Finally, the stability properties of the time integrator are a crucial factor

in the ability of the scheme to evolve flows with strong shocks.

Multistage Runge-Kutta type integrators are a natural choice to satisfy all of these

constraints. For the sake of stability one may consider the strong stability preserving

Runge-Kutta (SSP-RK) methods [62, 30, 100]. Typically the time step size is deter-

mined through a Courant-Friedrichs-Lewy (CFL) type condition derived from an esti-

mate of the largest wavespeed in the domain, and is set solely for stability irrespective

of accuracy. By selecting a time integrator with reasonably high-order accuracy, say 3rd

or 4th order, this gives temporal errors that diminish with the spatial errors as the grid

is refined since the CFL condition will also force a temporal refinement.

On the other hand, CFL based time step selection provides little control over the

temporal error accrued at an individual spatial resolution. Outside of fluid dynam-

ics, general purpose time integrators rely on error estimates to select time step sizes,

and seek to keep difference between two solutions obtained by integrators of differ-

ent orders below some tolerance. The overhead cost of producing a second solution is

substantially lessened by using an embedded scheme, where the two separate integra-

tors share right hand side evaluations. The utility of error estimator based Runge-Kutta

schemes in application to computational fluid dynamics, and hyperbolic equations more

broadly, have recently been investigated [79].
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Before selecting time integrators for the present solver there is one final design cri-

teria to consider. Apart from the numerical considerations mentioned above there are

also implementation considerations to be mentioned. Principle among these is that the

solver is intended to be run on graphics processing units (GPUs) which have substan-

tially smaller amounts of on-board memory (10s of GB) than typical compute nodes

(100s of GB). Transfers from larger pool of host memory into the device memory is

much too slow to incorporate within the time integration process, so it is critical that all

necessary data fit into device memory. Low storage time integrators seek to minimize

the number of stored stages and right hand side evaluations by having a sparse, and

typically structured, Butcher tableau [61, 79].

The selected time integrators are low-storage Runge-Kutta schemes with embedded

error estimators, and potentially with strong stability preservation. The present work

considers four different integrators. First are the RK3(2)5F [3S∗+] and RK4(3)9F [3S∗+]

methods introduced in [79] which are 3rd and 4th order accurate overall and have em-

bedded schemes of one order less. These also have the first-same-as-last (FSAL) prop-

erty allowing the final right hand side evaluation in each step to be reused at the start

of the next step. In [79] these methods were found to strike a good balance between

accuracy and the amount of work performed within each step, and often required the

smallest total number of right hand side evaluations to reach a given error out of the

methods tested. These schemes perform well on relatively smooth problems, but do not
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have the SSP property. To handle problems with strong shocks a four stage 3rd order

SSP(4,3,2) scheme [62] and a ten stage 4th order SSP(10,4,3) scheme [61] are also con-

sidered. Each of these utilizes embedded methods of one order lower as proposed in

[30]. These methods are not FSAL in nature.

3.5.1 Time step size selection

Regardless of which of the four time integrators is used, the time step sizes are

determined in the same way. Let ⟨UUU⟩nh and ⟨ÛUU⟩nh denote to solutions obtained by the

outer (higher order) and embedded (lower order) integrators on cell h. A scaled estimate

of the error is then

en =

 1
MNc

∑
h

∑
c

(
⟨UUUc⟩nh−⟨ÛUUc⟩nh

δa +δr max{|⟨UUUc⟩nh|, |⟨ÛUUc⟩nh|}

)2
1/2

, (3.30)

where the index c indicates summation over all solution components, M is the total

number of cells in the domain, and Nc is the number of solution components. The

constants δa and δr are the absolute and relative tolerances on the error. These are

typically set equal to each other, and as in [79] will generally lie between 10−6 and

10−2.

The time step size is then updated according to this estimator using a PI type con-

troller [48]. A factor on the current step size is computed as

fn = tan−1(eε1
n eε2

n−1−1), (3.31)
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where ε1 and ε2 are the controller parameters summarized in Table 3.1 as adopted from

[79] and [30], and the inverse tangent is present to smooth the transition to larger time

steps when the error is sufficiently small.

Table 3.1: Time step size controller parameters for the considered schemes. The pa-
rameters for the [3∗+] schemes come from [79] and those for the SSP schemes come
from [30].

Scheme RK3(2)5F [3S∗+] RK4(3)9F [3S∗+] SSP(4,3) SSP(10,4)

ε1 −0.7/3 −0.38/4 −0.8/3 −0.8/3
ε2 0.23/3 0.18/4 0.31/3 0.31/3

From here there are three distinct cases to consider. First, if the factor fn is larger

than some threshold the ⟨UUU⟩n solution is accepted and the next step is taken using

∆tn+1 = min
{

fn∆tn,C
∆

λmax

}
, (3.32)

where the second term is a classic CFL type constraint relying on a user-specified con-

stant C and an estimate of the largest wavespeed λmax. This extra limitation seems to

be necessary in strongly shocked problems where these error-estimator based schemes

are less tested. It is entirely possible that better choices of the controller parameters or

other embedded schemes could sidestep this requirement.

Alternatively, if the proposed factor fn is too small then the estimated error must

be too large. In this case the solution ⟨UUU⟩n is rejected. The solver is wound back to

state ⟨UUU⟩n−1 and solved forward again with ∆tn← fn∆tn. This obviously comes with

an overhead cost since some amount of work needs to be thrown away. The controller
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parameters are chosen to minimize the frequency of rejected steps while also growing

the time step sizes when permissible to avoid over-resolving time.

As a final case, this is the ideal time to also verify that the solution is physically

admissible. If any ⟨UUU⟩nh has negative density or pressure, or has accumulated any not-

a-number (NaN) values, the step is rejected. In this case, the solver again winds back

to the state ⟨UUU⟩n−1 and proceeds using ∆tn set according to

∆tn←


min

{
∆tn
4 , C

4
∆

λmax

}
first rejection

∆tn
2 otherwise

. (3.33)

This limits the step size to one fourth of the maximum allowed from the CFL constraint

on the first rejection, and then successively cuts the time step size by a factor of two

after each rejection.The solver is aborted if too many rejections occur within a single

time step regardless of their origin. The allowable limit is configurable, and defaults to

four.

The final item to specify is how the initial time step is selected to get the solver

primed. There are elaborate schemes in existence [48] for general purpose integrators.

However, as the CFL based approach is still a reasonable one it suffices to initiate

∆t1 using it. The error adaptive controller will gradually grow the time step size so a

restrictive initial step size of

∆t1 =
C

100
∆

λmax
, (3.34)

is used. This small initial time step size is also in line with the slow-start advice given
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in [67].

3.6 Numerical results

The full method for numerically solving the compressible Euler equations with an

adiabatic equation of state has now been described. What remains is to test the method

on a variety of benchmark problems to assess its capabilities and merits. The suite of

test problems and the significance of each one is described below, but first there are a

some generalities in the method that need to be fixed in place.

The stencil radius, R, is the main parameter governing the achievable order of ac-

curacy. Throughout this section, as in Chapter 2, radius R = 2 and R = 3 stencils are

considered, which should give at least 4th and 6th order accuracy respectively. To this

end the number of quadrature points per direction used for flux and source term inte-

gration is set equal to R to match in accuracy. This means there will be R(d−1) Riemann

states per face, and Rd internal states per cell if source terms are included. The length

scale ℓ in the kernel function eq. (2.3) is tied to the grid scale as ℓ= 5∆ in all cases.

Numerical fluxes will be formed from the reconstructed Riemann states using either

the Harten-Lax-van Leer (HLL) flux [52], or a low-Mach corrected HLLC flux called

HLLC+ [16]. The former is a now classic approximate Riemann solver with excellent

stability and positivity properties when appropriate wavespeed estimates are used [6].

The HLLC flux is a modification of the HLL flux that incorporates an explicit contact
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discontinuity into the approximate Riemann fan which yields greatly reduced dissipa-

tion around these structures [104]. The HLLC+ flux in use here further modifies this

Riemann solver to correct faulty asymptotic behavior in the low-Mach limit. Without

this correction low-Mach flows can exhibit a numerical decoupling of the pressure and

velocity fields giving rise to checkerboard instabilities [16].

Initial conditions are integrated to find cell-averages using the same quadrature rule

with R points per direction as would be used for treating any source terms. For simplic-

ity initial conditions are listed below using primitive variables, though naturally these

would need to be converted to conservative variables prior to averaging.

Each problem solved in the subsequent sections is present to highlight different

features of the proposed method. First, convergence studies using isentropic vortex

problem [95, 99] are shown to validate that the method reaches (and actually exceeds)

the designed order of accuracy. The Sod shock tube problem [97] is a classic one

dimensional test for shock capturing, which is solved here in both grid aligned and tilted

configurations. This validates that the method does not have a particular preference for

grid-aligned phenomena. The Richtmeyer-Meshkov problem [86] is a qualitative test

that serves to demonstrate the correct representation of complicated shock structures

in the presence of instabilities. To test positivity-preservation several astrophysical jet

problems [2] are solved which involve extreme flows, and are lauded as being highly

challenging to capture without total failure of the code.
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Finally, extensions are made to solve the compressible Navier-Stokes equations by

including physical viscosity terms. The precise nondimensionalization used is dis-

cussed below in the context of the Taylor-Green vortex [103, 109, 57]. This problem is

a well-established test for the accurate representation of incompressible or low-Mach

turbulent flow. The bulk kinetic energy dissipation provides a quantitative test of cor-

rectness. Additionally, a viscous version of the Rayleigh-Taylor problem given in [94]

is considered which serves to test the incorporation of source terms into the equations.

3.6.1 Isentropic vortex

The isentropic vortex [99] is an exceptionally rare case of an exact and fully nonlin-

ear smooth solution to the compressible Euler equations with an adiabatic equation of

state. This makes it an ideal test case to demonstrate the achievable order of accuracy of

a proposed scheme. The solution consists of an exponentially localized vortex overlaid

on a uniform background. Initially this takes the form

ρ =

(
1+

1− γ

2
ω

2
) 1

γ−1

(3.35)

u1 = 1− yω (3.36)

u2 = 1+ xω (3.37)

u3 = 0 (3.38)

p =
1
γ

(
1+

1− γ

2
ω

2
) γ

γ−1

, (3.39)
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where r = 1 is the vortex radius, γ = 1.4 is the ratio of specific heats, and the rotation

rate ω is set as

ω = 5

√
2e

4π
e−

1
2 (x

2+y2). (3.40)

Clearly from these conditions the entropy S = p/ργ is constant and equal to 1/γ. This

vortex rides on the uniform background flow, translating from its initial position at the

origin at a velocity of uuub = (1,1,0)T .

While this is technically only an exact solution when posed on all of Rd (typically

with d = 2), the exponential localization means that it is nearly an exact solution on

periodic domains. With a sufficiently large truncated domain the vortex decouples from

its neighbors induced by tiling the domain periodically. On a domain of Ω = [−10,10]2

the deviation from the uniform background is on the order of double precision machine-

ε. Evolving this system to a final time of T = 20 should return the vortex to its initial

position, and the initial and final states can be compared to find the accumulated error.

Table 3.2: Shown are the experimental orders of convergence for the described method
with radius R = 2 and R = 3 stencils as tested on the isentropic vortex problem.

