Lawrence Berkeley National Laboratory Recent Work

Title

SCATTERING OF K+ MESONS OFF PROTONS

Permalink

https://escholarship.org/uc/item/7bv6h7qw

Author

Kycia, Thaddeus Francis.

Publication Date

1959-05-14

scattering of ${ }^{+}$mesons off protons

TWO -WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNIVERSITY OF CALIFORNIA
 Lawrence Radiation Laboratory Berkeley, California

Contract No. W-7405-eng-48

SCATTERING OF K^{+}MESONS OFF PROTONS
 Thaddeus Francis Kycia (Thesis)

May 14, 1959

```
Printed in USA. Price $2.25. Available from the
Office of Technical Services
U. S. Department of Commerce
Washington 25, D. C.
```


Contents

Abstract 4
I. Introduction 5
II. K^{+}Meson Selection
A. The K^{+}Beam 8
B. Electronics for the K^{+}-Meson Identification System 10
C. Identification of K^{+}Mesons 14
III. Scattering-Detection System
A. Principle 20
B. Target 22
C. Ring Counters 24
D. K^{+}-Meson-Decay Background 27
E. Water Cherenkov Counter 30
F. Separation of Scattered K^{+}Mesons from Recoll Protons 31
G. The Scattering-Range Counter 33
H. Electronics for the Detection and Recording of Scattering Events 33
IV. Determination of the Total $K^{+}-\mathrm{p}$ Cross Section
A. Scaler Data 37
B. The Corrected Totel $K^{+}-\mathrm{p}$ Cross Section 38
V. Determination of the Differential $K^{+}-p$ Cross Section
A. Film Reading and Sorting of Events 41
B. Calibration of the Ring Counters 43
C. Calculation of the Cross Section 46
D. Corrections 49
F. The Corrected Differential $\mathrm{K}^{+}-\mathrm{p}$ Scattering Cross Section 50
VI. Phase-Shift Analysis 54
VII. Discussion
A. Total Cross Section 58
B. The Nature of the K^{+}Meson Force 58
C. The Differential-Scattering Cross Section 59
D. Use of K-p Dispersion Relations 59
Acknowledgments 68
Appendices 69
References 79

The total $K^{+}-p$ cross section was measured at the three $K^{+}-m e s o n$ energies $175 \pm 25,225 \pm 25$, and $275 \pm 25 \mathrm{Mev}$ and the differential scattering cross section was measured at 225 Mev . The $K^{-1}-\mathrm{p}$ nuclear force was shown to be repulsive from the observed constructive interference with Coulomb scattering. The differential cross section was otherwise isotropic and could arise from either pure Sawave or pure P-wave scattering.

Subtracted dispersion relations were applied to these data and the rest of the available K proton scattering data. The statistical errors on the data were found to be too large to determine the K-hyperon relative parity. However, if the $K \wedge$ and $K \Sigma$ relative parities are assumed to be the same, then if the coupling were scalar, the coupling constant $g^{2} / 4 \pi$ would be less than 0.6 ; if pseudoscalar, less than 10.

I. INTRODUCTION

Information on the scattering of K^{*} mesons on protons is of the greatest importance in that it may allow us to determine the nature of the Kameson-nucleon forces. Data at low energies have come mostly from the rare scattering of K^{\star} mesons on hydrogen nuclei in emulsion. A compilation of the world total of 75 events was reported at the 1958 High Energy Physics Conference at Cern. ${ }^{1}$ The angular distributions in the three energy intervals 20 to 100 Mev , 100 to 200 Mev , and 200 to 300 Nev, due to the large uncertainties were not inconsistent with isotropy. From a more recent compilation of data. ${ }^{2}$ total cross sections have been obtained as shown in Table I.

Table I

Results from emulsion events	
Energy (Mev)	Total $K^{4}-\mathrm{p}$ cross sections (mb)
$20-100$	13.5 ± 2.8
$100-200$	14.2 ± 2.6
$200-300$	18.0 ± 3.5

The angular distribution of the events corresponding to the 200-300Nev onergy interval is given in Fig. $1 .{ }^{2}$

The purpose of this experiment was to measure the total K^{+}-mesonproton cross section at the higher energies-namely, 175 $\ddagger 25.225 \pm 25$, and 275 ± 25 Mev-as well as to determine the differential-scattering cross

Fig. 1. Angular distribution (c. m.) of K^{+}mesons scattering off free protons in emulsion in the energy interval 200 to 300 Mev .
section with small statistical errors at 225 Mev . If the rise in total cross section should be due to a rising P-wave contribution, an asymmetry In the differential-scattering cross section should be seen. The application of dispersion relations to the determination of the relative K-meson-hyperon parity is discussed.

A. The K^{+}Beam

The K^{+}beam was set up for three K^{+}-meson energies; namaly, 175 ± 25 Mev. 225 ± 25 Mev, and 275 ± 25 Mev. Figure 2 shows the experimental arrangement of the beam. The tantalum production target was situated in the west straight section of the Bevatron. It was 5 on long in the direction of the proton beam and presented a cross section of $0.63 \times 4.3 \mathrm{~cm}$ in the K^{+}-bean direction at 60° to the proton beam.

Both the bending magnets were of the two-lens, strong-focusing type. having a 4 inch aperture. The first magnet momentum-analyzed the accepted particles coming from the production target. and. at the same time rem focused them at the lead slit. which then selected particles of the desired momentum. The beryllium helped to separate in momentum the protons from the K^{+}mesons coming down the channel. The second magnet then canceled the divergence of the desired particles and refocused the pare ticles with the K^{+}-meson momentum at the defining scintillation counter. The scattering-deteation system set the following requirements on the K^{+} beam:

1. The angular divergence of the K^{+}mesons should be less than $\pm 2^{\circ}$
2. They should be focused on an area 1.25 in. in diameter;
3. The energy spread of the K^{+}mesons should be no greater than about $\pm 25 \mathrm{Mev}$; and

Fig. 2. The K^{+}-meson beam. The two magnets select K^{+}mesons of the desired momentum and focus them behind the D counter. Beryllium was used to separate the K^{+}mesons from protons and the various counters were used to identify K^{+}mesons in the beam.
4. The number of K^{+}-mesons per Bevatron pulse should exceed 25.

B. Eloctronics for the K^{+}Meson Identifiaation System

As seen above, the π^{+}mesons, K^{+}mesons, and protons that are accepted by the lead slit at the first focus are of the same momentum. Eecause of their mass differences, their velocities are different. Thus the K^{+}mesons can be identified by their transit times over the 8-foot length of the counter telescope from counter No. 1 to the D counter. Figure 3 shows a block diagram of the counters and electronics associated with the identification of K^{+}mesons. A description of the counters follows.

Scintillation counters Nos. 1, 2, and 3 were $\frac{1}{4}$. thick in the beam direction and 3×3 in. in cross section. They were coupled optically to 7264-type RCA photomultiplier tubes by means of Lucite light pipes. Scintiliation counters D and R were also $\frac{1}{i}$ in. thick in the beam direction, the former being cylindrical in shape with a 2.25 -in. diamoter and the latter square in shape with 3 -in. sides. Each of these counters was mounted on a 6810A-type RCA photomultiplier tube also using lucita light pipes. In order to avoid false counts due to Cherenkov radiation in the light plpes of these counters, all the oounters were placed in a vertioal position with their light pipes below the beam.

The π_{A} counter is a velocity-threshold Cherenkov counter which identifies π^{+}mesons in the beam. Its radiator consists of a clear liquid, Fluorochemical FC-75, manufactured by the Minnesota Mining and Manufacturing Company. The liquid has an index of refraction of 1.276 and is

MU-17325

Fig. 3. K^{+}-meson identification. Coincidences and anticoincidences are taken among counters $1,2,3, D, R$, and ${ }^{\pi} A$. The S_{2} scaler gives the number of incident K^{+}mesons; the \bar{S} scaler gives the number of K^{+}mesons that are lost between the D and R counters, and the S_{1} scaler gives the difference $S_{2}-S$.
contained in a Lucite cell of 1/26-in. wall thickness, 2.5-in. thickness in the beam direction, and $2.5 \times 2.5 \mathrm{in}$. cross section. The radiation leaving the cell is reflected with a cylindrical aluminum mirror to the photocathode of a 6810-type RCA photomultiplier situated in a vertical position.

The negative anode pulses, after being properly delayed, were connected to the coinoidence circuits as shown in FIg. 3. The only exception to this was the π_{A} pulse, which was divided into three pulses each of which was ampliffed with a Hewlett-Packard 450 A distributed amplifier.

Each of $\mathrm{C}_{2} \cdot \mathrm{C}_{3}$, and C_{4} in Fig. 3 is a threefold milimiorosecond coincidence circuit with an anticoincidence oircuit incorporated into 4t. ${ }^{3}$

Counters 1. 2, and 3 were connected to the inputs of C_{3} while counters 2. 3. and D were connected to the inputs of C_{4}. The reason for having two coincidence circuits and four scintillation counters was simply to improve the time resolution of the system. Coincidence cirouits C_{3} and C_{4} were timed for K^{+}mesons, but to improve the rejection ratio for π^{+}mesons, the π_{A} counter was placed in anticoincidence. The purpose of the R counter and C_{2} coincidence circuit was for the range. energy measurement of the K^{+}mesons, but this is disoussed in greater detail later. In Fig. 3 it can be seen that the output puises of C_{3} and C_{4} were amplified and then discriminated. The fast discriminator oirouit was of the EFP60 type. desoribed in the UCRL drawing B3x1243. The other discriminators in Fig. 3 are the same. The S_{2} circuito which was a

Rossi-type diode coincidence circuit with a 10^{-7}-sec resolution detested coinoidences between the outputs of the C_{3} and C_{4} discriminators. The outputs of these discriminators as well as the output of the S_{2} ooincidence circuits were scaled. The S_{2} scaler then gave the number of K^{+} mesons passing through the counter telescope.

The inputs to the C_{2} millimicrosecond coincidence oircuit were outm. puts from counters 3. D. and π. The output of the coinoidence circuit was amplified, disoriminated against doubles, and scaled. Coincidences with a 10-7-sec resolution were made between the S_{2} output and the C_{2} discriminator output, and after discrimination against singles, the twofold S_{1} coincidences were soaled. Similarly, an anticoincidonce requiring that S_{2} count and C_{2} not count was detected and acaled with the $\overline{5}$ scaler. The $\overline{\mathrm{s}}$ scaler then read the number of $\mathrm{K}^{{ }^{1} \mathrm{~g}}$ that reached counter D but did not pess through counter $R_{\text {. whereas }} S_{1}$ was simply $S_{2}-S_{\text {, which }}$ was equal to the number of K^{+}mesons that reached counter D and also counted in R. These counters were used to determine the range distribution of the K^{4} mesons in copper inserted between counters D and R. During the data-taking part of the experiment, a liquid hydrogen target was placed between the D counter and a trigger counter. T, which was substituted for the R counter in the electronics. Under the circumstances. whenever a K^{+}meson scattered and missed the rear trigger counter T. $\overline{\mathrm{S}}$ would count. A pulse from \bar{S} would then trigger the osctilloscope upon whose sweeps the various counter pulses would be displayed. In order to avold false triggers of the osctilloscope。 the $\overline{5}$ oscilloscope trigger was placed in coincidence with a 200 msec . gate, G. This was the same gate
that allowed the scalers to count during the time interval in which the Bevatron proton beam was being spilled onto the target. This scaler gate unit was intitially trigsered by a Bevatron timing pulse.

As shom in Flgure 3. outputs of C_{3} and S_{2} coincidence circuits were sent to a multichannel coincidence circuit whioh took coincidences between the K pulse and the various outputs of the seattering-detection. counters. This is discussed in greater detail in the section on the scattering-detection system.