Radius R = 2 Radius R = 3

Nx L1 EOC Nx L1 EOC

32 1.45×10−3 – 32 7.51×10−4 –
64 2.27×10−4 2.68 64 7.50×10−5 3.32

128 1.47×10−5 3.95 128 1.46×10−6 5.68
256 5.39×10−7 4.77 256 1.76×10−8 6.38

Table 3.2 reports the L1 errors in the density field as obtained from a sequence of

doubling spatial resolutions, as well as the experimental orders of convergence, as ob-
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tained by the radius R = 2 and R = 3 schemes. The experimental order of convergence,

EOC, is defined as

EOC =
ln(Ec/E f )

ln2
, (3.41)

where Ec and E f denote the L1 errors on successive grid resolutions from coarse to

fine. In all cases the 4th order time integrator RK4(3)9F [3S∗+] is used with absolute and

relative tolerances of δa = δr = 10−6. The HLLC+ Riemann solver is used to obtain the

numerical fluxes, but it should be noted that the observed behavior is similar regardless

of this choice, as one would expect for a smooth problem.

The radius R = 2 scheme should exhibit 4th order convergence asymptotically. In-

deed for resolutions beyond 64× 64 this is observed, and even exceeded. Similarly,

the radius R = 3 scheme should exhibit 6th order accuracy. This is approached at a

resolution of 128× 128, and subsequently exceeded. Higher orders of accuracy than

what is guaranteed is to be expected since these are just the orders that arise from the

included polynomial terms discussed in Section 2.3.3 and Section 2.4. However, the

additional kernel part of the expansion still serves to capture smooth phenomena and

yields improved accuracy. It should also be noted that one could also seek to maximize

the achieved accuracy by tuning the shape parameter ℓ in the kernel function, though

doing so is beyond the scope of the current study.
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3.6.2 Sod shock tube

The Sod shock tube problem [97] is a Riemann problem that gives rise to one of

each type of wave supported by the compressible Euler equations. The solution consists

of a right-moving shock, a slower right-moving contact discontinuity, and a left-moving

rarefaction. The presence of each wave type has made this a classic test problem for

any shock capturing method.

The initial conditions are piecewise constant states with the left density and pressure

being (ρL, pL) = (1,1), the right density and pressure being (ρR, pR) = (0.125,0.1), and

all velocities being zero. This is a fundamentally one dimensional problem that can be

brought to d = 2 dimensions in a few ways. First, these conditions can be imposed in a

grid-aligned manner reducing to an essentially one dimensional test. Second, through

a cleverly chosen space they can be initialized in a grid-tilted manner with periodic

boundaries. Slices through this will yield identical exact solutions so long as the final

time is chosen to avoid any wave-wave interactions.

In the grid-aligned case a domain of Ω = [0,0.04]× [0,1] is used with outflow con-

ditions in the x−directions and periodic conditions in the y−direction. The left states

are initialized for x < 1/2 and the right states are set elsewhere. Solved to a final time

of T = 0.2, this corresponds with the classic benchmark problem.

In the tilted configuration a layout similar to that in [60, 66] is used. In this case

the domain is Ω = [0,
√

5]× [0,2
√

5] and periodic boundary conditions are set in both
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Figure 3.1: Shown is a trace of the density in Sod shock tube problem as obtained from
four different cases. The solid black line shows the exact solution. The dashed lines
with circle and square markers show the results of the radius R = 2 and R = 3 schemes
in the grid-aligned configuration. The dotted lines with cross and triangle markers show
the results of the radius R = 2 and R = 3 schemes in the grid-tilted configuration. The
inset shows a zoom-in of the region near contact discontinuity.

directions. Setting x∥ = (2x+ y)/
√

5, the states are initialized as

(ρ, p) =


(ρL, pL), x∥ < 0.5, 1.5 < x∥ < 2.5, 3.5 < x∥,

(ρR, pR), otherwise

. (3.42)

This again is solved to the final time of T = 0.2, and traces of the density and pressure

extracted from the line 0 < x∥ < 1 can be compared against the grid-aligned solution.

These configurations are solved using the SSP(4,3,2) time integrator with absolute

and relative tolerances of δa = δr = 10−4. The grid-aligned cases use a grid spacing of

∆ = 1/100, while the tilted cases use ∆ =
√

5/250 which yields the same number of

cells along the extracted line. Traces of the density as obtained from the solver with both

radius R = 2 and R = 3 stencils in each of these configurations is shown in Figure 3.1.
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Figure 3.2: Shown is the density field for the Richtmeyer-Meshkov instability at the
final time of t = 3.33 as solved by the radius R = 2 scheme on a grid with spac-
ing ∆ = 1/512. To highlight the interface the view has been zoomed into the region
[5/2,11/2]× [0,1].

It can be seen, particularly in the inset that zooms in on the contact discontinuity, that

these schemes exhibit minimal preference for grid-aligned phenomena over unaligned

phenomena.

3.6.3 Richtmeyer-Meshkov instability

The Richtmeyer-Meshkov instability arises from the acceleration of an interface

between fluids of differing densities. In this case a transmitted shock wave provides

the acceleration. When the incoming shock is not parallel to the density interface it

will refract and bend the interface, and as in the Rayleigh-Taylor case discussed below,

will generally give rise to a secondary Kelvin-Helmholtz instability. The review [117]

provides an excellent overview of these instabilities and the relationships between them.

The unmagnetized configuration from [86] is used herein. The domain is set Ω =
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[−1/2,11/2]× [0,1] with inflow conditions on the left, outflow conditions on the right,

and reflecting conditions in the y−direction. The initial state consists of a tilted density

interface and a right-moving shock. The initial density is

ρ =



(
1− 2

γ+1

(
1− 1

Ma2

))−1
, x < 0.2

1, x < y

ρD, x≥ y

, (3.43)

the initial pressure is

p =


1+ 2γ

γ+1

(
Ma2−1

)
, x < 0.2

1, x≥ 0.2

, (3.44)

and finally the initial x−velocity is

u1 =


Ma
√

γ

(
1− 1

ρ

)
, x < 0.2

0, x≥ 0.2

. (3.45)

The shock Mach number is taken as Ma = 2, and the downstream density is set to

ρD = 3. In Figure 3.2 and Figure 3.3, the density fields around the interface are shown

at the final time of t = 3.33 on grids with spacing ∆ = 1/512 as produced by the radius

R = 2 and R = 3 schemes, respectively. In both cases the SSP(4,3,2) time integrator is

used with tolerance δa = δr = 10−3 and a maximum CFL of 1.0.

The density profiles shown in Figure 3.2 and Figure 3.3 qualitatively agree with

the results presented in [86] despite the latter making extensive use of adaptive mesh
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Figure 3.3: Shown is the density field for the Richtmeyer-Meshkov instability at the
final time of t = 3.33 as solved by the radius R = 3 scheme on a grid with spac-
ing ∆ = 1/512. To highlight the interface the view has been zoomed into the region
[5/2,11/2]× [0,1].

refinement to reach an effective grid resolution with spacing ∆ = 1/2048, compared

to our results with ∆ = 1/512. The radius R = 3 results presented here exhibit smaller

scale structures along the primary density interface separating the heavy and light fluids

than are present in the radius R= 2 results. The density interfaces within the heavy fluid

that arise from the reflections of passing shock are similar in all cases. Both results also

pick up an additional Kelvin-Helmholtz instability along an internal interface below

the primary one, more closely matching the referenced results despite using a grid with

four times larger spacing.

This test also showcases the benefits of the KXRCF style indicator described in

Section 3.3. The cells flagged as needing WENO reconstruction in the final time step

are shown in Figure 3.4, and comprise only 5.56% of the overall grid. This problem

was run on an NVidia 4080 with the Kokkos profiling tools [106]. With the indicator
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Figure 3.4: Shown in black are the cells flagged for WENO reconstruction at the final
time for the radius R = 2 scheme. The view has been zoomed in to match Figure 3.2.

enabled and WENO applied only sparsely, the solver spent a total of 117 seconds doing

linear reconstruction and 56 seconds doing WENO reconstruction over the entire evo-

lution of the problem, which consisted of 21,193 right hand side evaluations. With the

indicator disabled the solver always performs WENO reconstruction, which took 690

total seconds across 21,349 right hand side evaluations.

We note that the cost of activating KXRCF is small but not negligible. The average

time to execute one right hand side evaluation (which includes all reconstruction, lim-

itation, Riemann solves, etc.), with the indicator active was 0.044 seconds and without

the indicator the average time was 0.050 seconds. The overhead in applying the indica-

tor and doing a two-pass reconstruction is easily worthwhile, and would only become

more useful in three dimensions or with larger stencils. Recall also that the indicator

provides important memory savings, and for large problems it is useful regardless of

the overhead in applying it.
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3.6.4 Astrophysical jets

Astrophysical jets are excellent examples of extreme flows, often involving such

great velocities that relativistic effects become relevant. Newtonian descriptions of such

flows remain useful in their own right, and have slowly become a standard benchmark to

demonstrate positivity preservation in schemes. The formulation of these benchmarks

follows [2], just as the positivity preserving limiter presented in Section 3.4 did.

Figure 3.5: Shown are the logarithmic density fields for the high-density (left) and
low density (right) astrophysical jets in two dimensions at the final times of t = 0.002
and t = 0.04 respectively. In both cases radius R = 3 stencils were used on grids with
spacing ∆ = 1/512.

Two classes of astrophysical jets are considered, each having essentially the same

setup. The domain is Ω = [0,1/2]× [0,3/2], with reflecting conditions on the left,

outflow conditions on the top and right sides, and mixed inflow/outflow conditions on
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the bottom. The whole domain is initially filled with quiescent gas having a density

of ρ = γ and a pressure of p = 1. Inflow is prescribed along the bottom face where

x < 0.05, and the two cases differ in terms of the in-flowing gas. A high density jet is

formed by flowing in gas with a density of ρ = 10γ and a pressure of p = 1 at a velocity

of u2 = 800, yielding a Mach 800 jet. A low density jet is similarly formed by flowing

in gas with a density of ρ = γ/10 and a pressure of p = 1 at a velocity of u2 = 100,

yielding a Mach 100 jet.

Logarithmic plots of the density field at the final times of t = 0.002 and t = 0.04

for the high and low density jets respectively are shown in Figure 3.5. Each of these

was obtained using a radius R = 3 stencil on a grid with spacing ∆ = 1/512 and the

SSP(4,3) time integrator with tolerances of δa = δr = 10−2.

Both cases exhibit densities that vary by three orders of magnitude. The high den-

sity jet yields a much simpler structure as the greater inertia of the in-flowing gas easily

pushes the lower density ambient gas aside. This launches a bow shock that surrounds

the jet, and the head of the jet slowly sloughs material off into the enclosed space. The

low density jet has the opposite configuration, and yields a much richer structure. The

low density in-flowing gas is immediately compressed by the ambient medium, nar-

rowing to just a few cells at roughly the halfway point of its length. This compression

and subsequent re-expansion launch multiple outgoing shocks that interact to generate

the complicated cocoon surrounding the jet. In each case the jets yield similar mor-
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Figure 3.6: The left panel shows the logarithmic density field for the low-density astro-
physical jet in three dimensions at the final time of t = 0.035 as solved by the radius
R = 2 scheme on a grid with spacing ∆ = 1/384. The right panel shows the correspond-
ing numerical Schlieren image defined as ln(1+ |∇ρ|).

phologies to those in [47, 2, 9], and succeed without generating any negative densities

or pressures.

A three dimensional version of the low density jet is also considered. In this case

the domain is set as Ω = [0,1/2]× [0,3/2]× [0,1/2], outflow conditions are set on

all of the upper faces, reflecting conditions are set on the lower x− and z− faces, and

mixed inflow/outflow conditions are set on the lower y−face, with inflow now occurring

where
√

x2 + z2 < 0.05. The resulting logarithmic density field is shown alongside a

numerical Schlieren image in Figure 3.6. These results were obtained with a radius

R= 2 stencil on a grid with spacing ∆= 1/384, and the same SSP(4,3,2) time integrator
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as before. The overall structure is similar to the two dimensional results with the same

compression and re-expansion process being visible, though the surrounding cocoon is

more elongated. This is likely due to the compression process being more efficient in

three dimensions. It would be interesting to add support for cylindrical coordinates in

two dimensions and draw a comparison to those results. This would also be a prime

candidate for adaptive mesh refinement considering that most of the domain remains

occupied by the trivially resolvable ambient gas.

3.6.5 Taylor-Green vortex

A nearly incompressible Taylor-Green vortex is considered to introduce the Navier-

Stokes equations and the treatment of physical viscosity. This problem has become a

very valuable benchmark for high-order computational fluid dynamics codes seeking

to resolve turbulent flows. The original Taylor-Green vortex was posed for incom-

pressible solvers [103], but compressible versions have also been considered [42, 57].

Before stating the problem fully, the compressible Navier-Stokes equations need to be

presented.

The compressible Euler equations in eq. (3.1) are now augmented to include vis-

cosity as

∂UUU
∂t

+∇ ·
(

FFF−FFF(v)
)
= 0, (3.46)
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where the viscous fluxes FFF(v) are given by

FFF(v)
j =


0

σi j

q j +σ jkuk

 . (3.47)

The stress tensor is given by

σi j =
1

Re

(
∂ui

∂x j
+

∂u j

∂xi
− 2

3
(∇ ·uuu)δi j

)
, (3.48)

where Re is the Reynolds number, and the dilatational terms related to the velocity

divergence ∇ ·uuu are included. Finally, the heat flux is given by

q j =
1

PrRe
∂T
∂x j

, (3.49)

where T = p/ρ is the temperature and Pr is the Prandtl number which is fixed to Pr =

0.71 throughout. Everything thus far has been presented in nondimensional form, as

obtained from chosen reference scales for velocity U , length L, density ρ̂, and kinematic

viscosity ν. The Reynolds number is thus Re=UL/ν, and the dimensional counterparts

of the solution quantities (denoted by tildes) can be found as

ρ̃ = ρ̂ρ, ũuu =Uuuu, p̃ = ρ̂U2 p. (3.50)

The compressible Taylor-Green vortex is posed on the triply periodic cube Ω =
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[−π,π]3 with the initial conditions

ρ = 1+
γMa2

16
(cos(2x)+ cos(2y))(cos(2z)+2)

u1 = sin(x)cos(y)cos(z)

u2 =−cos(x)sin(y)cos(z)

u3 = 0

p =
1

γMa2 +
1

16
(cos(2x)+ cos(2y))(cos(2z)+2) .

The velocity fields are the same as in the standard incompressible Taylor-Green vortex,

as is the varying part of the pressure. The constant term in the pressure and the form

of the density are chosen as in [42] to produce a constant temperature initial state at a

Mach number of Ma. To make the flow nearly incompressible the Mach number is set

to Ma = 0.1, producing a nearly constant density throughout.

This problem is solved using a radius R = 2 stencil on a grid with spacing ∆ =

π/192, yielding a grid with 3843 total cells, and the RK3(2)5F [3S∗+] time integrator

with tolerances of δa = δr = 10−4. The present study is only concerned with a high-

order representation of the inviscid fluxes. The physical viscosity is necessary for the

solution to represent a single fixed Reynolds number independent of the grid resolution.

At present, the viscous fluxes are incorporated simply through second-order accurate

finite differences. Higher accuracy viscous fluxes, and more elaborate time integration

schemes would be valuable directions for future study.

A snapshot of the flow can be seen in Figure 3.7 where an isosurface of the Q-
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Figure 3.7: The Q = 0.1 isosurface of the Q-criterion colored by velocity magnitude is
shown for the Taylor-Green vortex at nondimensional time t = 8 on a grid with spacing
∆ = π/192.

Figure 3.8: The evolution of the kinetic energy dissipation rate is compared against the
fully converged reference data from [110].
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criterion has been colored by the velocity magnitude, which can be directly compared

to the results in [42]. A quantitative validation can be performed by tracking the total

kinetic energy in the domain as a function of time. The rate of kinetic energy decay

is shown in Figure 3.8 as compared to a fully resolved spectral solution from [57] us-

ing the method described in [109]. Excellent agreement can be seen with only minor

deviations in the tail at long times. It is indeed impressive that a single code can re-

solve both nearly incompressible turbulence and extremely shock dominated flows as

demonstrated in the previous section.

3.6.6 Rayleigh-Taylor instability

The final test is a two dimensional viscous Rayleigh-Taylor instability. The domain

and initial conditions follow the setup from [94], though now an additional physical

viscosity is added. The governing equations follow from the previous section (see

eq. (3.46)) with an added source term in eq. (3.47).

Gravity is taken to point in the positive y−direction, and nondimensionalizing as

before yields the source term

SSS =
1

Fr2

(
0, 0, ρ, 0, ρu2

)T

, (3.51)

where Fr = U√
gL is the Froude number. We set the domain as Ω = [0,1/4]× [0,1].

Initially, the density is set to ρhigh = 2 for y < 1/2 and ρlow = 1 otherwise, the pressure
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is set as

p =


ρhigh
Fr2 y+1, y < 1/2

1
Fr2

(
yρlow−

ρhigh−ρlow
2

)
+1, y≥ 1/2

,

and the ratio of specific heats is fixed at γ = 5/3. The Froude number is set as Fr = 1,

the Prandtl number remains Pr = 0.71, and the Reynolds number is set to Re = 20,000.

The instability is seeded by a small vertical velocity perturbation given as

u2 =−0.025
√

γp
ρ

cos(8πx). (3.52)

Finally, the x−direction boundaries are supplied with reflecting conditions, and the

y−direction boundaries are held fixed at the initial density and pressure with zero ve-

locity.

The source terms are constant and contain only quantities for which cell averages

are already available, namely the density and y−momentum, and the averaged source

term ⟨SSS⟩ is trivial to find for each cell. However, the implementation allows arbitrary

user-provided source terms, so these gravitational sources are treated identically. As

described in Section 3.4, internal states can also be reconstructed within each cell on a

tensor-product Gauss-Legendre set of nodes. The source term is evaluated over these

states and subsequently integrated.

The problem is evolved to the final time of t = 2.5 using the RK3(2)5F [3S∗+] time

integrator with tolerances δa = δr = 10−3 and a maximum CFL number of 1.25. In

Figure 3.9, we display the final density fields obtained with a radius R = 2 scheme on
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Figure 3.9: Shown is the density field for the viscous Rayleigh-Taylor instability at the
final time of t = 2.5 with Reynolds number Re = 20,000 and Froude number Fr = 1.
These results were obtained with the radius R = 3 scheme on a grid with spacing ∆ =
1/1024, though they are insensitive to both grid resolution and to the stencil radius.
Note that the domain has been rotated 90◦ clockwise, such that the y−axis points to the
right, for the sake of plotting.

a grid spacing of ∆ = 1/1024. Morphologically, with the explicit physical viscosity, a

smooth leading cap is observed with no secondary Kelvin-Helmholtz type instabilities

along its interface, and similarly there are no secondary instabilities along the central

column. Secondary Kelvin-Helmholtz instabilities are visible on the inner region of the

rising cap, and their structure is consistent over a range of grid resolutions. The two

hooks (or arms) at the lowest part of the cap, as well as the position and the shape of

the roll-up just above it, are converged and appear the same for all resolutions above

∆ = 1/256. The results are also consistent between the R = 2 and R = 3 schemes, with

at most a 2% difference in density in corresponding cells.

However, the above convergent solution behavior is in opposition to results obtained

from inviscid solvers that exclude explicit viscosity but rely only on numerical dissipa-
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tion because, in that case, there is no agreeable solution for the method to converge to.

Indeed finer and finer scale structures will appear each time the grid is refined or the

numerical dissipation is lowered by using a larger stencil (see [94] for instance). Fur-

thermore, methods with sufficiently low numerical dissipation are prone to breaking

symmetry due to the non-associativity of floating point addition [34]. While fixes for

this issue are available for dimension-by-dimension schemes, it remains unclear how

one would avoid non-associativity errors in multidimensional reconstruction without

drastically increasing the computational cost. Using a physical viscosity as done here

avoids all of these problems by setting a single agreeable solution to converge to, and

yields more scientifically meaningful results.
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Chapter 4

A kernel-based finite volume method

for ideal magnetohydrodynamics

4.1 Introduction

The compressible Euler equations from the previous chapter can be extended to

handle conducting fluids with embedded magnetic fields. In the non-relativistic limit

with vanishing magnetic resistivity the governing equations for ideal magnetohydrody-
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namics (MHD) are

U =



ρ

ρui

E

Bi


F j =



ρu j

ρuiu j + p∗δi j−BiB j

u j(E + p∗)+B jBkuk

Biu j−B jui


, (4.1)

where ρ is the fluid density, ui are the velocity components, E is the total energy, p∗ =

pg +
1
2BkBk is the total pressure containing both gas and magnetic field contributions,

and Bi are the components of the magnetic field. The gas (or thermal) pressure must be

supplied by an equation of state. As in the previous chapter, the adiabatic equation of

state for the gas pressure

pg = (γ−1)
(

E− 1
2

ρukuk−
1
2

BkBk

)
, (4.2)

is used with γ being the ratio of specific heats. The divergence of the magnetic field

must vanish, ∇ ·BBB = ∂kBk = 0, since there should be no magnetic monopoles1. It is this

requirement that makes the design of numerical methods for the ideal MHD equations

significantly more challenging than for the Euler equations.

This chapter opens with a more complete discussion of the ∇ ·BBB = 0 requirement,

and a review of some prominent numerical methods for enforcing it in Section 4.2. Ul-

timately, the generalized Lagrange multipliers approach detailed in Section 4.2.4 will

be selected for use throughout the remainder of the chapter. Section 4.3.1 concerns

1The shorthand notation ∂k =
∂

∂xk
is used here and throughout this chapter.
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the adaptation of the KXRCF troubled cell indicator to the present setting. The lin-

earized primitive reconstruction variables from Section 3.2.2 are recalled and adapted

to the ideal MHD equations in Section 4.3.2. Positivity preservation remains an im-

portant topic for the ideal MHD equations, and the present approach is discussed in

Section 4.3.3. The previous three sections regard direct adaptations of methods from

the previous chapter to the ideal MHD equations. The approaches to produce (nearly)

solenoidal magnetic fields selected from Section 4.2 involve complicated source terms.

Discretizing these source terms while maintaining high-order accuracy is challenging

and Section 4.4 is devoted to this task. An overview of the software supporting this

work is presented in Section 4.5. Finally, a suite of informative and stringent bench-

mark problems are presented in Section 4.6.

4.2 Solenoidal magnetic fields

Magnetic monopoles are largely believed not to exist, and Gauss’s law for mag-

netism asserts that the divergence of the magnetic field must vanish. For smooth so-

lutions of the ideal MHD equations eq. (4.1) this constraint is naturally preserved as

long as the initial magnetic field is divergence-free. The induction equation governs the

evolution of the magnetic field, and was written above in divergence form. Isolating
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this equation and writing it instead in curl form yields

∂BBB
∂t

+∇× (BBB×uuu) = 0. (4.3)

Subsequently taking the divergence of this equation, and recalling that the divergence

of the curl is zero, yields

∂(∇ ·BBB)
∂t

= 0. (4.4)

Thus, the divergence of the magnetic field never changes and will remain zero as long as

it is initially zero. This means that the divergence-free constraint is naturally preserved

by the governing equations, making this constraint an involution of eq. (4.1).