C. Identification of K^{+}Mesons

With the combination of oounter choice and of fast-coincidence circuits it was possible to distinguish K^{+}mesons from π^{+}mesons and protone by virtue of their velocity differences. A resolution curve of the $\mathrm{K}^{+}{ }^{\mathrm{m}}$ meson identification system at 175 Mev kinetic energy is show in Figure 4. The delay in counter 1 was varied while the rest of the circuitry was timed for K^{4} mesons. Table II lists Δt, the transit-time differences over the $8 \mathrm{f}^{\prime}$. of the counter telescope。 between K^{+}mesons and m^{+}mesons and between K^{+}mesons and protons at the three energies.

Table II

Transit-time differences			
(mpsec)	Energy (Mev)		
	175 ± 25	225 ± 25	275 ± 25
$\Delta t_{K \pi}$	3.42	2.68	2.13
$\Delta t_{k p}$	6.60	5.5	4.7

$$
M U-17326
$$

Fig. 4. Resolution curve of the K^{+}-meson identification system.

By use of this table it is seen in Figure 4 that π^{+}mesons would appear at a delay of about 12 mpsec and protons at about 22 m $\mu \mathrm{sec}$, both out. side the resolution curve. The π^{+}mesons were rejected mostly by the Cherenkov counter and partly by transit-time difference. Protons, on the other hand, wore rejected by transit-time difference. Sindlar Counter 1 delay curves were obtained at 225 Mev and 275 Mev kinetio energies, but in estimating the π^{+}-meson contamination, a little more caution was recessary. At et ther energy the proton peak would fall at delays greater than 20 mpsec, and it can be seen from Figura 4 that they would not give any contribution to S_{2} at $15.5 \mathrm{~m} \mu \mathrm{sec}$. The π^{+}mesons. however, had their peak at 13.4 m sec. for 275 Mev kinetic energy, and therefore it was necessary to estimate what fraction of the counts at 25.5 musec delay was due to π^{+}mesons.

When the counter telescope, with the Π_{A} counter turned off, was timed for π^{+}mesons, it was found that the ration of π^{+}to K^{+}was about 100 to 1. The telescope was then timed 2 mpsec off the π^{+}-meson peak in the direction away from the K^{+}-meson peak, to make certain that only π^{+} were being identified. The Π flux was observed for the π_{A} counter turned off and on. The ratio of the fluxes was 1500 to 1 . and this then gave the efficiency of the π_{A} counter for π^{+}mesons. The rejection of π^{+} mesons by transit-time difference was better than 10 to 1 when the identification system was timed for K^{+}mesons. The result of these two offects was to reduce the π^{+}-meson contamination of K^{+}mesons to less than 0.7%.

The energy distribution of the K^{+}mesons was determined by their range in copper. In Figure 5 is shown a range-distribution curve for the X^{+}beam at 225 ± 25 Mev kinotic enerey. The copper was inserted into the K^{+}beam ahead of the R counter. Similar curves were obtained for the 175425-Mev and 275 25 Mev kinetic energies. It is to be noticed that the range curve has a tail of several percent. It was necessary to show that this tail was not due to π^{+}mesons. The probable explanation is that the K^{+}mesons that stopped in the copper decayed and sent tho charged decay Into the R counter.

The half width of the resolution of the S_{1} coincidenoemcircuit comm bination wes about 2.5 mpsec, and the mean 11 fe of the K^{+}mesons is 12.2 m $\mu s e c .{ }^{4}$ so that 18.5% of the K^{+}mesons that decayed at rest in the copper would have been timed correctly to count in the range countor. A decay curve was taken on the R counter and the results are plotted on Figure 6. It can be seen that, with 100.2 gef copper in, the counting rate of K^{+} mesons does drop off exponentially with a slope corresponding to the mean life of K^{+}mesons. Had there been a strong π^{+}meson contamination, the K^{+}meson counting rate would have dropped noticeably when the delay was changed from 0 to 2 mpsec .

MJJ 16235

Fig. 5. Range distribution in copper for K^{+}mesons with the $225 \pm 25 \mathrm{Mev}$ kinetic energy.

$M U-17591$

Fig. 6. Counting rate vs. delay in the range counter.
The data show that the tail in the range distribution of Fig. 5 is due to K^{+}mesons stopping in the copper and sending the decay products into the range counter. The falling off in the counting rate, with increase in delay is consistent with a K^{+}-meson mean life of $1.22 \times 10^{-8} \mathrm{sec}$.

III SCATTERINO-DETECTION SYSTEM

A. Principle

In any kind of soattering experiment one always tries to obtain as many events as possible and as ilttle baokground as poseible in order to axrive at statistically sound cross sectiona. This was espeoially the problem with the scattering of K^{+}mesons on protons, since the K^{+}mesons are somewhat rare, and free protons do not come in high densities. The relationship between all these quantities is surmarized as

$$
\begin{equation*}
\left.\frac{d N}{d R}\right|_{L} \Delta \Omega_{L}=\left.N_{P} N_{R} \frac{d \sigma}{d \Omega_{L}}\right|_{L} \Delta \Omega_{L} \tag{1}
\end{equation*}
$$

where N_{p} is the number of protons per square centimeter.
N_{k} 1s the number of incident K^{+}mesons,
$\left.\frac{d \sigma}{d \Omega}\right|_{L}$ is the differential K^{+}meson-protion cross section in the
in the laboratory system,
$\Delta \boldsymbol{\Omega}_{l}$ is an increment of solid angle.
and $\left.\frac{d N}{d \Omega}\right|_{L} \Delta \Omega{ }_{R}$ is the number of K^{+}mesons that scattered per unit solid angle into the solidmangle interval $0 \Omega_{\&}$.

At the K^{+}-meson energies used in this experiment identifioation of a K^{+}-meson-proton scatter could not have been easily done by detecting a coinoldence between the K^{+}megon and the recoil proton, because the recoil proton had too low an energy.

Figure 7 shows the kinematic relationship between the center-of-masssystem scattering angle of the K^{+}meson and the laboratory-system angles

MU-17327

Fig. 7. Relationship between the lab angles of the scattered K^{+}meson and recoiling proton and θ_{K}, the c. m . scattering angle of the K^{+}meson.
of both the recoil proton and the scattered K^{+}meson. It can be seen that for any elastic scattering only one of the two particles enters a forward cone of half angle 50° (lab). Thus, in order to find the angular distribution of the scattered K^{+}mesons, it was sufficient to determine the angle of the forward particle in the cone and then to identify it as being either a K^{+}meson or a proton. The inelastic scettering of K^{+} mesons giving rise to -meson production is presumed to be small. 5

B. Target

A ilquid hydrogen target assembly was designed for the experiment. but its design is such that it can be easily-adapted to various types and sizes of hydrogen vessels for other experiments. Views of the interchangeable target are shown in Figure 8, a drawing of the complete target assembly can be found on UCRL Drawing No. 7A6005B. In Fig. 8, a is the Mylar vessel 6 in . in length. 3 in . in diameter. 0.008 in . in thick. ness at the ends. and 0.015 in. in thickness at the cylindrical surface. Tube b was connected to the bottom of a 2.5-1iter liquid hydrogen reservoir and tube c to the vent through a valve. A liquid nitrogen jacket that surrounded the hydrogen reservoir was in thermal contact with the copper heat shield. d, to reduce heat absorption by the hydroo gen. For heat shielding of the ends, thin copper sheets e were used. The entrance window if was made of Mylar, whereas the exit window g was disc-shaped and made of stainless steel. Lucite windows h were situated at each side of the target.

The major boil-off occurred inside the Mylar target itself because

Fig. 8. The liquid hydrogen target; a is the Mylar vessel 6 in. in length, 3 in. in diameter; b is a tube connected to the bottom of a liquid hydrogen reservoir (not shown) ; c is a tube connected to a vent (not shown); d is a copper heat shield in thermal contact with a nitrogen jacket (not shown); e is a thin copper sheet also used as a heat shield; f is the Mylar entrance window and g the stainless steel exit window; and h is a Lucite window at each side of the target.
of heat absorption through the holes in the keat shield in front of tho windows h.
C. Ring Counters

The angle of the pariticle going forward in a K^{+}meson-proton collision was designedwith 15 ring countors forming two concentric cones directly behind the target (Figure 9). Eriaciencies or those cowntors at various pointe on the counter were checked by the following mathod bofore the experiment was begun. A $\mathrm{Sr}^{90}-Y^{90} \beta$ ray source was placed over the counter and a ting scintillation counter beneath it. When a β ray of sufficient energy passed through the ring counter and penetrated the counter underneath, the latter counter triggered an oseilloscope and the output pulse of the ring counter was displayed on the sweep. A pulsem height distribution wea thus obtained. By fitting a Poisson distribution to those data, it was possible to estimate the probability that no pulse would appear at the output and thus the inefficiency of the counter at that point. The over-all efficiency of all counters was then found to be better than 95%. The ratio of the average pulse hefghts at the best and worst points on the counters varied between two and four.

A scele drawing showing the position of the ring counters with respoct to the hydrogen target is given in Figure 10. Each ring counter overlaps the adjacent one in order to inprove the angular definition. It took one or two consecutive counts from sach of the two cones of counters to define the scattering angle of the K^{+}meson to better than $\pm 5^{\circ}$. Each of the chosen counter combinations then cietected scattering

ZN-2154

Fig. 9. Photograph of the 15 -ring counters.

MU- 16238

Fig. 10. Cross-sectional diagram of the target and scattering-detection counters.
did not "see" the defining counter D. or the Mylar and steel windows of the target. It was possible for some of the selected counter combinations to detect scattering events in the walls of the ifylar vessel containing the liquid hydrogen, but these walls were very thin and their effect (dotermined by running the target empty) could be subtracted out.

D. K^{+}-Meson-Decay Background

The percentage of K^{+}mesons that decay inside the 6-in. long target is given by

$$
\begin{equation*}
P=\left(1-e^{\frac{-x}{3 x+T}}\right) \times 100 . \tag{2}
\end{equation*}
$$

where $\quad=B C=2.19 \times 10^{10} \mathrm{~cm} / \mathrm{sec}$, the velocity of the k^{+}meson;

$$
\begin{aligned}
& T=22 \times 10^{-8} \mathrm{sec} \quad \text { the mean } 2 i f e \text { of a } K^{+} \text {meson in } \\
& \text { its rest frame: } \\
& \partial T=8.78 \times 10^{-8} \text { sec othe mean life of a } K^{+} \text {meson moving } \\
& \text { with velooity Bel } \\
& x=15.2 \text { cm } \quad \text {. the length of the target. }
\end{aligned}
$$

By inserting these numbers into Eq. (2), one find $P=3.6$. The branching ratios for the various decay modes of the K^{+}meson are given in Table III.0 The dominant decay modes. $K_{\Pi_{2}}$ and $K_{\mu_{2}}$, are of the twobody type. in contrast to the rarer $K_{\gamma}, K_{r^{\prime}}, K_{\mu \beta}$, and $K_{\mathcal{E}}$ threeabody decay. Except for the K_{γ} decay mode. in which the three secondaries are charged. any of the other decays in the target would appear to be a scattering event if the charged decay product went forward into a cone of half angle 50°. The decay events then would be a background that would be about four times the effect being investigated. In order to obtain a differential scattering cross section with reasonable
statistics 14 was necessary to eliminate the confusion of scattering events with decays.