At first glance, this constraint seems similar to the imposition of divergence-free ve-

locity fields in the incompressible Euler and Navier-Stokes equations. A fundamental

difference is that the incompressibility constraint is coupled dynamically to the pressure

in these systems, and unfortunately many numerical approaches from the incompress-

ible fluid dynamics community do not directly carry over to the present setting. The fol-

lowing subsections briefly review several popular approaches to handling the ∇ ·BBB = 0

constraint, and follow loosely from [105]. The projection method described in Section

4.2.1 and the constrained transport methods described in Section 4.2.2 are often said

to satisfy the divergence-free constraint exactly, or up to floating point round-off. It

should be noted from the outset that this is a minor abuse of nomenclature and that

these schemes enforce the constraint for a particular discretization of the divergence.

93



4.2.1 The projection method

One method from the incompressible fluid dynamics community that does carry

over to the ideal MHD equations is the projection method, which was first used in

this setting by Brackbill and Barnes [10]. In projection type methods the conservation

laws in eq. (4.1) are evolved forward by any appropriate scheme irrespective of the

divergence-free constraint. At each new time step (or stage in Runge-Kutta schemes)

the updated magnetic field is unlikely to be divergence-free. Denoting this tentative

field by BBB′, a correcting field can be found by solving a corresponding Poisson equation

∇
2
φ =−∇ ·BBB′, (4.5)

and replacing the updated magnetic field by

BBB = BBB′+∇φ. (4.6)

This serves to project the tentative field BBB′ onto the nearest divergence-free field. It

should be noted that the discretizations for the divergence in eq. (4.5) and the gradient

in eq. (4.6) must be compatible with the discrete Laplacian in eq. (4.5). It is with respect

to these discrete operators that the magnetic field will be divergence-free (assuming that

eq. (4.5) is solved exactly).

This process does not conserve magnetic energy (i.e. ||BBB′(xxx)|| ̸= ||BBB(xxx)|| in general).

The total energy E is evolved as a separate independent quantity, and there are two

ways to incorporate this changed magnetic energy. The value for E obtained from the
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hyperbolic scheme can be kept as is, in which case the now modified magnetic energy

induces a change in the internal energy. Alternatively, conservation of the total energy

can be sacrificed by updating E alongside BBB to maintain the original internal energy.

Typically the linear system arising from eq. (4.5) would be solved inexactly by an

iterative method (e.g. preconditioned conjugate gradients). Such methods have be-

come highly advanced, and the projection method may well be a competitive option for

problems of moderate to large size, particularly when solved on CPU based systems.

However, this Poisson solve does form an expensive bottleneck that couples all un-

knowns together in an otherwise fully explicit solver. Ultimately the projection method

has seen little use in recent years, at least within solvers aimed at shock dominated

problems.

4.2.2 Constrained transport

The constrained transport (CT) method, introduced by Evans and Hawley in [27],

seeks to maintain divergence-free magnetic fields in a way that is arguably closer to

the continuum partial differential equations. Recall from eq. (4.4) that an initially

divergence-free field will remain divergence-free for all time. Constrained transport

seeks a spatial discretization of the induction equation such that a subsequent discrete

divergence vanishes identically. In this way CT maintains the (discrete) divergence-

free nature of the magnetic field as long as the initial field has zero (discrete) di-
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vergence. The CT method has seen wide use and intense development over time

[40, 41, 101, 64, 102].

The CT method is most naturally posed on a staggered grid. In three dimensions,

the hydrodynamic variables (density, momentum, and total energy) are stored at cell

centers, and the magnetic field components are stored on cell faces with matching nor-

mal directions (Bx on x−faces, By on y−faces, and Bz on z−faces). Integrating the

induction equation over one face and applying Stokes’ theorem then yields the update

to the magnetic flux on that face as a contour integral of the electric field defined on

cell edges. A fundamental operation in CT schemes is the production of properly up-

winded electric fields on these edges. Subsequently discretizing this contour integral

then preserves a (discrete) divergence-free condition on the magnetic fields.

The use of a staggered grid is one major hurdle towards the use of these meth-

ods. Data storage becomes more complicated than for schemes where all unknowns

are co-located. Staggered grids are also challenging to combine with adaptive mesh

refinement, and numerical artifacts in the magnetic field may be seen along coarse-fine

interfaces therein. It was also shown that second order schemes could be recast into

forms that do not rely on having a staggered grid [105]. More modern CT schemes

with higher order reconstructions remain posed on staggered grids [91].
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4.2.3 Eight-wave formulation

A fundamentally different approach to satisfying the divergence-free constraint is

to enforce it only to the level of truncation error, rather than exactly for some given

discretization. The eight wave formulation is the earliest such approach, and was pre-

sented independently by Godunov in [45] and by Powell in [78]. This approach adds

a source term proportional to ∇ ·BBB to the governing equations that serves to advect

divergence errors, which prevents them from compounding in any one location.

Powell arrived at this source term by deriving the governing equations for ideal

MHD without the assumption that ∇ ·BBB = 0. Godunov produced this source by not-

ing that it is necessary to make the governing equations symmetrizable in the sense

discussed in the introductory chapter. With the so-called Godunov-Powell source term

included, the governing equations become

U =



ρ

ρui

E

Bi


F j =



ρu j

ρuiu j + p∗δi j−BiB j

u j(E + p∗)+B jBkuk

Biu j−B jui


S =



0

−Bi∂kBk

−(ukBk)∂kBk

−ui∂kBk


. (4.7)

Notably, whenever ∇ ·BBB = 0 does hold these equations reduce to the standard ideal

MHD equations in eq. (4.1).

As in the outset of this section, the induction equation can again be isolated and the

evolution of ∇ ·BBB determined. The fluxes F j, arising from the curl of the electric field
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still do not contribute. Hence the divergence evolves as

∂(∇ ·BBB)
∂t

+∇ · (uuu(∇ ·BBB)) = 0, (4.8)

supporting the claim that the eight wave formulation advects divergence errors along

the flow.

The presence of this source term means that the equations are no longer conser-

vative. Solutions with shocks may fail to satisfy the Rankine-Hugoniot conditions.

Notably, the previous conclusion around the advection of ∇ ·BBB only relies on the source

term in the induction equation, and is completely independent of the source terms

present in the momentum and energy equations. An alternative formulation given by

Janhunen in [58] omits the source terms in the momentum and energy equations which

keeps them fully conservative.

4.2.4 Generalized Lagrange multipliers

The method of generalized Lagrange multipliers (GLM) arises as an extension of

the eight wave formulation. A notable issue in the eight wave formulation, irrespective

of the particular source term selected, is that the divergence errors can only be damped

by the inherent numerical dissipation of the numerical scheme. More problematic is

that the divergence errors can accumulate at stagnation points of the flow, and hence

grow beyond the scale of truncation error.

The goal of GLM methods is to find a formulation that induces a more favorable

98



evolution equation for ∇ ·BBB than eq. (4.8). This approach was first proposed for use in

ideal MHD by Dedner in [22], and consists of appending a new scalar field ψ to the

governing equations. A variety of different evolution equations for ψ can be used, each

of which induce a different evolution equation on ∇ ·BBB.

More recently the GLM approach has been re-derived by Derigs et al. in [23] to

be both Galilean invariant and consistent with the second law of thermodynamics. An

extensive review and analysis of many different GLM schemes can be found therein.

The resulting equations are

U =



ρ

ρui

E

Bi

ψ


F j =



ρu j

ρuiu j + p∗δi j−BiB j

FE
j

Biu j−B jui +Chψδi j

ChB j


S =



0

−Bi∂kBk

−SE

−ui∂kBk

−uk∂kψ


, (4.9)

where the flux of total energy in the jth direction is FE
j = u j(E+ p∗− 1

2ψ2)+B j(Chψ−

ukBk), and the source term for the total energy is SE = (ulBl)∂kBk + ψuk∂kψ. The

constant Ch is the hyperbolic cleaning speed which will be discussed below. As an

ansatz the total energy is now defined to include a contribution from the ψ field. The

adiabatic equation of state for the gas pressure thus becomes

pg = (γ−1)
(

E− 1
2

ρukuk−
1
2

BkBk−
1
2

ψ
2
)
. (4.10)
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Following [23], the wavespeeds arising from eq. (4.9) in the x−direction are

{
λ
(±)
f = u1±C f , λ

(±)
s = u1±Cs, λ

(±)
a = u1±Ca, λ

(±)
h = u1±Ch, λE = u1

}
,

(4.11)

where the (±) superscripts indicate paired wavespeeds. Of course, similar wavespeeds

appear in other directions. Denoting the acoustic speed as a =
√

γp/ρ and the density

reduced magnetic field by bbb = BBB/
√

ρ, the fast and slow magnetosonic speeds are given

by

C2
f ,s =

1
2

(
a2 + ||bbb||2±

√
(a2 + ||bbb||2)2−4a2b2

1

)
, (4.12)

with plus and minus yielding the fast and slow speeds respectively. The Alfvén speed is

Ca =
√

b1. Notably, the first six wavespeeds in eq. (4.11) are the same as in the standard

ideal MHD equations, as is the entropic speed λE . The crucial difference here is the

symmetric appearance of λh arising from the cleaning speed.

Note that eq. (4.9) reduces to the eight wave formulation in eq. (4.7) by setting

Ch = 0 and initializing the ψ field to zero. In this case the cleaning waves associated

with λ
(±)
h merge to yield the so-called divergence wave. As discussed in [23], increasing

Ch from zero yields a splitting of this wave into the cleaning waves. The improved

divergence cleaning abilities of GLM methods over the eight wave method can now

be appreciated. With non-zero Ch at least one of the paired speeds λ
(±)
h must also be

non-zero, and cleaning still occurs even around stagnation points of the flow.

The hyperbolic cleaning speed Ch determines how quickly divergence errors are re-
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moved, so choosing a large speed is helpful to constrain the magnetic field divergence

more strongly. On the other hand, faster cleaning speeds can artificially limit the al-

lowable time step sizes if the corresponding wavespeeds dominate over the remaining

speeds. As in [23], the cleaning speed is determined by first calculating the maximal

wavespeed, λmax, and componentwise maximal (absolute) velocity, vmax, over all Rie-

mann states in the domain, and setting

Ch = λmax− vmax. (4.13)

This ensures that the cleaning speed is as large as possible without unduly limiting the

allowable time step size.

4.3 KXRCF indicators, reconstruction variables, and

positivity

The KXRCF indicators discussed in Section 3.3, the linearized primitive variables

presented in Section 3.2.2, and the positivity preserving limiter from Section 3.4, can

all be adapted to the ideal MHD equations directly. In fact, MHD was one of the

motivations for developing the linearized primitive variables in the first place. As the

purposes and motivations behind these components are the same as before, each will

be presented briefly in the following sections.
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4.3.1 KXRCF troubled cell indicator

The troubled cell indicators introduced in Section 3.3 and adapted from the dis-

continuous Galerkin community [63, 39], can similarly be adapted to the ideal MHD

equations. These indicators operate by measuring the jump of some quantity across cell

interfaces relative to its value calculated from the cell-average. Specifically, let s be an

index ranging over all quadrature points on all faces of a given cell, and let q(±)s be the

values of some quantity at the sth quadrature on the inside and outside of the cell. Cells

are flagged as troubled if

max
s

{∣∣∣q(+)
s −q(−)s

∣∣∣}
q
(

ŨUU
) > ∆

3/2, (4.14)

where ŨUU = ⟨UUU⟩h is the cell average state in the cell where the indicator is being calcu-

lated.

The utility of this indicator is reliant on the choice of the indicator variable q. For

the Euler equations this was chosen to be the entropy, q = p/ργ, which was justified

in that it jumps across both shocks and contact discontinuities. The ideal MHD-GLM

equations provide a substantially more complicated setting than the compressible Euler

equations. The thermodynamic entropy remains a useful indicator variable, but as will

be seen, it may not always flag cells adequately. The entropy is still used as the indicator

variable throughout this chapter, but this is a topic that would be an interesting avenue

for future study.
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4.3.2 Reconstruction variables

The linearized primitive variables from Section 3.2.2 are directly applicable to the

ideal MHD-GLM equations. In fact, the density, magnetic field, and ψ field, all act as

both conservative and primitive variables. The linear momentum components yield the

velocity components simply by dividing by the density. The final primitive variable is

the gas pressure, given by eq. (4.10), which replaces the total energy. The transforma-

tion matrix arising from the Jacobian is

ΦΦΦ =
∂VVV
∂UUU

∣∣∣∣
ŨUU
=



1 0 0 0 0 0 0 0 0

−ũ1/ρ̃ 1/ρ̃ 0 0 0 0 0 0 0

−ũ2/ρ̃ 0 1/ρ̃ 0 0 0 0 0 0

−ũ3/ρ̃ 0 0 1/ρ̃ 0 0 0 0 0

− − − − ΦΦΦE − − − −

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1



, (4.15)

where the fifth row regarding the map to the gas pressure is given by

ΦΦΦE = (γ−1)
(
||ũ||2 −ũ1 −ũ2 −ũ3 1 −B̃1 −B̃2 −B̃3 −ψ̃

)
. (4.16)

As before, the quantities denoted by tildes are obtained from the reference state where

this transformation matrix is to be calculated (e.g. ũi = ρ̃ui/ρ̃). It is also worth noting
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that the vast majority of this matrix contains zeros, and applying the transformation

can be done much more cheaply by not actually constructing the matrix. Similarly, the

inverse transformation matrix is

ΦΦΦ
−1 =

∂UUU
∂VVV

∣∣∣∣
V (ŨUU)

=



1 0 0 0 0 0 0 0 0

ũ1 ρ̃ 0 0 0 0 0 0 0

ũ2 0 ρ̃ 0 0 0 0 0 0

ũ3 0 0 ρ̃ 0 0 0 0 0

||ũ||2 ρ̃u1 ρ̃u2 ρ̃u3 1/(γ−1) B̃1 B̃2 B̃3 ψ̃

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1



, (4.17)

and once again the transformation is much easier to apply by not actually constructing

the matrix. These two transformation matrices fully define the linearized primitive

variables, and the remainder of Section 3.2.2 applies as is.

4.3.3 Positivity preservation

Positivity preservation proceeds for the ideal MHD-GLM equations in much the

same fashion as for the Euler equations in Section 3.4. Fix attention to a single cell

where the positivity preserving limiter is being applied, and let the grid indices (i, j,k)
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be defined locally. Recall that bounds on the fluid density and gas pressure are set by

gathering the cell-averaged values from nearby cells as

ρ̃max = max
−1≤i, j,k≤1

{
⟨ρ⟩i, j,k

}
, (4.18)

ρ̃min = min
−1≤i, j,k≤1

{
⟨ρ⟩i, j,k

}
, (4.19)

p̃min = min
−1≤i, j,k≤1

{
⟨p⟩i, j,k

}
, (4.20)

and subsequently widening the bounds to

ρmax = ρ̃max (1+κ2−κ2η) , (4.21)

ρmin = ρ̃min (1−κ2 +κ2η) , (4.22)

pmin = p̃min (1−κ2 +κ2η) , (4.23)

to avoid clipping smooth extrema. The pressure can be naively calculated to second

order by directly using the cell-averaged conservative states since it only needs to pro-

vide a reasonable floor on the locally allowed pressures. Here η is a flattener variable

defined as

η = min
{

1,max
{

0,−κ1ãmin +(∇ ·uuu)∆

κ1ãmin

}}
, (4.24)

where as before ã =
√

γ p̃/ρ̃ is the acoustic speed appropriately minimized over the

immediate neighbors of the cell being limited. Finally, the constants κ1 and κ2 are both

fixed at 0.3 just as in [2].

Let s be an index running over all quadrature points on all faces of the cell in con-

sideration, as well as all of the internal quadrature points for treating source terms,
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such that {UUU s} is the set of all reconstructed states associated with this cell. Density is

corrected to lie in the desired bounds by finding

θρ = min
s

{
1,
⟨ρ⟩0−ρmin

⟨ρ⟩0−ρs
,
ρmax−⟨ρ⟩0
ρs−⟨ρ⟩0

}
, (4.25)

and updating the states as

UUU s← ⟨UUU⟩0 +θρ (UUU s−⟨UUU⟩0) , ∀s. (4.26)

While density is constrained in precisely the same way as before, the constraint on

gas pressure is now more complicated. The correction to the states remains

UUU s← ⟨UUU⟩0 +θp (UUU s−⟨UUU⟩0) , ∀s, (4.27)

and the complication arises in the calculation of an appropriate value for θp. The gas

pressure is again a function of the conservative state, now through eq. (4.10). Fixing a

single quadrature point s one finds that

pg (⟨UUU⟩0 +θp;s (UUU s−⟨UUU⟩0)) = pmin, (4.28)

must hold with θp;s being the local correction for just the sth state. Contrary to eq. (3.28),

this equation is now a cubic in θp;s rather than a quadratic. Each correction factor is

found as a root of eq. (4.28) using a bracketed bisection search in the same fashion as

presented in [2]. One minor difference is that 10 iterations are always taken, and the

lower bound on θp;s at the final iteration is returned. This may leave θp;s at a slightly
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smaller value than necessary, but guarantees that a valid state will be formed. Finally,

the smallest valid root is taken over all such correction factors

θp = min
s

{
θp;s | 0≤ θp;s ≤ 1

}
, (4.29)

so that eq. (4.27) can be applied uniformly to all states associated with a particular cell.

Note further that, as in Section 3.4, if all states associated to a given cell are already

valid then no corrections or limitations will be applied.

4.4 Treatment of GLM source terms

As has been seen, extending the hydrodynamics solver from Chapter 3 is mostly

straightforward. The troubled cell indicators, linearized primitive variables, and posi-

tivity preserving limiter all have direct analogs in the MHD system. The major change

in the MHD case is the presence of the GLM source term in eq. (4.9) that depends both

on the state UUU and on its spatial derivatives. The source term can further be decom-

posed into terms involving the field divergence ∇ ·BBB and terms involving ∇ψ. With this

splitting the source term becomes SSS = (∇ ·BBB)SSSB +(uuu ·∇ψ)SSSψ with

SSSB = −
(

0 B1 B2 B3 (uuu ·BBB) u1 u2 u3 0

)T

, (4.30)

SSSψ = −
(

0 0 0 0 ψ 0 0 0 1

)T

. (4.31)

Derivatives of the BBB and ψ fields are necessary for the calculation of these terms,

and producing these derivatives to sufficient accuracy while also maintaining a stable
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scheme presents a distinct challenge. Ultimately the source term will be integrated

over the cell with a tensor-product Gauss-Legendre rule, hence the states and their

derivatives must be known at these points interior to the cell. The internal states are

easy to generate in tandem with all of the Riemann states.

One could reconstruct the derivatives directly as was already done in forming the

smoothness indicators (consult eq. (2.47)). On the other hand, the need for these deriva-

tives is specific to the ideal MHD-GLM equations, and is limited to only a few fields

therein. Alternative approaches for each type of term are examined in the following

two subsections.

4.4.1 Terms involving field divergence

Ultimately the source terms must be integrated over the cell volume, and initially

one could observe that integrating the magnetic field divergence over a cell is particu-

larly simple. The divergence theorem simply converts this to a surface integral of the

normally aligned field components. Of course, the source term includes more than just

∇ ·BBB, so the volume integral of SSSB does not transform in this way.

Given a smooth divergence-free field, a single pass of reconstruction will give a

field that is nearly divergence-free. A large simplification can be obtained by replacing
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the source term volume integral by the approximation

⟨(∇ ·BBB)SSSB⟩h =
∫

Ωh

(∇ ·BBB)SSSBdxxx (4.32)

≈

∫
Ωh

∇ ·BBBdxxx

∫
Ωh

SSSBdxxx

= ⟨SSSB⟩h
∫

∂Ωh

BBB ·dSSS. (4.33)

Splitting the initial volume integral into a product of integrals is precisely the type

of operation that leads to degradation of accuracy when naively calculating averaged

primitive variables from averaged conservative variables. However, for smooth fields

the divergence should always be of the same order as the reconstruction. The claim that

this splitting does not limit the achievable order of accuracy is validated experimentally

in Section 4.6.1

The integral of SSSB on the far right side of section 4.4.1 is found through a standard

tensor-product Gauss-Legendre rule through the cell interior. The surface integral of

the field that has replaced the volume integral of its divergence is simpler in that it

does not require any derivatives of BBB. Furthermore it is easy to calculate using the

available Riemann states, and it has been shown for the eight wave formulation that the

∇ ·BBB terms must be appropriately upwinded for the scheme to remain positive [113].

Rewriting this volume integral as a surface integral over the Riemann states allows this

upwinding to be achieved in the same fashion as in [113]. To this end, the normal field

components are obtained by averaging between the inner and outer Riemann states at

each quadrature point on the surface.
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4.4.2 Terms involving ∇ψ

There is no such simple way to rewrite the terms involving derivatives of the ψ field,

so they still must be found in the interior of the cell. This approach does fail to endow

these terms with the same upwinding present in the ∇ ·BBB terms, though this only raises

a small issue in one test below. The reconstruction step has produced values of ψ on

the faces of the cell as part of the Riemann states, and at all of the interior quadrature

points. These sets of points are illustrated in Figure 4.1 for a two dimensional case.

Figure 4.1: The quadrature points associated to a single cell in 2 dimensions are shown
with N = 3 points per direction. The blue crosses indicate the points on the cell bound-
ary where the Riemann states are located, and the red diamonds indicate the points
in the interior. The dashed box highlights how one line of N interior Gauss-Legendre
points can be augmented by two boundary points to give N+2 Gauss-Legendre-Lobatto
points. Similar groupings hold throughout the cell.

Consider isolating a line of such points through the interior, and adjoining the near-

est two boundary points (see the dashed box in Figure 4.1). The N point Gauss-

Legendre (GL) points in the interior with these boundary points thus give (N + 2)

Gauss-Legendre-Lobatto (GLL) points. A differentiation matrix mapping from the
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(N + 2) GLL points to the N GL points gives precisely the information needed (see

for instance Section 5.5.1 of [43]). Let {xi}N+1
i=0 be the set of GLL nodes on the ref-

erence [−1,1] interval such that the restriction to 1 ≤ i ≤ N gives the embedded GL

nodes. The (N +2)× (N +2) GLL Vandermonde matrix VVV has the entries

Vi+1, j+1 = x j
i , 0≤ i, j ≤ N +1, (4.34)

noting that the indices have been shifted by one to move from zero-based indexing to

one-based indexing. Inverting this gives a map from values of some function on the

GLL nodes to the coefficients of its polynomial interpolant in the monomial basis. This

interpolant can trivially by differentiated, and mapped to the GL nodes through the

N× (N +2) matrix HHH with entries

Hi, j+1 = jx j−1
i , 1≤ i≤ N, 0≤ j ≤ N +1. (4.35)

Together these form the differentiation matrix DDD that maps values of a function on the

GLL points to values of its derivative on the GL points as

DDD =
∆

2
HHHVVV−1, (4.36)

where the pre-factor is necessary to pull back from the reference [−1,1] interval to the

cell in consideration. Note that the same differentiation matrix applies regardless of the

direction of the slice in Figure 4.1.