Table III

K^{+}Type meson decay modes	
$\left(K_{\gamma}^{+}\right) \rightarrow \pi^{+}+\pi^{+}+\pi^{-}$	5.56 ± 0.41
$\left(K_{\mu_{1}}^{+}\right) \rightarrow \pi^{+}+\pi^{0}+\pi^{0}$	2.15 ± 0.47
$\left(K_{\mu 2}^{+}\right) \rightarrow \mu^{+}+\nu$	58.2 ± 3.0
$\left(K_{\mu_{2}}^{+}\right) \rightarrow \pi^{+}+\pi^{0}$	28.9 ± 2.7
$\left(K_{\mu 3}^{+}\right) \rightarrow \mu^{+}+\nu+\pi^{0}$	2.83 ± 0.95
$\left(K_{\mu 3}^{+}\right) \rightarrow e^{+}+\nu+\pi^{0}$	3.23 ± 1.3

Figure il shows, as a function of laboratury-aystem angie, the variations in laboratorymsystem velocity of the scattered K^{+}meson, the
 two predominant decay modes could then easily be identified by their velocity; this identification was the purpose of the water Gherenkov counter. It detected particles with a velocity β greater than 0.75 . Clearly, for all the $K_{\pi 2}$ and $K_{\mu 2}$ decay modes the charged secondary going into the forward cone of half angle 50° would have a high enough β to count. The positron from Kes decay would have a β of almost 1 for all forward angles and should count without difficulty. In the K ${ }_{r}^{+}$decay there was a large probability that one of the three π 's would count in the Cherenkov counter. Left were the $K_{\mu 3}$ and $K_{\mathcal{F}}$ decay modes in which

Fig. 11. The variation of β as a function of θ (lab) of the π and μ meson from K_{2} and $\mathrm{K} \mu_{2}$ decay in flight (for a K^{+}-meson kinetic energy of 225 Mev) and of the recoiling proton and scattered K^{+}meson.
the charged secondary had a spread in β for each laboratory-system angle. The two modes composed only 5\% of all the decay modes, and more than 65% of the forward-going charged secondarles had a $\beta>0.80$. Thus, less than 2% of the decays would act as background.

The angular distribution for decay modes with a single charged secondary with $\beta>0.8$ is given later in a seotion on the calibration of the ring counters.

E. Water Cherenkov Counter

The water was contained in a cell made of Luoite $1 / 16$ in. thick. The cell was disc-shaped. 21 in. in diameter and $1-7 / 8 \mathrm{in}$. thick. with fourteen 1/4-in. diameter Lucite studs cemented between the two large flat sheets to give it strength. A sealed-off hole. 4.5 in. in diameter. in the center (as shown in F1g. 10), allowed free passage of the unscattered K^{+}mesons. Fifteen 6655 RCA-type photomultiplier tubes were arranged around the outer circumference. Such a large number of tubes was.used to ensure a high counting efficiency over the very large volume of the counter. A light shifter was used to increase the number of photons in the frequency interval to which the photomultipiler tube is sensitive. The shifter consieted of 2-aminow. 8,naphthalene-disulfonic acid disodium sait, in a concentration of 10 mg per liter. According to Heiberg and Marshall. the effect of the shifter on their water Cherenkoy counter was to increase the pulse height by about $30 \% .7$

A layer of magnestum oxide $1 / 8 \mathrm{in}$. thick was set on the inside of the aluminum sheets used to cover the counter. Magnesium oxide is an excellent reflector even in the ultraviolet region, and as it was not in
optical contact with the Lucite cell. the advantages of critical reflections were not sacrificed. A special technique was developed for the formation of such thick coatings of Mgo without destroying its high rePlectivity. 8

The counter was checked by inserting it behind the defining counter and passing the particles in the K^{+}beam through it. The counter telescope was first timed for π^{+}mesons which had a velocity β of 0.97. and the π_{A} counter was turned off. The oscilloscope was triggered by the π^{+}-meson pulse and the amplified output of the Cherenkov counter displayed on the sweep. The unsaturated Cherenkov pulses were relatively uniform in height. indicating a very high lightmoollecting efficiency. When the counter telescope was then timed for protons which had a velocity β of 0.49 and a similar test was made, no pulses could be seen. This indicated that the light shifter was not scintillating to any detectable extent.

F. Separation of Scattered K^{+}Mesons from Recoil Protons

The separation was achieved by range. 9 Figure 12 shows the limits In the spread in range of both particles in copper as a function of the laboratory-system angle of the particle. The range spread is due to the $\pm 25 \mathrm{Mev}$ onergy spread of the incident K^{+}mesons. It is apparent from Fig. 12 that. for the K^{+}beam with a kinetic energy of $225 \pm 25 \mathrm{Mev}$ at the center of the target, the slowest K^{+}meson corresponding to an initial K^{+}-meson enargy of 200 Mev had a greater range in copper than the proton recolling from a collision with a $250-\mathrm{Mev} \mathrm{K}^{+}$meson for all angles from 0° to 50° (1ab). It was sufficient, then, to insert behind

MU-17330

Fig. 12. Range distribution in copper of 225 ± 25 $\mathrm{Mev} \mathrm{K}^{+}$mesons and recoiling protons.
the water Cherenkov counter a copper disc with the thickness dropping off with increase in radius in just the right way to stop all the protons and let the K^{+}mesons through. A large acintillation counter (range counter) behind the copper disc could then detect the K^{+}mesons soattered forward and passing through the copper. The arrangement is seen in the scale drawing in Fig. 10. The range-energy relationships that were used were based on the proton range-energy tables given by Aron. ${ }^{10}$ but extracted from a report by Atkinson and Willis. 9 The energy of the K^{4}. meson beam was also determined by range in copper, so that even if the range-energy curves were not quite correct. the error would tend to cancel.

O. The Scattering-Range Counter

The range counter consisted of four separate quadrant counters which. when put together, formed a circular disc $23 \frac{1}{2}$ in. in diameter with a center hole $4-3 / 4 \mathrm{in}$. in diameter. The counters were 1 in . thick and were certain of having a high counting efficiency. The four anode outputs were added to form a single output of the "range counter."

H. Flectronics for the Detection and Recording of Scettering Events

A block diagram of the electronics is shown in Fig. 13. The pulses from the ring counters were limited in the amplifiers, attenuated to 0.8 volt, and delayed. The water Cherenkov oounter required an additional amplifier, everything else being the same, while the range counter and trigger counter required only one amplifier each.

The origin of the S_{2} and C_{3} outputs entering the system in Fig. 13

MU - 17331

Fig. 13. Block diagram of the electronics associated with the scattering detection counters.

1s shown in Fig. 3. Since the 10^{-7}-seo S_{2} pulse required the existence of the $10^{-3}-5 e c C_{3}$ pulse, the purpose of taking a colncidence between them was to obtain a short $10^{-8}-$ sec K^{+}pulse, also 0.8 volt high.

Coincidences were taken between the K^{+}pulse and each of the 18 counter outputs. This was done by means of 20 twofold diode coincidence circuits as shown in Fig. 13. Outputs from ring counters Nos. 1 to 8 . the range counter, the trigger counter, and ring counters A to G. in that order, were connected to the inputs of Channsls 1 to 17 . The output of the Cherenkov counter was connected to both Channels 18 and 19. Channel 20 was terminated at the input and a diode removed from it to allow the K^{+}pulse to feed through to the output. The output of Channel 20 would act as a timing or line-up pulse for the identification of the other output pulses. The outputs of coincidence Channels Nos. 1 to 10 were delayed with respect to one another with 50 feet of RQ-63/U cable, or 6×10^{-8} see. Channel 10 output was terminated with a $125-\Omega$ resistor and the coincidence pulses were taken through Channel 1 output, amplified. delayed, and displayed on one of the two sweops that wera used of a fourgun cathode-ray tube. Outputs of Channel. 31 to 20 were delayed in a similar way with respect to one another except for the output of Channel 18. which was skipped and $12 \times 10^{-8} \mathrm{sec}$. delay inserted between the Channel 17 and Channel 19 outputs. The $125-\Omega$ terminating resistor was at Channel 20 output, and the coincidenoe outputs were taken through Channel 11. amplified. delayed, and displayed on the second sweep of the cathode-ray tube, a description of which follows.

The model 517 Tektronix oscilloscope had mounted on it a four-gun
cathoderay tubs unít describod in UGRL Drawing No. 2×27051. Incorporated in this unit is a vertical sweep stopper described in UCFJ. Drawing No. 29693. The output of Channel 18 was amplified and then used to trigeer a delay and gato unit described in UCRL Drawing No. $2 \times 643 \mathrm{H}$. The 20-volt. 10^{-6} sec. output pulse of the gate vent through an amplifier to the cathode to blank the sweep. This method was more advantageous than an additional anticoincidence circuit. The blanking was turned off for 5- to 10 minute intervals abcut every 2 hours in order that we might obtain a calibration of the ring counters by conpering the experimental angular distribution of the charged decay products to the predicted distribution.

The problom of photographing as many as five events occurring in rapid succession was solved by vertically displacing the traces on successive events. This was done with a vertioal sweep stepper, triggered by the oscilloscope sweep, and reset by a Bevatron timing pulse shortly before the spilling of the proton beam on the production target. The swesps were photographed with a Type 32l-A Dumont Oscillograph Record Camera at a film drive speed of $2 \frac{1}{2}$ in. per minuto.

IV DETERMINATION OF THE ROTAL K ${ }^{+}$-p CROSS SECTION
A. Scaler Data

The total oross sections of K^{+}mesons on protons at the three energies of 175 ± 25 Mev, 225 ± 25 Mev, and 275 ± 25 Mev were obtained from the \bar{S} and S_{2} scaler readings. The S_{2} readings gave the number of K^{+} mesons passing through D, the defining counter, whereas the $\overline{\bar{S}}$ reading gave the number of K^{+}mesong that passed through the defining counter but did not reach T, the trigger counter. The \bar{S} and S_{2} readings were accumulated for "target full" and "target empty" for each of the three energies. Table IV lists these numbers as well as the ratios of $\overline{\mathrm{S}} / \mathrm{S}_{2}$. which are the fractions of K^{+}mesons removed from the K^{+}beam.

Table IV

Summary of scaler readings			
Scaler	$\begin{aligned} & \text { Energy } \\ & \text { (Mev) } \end{aligned}$		
	175 ± 25	225 ± 25	275 ± 25
3/s (target full)	68,195	105,646	34.634
$\mathrm{S}_{2} \mid \mathrm{r}$	415.582	742.672	275.308
S/e (target empty)	68.063	44.944	30.014
$S_{2}{ }_{0}$	442.917	338.033	258.375
$\left.\frac{s}{S_{2}} \right\rvert\, f$	0.1640	0.14225	0.1259
$\left.\frac{\bar{s}}{S_{2}}\right\|^{\prime}$	0.1536	0.13295	0.1161

The total scattering cross section is a small effect obtained from the difference of two relatively large quantities, namely $\left.\frac{\overline{\mathrm{S}}}{\mathrm{S}_{2}}\right|_{\mathrm{f}}$ and $\overline{\mathrm{S}} \int_{\mathrm{S}_{2}} \int_{0}$. The relative statistical error on the difference of the ratios could be as low as 10% only because so many K^{+}mesons were used at each energy.

B. The Corrected Total $K^{+}-\mathrm{p}$ Cross Section

The K^{+}mesons are removed from the bean by the decay and scattering processes according to

$$
\begin{equation*}
d N(x)=-N(x)\left(\lambda_{5}(x)+\lambda_{D}(x)\right) d x \tag{3}
\end{equation*}
$$

where $d N(x)$ is the drop in the number of K^{+}mesons per cm^{2} in the beam in a distance $d x$.
$N(x)$ is the number of K^{+}mesons per cm^{2} in the beam at point x. $\lambda_{0}(x)$ is the reciprocal decay length for decays in which the chargad decay products miss the T counter.
and $\quad \lambda_{5}(x)=m(x) \sigma(x)$.
where $n(x)$ is the number of scattering centers por om^{3} at x.
$\sigma(x)$ is the scattering cross section at x for scattering ovonts with angles large enough to miss the T counter.

Integrating Eq. (3), we get

$$
\begin{equation*}
\frac{N\left(x_{1}\right)}{N\left(x_{0}\right)}=\exp \left\{-\int_{x_{0}}^{x_{1}}\left(\lambda_{s}(x)+\lambda_{0}(x)\right) d x\right\} \tag{5}
\end{equation*}
$$

where x_{0} is taken to be a point immediately before the defining counter $D_{\text {. }}$

$$
N\left(x_{0}\right)=s_{2} .
$$

x, is a point at which the trigeer counter is situated.
and

$$
N\left(x_{1}\right)=5_{1}=5_{2}-5
$$

The integration in Eq. (5) over x is performed for target full and target empty, for whioh the ratio $\frac{N\left(x_{1}\right)}{N\left(x_{0}\right)}$ becomes $\left(1-\frac{\overline{5}}{s_{2}}\right)_{f}$ and $\left(1-\frac{5}{s_{2}}\right)_{e}$ respectively.