All of the necessary derivatives of ψ in the interior are thus obtained by slicing all

values across a line of nodes, adjoining the boundary states, and applying the differenti-
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ation matrix DDD. With these derivatives known the full term (uuu ·∇ψ)SSSψ can be calculated

at every interior quadrature point, and summed to yield the cell-averaged source term

⟨(uuu ·∇ψ)SSSψ⟩h. While the overall scheme presented in this dissertation is only applied

to uniform Cartesian grids, care has been taken to leave extensions of the method to un-

structured grids as a possibility. Discretizing this source term in this fashion does limit

future applications to grids with quadrilateral cells in two dimensions and hexahedral

cells in three dimensions.

4.5 Implementation details

A highly parallel multi-GPU code was written by the author to support the results

in this chapter and the previous chapter, and has been made publicly available under a

BSD 3 clause license [72]. Here, a brief overview of the code capabilities and design

decisions is given. Shared memory parallelism is achieved through the Kokkos library

[107, 26], and distributed memory parallelism is achieved through the message passing

interface (MPI). While the use of MPI for parallelism is standard and familiar to many,

Kokkos is quite new and will likely be unfamiliar. A short description of Kokkos and

how it is used within the code supporting this research is given in the next section.

Following this, a breakdown of all steps the solver goes through is presented.
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4.5.1 The Kokkos library

Kokkos is a performance portability library that provides useful data structures,

such as multidimensional arrays and unordered maps, and a set of abstractions for

launching work in parallel over these data structures. A crucial observation is that

with naive storage ordering many scientific workloads can easily become bottlenecked

by the time spent fetching data from main memory. Unfortunately, different parallel

architectures benefit from different storage patterns, and no one layout (e.g. row-major,

column-major, or tiled layouts of multidimensional arrays) can possibly work well on

all architectures.

The key innovation of Kokkos is to tie the storage layouts directly to the routines for

launching parallel work, and perhaps more importantly, to provide the end programmer

with a tidy interface to manage without needing to deal with low-level complexity.

Moreover, the parallel work loads do not require any vendor-specific implementations

from the end user. All results presented in this dissertation were run on NVidia GPUs,

but the available code [72] does not contain any CUDA.

Another aspect of the implementation that is supported by Kokkos is worth delib-

erating on. The calculation of the smoothness indicators, eq. (2.46), and the recon-

struction to the various quadrature points from each substencil, eq. (2.40), can both

be done more efficiently with batched linear algebra subroutine calls. This allows all

derivatives needed to form a single βq to be calculated simultaneously. Similarly, by
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gathering the reconstruction vectors rrr(q) for each quadrature point together all Riemann

states can be simultaneously produced for one substencil. In each case this is as sim-

ple as performing a small matrix-matrix product or matrix-vector product respectively

(see the implementation for more details). This batching process is supported by the

Kokkos-Kernels library [106].

4.5.2 Overview of the solver

The overall run of the solver proceeds in three main stages: (i) construction of

the stencils and reconstruction vectors, (ii) evaluation of the initial conditions into cell

average quantities, and (iii) advancing the cell averages through time. The first two

stages are only performed once as setup for the run. The final stage is the most complex

and forms the vast majority of the work.

Constructing the (sub)stencils and reconstruction vectors entails three steps:

1. Enumerate all cells in the full stencil, S0, and the remaining substencils, Sq, q =

1, . . . ,NS.

2. Form reconstruction vectors, rrr(q), for each face and internal quadrature point xxxs

relative to each (sub)stencil using eq. (2.37). The quadrature points on each face

and within the cell are set using a tensor product Gauss-Legendre quadrature

rule with R points per dimension, yielding 2Rth order accuracy. This results in

2dRd−1 reconstruction vectors associated with the faces, and Rd associated with
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the interior.

3. Form reconstruction vectors for all partial derivatives needed to evaluate the

smoothness indicators in eq. (2.46) relative to each (sub)stencil.

For MHD problems the internal reconstruction vectors mentioned in the second step

are always needed. For Euler or Navier-Stokes problems without source terms these

are elided.

The initial conditions are assumed to be provided by the user as point values of the

conservative variables for any supplied coordinate location. The solver internally loops

over all cells and applies a tensor product Gauss-Legendre rule on each cell to obtain

the cell-average quantities to sufficient accuracy. As with this source terms this rule

uses R points per dimension, thus querying the user-supplied initial conditions function

Rd times per cell.

As mentioned in Section 3.5, this solver uses Runge-Kutta style method-of-lines

time integrators. The majority of the time integration loop consists of evaluating the

right hand side within each Runge-Kutta stage. One evaluation of the right side consists

of the following steps:

1. Fill the ghost cells in accordance with the boundary conditions.

2. Calculate Riemann states (and internal states if needed) at each quadrature point

(see below).
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3. Apply the positivity preserving limiter on the Riemann states, following Sections

3.4 and 4.3.3.

4. Populate Riemann states outside of the physical domain in accordance with the

boundary conditions.

5. Call an approximate Riemann solver at each flux quadrature point.

6. Evaluate physical viscosity terms if present.

7. Evaluate and average the source terms if present.

• For MHD this is always done in accordance with Section 4.4.

• User-supplied source terms are also incorporated at this stage.

8. Integrate fluxes and update cell averages in accordance with the chosen RK

method.

Naturally, the second step of calculating the Riemann and internal states contains most

of the contributions from this work. This proceeds as follows:

1. Reconstruct unlimited Riemann states on all cells using cell averages from the

full stencils S0.

2. Evaluate the KXRCF indicator from either Section 3.3 or 4.3.1, and flag cells

needing WENO.
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3. For all flagged cells do the following:

(a) Construct transformation matrix ΦΦΦ from eq. (3.14) or eq. (4.15) as appropri-

ate using the central cell average data as the reference state. Construct the

corresponding inverse transformation matrix ΦΦΦ
−1 according to eq. (3.15) or

eq. (4.17).

(b) Project the average state for each cell in S0 onto the linearized primitive

variables via eq. (3.2).

(c) Reconstruct pointwise values of linearized primitive variables at all face

quadrature points via the reconstruction detailed in Section 2.5.

(d) Project the pointwise linearized primitive values back to conservative vari-

ables via eq. (3.3), yielding the Riemann states.

Fitting all of these tasks and all supported governing equations into a single piece

of software is no small task. The interested reader is encouraged to have a look at the

available code [72].

4.6 Numerical results

The full method for numerically solving the ideal MHD-GLM equations with an

adiabatic equation of state has now been described. What remains is to test the method

on a variety of benchmark problems to assess its capabilities and merits. The suite of
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test problems and the significance of each one is described below, but first there are a

some generalities in the method that need to be fixed in place, most of which follow

directly from those in Section 3.6.

The stencil radius, R, is the main parameter governing the achievable order of ac-

curacy. Throughout this section, as in Chapter 2 and Chapter 3, radius R = 2 and R = 3

stencils are considered, which should give at least 4th and 6th order accuracy respec-

tively. Similarly, the number of quadrature points per direction used for flux and source

term integration is set equal to R to match in accuracy, and length scale ℓ in the kernel

function eq. (2.3) is tied to the grid scale as ℓ = 5∆ in all cases. Numerical fluxes will

be formed from the reconstructed Riemann states using a local Lax-Friedrichs flux.

Initial conditions are integrated to find cell-averages using the same quadrature rule

with R points per direction as would be used for treating any source terms. For simplic-

ity initial conditions are listed below using primitive variables, though naturally these

would need to be converted to conservative variables prior to averaging. Note that the ψ

field is always initialized to zero, and will be omitted from the given initial conditions

in all following sections.

Each problem solved in the subsequent sections is present to highlight different

features of the proposed method. First, convergence studies using isodensity vortex

problems [1, 74] are shown to validate that the method reaches the designed order of

accuracy. The Brio-Wu shock tube problem [11] is a classic one dimensional test for
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shock capturing, which is solved here in both grid aligned and tilted configurations. The

Orszag-Tang problem [77], and its three dimensional generalization [53, 64], is a qual-

itative test that serves to demonstrate the correct representation of complicated shock

structures arising from initially smooth data. The field loop advection test [40, 41, 64]

is extremely sensitive to divergence errors in the magnetic field, and is an important

test to demonstrate the efficacy of the GLM cleaning formulation. An astrophysical

jet generation problem [68, 91] is solved to demonstrate the efficacy of the proposed

method as a global solver. Finally, low-β magnetized versions of the astrophysical jets

presented in Section 3.6.4 are solved to demonstrate the positivity preserving qualities

of the method [113].

4.6.1 Isodensity vortex

Analogs of the isentropic vortex presented in Section 3.6.1 as applicable to the ideal

MHD equations are available as isodensity vortices. These are again smooth, and fully

nonlinear, exact solutions of the ideal MHD equations that describe the advection of an

exponentially localized magnetic vortex on a background flow. The two dimensional

case was presented by Balsara in [1], and the three dimensional case was presented by

Mignone et al. in [74]. These problems are solved as in [74], and experimental orders

of convergence determined. This is a crucial test to perform as the accuracy of the

discretization of the GLM source terms presented in Section 4.4 must be validated.
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In two dimensions the domain is set as Ω = [−5,5]2 with periodic boundary condi-

tions in both directions. The initial conditions are set as

ρ = 1, (4.37)

u1 = 1− yκe(1−r2), (4.38)

u2 = 1+ xκe(1−r2), (4.39)

u3 = 0, (4.40)

pg = 1+
1
4
(
µ2 (1−2r2)−κ

2)e2(1−r2), (4.41)

B1 = −yµe(1−r2), (4.42)

B2 = xµe(1−r2), (4.43)

B3 = 0, (4.44)

where r2 = (x2+y2), the parameters are set to κ = µ = 1/(2π), and the ratio of specific

heats is γ = 5/3. At the final time of t = 10 the magnetic vortex should return to its

initial position, and a measure of the error is available by comparing the initial and final

states. The magnetic field is the most interesting quantity present, and the aggregate

error (commensurate with that in [74])

ErrB =
√
||B1−Bexact

1 ||2L1
+ ||B2−Bexact

2 ||2L1
+ ||B3−Bexact

3 ||2L1
, (4.45)

is considered throughout this section.

In three dimensions the domain is set as Ω = [−5,5]3 with periodic boundary con-

120



Table 4.1: Shown are the experimental orders of convergence for the described method
with radius R = 2 and R = 3 stencils as tested on the two dimensional isodensity mag-
netic vortex problem.