By subtracting these two expressions of Eq. (5) we get

$$
\begin{aligned}
\left.\frac{\bar{s}}{s_{2}}\right|_{f}-\left.\frac{\bar{s}}{s_{2}}\right|_{e} & =\exp \left\{-\int_{x_{0}}^{x_{1}}\left(\lambda_{s}(x)+\lambda_{0}(x)\right) d x\right\}_{e} \\
& -\exp \left\{-\int_{x_{0}}^{x_{1}}\left(\lambda_{s}(x)+\lambda_{0}(x)\right) d x\right\}_{f}
\end{aligned}
$$

The integrals over x can be broken up into regions before the target. inside the target, and after the target. Since the scattering events and decays before the target will be the same for both "target full" and "target empty." the integrals over those regions will be ilentical.

For the interval ineide the target, account had to be taken of the scattering off the hydrogen gas in the target for the "target empty" case. The hydrogen gas density at that temperature was about 2% of the ilquid density. In the region after the target the integrals are not similar. This is mostly because of the additional drop in K^{+}-meson momentum for "target full." The reciprocal decay length λ_{D} due to the latter effect is almost 2% larger for "tareet full" than for "target empty." This difference is almost lo\% as large as the effect due to K^{+} mesons scattering off the protons in the target. Account was taken of this decay correction, which tended to lower the total K^{+}-meson-proton cross section, and the extent of the correction differed according to K^{+}meson nomentum. The scatterings in the walls behind the target were similar for "target full" and "target empty."

Contamination of the K^{+}-meson beam by its charged decay products
was insignificant because the decays occur predominantly at larger angles.

The results of the quantitative calculations (given in Appendix A) are contained in Table V.

Table V

Corrected total $\mathrm{K}^{+}-\mathrm{p}$ cross sections from scaler data	
Energy (Mev)	Total $\mathrm{K}^{+}-\mathrm{p}$ (rross section
175 ± 25	26.3 ± 1.7
225 ± 25	15.2 ± 1.3
275 ± 25	16.3 ± 1.7

V DETERMINATION OF THE DIFFERENTIAL $\mathrm{K}^{+}-\mathrm{p}$ CROSS SECTION

A. Film Reading and Sorting of Events

The film on which the sweeps were recorded was projected on an out= Inne of the two sweeps identifying the various pulses by their position with respect to the K pulse. This process is represented in Fig. 14. The first ten channels are displayed on the top sweep and the second ten channels on the bottom one. The particular event show implies that a K^{+}meson scattered forward (deduced from the R pulse) at a laboratorysystem angle of $30^{\circ} \pm 5^{\circ}$ (deduced from the 4, 5. and D ring counter pulses). It was not a K^{+}-meson decay, because netther did C, the Cherenkov counter pulse, appear, nor were the sweeps blanked out. However, a K^{+}-meson deaay event did occur shortiy after the scattering event, and it also is seen in Fig. 24. The stepper displayed upwards the second set of sweeps. but the delay and gate unit blanked the sweep out shortly after it began.

Scanners read the film and recorded all the events. Out of these readings all the possible scattering events and decay events were selected and punched out on IBM carcis separately. The IBM 650 computer was progranmed to read the cards and to tally up the evente in their designed memory locations, and, in the end, to read out the tallies. This was done for "target full" and "target empty" data, with results as given in Appendix. B.

A negligible fraction of the sweeps was not read, because of superposition of sweeps or loss of film. An effective S_{2}, which is the number

Fig. 14. A sample scattering event represented by the combination of the two traces. The pulses from counters $4,5, D$, and R indicate a forward scattering (deduced from the R pulse) at a lab angle of $30^{\circ} \pm 5^{\circ}$ (deduced from the 4,5 , and D pulses).
of incident X^{+}mesons that corresponded to the data given in Appendix B. was obtained from the relationship

Effsotive $s_{2}=\left(s_{2} / \bar{S}\right) \cdot($ number of sweeps read).
The effeotive $S_{2}{ }^{\prime}$ (abbreviated as eff. S_{2}) were computed for each run, and summed for "target full" and "target empty" data (and are given In Appendix E). The extent of the background for each counter combination is ovident upon comparison of the number of counts for "target empty" and "target full."

B. Calibration of the Rins Counters

The ring counters were calibrated by comparing the experimentally detorminsed decay distribution with the theoretical one for each counter combination. The theoretical decay distribution io calculated in Appendix C.

The fraction of K^{+}mesons that decay and count in a partioular counter combination 18

$$
\begin{equation*}
\left.\frac{N}{N_{0}}\right|_{D}=\int_{\theta} P_{D}(\theta) \cdot P_{c}(\theta) \in d \theta \tag{3}
\end{equation*}
$$

where Nis the number of decays counted in that counter combination,
No 18 the effective S_{2} for decay or the effective number of Incident K^{+}mesons,
$P_{D}(\theta)$ is the probability pex redian per centimeter of travel that a K^{+}meson will decay at an angle θ and count in the water Cherenkov counter,
$P_{c}(\theta)$ is the probability, in units of centimeters, that the counter combination will detect the decey.
and ϵ is a factor that accounts for the calibration and efficiency of the counter combination.
We have $P_{D}(\theta)=\frac{1}{\beta r \gamma r} \cdot \frac{1}{N_{0}} \frac{d N}{d \theta}$.
where β err $=390$ cm.
and $\frac{1}{N_{0}} \frac{d N}{d \theta}$ is given in Appendix C as a function of θ.
$P_{c}(\theta)=l_{D}$. the distance along the axis of the target within which a decay at angle θ would count in the counter combineion $12 A B$.

We can rewrite the expression for $\frac{N}{N_{0}} \int_{D}$ as

$$
\begin{align*}
\left.\frac{N}{N_{0}}\right|_{D} & =\int_{\theta} \frac{1}{B N \gamma \tau} \cdot \frac{1}{N_{0}} \frac{d N}{d \theta} \cdot l_{D} \in \cdot d \theta \\
& =\frac{1}{B N \gamma \tau} \cdot\left\langle\frac{1}{N_{0}} \frac{d N}{d \theta}\right\rangle \cdot \epsilon \int_{0} l_{D} d \theta \tag{10}
\end{align*}
$$

where $\left\langle\frac{1}{N_{0}} \frac{d N}{d \theta}\right\rangle$ implies that the quantity was averaged over the angle θ.
This expression is now used to determine \mathcal{E}, which enters into the expression for the differential cross section.

As an example, ϵ will be computed for ring counter combination 12AB which counted 33 decays out of an effective S_{2} of 119.038. The distance L_{D} as a function of angle was determined graphically (C_{D} may extend outside of the hydrogen target). To simplify the procedure it was assumed that the decay secondary lay in the plane formed by the axis of the target and the track of the incident K^{+}meson. ie.. that the azimuthal angle φ was zero. This was a very conservative assumption, since the K^{+} beam was much smaller in diameter than the ring counters. The variation

$M U-17332$

Fig. 15. The (ℓ_{D}) is the probability (in units of centimeters) that the counter combination 12 AB will detect the decay at angle θ. The (ℓ_{S}) is the probability (in units of centimeters) that the counter combination will detect the scattering occurring at angle θ 。
in l_{D} as a function of θ is given in Fig. 15. The area under the curve was measured and found to bo 0.126 cm radians. The value of $\frac{1}{W_{0}} \frac{d N}{d \theta}$. obtained from Fig. C3. was 0.825 at 18° (lab), at which the peak in \mathcal{C}_{D} occurs. We now have sufficient information to determine \in :

$$
\begin{array}{rl}
\epsilon & =\frac{\left.\frac{N}{N_{0}}\right|_{D} \cdot \beta N \gamma \tau}{\left\langle\frac{1}{N_{0}} \frac{d N}{d \theta}\right\rangle \cdot \int_{\theta} L_{D} d \theta} \tag{11}\\
& =\frac{33}{119.038} \cdot 3.880 \\
0.825 \times 0.126 & 1.04
\end{array}
$$

C. Calculation of the Cross Section

In a similar way the fraction of K^{+}mesons that scatter off the protons and count in $12 \mathrm{AB} 1 . \mathrm{s}$

$$
\begin{equation*}
\left.\frac{\bar{s}}{\text { eff } s_{2}}\right|_{f}-\left.\frac{\bar{s}}{\text { eff } S_{2}}\right|_{2}=\int_{\theta} P_{s}(\theta) P_{e}^{\prime}(\theta) \epsilon d \theta \tag{12}
\end{equation*}
$$

where $\left.\frac{\bar{s}}{s_{f f} \bar{s}_{2}}\right|_{f}-\left.\frac{\overline{5}}{e f f} \bar{S}_{2}\right|_{e}$, which is the difference between "target full" and "target empty" effects. gives the effective fraction of K^{+} mesons scattering off protons.
$P_{s}(\sigma)$ is the probability per radian per centimeter of travel that a K^{4} meson will scatter at angle θ.
$P_{c}(\theta)$ is the probability, in units of centimeters, that the counter will detect the scatter.
and ϵ has been defined previously.
We have $P_{s}(\theta)=\left.m \frac{d \sigma}{d \theta}\right|_{L}$ (sad ${ }^{-1}$)
where M is the number of protons per cm^{3}. and
$\left.\frac{d \sigma}{d \theta}\right|_{L}$ is the laboratory-system differential cross section for the scattering of K^{+}mesons off protons. $P_{c}{ }^{\prime}(\theta)=l_{s}$ is the length of the target within which a soattering event at angle θ counts in the counter combination 12 AB.

By rewriting Eq. (12) we obtain

$$
\begin{align*}
\left.\frac{\overline{5}}{\operatorname{sf} \bar{s}_{2}}\right|_{f}-\left.\frac{\bar{S}}{\operatorname{ff} s_{2}}\right|_{e} & =\left.\int_{\theta} n \frac{d \sigma}{d \theta}\right|_{L} \mu_{s} \epsilon d \theta \\
& =n\left\langle\left.\frac{d \sigma}{d \theta}\right|_{L}\right\rangle \in \int_{\theta} l_{s} d \theta \tag{14}
\end{align*}
$$

The laboratory-system differential cross section $\left\langle\left.\frac{d \sigma}{d \theta} \right\rvert\, \mathcal{L}\right\rangle$ at angle θ can be determined once $\int_{\theta} l_{s} d \theta$ is known. This integral will not agree with $\int_{\theta} \ell_{0} \mathcal{L O}$ for counter combinations which "see" the K^{+}beam ahead of or behind the target.

The quantity \boldsymbol{l}_{3} was not determined graphically as $\boldsymbol{l}_{\mathrm{D}}$ was, but instead was obtained by the Monte Carlo method on the IBM 701 computer. The reason for obtaining l_{s} on the computer was because of the additional complextty of the problem. It was necessary to know, for $K+$ meson scatterings between 35° and 65° (1ab), the fraction of the time that both the scattered K^{+}meson and the recoil proton counted in the ring counters. These events were discarded in the selection of scattered events and would have introduced a blas against scatterings in that angular interval. The quantity $\boldsymbol{l}_{\mathrm{s}}$ was determined in the following way:

One thousand scatiters were similated by the computer at each angle in l-degree steps at random positions and at random azimuthal angles
inside the hydrogen target. The quantity l_{s} for a given counter combinetion and a given angle is expressed by

$$
\begin{equation*}
l_{s}=A l / 1000 \tag{15}
\end{equation*}
$$

where h is the number of counts obtained for that counter combination for the particular angle, and
\mathcal{L} is the length of the target in centimeters.