Radius R = 2 Radius R = 3

Nx ErrB EOC Nx ErrB EOC

32 2.02×10−3 – 32 6.69×10−4 –
64 1.23×10−4 4.03 64 1.00×10−5 6.06

128 4.28×10−6 4.85 128 8.80×10−8 6.83
256 1.37×10−7 4.97 256 7.15×10−10 6.94

ditions in all directions. The initial conditions are set as

ρ = 1, (4.46)

u1 = 1− yκe(1−r2), (4.47)

u2 = 1+ xκe(1−r2), (4.48)

u3 = 2, (4.49)

pg = 1+
1
4
(
µ2 (1−2

(
r2− z2))−κ

2)e2(1−r2), (4.50)

B1 = −yµe(1−r2), (4.51)

B2 = xµe(1−r2), (4.52)

B3 = 0, (4.53)

where r2 = (x2 + y2 + z2), the parameters are set to κ = µ = 1, and the ratio of specific

heats is γ = 5/3.

Both the two and three dimensional cases are solved on a sequence of finer grids

using the RK4(3)9F [3S∗+] time integrator with tolerances of δa = δr = 10−6 and a max-
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Table 4.2: Shown are the experimental orders of convergence for the described method
with radius R = 2 and R = 3 stencils as tested on the three dimensional isodensity
magnetic vortex problem.

Radius R = 2 Radius R = 3

Nx ErrB EOC Nx ErrB EOC

32 4.59×10−4 – 32 8.08×10−5 –
64 2.47×10−5 4.21 64 1.49×10−6 5.76

128 8.48×10−7 4.87 128 −− –

imal CFL of 1.25. The experimental orders of convergence can be see in table 4.1 and

table 4.2 for the two dimensional case and three dimensional cases respectively, each

having results for the radius R = 2 and R = 3 schemes. In most cases the observed

order of convergence matches or exceeds the expected convergence rates, much like

the isentropic vortex in Section 3.6.1. This is an exceptional result, and shows that the

splitting made in Section 4.4.1 for the sake of upwinding retains high-order accuracy.

The only exception is the radius R = 3 case in three dimensions. For reasons that are

not totally clear this case must be run with the KXRCF indicator disabled. It is likely

that the observed order would rise in passing to the next grid resolution.

4.6.2 Brio-Wu shock tube

The Brio-Wu shock tube problem [11] is a critical benchmark problem for any

compressible ideal MHD solver. As in Section 3.6.2, this problem is solved in two

configurations. First, in the standard grid-aligned formulation we take the domain to

be Ω = [0,1]× [0,0.015625] with outflow conditions in the x−direction and periodic
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conditions in the y−direction. The initial conditions are piecewise constant with ρL = 1,

B2,L = 1 and pL = 1 set for x < 0.5 and ρR = 0.125, B2,R =−1 and pR = 0.1 otherwise.

The velocity is zero throughout, and the x−direction magnetic field is set to B1 = 0.75.

The ratio of specific heats is set to γ = 2.

Second, we consider a tilted configuration where the same solution evolves oblique

to the grid by an angle of θ ≈ 26.5651◦ (or tanθ = 1/2). This tests both for any pref-

erence for grid-aligned phenomena and for the divergence cleaning capabilities of the

solver near shocks. Following the ideas in [60, 66] and in Section 3.6.2, the domain

is set as Ω = [0,
√

5]× [0,2
√

5] with periodic conditions in both directions. The tilted

coordinate is set as x∥ =
1√
5
(2x+ y) with 0 ≤ x∥ ≤ 4, and the left state is initialized

in the regions 0 ≤ x∥ ≤ 0.5, 1.5 < x∥ ≤ 2.5, and 3.5 < x∥ ≤ 4, while the right state is

imposed elsewhere. The initial magnetic field must also be rotated with the grid, and

takes the initial values

B1,L =
1√
5

(
2B∥−B⊥

)
, B1,R =

1√
5

(
2B∥+B⊥

)
, (4.54)

B2,L =
1√
5

(
B∥+2B⊥

)
, B2,R =

1√
5

(
B∥−2B⊥

)
, (4.55)

where B∥ = 0.75 and B⊥ = 1. In this configuration the final density along the line

0≤ x∥ ≤ 1 will match that of the grid aligned configuration.

Both the aligned and tilted configurations are solved using the SSP(4,3,2) time in-

tegrator with tolerances of δa = δr = 10−4. The aligned cases use a grid with spacing

∆ = 1/512, and the tilted cases use a grid with spacing
√

5/1280 which sets a matching
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Figure 4.2: One dimensional traces of the density in the Brio-Wu shock tube problem
are shown for four different configurations, and compared to a high resolution solution.
Red circles and blue squares correspond to the grid-aligned cases with the radius R = 2
and R = 3 schemes respectively. Green crosses and purple triangles correspond to the
grid-tilted cases with the radius R = 2 and R = 3 schemes respectively. The inset zooms
in on the density spike to the right of the rarefaction.

number of cells along the line 0≤ x∥ ≤ 1, x⊥ = 0. Traces of the density extracted from

these results are visible in Figure 4.2. Apart from the grid-aligned radius R = 3 case,

all results agree closely with each other, and the solver overall exhibits minimal prefer-

ence between aligned and tilted phenomena. The excessive oscillations and broadened

density peak in the aligned R = 3 results are troubling. Reverting this test to use the

eight wave formulation suppresses this poor behavior, as does the application of more

elaborate Riemann solvers such as an approximate Osher-Solomon scheme [12]. The

tilted R = 3 case does not have these shortcomings, nor do any of the remaining R = 3

results.
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4.6.3 Orszag-Tang vortex

The Orszag-Tang vortex, initially posed by Orszag and Tang in [77] and subse-

quently solved in many papers (see e.g. [40, 65, 101, 23]), evolves a set of staggered

rotational velocity and magnetic fields. This initially smooth configuration rapidly gen-

erates complicated shock structures and makes an excellent test problem regarding the

ability of a scheme to resolve both types of features. Additionally, failure to control

divergence errors can result in spurious structures appearing as well as a total crash of

the code [23]. The classic version of this problem is only two dimensional, but a three

dimensional version was introduced in [53] which adds a small velocity perturbation

that can be seen below.

This problem is solved on the domain Ω= [0,1]d with periodic boundary conditions
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in all directions. The three dimensional initial conditions are

ρ = γ
2, (4.56)

u1 = −(1+ εsin(2πz))sin(2πy), (4.57)

u2 = (1+ εsin(2πz))sin(2πx), (4.58)

u3 = εsin(2πz), (4.59)

pg = γ, (4.60)

B1 = −sin(2πy), (4.61)

B2 = sin(4πx) (4.62)

B3 = 0, (4.63)

where ε = 0.2 controls the strength of the perturbation, and the ratio of specific heats

is γ = 5/3. Setting z = 0 reduces these to the traditional two dimensional initial condi-

tions.

This problem is solved in two dimensions on a grid with spacing ∆ = 1/1024 by

both the radius R = 2 and R = 3 schemes. The three dimensional version is solved on

a grid with spacing ∆ = 1/256 by the radius R = 2 scheme. All results were obtained

with the SSP(4,3,2) time integrator with tolerances of δa = δr = 10−4 and a maximal

CFL number of 1.25.

The density and magnetic pressure are visualized at times of t = 0.5 and t = 1.0,

and can be seen for the two dimensional radius R = 2 scheme in Figure 4.3, the two
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Figure 4.3: The density (left column) and magnetic pressure (right column) are shown
for the two dimensional Orszag-Tang vortex at times of t = 0.5 (top row) and t = 1
(bottom row). The radius R = 2 scheme was used with a grid spacing of ∆ = 1/1024.

dimensional radius R = 3 scheme in Figure 4.4, and the three dimensional radius R = 2

scheme in Figure 4.5. Up to time t = 0.5 all results match very well with the literature

(e.g. [40, 65, 101, 23] in two dimensions, and [53, 64] in three dimensions).

Running this problem to the longer time of t = 1.0 is more challenging and less

reported on. Notably, the radius R = 3 results in Figure 4.4 exhibit broken symmetry

in the center of the domain, which has been reported before [31]. This likely due to the

non-associativity of floating point addition as observed in solvers for the compressible

Euler equations [34]. In the three dimensional case at this longer time some fingering
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Figure 4.4: The density (left column) and magnetic pressure (right column) are shown
for the two dimensional Orszag-Tang vortex at times of t = 0.5 (top row) and t = 1
(bottom row). The radius R = 3 scheme was used with a grid spacing of ∆ = 1/1024.

in the density and magnetic pressure are visible on the lower left face of the cube as

viewed in Figure 4.5, which is similar to the result in [65], but more pronounced.

4.6.4 Field loop advection

The field loop advection problem provides a very sensitive test of a schemes ability

to control divergence errors. A very weak circular magnetic field is placed into a small

region within a uniformly advecting flow. The weak nature of the field means that this

loop should interact minimally with the background flow, and maintaining the structure
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Figure 4.5: The density (left column) and magnetic pressure (right column) are shown
for the three dimensional Orszag-Tang vortex at times of t = 0.5 (top row) and t = 1
(bottom row). The radius R = 2 scheme was used with a grid spacing of ∆ = 1/256.

of this loop over time is challenging. It is worth noting however that purely passive

advection of this loop is not an exact solution of the ideal MHD equations, and some

amount of interaction with the background flow is inevitable.

In two dimensions this problem is solved as in [40, 101]. The domain is set as

Ω = [−1,1]× [−0.5,0.5] with periodic boundary conditions in both directions. The

uniform background flow is initialized with ρ = 1, u1 = 2, u2 = 1, u3 = 0, and pg = 1,

which returns the field loop to its initial position at time t = 1. The magnetic field is
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initialized as

B1 = −A0
y
r
, r < R, (4.64)

B2 = A0
x
r
, r < R, (4.65)

where r =
√

x2 + y2, R = 0.3 is the radius of the loop, and A0 = 10−3 controls the

strength of the loop. For r > R the magnetic field vanishes. This configuration results

in an initial magnetic pressure of pb = A2
0/2 = 5× 10−7 within the loop. The ratio of

specific heats is γ = 1.4.

Figure 4.6: Shown is the magnetic pressure in the two dimensional field loop problem
as obtained by the radius R = 2 scheme (left) and radius R = 3 scheme (right) at the
final time of t = 1. Both cases utilize a grid spacing of ∆ = 1/256.

Figure 4.6 shows the magnetic pressure at the final time of t = 1 after the loop has

traversed the domain once as obtained from the radius R = 2 and R = 3 schemes in two

dimensions. In each case the grid spacing is set to ∆ = 1/256, and the RK3(2)5F [3S∗+]

time integrator was used with tolerances of δa = δr = 10−4 and a maximal CFL number

of 1. The radius R = 3 scheme requires disabling the KXRCF indicator, hence applying
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WENO throughout the domain. In spite of this, this scheme exhibits a smaller deviation

from the initial magnetic pressure.

An interesting additional challenge was posed in [101] where u3 = 1 is set within

the background flow. In this case B3 = 0 can only be maintained if the remaining two

components have exactly zero divergence. Though not reported here, this configuration

was tested and B3 only exhibited negligible fluctuations on the order of 10−18.