The results and statistical errors obtained for \mathcal{C}_{5} are shown in Fig. 15 for comparison with l_{D}. The area under the histogram is equivalent to $\int \ell_{5} d \theta$ and is equal to $0.122 \pm 0.006 \mathrm{~cm} \mathrm{radian}$, agreement with 0.126 for $\int_{\theta} l_{0} d \theta$.

The effective proton density in is equal to $\frac{98}{100} \times 0.07 \times 6.023 \times$ $10^{23} \mathrm{~cm}^{-3}$ after correction for the density of hydrogen gas in the target for "target empty."

$$
\text { The difference } \frac{\bar{S}}{e f f S_{2}} \quad-\frac{\bar{S}}{e f £ S_{2}} \text { is found to be } 0.247 \times 10-4
$$

from the data in Appendix B.
An expression for the differential cross section $\left\langle\frac{d \sigma}{2 \theta} / \frac{1}{2}\right\rangle$ obtained from Eq. (14)

$$
\begin{align*}
& \left\langle\left.\frac{d v}{d \theta}\right|_{i}\right\rangle=\frac{\left.\frac{\bar{s}}{s_{2}}\right|_{f}-\left.\frac{\bar{s}}{\operatorname{sf} s_{2}}\right|_{e}}{n \int_{0} \ell_{s} d \theta} \tag{16}\\
& =\frac{0.247 \times 10^{-4}}{0.414 \times 10^{23} \times 1.04 \times 0.122} \\
& =4.7 \text { rab/radion }
\end{align*}
$$

$\operatorname{anc}\left\langle\left.\frac{d r}{d \Omega}\right|_{L}\right\rangle=\frac{4.7}{2 \pi \sin / 8^{\circ}}=2.4$ meb/ateradina (17)

Upon transformation to the center-of-mass system, the differential eross section becomes
$\left\langle\left.\frac{d \sigma}{d \Omega}\right|_{c . m .}\right\rangle=2.4 \frac{d \sigma_{L}}{d \Omega_{c . m}}=0.95 \pm 0.70 \mathrm{mb} / \operatorname{staradion}(18)$
The large statistical error on $\left.\frac{d \sigma}{d \Omega}\right|_{c, m}$ ariess from $\left.\frac{\bar{s}}{s_{2}}\right|_{f}-\left.\frac{\bar{s}}{s_{2}}\right|_{e}$ If written in units of X^{2}, the aifferential cross section becomes

$$
\begin{equation*}
\left.\frac{1}{\lambda^{2}} \frac{d \sigma}{d \Omega}\right|_{c . m}=0.24 \pm 0.18 \text { per steradian } \tag{19}
\end{equation*}
$$

and corresponds to the center-of-mass scattering angle of 30°.
For backward scatterings in which the proton recoils forward, a somewhat simfilar treatment was followed.

More than 100 counter combinations were used to obtain the differential crossesection data. Counter combinations were grouped together into ± 100 angular intervals in the center-ofomass frame of reference and the calculations shown above were performed on the groups. It was then necessary to estimate the corrections on these results.

D. Corrections

The numerous small corrections that must be applied to the differential cross section are categorically discussed below.

Account had to be taken of the K^{+}mesons that seattered backwards. came to rest, decayed, and counted in the water Cherenkov counter. The loss of events due to this effect amounted to 7% for seatterings at angles greater than 125° in the laboratory system.

A second correction accounted for a 6 to $\%$ loss of the forwardscattered events due to K^{+}-meson decays, after scattering, which are
counted in the Cherenkov counter.
Still another correction accounted for the decrease in Kmeson flux In the target. The correction varied from an increase of 4% at 40° and 140° to an increase of 5.5° at 80° (c.m.).

Another important correction is due to K^{+}mesons that interact and come to rest in the copper, but count in neither the Cherenkov counter nor the range counter. The loss here varied from 8% at 200 to 5% at 600 (c.m.). These events looked like backward scatterings and therefore the backward differential scattering cross section had to be lowered by the right amount to bring it to the correct value.

A final small correction is due to K^{+}mesons that come to rest in the range counter at angles near 50° (1ab), decay, and count in the Cherenkov counter. This accounted for less than 1% loss in the scatter. ings.

It was not necessary to correct for the 7% total accidental rate in the ring counters in the counter detection system. Events that are throw out due to accidental counts make the ring counter combinations appear less efficient, and this has already been corrected for with the quantity \in.

A composite correction due to the abovementioned effects as a function of the $\mathrm{c} . \mathrm{m}$. angle is given in Fig. 16. The quantity C givea the fraction of events at each angle that are counted.

E. The Corrected Differential $K^{+}-p$ Scattering Cross Section

The differential cross section obtained from calculations as shown In Section C, when divided by the curve in Fig. 16 , gave the corrected

MU-17333

Fig. 16. Composite correction that gives the fraction of the events at each angle that are counted.
differentialmcrossmsection pointo in Fig. 17. The cross section was peaked at small angles in the forward direction but, aside from this, there was no pronounced asynmetry within the statistical errors in the angular distribution. The lack of data in the angular interval from 700 to 90° was due to the confusion created because both scattored K^{+}mesons and recoil protons were counted in the ring counters. By integrating the differential-crossmsection curve over cape obtained an absolute total cross section σ_{T} of 8.57^{2} or 15.3 mb . This agrees very well with the total cross section of $15.2 \pm 1.3 \mathrm{mb}$ obtained from scaler datamas 1t should. The two numbers are not statistically independent, however. eince oneethird of the same events used to obtain of from scaler data was used to obtain the diferential cross section $\frac{d \sigma}{d \sqrt{8}}$. The praction is as low as a third because the ring counters would not "see" any of the largeangle scatterings ocourring at the forward half of the target.

MU-17334

Fig. 17. The differential-scattering cross sections and three possible phase-shift combinations that are fitted to the data; δ_{0}^{-}corresponds to virtually pure $s \frac{1}{2}$-wave scatfering with a repulsive $K^{+}-\mathrm{p}$ potential $; \delta_{1}^{-}$and δ_{1}^{+}correspond to virtually pure p_{1}-wave scattering with a repulsive and an attractive $\mathrm{K}^{+}-\mathrm{p}$ potential respectively.

The angular distribution of the seattering of K^{+}mesons from protons was analyzed in terms of the angularmomentum states involved. We assumed that the compound K^{+}-mesen-nucleon atatas responsible for the scattering were $\mathcal{N}_{\frac{1}{2}}, p_{\frac{1}{2}}$, and $\boldsymbol{p}_{\frac{3}{2}}$, and that states of higher angular momentum offered little or no contribution. From the assumption of charge independence for the nuclear interaction between the K meson and nucleon, it followed that K^{+}mesons seattered from protons in a pure $T=1$ isotopic spin state. The number of phase shifts necessary to describe the differential cross section was thus reduced to three, namely $\mathcal{S}_{0}, \delta_{1}$, and $\boldsymbol{\delta}_{3}$ for scattering in the $\alpha_{\frac{1}{2}}, p_{\frac{1}{2}}$, and $p_{\frac{3}{2}}$ states, respectively. It is possible to deternine experimentally the absolute signs of the phase shifts from the interference of the nuclear scattering with some other scattering of known sign, such as Coulomb scattering. Since the Coulomb scattering of K^{+}mesons from protons is repulsive, a constructive inter. ference would prove a repulsive nuclear interaction.

The differential cross section in the center-of-mass system for scattering without and with spin flip and including the Coulomb effect 18 11

$$
\begin{align*}
& \left.\frac{d \sigma}{d \Omega}\right|_{m f}=\left.\frac{\lambda^{2}}{4}\right|_{\frac{-i \gamma \alpha}{\sin ^{2} \frac{\theta}{2}} e^{-i \gamma \alpha \log \sin ^{2} \frac{\theta}{2}}+P+\left.Q \cos \theta\right|^{2}} ^{\left.\frac{d \sigma}{d \Omega}\right|_{f}=\frac{\lambda^{2}}{4}\left|R^{2}\right| \sin ^{2} \theta} \tag{20}
\end{align*}
$$

where $y=1$ for $K^{+}-p$ scatorinc.
X is the de Pro-lio wave length of the K^{+1} meson in the conferofurass system.
$\alpha=\frac{\mu e^{2} \chi^{2}}{\hbar^{2}\left(1-\beta^{2}\right)^{\frac{1}{2}}}$.
where μ, μ_{0} and t there the reduced mass of the K^{2} meson-proton system, the chare and Planck's constant respectively,
B is the velocity of the H^{+1} meson relative to the proton.

$$
\begin{align*}
& P=e^{2 i \delta_{0}}-1=\sin \delta_{0} e^{i \delta_{0}} \tag{22a}\\
& Q=\frac{1+i \alpha}{1-i \alpha}\left[\sin \delta_{1} e^{i \delta_{1}}-2 \sin \delta_{3} e^{i \delta_{3}}\right] \tag{2zb}\\
& R=\sin \delta_{3} e^{i \delta_{3}}-\sin \delta_{1} e^{i \delta_{1}} \tag{220}
\end{align*}
$$

Some simplification is possible. Tor a 1 treason energy of 225 mors (Tab), $\alpha=0.014$. It can thus be neglected in Q without contributing mora than 3 uncertainty in the scattering amplitude. The oxphession $\operatorname{sif}\left(-i \gamma \alpha \log \sin ^{2} \frac{\theta}{2}\right)$ can be reasonably wall approximated by unity for $\theta 220^{\circ}$. for which $\alpha \log \sin ^{2} \frac{\theta}{2} 0.002$.

The combination of the differential cross sections for scattering without and with spin flip in units of X^{2} is

$$
\begin{align*}
\frac{1}{\lambda^{2}} \frac{d \sigma(\mu)}{d \Omega}= & \left\{\left|\frac{1-i \gamma}{1-\mu}+\sin \delta_{0} e^{i \delta_{0}}+\left(\sin \delta_{1} e^{i \delta_{1}}+2 \sin \delta_{3} e^{i \delta_{3}}\right) \mu\right|^{2}\right. \\
& \left.+\left|\sin \delta_{3} e^{i \delta_{3}} \sin \delta_{1} e^{i \delta_{1}}\right|^{2}\left(1-\mu^{2}\right)\right\}, \tag{23}
\end{align*}
$$

where $\mu=\cos \theta$.

A good fit of $\frac{1}{\lambda^{2}} \frac{d \sigma(\Omega)}{d \Omega}$ to the experimentally determined differential cross seotions corresponds to minima in

$$
\begin{equation*}
x^{2}=\sum_{i}\left(\frac{y\left(\alpha_{i}\right)-\frac{1}{x^{2}} \frac{d \sigma\left(\mu_{i}\right)}{d \Omega}}{\sigma\left(\mu_{i}\right)}\right)^{2} \tag{24}
\end{equation*}
$$

where $f\left(\mu_{4}\right)$ and $\sigma\left(w_{i}\right)$ aro the experimontal oross sections and the 1 statistical errors. The metiod of minimizing χ^{2} is briofly deseribod in Appondix D. Threo phasemhift combinations. $\delta_{0}^{-} \cdot \delta_{1}^{-}$, and δ_{1}^{+}, which were found to give sigmificant minima, are listed in Table VI. The χ^{2} for each solution is 11sted, as Well

Phase shift combinations that give good agreenent with experimental data					
Solution	δ_{0}	δ_{1}	δ_{3}	x^{2}	㫛
δ_{0}^{-}	-33.40 ± 2.3	-0.70 ± 5.7	-0.10 ± 3.4	10.6	21
δ_{1}^{-}	-0.60 ± 3.2	-34.20 ± 2.3	-2.20 ± 2.5	6.5	59
δ_{1}^{+}	4.30 ± 2.7	35.40 ± 2.9	3.70 ± 1.8	11.9	17

as the percentage probability of obtaining a X^{2} thet large or larger, had that solution been the true solution. The δ_{0}^{-}and δ_{p}^{-}solutions correspond to virtually pure $\alpha_{\frac{1}{2}}$ - and $p_{\frac{1}{2}}$-wave phase shifts, respectively, of -33°. Both solutions also agree with the forward peaking in the oross soction. indicating a repulsive nuclear potential. For the $\delta_{\text {, }}^{t}$ solution the rise in the determined cross section at 25° and 35° does not agree with the predicted crop. Still other equally probable solutions may exist but have
not been found. The ambiguity between δ_{0}^{-}and δ_{1}^{-}is considered in greater detail in the Discussion.

A. Total Cross Section

Knowledge of the K^{+}meson-proton Interaction has been extended to Intemediate kinetic energies. Our results in Table V confirm the increase in K^{+}-meson-proton cross section found from the scattering of K^{+} mesons on free protons in emulsion. ${ }^{1}$ Our averaged cross section ovar the energy interval from 200 to 300 Mev is $15.6 \pm 1.0 \mathrm{mb}$, which agrees within the statistical errore with $18.0 \pm 3.5 \mathrm{mb}$ obtained from emulsion events (for comparison, the cross section below 100 Nev is $13.5 \pm 2.5 \mathrm{mb}$). ${ }^{2}$ The threshold for π-meson production by K^{+}mesons on protons 18225 Mev . Our total cross sections include the contribution from T-meson producm tion, but no estimate of the magnitude could be made.

Recent data from 600 Nev to 2 Bev indicate that the total cross section rises to $19.6 \pm 1.2 \mathrm{mb}$ at 700 Kev and then gradually drops to $23.0 \pm 7.0 \mathrm{mb}$ at $2 \mathrm{Bev}^{12}$

The over-all behavior of the $K^{+}-m e s o n-p r o t o n ~ c r o s s ~ s e c t i o n ~ a s ~ a ~$ function of energy is not understood at present.

B. The Nature of the K^{+}-Meson Force

Of the three phase-shift combinations that were found to fit the angular distribution of the soattered K^{+}mesons, only two, namely δ_{0}^{-}and δ_{1}^{-}. gave good agreement with the smallmangle scattering. Although both solutions are about equaliy probable, it is important to note that both correspond to a repulsive K^{4}-meson-iproton force. This evidence in favor
of the repulsive nuclear force is Indeed the most direct and conclusive. Less convincing evidence has come in the past from the optical-model analyses of inelastic scattering of K^{+}mesons from emulsion nucle1.?

C. The Differential-Scattoring Cross Section

The $\delta_{0}^{-} \delta_{1}^{-}$ambiguity in the phase-shift fitting to the experimental data cannot be easily resolved. It would be difficuit to detect the polarization of the recoil proton given by ${ }^{13}$

$$
\begin{align*}
P(\theta) & =\frac{\left|\frac{\alpha}{1-\cos \theta}+\sin \delta_{1} e^{i} \delta_{1} \cos \theta+i \sin \delta_{1} e^{i \delta_{1}} \sin \theta\right|-\left|\frac{\alpha}{1-\cos \theta}+\sin \delta_{1} e^{i \delta_{1}} \cos \theta-i \sin \delta_{1} e \cos \theta\right|^{2}}{\left|\frac{\alpha}{1-\cos \theta}+\sin \delta_{1} \delta_{1} \cos \theta+i \sin \delta_{1} e^{i \delta_{1}} \sin \theta\right|^{2}+\left|\frac{\alpha}{1-\cos \theta}+\sin \delta_{1} i^{i \delta_{1}} \cos \theta-i \sin \delta_{1} e^{i \delta_{1}} \cos \phi\right|^{2}} \\
& =\frac{\frac{2 \alpha \sin \theta}{1-\cos \theta}}{\left[\frac{\alpha}{\sin \delta_{1}(1-\cos \theta)}\right]^{2}+\frac{\alpha}{\sin \delta(1-\cos \theta)}\left[2 \cos \theta+\cos \delta^{2}\right]+1} \tag{25}
\end{align*}
$$

which has a maximum of only 0.07 in the direction normal to the seattoring plane for protons recoiling at 70° (lab) if the δ_{8}^{-}were the true solution. It may be easier to resolve the ambiguity by measuring the differential cross section of K^{+}mesons scattering from protons at lower energies. If the differential cross section is isotropic for all energles and If one assumes that K^{+}mesons scatter in the S wave at very low energies, then the δ_{0}^{-}phase-shift combination must be the true solution. This follows from the argument that to change from pure S-wave scattering to pure $\mathrm{P}_{\frac{1}{2}}$-wave soattering the crose section must be anisotropic in the energy interval where both S and P waves contribute to the scattering cross section.

D. Use of $K-p$ Dispersion Rolations

The form of the K-p dispersion relations ${ }^{14}$ is

$$
\begin{align*}
D_{+}(\omega)= & \frac{1}{4 \pi^{2}} \int_{1}^{\infty} \frac{\beta^{\prime} \sigma_{+}\left(\omega^{\prime}\right)}{\omega^{\prime}-w} d \omega^{\prime}+\frac{1}{4 \pi^{2}} \int_{1}^{\infty} \frac{\beta^{\prime} \sigma_{-}\left(\omega^{\prime}\right)}{\omega^{\prime}+\omega} d w^{\prime} \\
& +\frac{1}{4 \pi^{2}} \int_{\omega_{1 \pi}}^{1} \frac{4 \pi A_{-}\left(\omega^{\prime}\right)}{\omega^{\prime}+w} d \omega^{\prime}+\frac{p_{1} x(1)}{\omega_{1}+w}+\frac{p_{\Sigma} x(\Sigma)}{\omega_{\Sigma}+w}+C \tag{26}
\end{align*}
$$

where $D+$ is the real part of the K^{+}-proton forward-scattering amplitude in units of K-meson Compton wave length; K ' is the laboratory-system. momentum in units of $m_{k} c$; ω^{\prime} and w are laboratorymsystem energies of the K meson in units of $m_{k} c^{2} ; \sigma_{+}\left(\omega^{\prime}\right)$ and $\sigma_{-}\left(\omega^{\prime}\right)$ are the $K^{t}-p$ and $K-p$ total cross sections, respectively, in units of Kimeson Compton wave length. squared; $A_{\text {_ }}$ is the imaginary part of the $K^{m}-p$ forward-scattering ampletide in units of K-meson Compton wave length, and C is a constant.

The purpose of this section is to investigate the possibility of determining unambiguously $f_{n}\left(P_{\Sigma}\right)$ and $X(n)[X(\varepsilon)]$. which are the sign and magnitude of the residues at $\omega=m_{A}\left(m_{R}\right)$ respectively, where

$$
\begin{equation*}
x_{1, \Sigma}=\frac{q_{1, \Sigma}^{2}}{q_{\pi}} \cdot \frac{\left[p_{1, \Sigma}\left(m_{n, \varepsilon}+p_{1, \Sigma} m_{n}\right)^{2}-p_{A_{1}, ~} m_{1,}^{2}\right]}{4 m_{10} m_{1}} \tag{27}
\end{equation*}
$$

The quantity $\boldsymbol{P}_{\boldsymbol{A}}\left(p_{\Sigma}\right)$ is either +1 or -1 . depending upon whether the parity of the $K^{-} \wedge\left(K^{-\varepsilon}\right)$ is even or ord.

$$
\begin{equation*}
\text { We have } \quad w_{\alpha}=\frac{m_{\alpha}^{2}-m_{p}^{2}-m_{k}^{2}}{2 m_{p}^{2}} \tag{28}
\end{equation*}
$$

where $m_{\alpha}{ }^{\text {is }}$ the rest energy of the $\alpha \operatorname{system}\left(\omega_{n}=0.129 m_{k} \omega_{\Sigma}=0.313 \mathrm{~m}_{k}\right.$. and $w_{n \pi}=0.498 \mathrm{mk}_{\mathrm{k}}$.

By transforming from w to $-w$ an expression for $D_{-}(\omega)$ is obtained,

Of the various subtracted dispersion relations proposed, none is adequate at present for the experimental data now available. The following form, however, has several decisive advantages:

$$
\begin{align*}
& \omega_{0} D_{+}(\omega)-\frac{1}{2}\left(\omega_{0}+\omega\right) D_{+}\left(\omega_{0}\right)-\frac{1}{2}\left(\omega_{0}-\omega\right) D_{-}\left(\omega_{0}\right) \\
& =\frac{1}{4 \pi^{2}} \int_{0}^{\infty}\left[\frac{\omega_{0} \beta^{\prime} \sigma_{+}\left(\omega^{\prime}\right)}{\omega^{\prime}-\omega} \rightarrow \frac{\left(\omega_{0}+\omega\right) \beta^{\prime} \sigma_{+}\left(\omega^{\prime}\right)}{2\left(\omega^{\prime}-\omega_{0}\right)}-\frac{\left.\left(\omega_{0}-\omega\right) \beta^{\prime} \sigma_{+}+\omega^{\prime}\right)}{2\left(\omega^{\prime}+\omega_{0}\right)}\right] d \omega^{\prime} \\
& +\frac{1}{Y \pi} 2 \int_{0}^{\infty}\left[\frac{\omega_{0} k^{\prime} \sigma_{-}\left(\omega^{\prime}\right)}{\omega^{0}+\omega}-\frac{\left(\omega_{0}+\omega^{\prime}\right) \mathcal{B}^{\prime} \sigma-\left(\omega^{\prime}\right)}{2\left(\omega^{\prime}+\omega_{0}\right)}-\frac{\left(\omega_{0}-\omega_{0}\right) k^{\prime} \sigma_{-}\left(\omega^{0}\right)}{2\left(\omega^{\prime}-\omega_{0}\right)}\right] d w^{0} \\
& +\frac{1}{Y \pi^{2}} \int^{1}\left[\frac{\omega_{0} \varphi \pi A_{-}\left(\omega^{\prime}\right)}{\omega^{\prime}+\omega}-\frac{\left(\omega_{0}+\omega\right) \varphi \pi A_{-}\left(\omega^{\prime}\right)}{2\left(\omega^{\prime}+\omega_{0}\right)}-\frac{\left(\omega_{0}-w\right) \varphi \pi A_{-}\left(w^{\prime}\right)}{2\left(\omega^{\prime}-\omega_{0}\right)}\right] d \omega^{\prime} \\
& \omega_{n \pi} \\
& +p_{1} \times(A)\left[\frac{\omega_{0}}{\omega_{A}+\omega}-\frac{\omega_{0}+\omega}{2\left(\omega_{A}+\omega\right)}-\frac{\omega_{0}-\omega}{2\left(\omega_{n}-\omega\right)}\right] \\
& +p_{\Sigma} \times(\varepsilon)\left[\frac{\omega_{0}}{\omega_{\Sigma}+w}-\frac{\omega_{0}+w}{2\left(\omega_{\Sigma}+w\right)}-\frac{\omega_{0}-w}{2\left(\omega_{\Sigma}-\omega\right)}\right] \tag{30}
\end{align*}
$$

 however, has the advantages of Igi's in that the cross-section integrals converge rapidly and depend more on the $K^{+}-p$ cross sections than on the $K^{-}-\mathrm{p}$ cross sections. These cross-section integrals converge even if the cross sections go to a constant as goes to infinity. It has an addietional advantage of using the real parts of the forward-scattering ampletides at energies for which they are known from experiment, rather than at the rest energy. Lastly, the contribution from the unphysical region is decreased by displacing a singularity from its position at m_{k} to ω_{0}.

The $K^{+}-p$ total cross sections that were used were the emulsion data
of Table I for energies below $200 \mathrm{Nev}_{\theta}$ the results of this experiment. and recent counter data for the higher energies. ${ }^{12}$ A srooth curve was fitted to the data and the statistical error on the curve was estimated to be 10%.