In three dimensions this problem is solved as in [41, 64]. The domain is set as

Ω = [−0.5,0.5]× [−0.5,0.5]× [−1,1] and periodic boundary conditions are set in both

directions. The uniform background flow is initialized with ρ = 1, u1 = 1, u2 = 1,

u3 = 2, and pg = 1. As before, this background flow returns the field loop to its initial

position at time t = 1. This version of the test initializes the field loop as a tube tilted

about the y−axis. After performing the necessary change of variables, the initial field

is

B1 = −2A0√
5

y
r̃
, r̃ < R, (4.66)

B2 = A0
x̃
r̃
, r̃ < R, (4.67)

B3 = − A0√
5

y
r̃
, r̃ < R, (4.68)

where now r requires more care to set. This is most easily written by considering three

transformations of the x−coordinate, given by x′= (2(x−1)+ z)
√

5, x′′= (2x+ z)
√

5,
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and x′′′ = (2(x+1)+ z)
√

5. The radius is then set to

r̃ = min
{√

x′2 + y2,
√

x′′2 + y2,
√

x′′′2 + y2
}
, (4.69)

and x̃ is set to the corresponding transformation of the x−coordinate. The radius and

strength of the loop are maintained at R = 0.3 and A0 = 10−3. Once again, for r̃ > R

the magnetic field vanishes, and the initial magnetic pressure is pb = A2
0/2 = 5×10−7

within the loop.

Figure 4.7: Shown is the magnetic pressure in the three dimensional field loop problem
as obtained by the radius R = 2 scheme at the final time of t = 1 on a grid with spacing
∆ = 1/256. To more easily visualize the solution all cells with pb < 10−8 have been
omitted.
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Figure 4.7 shows the magnetic pressure at the final time of t = 1 after the loop

has traversed the domain once as obtained from the radius R = 2 scheme in three

dimensions. In each case the grid spacing is set to ∆ = 1/128, and as before the

RK3(2)5F [3S∗+] time integrator was used with tolerances of δa = δr = 10−4 and a maxi-

mal CFL number of 1. Compared with the two dimensional case there is slightly greater

dissipation of the magnetic field in the core of the loop (where it fails to be differen-

tiable), and somewhat surprisingly there is an even smaller deviation in the magnetic

pressure from its initial value.

4.6.5 Jet generation problem

The jet generation problem was posed by Li et al. [68] and more recently solved

by Seo and Ryu [91]. The fluid is initially quiescent but has an overlaid magnetic field

that is far from equilibrium. This induces strong outflowing jets from the origin and

generates a complicated flow field.

The domain is set as Ω= [−12,12]3 with outflow conditions on all faces. The initial

conditions have constant density and gas pressure given by ρ = 1 and pg = 1, with zero

velocity. The initial magnetic field is

B1 = (2xz−A0y)e−r2
, (4.70)

B2 = (2yz+A0x)e−r2
, (4.71)

B3 = 2
(
1− x2− y2)e−r2

, (4.72)
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with r2 = (x2 + y2 + z2), and γ = 5/3. This problem was solved with the radius R = 2

scheme on a grid with spacing ∆ = 24/320, using the SSP(4,3,2) time integrator with

tolerances δa = δr = 10−3 and a maximal CFL number of 1.25. Curiously, the use of

the KXRCF indicator on this problem gives oscillations in the post-shock flow behind

the roughly spherical outgoing shock. To suppress these oscillations the indicator is

disabled, and WENO applied throughout the domain.

Figure 4.8: The density (top left) and gas pressure (bottom left) are shown along the
y = 0 plane of the jet generation problem as solved by the R = 2 scheme to a final time
of t = 5 on a grid with spacing ∆ = 24/320. The right panel shows one magnetic field
line colored by magnetic pressure.

Slices of the density and gas pressure can be seen in Figure 4.8 at the final time
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t = 5, and are directly comparable to the results in [91] despite using a lower resolution

here. A single magnetic field line is plotted and is very similar to that shown in [68],

exhibiting the same tight inner helix and loose counter-rotating outer helix. Being a

global simulation, this problem exhibits a wide range of scales. The roughly spherical

outgoing shock occupies much of the domain at the final time, but has a relatively

simple structure with minimal second flows. The low density jets, particularly at their

heads, exhibit more complicated structure that is certainly under-resolved here. The

fact that useful results are generated is a testament to high order solvers. Nevertheless,

this problem is an ideal candidate for future studies with adaptive mesh refinement.

4.6.6 Astrophysical jet

The final test problem consists of a magnetized version of the high density jet pre-

sented in Section 3.6.4. The two dimensional jet presented here follows the configu-

ration from [113], and the three dimensional version is a natural extension thereof. In

two dimensions the domain is set as Ω = [0,0.5]× [0,1.5] with symmetry conditions

on the lower x−face, outflow conditions on the upper x− and y−faces, and mixed in-

flow/outflow conditions on the lower y−face. The domain initially contains quiescent

gas with an initial density of ρ = γ, and a gas pressure of pg = 1. The ratio of spe-

cific heats is γ = 1.4. A background vertical magnetic field is set as B2 =
√

2/β with

β = 10−4. Inflowing gas is prescribed on the lower y−face for x < 0.05 with a density
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of ρin = 10γ, gas pressure of pg,in = 1, and velocity of u2 = 800. The magnetic field is

set to extrapolation over the entire face.

Figure 4.9: The left two panels show the logarithmic density and magnetic pressure
fields in the magnetized astrophysical jet problem at t = 0.002 as obtained from the
radius R = 2 scheme. The right two panels show the same results as obtained from the
radius R = 3 scheme. Both schemes utilize a grid spacing of ∆ = 1/1024.

The three dimensional set up follows naturally from the two dimensional problem.

The domain is now Ω = [0,0.5]× [0,1.5]× [0,0.5], where the lower x− and z− faces

both have symmetry conditions, the lower y−face has mixed inflow/outflow conditions,

and all of the upper faces have outflow conditions. The initially quiescent gas is set

exactly as before, as is the inflowing gas on the lower y−face which is now imposed

for
√

x2 + z2 < 0.05.

The two dimensional problem is solved by the radius R = 2 and R = 3 schemes on a

grid with spacing ∆= 1/1024, and the three dimensional version is solved by the radius

R = 2 scheme on a grid with spacing ∆ = 1/320. All cases utilize the SSP(4,3,2) time
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integrator with tolerances of δa = δr = 10−2 and a maximal CFL of 1. These problems

ultimately flag the majority of the domain as needing WENO, so the KXRCF indicator

is disabled to apply WENO throughout.

Figure 4.10: The logarithmic density (left) and magnetic pressure (right) are shown for
the three dimensional magnetized astrophysical jet as obtained with the radius R = 2
scheme at the final time t = 0.002 on a grid with spacing ∆ = 1/320.

Plots of the logarithmic density and the magnetic pressure for the two dimensional

problem are visible in Figure 4.9. These plots as shown are directly comparable to those

presented in [113]. Corresponding results for the three dimensional case are shown in

Figure 4.10. These magnetized jets have a richer morphology than their unmagnetized

counterparts, shown in Section 3.6.4. There are now two bow shocks launched from

the head of the jet as it pushes into the ambient fluid. The inner shock is strongly con-

fined by the magnetic field, and rejoins the sheath of the jet part way down. The outer

bow shock is of a magnetosonic nature and is unconfined by the strong vertical mag-
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netic field. Just as in [113], a spurious reflection of this shock can be seen originating

from the upper x−face of the domain in two dimensions. The three dimensional jet

demonstrates nearly identical morphology.
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Chapter 5

Conclusion

This dissertation presented kernel-based weighted essentially non-oscillatory schemes

for the compressible Euler equations, the compressible Navier-Stokes equations, and

the ideal magnetohydrodynamics equations. These schemes are applicable in two and

three space dimensions, and their description is supported by a highly parallel multi-

GPU code written by the author. The ultimate result is a an efficient and general purpose

solver applicable to a wide variety of flow phenomena, from nearly incompressible tur-

bulence to flows dominated by extreme shocks.

Chapter 2 began with a discussion of reproducing kernel Hilbert spaces and linear

recovery processes therein. These abstract notions were applied to the reconstruction

problem. This allowed reconstruction to be posed in a fashion that is largely indepen-

dent of the number of space dimensions or the specific layout of the given data. This
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flexibility greatly simplified the development and presentation of a fully multidimen-

sional reconstruction scheme. More importantly, this flexibility allowed for the ap-

plication of this multidimensional reconstruction scheme to weighted essentially non-

oscillatory (WENO) reconstruction. The latter half of this chapter deliberates on this

adaptation, and forms the foundation of the following chapters.

Chapter 3 incorporates this reconstruction scheme into finite volume method for

the compressible Euler equations closed by an adiabatic equation of state. Chapter 2

considers only the reconstruction of scalar valued functions. Systems of reconstruction

variables are discussed to extend this reconstruction method to the treatment of mul-

ticomponent data. The standard choice of characteristic variables is recalled and used

to motivate the use of alternate sets of variables for reconstruction. A few key draw-

backs to these variables are highlighted, and a novel set of so-called linearized primitive

variables are introduced to ameliorate these issues while still providing high quality re-

constructions. On the other hand, the elaborate WENO reconstruction is observed to

be unnecessary for many cells in a typical run of a finite volume solver. Troubled cell

indicators were adapted from the discontinuous Galerkin community which allow for

WENO to be avoided in most of the domain. This makes the reconstruction process

cheaper and provides valuable memory savings. A self-adjusting positivity preserv-

ing limiter, adapted from existing finite volume methods, was described and allows for

the solution of problems with extremely strong shocks. Choices of time integration
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methods were discussed, particularly as relevant for use on GPUs. The chapter closed

with a variety of challenging benchmark problems, including extensions to handle the

compressible Navier-Stokes equations.

Chapter 4 extends these ideas further to handle the equations of ideal magnetohy-

drodynamics. These equations bring a dramatically new requirement in the form of the

divergence-free constraint on the magnetic field. A few standard methods form satisfy-

ing this constraint were reviewed, and the method of generalized Lagrange multipliers

(GLM) ultimately selected for the present solver. Reconstruction over linearized prim-

itive variables, flagging cells for WENO with troubled cell indicators, and limitation of

the reconstructed states for positivity preservation, were all adapted from the previous

chapter. Of particular interest is the introduction of source terms necessary for the GLM

method which depend on derivatives of the state variables. The accurate discretization

of these source terms was deliberated on, and a few useful approximations made. With

all of the supported physics and numerical schemes fully described, an overview of

the developed software to support this work could be given. As before, this chapter

closed with the application of the proposed scheme to a variety of stringent benchmark

problems.
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5.0.1 Directions for future study

As complete as the work presented here is, there are always possibilities for future

study. A few such possibilities are discussed here. These fall roughly in the cate-

gories of extensions to the implementation, physics additions, and improvements of the

scheme itself.

Two directions that have already been mentioned throughout the dissertation would

be to embed these methods into an adaptive mesh refinement framework, or to ex-

tend the reconstruction scheme to unstructured meshes. The former is likely a more

productive avenue for the investigation of astrophysical phenomena, while the latter

would be more suited to handling problems with manifestly complicated geometries

like turbo-machinery. Other algorithmic improvements could come from a more thor-

ough investigation of time integrators, and particularly the application of error-adaptive

integrators to problems with very strong shocks.

Regarding additional physics, one could consider incorporating other equations of

state, supporting multi-fluid evolution and reaction terms, or adding non-ideal MHD

terms. Whole new sets of governing equations could be considered, and in fact the

available code does have a very preliminary implementation for special relativistic hy-

drodynamics.

Finally, the scheme itself leaves some room for improvement. More optimal tagging

criteria for WENO reconstruction could give improved memory savings. For MHD in
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particular, it would be interesting to see an investigation of different indicator variables.

Given an improved tagging system, the WENO reconstruction could be simplified and

made cheaper by not trying to match the accuracy of the full stencil reconstruction at

all. On a similar note, their is plenty of room to investigate other smoothness indicators

and formulations of the nonlinear weights.

It is the author’s hope that by providing a full implementation these avenues for

future work can be more easily explored.
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