The low-energy $K^{-\infty}$-p total cross sections that were used were from hydrogen bubble chamber data. Elastic scattering, charge exchange scattering, and absorption were taken into account. ${ }^{16,17.18}$ Furthermore. the total cross geotion is know from counter data to be $52+9 \mathrm{mb}$ at $\omega=2: 08 .^{19}$ From preliminary hydrogen bubble chamber results the total cross section at $\omega=2.52$ is $60 \pm 20 \mathrm{mb} .20$ The total cross section was assumed to be geometrical for protons (45 mb) at $\omega=4$. The above results were plotted as a function of energy and a smooth curve was passed through the points. A statistical error of 25% was estimated on the abovementioned fit。

It was also found the k abs was approximately constant and equal to 14.4 for 1.06. This was the value chosen for $4 \pi \mathrm{~A}$. at $\omega \mathrm{m}$. and a smooth extrapolation to zero at $\omega=0.498$ was made in much the same way as done by Igi. 15 The integrals were numerically calculated with the cutoff at $\omega=4$. The results of the integration are ilisted in Table VII. The quantity $D_{i}=(\omega)$ was obtained from

$$
\begin{equation*}
D_{ \pm}(w)= \pm \frac{w}{N_{p}} \sqrt{\left.\frac{d \sigma_{ \pm}^{e l}}{d \Omega}\right|_{\theta=0}-\frac{d_{l}^{2}}{16 \pi^{2}}\left(\sigma_{ \pm}(u-1)\right)^{2}} \tag{31}
\end{equation*}
$$

where W and k_{b} are the total energy and K - meson momentum in the centerofmass frame. The 3 ign of $D_{ \pm}(\omega)$ is plus or minus, depending upon whether the K^{+}-proton force is attractive or repulsive. respectively.

Table VII
Results of numerical integration for different values of w

From the experiment being described. it has been seen that the $K^{4}-p$ interaction is repulsive, thus making $D_{+}(w)$ negative. The nature of the $K^{-}-p$ force is still unknown, and this causes D (w) to be uncertain in sign. From the δ_{0}^{-}phase-shift combination. $\frac{d \sigma+4(1.46)}{d \Omega} /_{\theta=0}$ is $1.21 t 0.16$ $\mathrm{mb} /$ stored. If one assumes, as has been done here, that for lower K^{+}. meson energies $\frac{d \sigma_{+}\left(\omega{ }^{i}\right.}{d \Omega}$ is isotropic, then $\frac{d \sigma_{+}(\omega)}{d \Omega}$ simply becomes $\frac{4+(\omega)}{4 \pi}$. Furthermore, $\sigma_{+}(\omega)=\sigma_{+}(\omega)$ for w<1. 46 . Thus sufficient information 1 s available for the determination of $\mathrm{D}+(\omega)$ for $w=1.0,1.17$. 1.235. and 1.46.

The value of $D(w)$ is obtained from Eq. (31) in a similar way but. only for $\omega=1.17$ and $\omega=1.235$. From bubble chamber data we have

$$
\left.\frac{d \sigma_{-}^{d}(1.17)}{d \Omega}\right|_{\theta=0}=5.2 \pm 1 \mathrm{mb} / \mathrm{sterad}
$$

while

$$
\left.\frac{d \sigma-d(l .285)}{d \Omega}\right|_{\theta=0} \text { is still not available. } 21 \text { The total } \mathbb{K}-p
$$

cross sections for the two energies are $\sigma^{(1.17)}=91 \pm 9 \mathrm{mb}$ and $\sigma(1.285)=$ $86 \pm 7 \mathrm{mb}$. The value obtained for D (1.17) is of the order of $0.5 \mathrm{~K}-\mathrm{meson}$ Compton wavo length. It is hopod that D (2.17) $1 s$ small enough to not introduce a siendficant ambiguty into tho disporsion relation. For the higher energy D (1.285) is on the order oi zero if $\left.\frac{d \sigma_{-}(1.285)}{d \Omega}\right|_{\theta=0} ^{i s}$ assumed to be not much 1 arger than $8.2 \mathrm{mb} / \mathrm{sterad}$. This $1 s$ not an unreasonable assumption. since $\sigma_{-}^{d}(1.285)=44 \pm 8 \mathrm{mb}$. The results of tho calculations of $D \pm(\omega)$ are listed in Table VIII.

Table VIII

| $0 \pm(w)$ | (the real part of the forward scattering araplitude) for |
| :--- | :---: | :---: | :---: | :---: |
| different $w^{\prime} s$ | |

Now $p_{\Lambda} X(\Lambda)$ and $p_{\Sigma} X(\Sigma)$ will be dstermined for several combinations of ω and ω_{0}. Table IX lists the results of calculations for X_{1}, X_{2}, X_{3}. and X_{4} where X_{1} is the left-hand side of Eq. (30) with the D_{-}(w_{0}) term
dropped out; X_{2} is the sum of the three integrals on the right-hand side of Eq. (30) with a cutoff at $=4$ on the first two; X_{3} and X_{4} are the respective coefficients of $p X()$ and $p X()$ in Eq. (30).

Table IX

	Calculated values of X_{1}, X_{2}, X_{3}, and X_{4} for different combinations of and				
		x_{1}	X_{2}	X_{3}	X_{4}
1.46	1.285	0.135 ± 0.22	0.048 ± 0.2	-0.238	-0.222
1.46	1.17	0.221 ± 0.21	0.15 ± 0.2	-0.411	-0.393
1.00	1.285	-0.211 ± 0.24	-0.29 ± 0.2	0.454	0.411
1.00	1.17	$-0.11 ? \pm 0.22$	-0.25 ± 0.2	0.283	0.260

The values of X for different K-hyperon parities are given in Table X.

Table X

	$X(), X()$ for even and add (X). parities		
p	X ()	p	X ()
$+1$	$0.95 g^{2} / 4$	+1	$0.96 \mathrm{~g}^{2} / 4$
-2	$0.05 g^{2} / 4$	-1	$0.04 \mathrm{~g}^{2 / 4}$

It was next assumed that the relative parities of the K and K pairs are the same, 1.e.. $p=p=p$. From the numbers listed in

Tables $I X$ and X the quantity $\mathrm{pg}^{2} / 4 \pi$ was evaluated for $p= \pm 1$, and the rosults are listed in Table $X I$ for the various choices of w and ω_{0}.

Table XI

Calculated values for the ooupling constant for different combinations of and ofor the possjbility of either a scalar or pseudoscalar coupling				
0	ω_{0}	$\mathrm{pg}^{2} / 4 \pi$		
		$\mathrm{p}^{2 x+1}$		$p=1$
2.46	1.285	-0.20 $\pm 0.68 .0 .200(2.285)$	04.	$\pm 14.4 .2$
1.46	2.17	$0.0 .09 \pm 0.380 .0 .190$ (1.17)	0.0 .9	$\pm 8.4 .0 D$
1.00	1.285	+0.09 $\pm 0.3800 .170$ (2.285)	41.7	47.3 .20
1.00	2.17	$+0.25 \pm 0.58$-0.160 (1.17)	$+4.7$	$\pm 12-3.41$

In evaluation of $\mathrm{pg}^{2} / 4 \pi$, the \mathbb{K}^{∞}-proton forward-gcattering amplitude was oarreded to the very end. In order to show what effect it has on the coupling constants. We see that for an attractive K omp potential. D. 1 . positive and a pseudoscalar coupling is favored; for a repulstvo $K^{* 0}-p$ potential D is negative and a scalar coupling is favored. If D_is assumed to be negligible, the results from the first two rows favor a pseudoscalar coupling, from the socond two rows a scalar coupling. The value of $\mathrm{pg}^{2} / 4 \mathrm{~T}$ varies about eero. but the variation 1 well with the statistical errox. It is thus impossible to detemine whether the coupling is scalar or pseudoscalax, but if it were scalar. pg2/4T would be less than about $0.6 ; 11$ pseudoscalar. less than about 10. These results Indicate that even with the most recently avoilable data it is difficult.
from subtracted dispersion relations, to arrive at unambiguous conclum sions as to the nature of the K-meson-hyperon coupling.

ACKNOWLEDGMENTS

I wish to express my sincere appreciation to Dr. Leroy Kerth and Mr. Ralph Baender for their assistance in all phases of the experiment. The encouragement and help of Dr. Robert Birge, Dr. Mardan Whitohead, and Dr. Robert Lanou at all times were of the greatest value. Mr. Hichael Austin. Mr. Victor Cook, Mr. Robert Matsen, Mr. Gerald Sehnurnacher, and Mr. Thomas Tonlsson are thanked for their assistance during the actual running of the experiment. I am grateful for the help of Wr. Robert Pry. Mrs. Edith Goodwin. Mrs. Beverly Jerome, Mr. Layton Lynoh. Mr. David Marsh, Mrs. Marilynn Mc Laren. Mr. Joseph Waldmano and Mr. Robert Young in scaming the enormous length of film. Mr. Jonathan Young. for his skillful programming and running of the IBM-701 computer, and Dr. Edward Lofgren and the operating crew of the Bevatron, for their efficient operation of the machine, deserve grateful recognition.

I also whsh to thank Dr. Robert Karplus for valuable discuesions on the application of dispersion relations.

This work was done under the auspices of the U. S. Atomic Energy Cormission.

Appendix A

Calculation of the Total $K^{\dagger}-p$ Cross Section

The $K^{+}-\mathrm{p}$ cross section is first expressed in a more convenient form. starting with Eq. (6), which is

$$
\left.\frac{\bar{s}}{S_{2}}\right|_{f}-\left.\frac{\bar{s}}{S_{2}}\right|_{e}=\exp \left\{-\int_{x_{0}}^{x_{0}}\left(\lambda_{s}(x)+\lambda_{0}(x)\right) d x\right\}-\exp \left\{-\int_{x_{0}}^{x_{1}}\left(\lambda_{s}(x)+\lambda_{0}(x)\right) d x_{f}\right\}(A 1)
$$

The effect due to scattering of K^{+}mesons off protons can be separated out from the term on the right for "target full" by

$$
\begin{aligned}
\operatorname{exd}\left\{-\int_{x_{0}}^{x_{0}}\left(\lambda_{s}(x)+\lambda_{0}(x)\right) d x\right\}_{f} & =\left\{-\int_{x_{0}}^{x_{0}}\left(\lambda_{s}^{\prime}(x)+\lambda_{0}(x)\right) d x-\sigma m l\right\}_{f} \\
& \left.=\exp \{-\sigma m l\}_{0}\right\} \operatorname{sxp}\left\{-\int_{x_{0}}^{x_{0}}\left(\lambda_{5}^{\prime}(x)+\lambda_{0}(x) d x\right\}_{f},\right.
\end{aligned}
$$

where $\lambda_{5}^{\prime}(x)$ no longer contains the effect of the protons in the target. but that effect has been integrated to give $\sigma m l_{\text {, }}$
where σ is the total $k^{+}-\mathrm{p}$ cross section.
wis the number of protons per cm^{3} in the target.
b is the length of the target in centimeters.
Equation (A 3) may be rewritten as

$$
\begin{equation*}
\exp \left\{-\Lambda_{f}\right\}=\exp \{-\sigma m l\} \exp \left\{-\Lambda^{\prime} f\right\}, \tag{A4}
\end{equation*}
$$

where the Λ 's represent the integrals.

If $\left.\frac{\bar{s}}{s_{2}}\right|_{f}-\left.\frac{\bar{s}}{s_{2}}\right|_{e}$ may be represented by Δ. Eq. (A 1) becomes

$$
\begin{equation*}
\Delta=\exp \left\{-\Lambda_{l}\right\}-\exp \{-\sigma m \ell\} \exp \left\{-\Lambda_{f}^{\prime}\right\} \tag{A5}
\end{equation*}
$$

Solving for $\sigma \mathrm{ml}$. we get

$$
\sigma m l=\left(A_{e}-n_{f}\right)-\ln \left(1-e^{A_{e}}\right)_{e}
$$

The integrals were calculated for each K^{*} meson energy and the results listed in Table A.I:

Table A.I
Parameters for the determination of σ, the $K^{\dagger}-p$ total cross section

Appendix B
Ring Countor Data
In the following matrices are given the numbers of times that various ring-counter combinations counted for target full and for target empty. Forward- and backward-scattering events correspond, respectively, to counting and not counting by the range counter R.

Target full (eff $S_{2}=547516$)

Forward scattering							Backward scattering							
Coun	Counters						Coun	Counters						
ters	A B	C	D	\underline{E}	F	G	ters							0
1	2212	5	6	3	6	8	1	13		1			5	3
2	$13 \quad 24$	11	4	5	3	10	2	7	16	9	1	1	2	1
3	913	14	6	3	4	6	3	13	4	11	3	0	1	0
4	52	13	15	3	8	7	4	3	4	9	5	5	0	1
5	1117	9	14	16	10	5	5	5	3	5	12	8	4	3
6	812	10	3	16	9	11	6	4	4	2	7	4	5	3
7	1924	21	11	9	22	30	7	3	6	6	1	2	6	11
8	1710	18	10	6	12	19	8	3	3	6	7	3	3	15
1.2	2018	0	5	2	0	3	1.2	7	14	10	1	3	2	1
2.3	1010	16	4	2	0	0	2.3	2	4	12	12	0	0	0
3.4	47	19	19	5	0	0	3.4	1	1	13	15	10	0	0
4.5	10	5	26	9	1	4	4.5	4	2	5	11	13	0	3
5.6	43	6	5	12	6	17	5.6	1	2	3	5	8	21	19
6.7	66	4	3	5	14	29	6.7	1	2	3	2	5	14	38
7.8	04	2	3	3	7	16	7.8	0	0	2	3	1	3	8
Coun ters	Counters						our	Counters						
	A, B B, C C D D, E E P E,G						ters	A, B B, C C, D, E E E E,						
1	28	30	3	0	0	1	1	42	33	0	0	0	0	
2	22	18	4	1	1	2	2	12	6	24	0	0	0	
3	5	14	9	7	2	1	3	3	7	5	10	1	1	
4	3	9	12	11	4	1	4	5	2	5	5	1	0	
5	5	4	3	10	9	11	5	2	1	2	8	17	7	
6	2	1	3	1	23	14	6	0	0	2	3	8	4	
7	0	5	3	3	13	15	7	2	0	0	4	7	18	
8	2	8	1	2	1	17	8	0	1	2	2	1	2	
1,2	31	50	19	0	0	1	1,2	22	70	28	2	0	0	
2.3	12	16	39	18	1	0	2.3	15	27	53	29	3	0	
3.4	2	11	23	40	12	7	3.4	1	15	13	66	30	4	
4.5	2	2	10	35	57	22	4.5	2	1	8	23	71	27	
5.6	0	2	0	15	30	31	5.6	0	2	12	8	19	22	
6.7	3	2	1	11	17	27	6.7	0	0	1	4	5	19	
7.8	1	0	0	0	8	9	7.8	1	0	0	1	3	4	

Tareet onpty (eff $s_{2}=258063$)

Forvard scattering							Backward seattering							
Coun	Counters						Cor	Counters						
ters	A B	C			E		ters			C	D	E		
1	1. 4	4			3	5	1				0		0	1
2	30	2	2	2	1		2	3	0	0	0	0	0	2
3	24	6	0	3	1		3	2	2	0	0	0	0	0
4	22	1	3	0	4	1	4	0	0	2	0	5	1	1
5	21	0	3	4	3	2	5	2	2	2	2	1	0	2
6	62	3	0	3	1	0	6	2	0	0	2	1	0	0
7	414	10	3	2	1	4	7	0	4	2	1	2	1	2
8	23	14	5	4	2	4	8	0	1	0	1	3	0	2
1.2	12	2	2	0	0	0	1.2	0	0	3	0	0	0	0
2.3	12	1	2	0	0	0	2.3	3	0	1	6	0	0	0
3.4	12	0	2	2	0	3	3.4	1	1	1	2	3	0	0
4.5	23	0	1	4	0	1	4.5	0	1	2	0	4	1	2
5.6	13	0	1	0	2	5	5.6	2	0	1	0	0	0	8
6.7	31	3	0	1	0	7	6.7	2	1	1	0	1	0	7
7.8	12	3	1	2	1	1	7.8	0	2	0	0	0	1	2
Coun	Counters						Coun	Countors						
ters							ters							
1	7	9	1	0	0	3	1		8	19	0	0	0	0
2	3	1	2	0	0	1	2		0	1	4	0	0	0
3	3	1	1	1	0	0	3		1	2	1	3	1	0
4	2	0	0	0	1	3	4		1	0	0	0	0	1
5	3	1	1	1	4	5	5		1	1	2	0	2	2
6	0	0	0	2	1	1	6		0	0	0	2	0	0
7	1	1	1	2	2	1	7		0	0	0	0	0	0
8	1	1	3	0	1	0	8		0	0	1	0	0	1
1.2	5	14	7	0	0	0	2.2		4	29	8	1	0	0
2.3	1	1	4	4	1	0	2.3		4	1	18	14	2	0.
3.4	1	1	3	1	5	2	3.4		0	3	2	13	11	1
4.5	2	1	2	0	12	16	4.5		1	0	0	1	19	7
5.6	1	1	0	1	3	14	5.6		0	0	1	0	1	15
6.7	0	1	0	0	0	3	6.7		0	0	1	0	0	2
7.8	0	0	0	2	0	0	7.8		1	0	0	0	0	0

Appendix C

Determination of the Theoratical Decay Distribution

For this distribution only the charged decay products that entered a forward cone of half angle 50° with $\beta>0.8$ were considered. This limit1ng value did not affegt the predicted angular distribution to any extent since the cutoff affected only the rare decay modes. It oould be seen in Fig. 11 that the $K_{K 2}$ and K_{μ} decay modes had $\beta>0.8$ for forward decays. The angular distributions oorresponding to these decay modes are shown in Fig. Cl. To obtain these distributions it was necessary to assume only an isotropic decay distribution in the rest frame of the K^{+} meson. The same assumption was made for the following decay modes.

The laboratory-system angular distribution of the positron from $K_{L_{3}}$ decay is shown in Fig. C. It was not necessary to know the energy distribution of the positron in the center-of-mass system but oniy to assume that its velocity was c, which indeod was a good assumption.

To obtain the distribution ofi the \boldsymbol{F}^{+}from K - decay it was necessary to assume the onergy distribution obtained from phasespade considerations alone. ${ }^{22}$ Only 48\% of the π^{+}mesons were found to be sent forward and to have $\beta>0.8$. The distribution of these energetic π^{4} mesons is also shown in Fig. G2.

For the $K_{\mu_{3}}$ decay mode the energy distribution (centermofmass system) was taken to be equal to the energy distribution of the 19 known events. 23 It was found that 72% of the decay events had a sufficiently high B, and their angular distribution is shown in Fig. C2.

$M U-17335$

Fig. C 1. Angular distributions of the π^{+}meson and μ^{+} meson from K_{2} and $\mathrm{K} \mathrm{\mu}_{2}$ decays corresponding to a kinetic energy (lab) of $225 \pm 25 \mathrm{Mev}$.

Fig. C 2. Angular distribution of the charged particle having $\beta>0.8$ for the $K_{\tau^{\prime}}, K_{\mu_{3}}$, and $K_{e_{3}}$
decay modes.

It was explained in the section on the water Cherenkov counter that for the $\mathrm{K}_{\boldsymbol{\gamma}}$ decays, several factors enter in an prevent simulation of an ovent by a single charged π meson.

The weighted average of the five angular distributions shown in Figs. C1 and C2 is given in Fig. C3. The contribution to this predicted angular distribution fron the three-body decay modes was less than 10% for all angles.

$M U-17337$

Fig. C 3. Composite weighted decay distribution of charged secondaries having $\beta>0.8$ from K^{+}-meson decays.

Appendix D

Phase-Shift Fitting to the $\frac{1}{A} \frac{d \sigma}{d \Omega}$ Data

The IBM 650 computer was programmed to fit $\frac{1}{x^{2}} \frac{d \sigma(\mu)}{d \Omega}$. given in Eq. (23), to the differentialmscattering cross-section points shown in Fig. 27. From a combination of the three phase shifts $\delta_{0} \delta_{0}$ and δ_{3}. $\frac{1}{x^{2}} \frac{d \sigma(\mu)}{d \Omega}$ was calculatod and the x^{2} was obtained from Eq. (24). The angles were altered in steps which varled from 0.01 to 0.002 radian until X^{2} became a minimum. In order for the differential cross section at the minimum in X^{2} to be considered as a possible fit to the experimental. data, only those were considered for which χ^{2} is less than 14.7. This value corresponds to a 10% confidence level. By these criteria three possible solutions have been found and are listed in Table VI.

Next, the maximan deviation in each phase shift δ was obtained by varying the other two δ^{\prime} s for X^{2} Plxed at 14.7. This deviation is a measure of the relative sensitivity of that phase shift to the fit, and is also given in Table VI.

1. M. F. Kaplon, 1958 Annual International Conference on Kigh Energy Physics at CERN.
2. D. H. Stork and D. J. Prowse (University of California. Los Angeles) private communication.
3. W. A. Wenzel, Millimicrosecond Coincidence Cirouit for Highmspeed Counting, UCRI-8000. October. 1957.
4. Alvarez, Grawford, Good, and Stevenson. in Proceedings of the Sixth Annual Rochester Conference on High Energy Physics, (Intorscience Publishing Co.. New York, 1957). Chap. VIII p. 29.
S. E. Helmy, J. H. Mulvey, D. J. Prowse, and D. H. Stork, An Example of the Production of a π^{-}Meson by a K^{+}Meson (preprint).
5. Birge, Perkins, Feterson, Stork, and Whitehead, Nuovo aimento 4. 834 (1956).
6. E. Heiberg and J. Marshall. Rev. Sci. Instro, 22. 618 (1956).
7. O. Schnurmacher, \wedge Diffusemeflection Coating for Use with Cheronkov Counters, UCID-691. March, 1959.
8. J. H. Atkinson, Jr. and B. H. Willis. HighoEnergy Partiole Data, Vol. II. UCRL-2426 (Rev.). June 1957.
9. W. A. Aron, The Passage of Charged Particles Through Matter (Thesis), UCRL-1325. May. 1951.
10. L. Van Hove, Fhys. Rov. 21. 947 (1953).
11. Eurrowes, Caldwell. Frisch, Hill. Ritson, and Schluter, Phys. Rev. Lotters 2. 117 (1959).
12. E. Fermi. Phys. Rev. 21. 947 (1953).
13. A rreat deal has been writion on the subject, but a few pertinent references are:
D. Amati and B. Vitale, Nuovo cimento 2. 290 (1958);
K. Igi. Progr. Theoret. Phys. (Kyoto) 2. 238 (1958);
C. Goebel. Phys. Rev. 110, 572 (1958):
P. T. Mathews and A. Salam, Phys. Rev. 110. 565 and 569 (1958).
14. K. Igi. Progr. Theoret. Pizys. (Kyoto) 4. 403 (1958).
15. Nordin. Rosenfeld, Solmitz, Tripp and Watson, Bull. Am. Phys. Soc. Ser. II. 4. 288 (1959).
16. Eberhard, Rosenfeld, Solmitz. Tripp, and Watson, Phys. Rev. Letters 2. 312 (1959).
17. A. H. Rosenfeld. Buil. Am. Phys. Soc. Ser. II 2. 363 (1958).
18. Cork, Lambertson, Piccioni, and Wenzel. Phye. Rev. 106. 167. (1957).
19. Alvarez, Eberhard, Good. Graziano, Ticho, and Wojcicks (Lawrence Radiation Laboratory) private commuication.
20. Robert D. Tripp (Lawrence Radiation Laboratory) private comunication.
21. R. H. Dalitz, Aluclear Phys. I. 372 (1956).
22. J. Crussard, in Proceedings of the Sixth Annual Rochester Conference on Highmenergy Physics (Interscience Publishing Co., New York, 1956). Chap. V p. 18.

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

