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Abstract
Background Keloid formation following trauma or surgery is common among darkly pigmented individuals. Since 
lipoprotein(a) [Lp(a)] has been postulated to have a putative role in wound healing, and also mediates atherosclerotic 
cardiovascular disease, it was assessed whether Lp(a), its associated oxidized phospholipids and other oxidation-
specific biomarkers were associated with keloid formation.

Methods This case-control study included darkly pigmented individuals of African ancestry, 100 with keloid scarring 
and 100 non-keloid controls. The lipid panel, hsCRP, Lp(a), oxidized phospholipids on apolipoprotein B-100 (OxPL-
apoB), IgG and IgM apoB-immune complexes and IgG and IgM autoantibodies to a malondialdehyde mimotope 
(MDA-mimotope) were measured. Immunohistochemistry of keloid specimens was performed for both Lp(a) and 
OxPL staining.

Results Cases and controls were well matched for age, sex and lipid profile. Mean Lp(a) (57.8 vs. 44.2 mg/dL; P = 0.01, 
OxPL-apoB 17.4 vs. 15.7 nmol/L; P = 0.009) and IgG and IgM apoB-immune complexes and IgG and IgM MDA-
mimotope levels were significantly higher in keloid cases. Keloid tissue stained strongly for OxPL.

Conclusion Darkly pigmented individuals of African ancestry with keloids have higher plasma levels of Lp(a), 
OxPL-apoB and oxidation-specific epitopes. The commonality of excessive wound healing in keloids and chronic 
complications from coronary revascularization suggests avenues of investigation to define a common mechanism 
driven by Lp(a) and the innate response to oxidized lipids.

Highlights
 • Keloid formation is common among individuals of African ancestry.
 • Lp(a) and OxPL are associated with acute and chronic CVD events.
 • Lp(a) and OxPL-apoB levels are elevated in patients with keloids.
 • Keloids express OxPL staining but not Lp(a) staining.
 • OxPL on Lp(a) may be mechanistically involved in keloid formation.
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Introduction
Lipoprotein(a) [Lp(a)] is a cholesterol ester-rich low 
density lipoprotein (LDL)-like particle composed of a 
single apolipoprotein B100 (apoB) covalently linked to 
apolipoprotein(a) [1]. Epidemiological and genetic data 
has provided support for elevated levels of Lp(a) being 
a risk factor for both atherosclerotic cardiovascular dis-
ease (ASCVD) [2–4] and aortic stenosis [5, 6]. Lp(a) is 
postulated to mediate cardiovascular disease through 3 
key mechanisms [7]: inflammation through its content of 
oxidized phospholipids (OxPL), anti-fibrinolytic effects 
through its apo(a) component [8] and atherogenicity via 
its LDL-like component.

A physiological role, if any, of Lp(a) remains unde-
fined. Elevated Lp(a) levels are clearly associated with 
ASCVD and aortic stenosis, but there have been no other 
non-cardiovascular phenotypes noted [7]. Conversely, 
absence of Lp(a), which is rare, has not been associated 
with any known clinical adverse events [9, 10]. There 
have been several reports of a higher rate of incident 
diabetes in subjects with very low Lp(a) levels of < 5 mg/
dL [11–13], which may represent 10% of the population 
at large [14], but it has not been established if these are 
causal or reverse causality effects of insulin resistance 
resulting in lower Lp(a) levels.

A putative physiological role of Lp(a) is to potentiate 
rapid wound healing or to prevent excessive bleeding 
[15]. These presumably occur at a young age or during 
childbirth and may provide the evolutionary pressure 
to maintain high levels among some individuals across 
populations. The apo(a) component of Lp(a) contains 
several lysine binding sites [16, 17], including a potent 
one on kringle IV10, (KIV10) that allows apo(a) to bind to 
denuded endothelium and presumably deliver its cargo 
of cholesterol and other lipids for cell membrane repair. 
Indirect evidence for such a role of Lp(a) may be in keloid 
formation, representing an exaggerated wound healing 
effect. Keloids are common among darkly pigmented 
individuals. A previous study has shown that keloids are 
associated with carotid atherosclerosis but not explained 
by traditional cardiovascular risk factors [18]. Further-
more, Lp(a) is abundantly present in coronary bypass 
[19] and both elevated Lp(a) and OxPL in native coronary 
artery lesions [20] and have also been associated with 
both acute and long-term adverse outcomes in patients 
undergoing coronary artery bypass graft (CABG) surgery 
[21–23] or percutaneous coronary intervention (PCI) 
[24–26].

A potentially causal link between Lp(a) and the higher 
prevalence of keloids in this population group is postu-
lated. The aim of this study was, therefore, to measure 
Lp(a) and their associated OxPL in darkly pigmented 
African patients with keloids and to determine whether 

there is any relationship between Lp(a) and keloid 
formation.

Materials and methods
Study subjects
Two hundred darkly pigmented subjects were recruited, 
one hundred with obvious keloid scarring and one hun-
dred controls without evidence of keloid scarring. All 
participants were of black African ancestry, apart from 
one individual with a history of keloids who was of mixed 
ancestry. Subjects with keloids were identified at a des-
ignated “keloid clinic” run by the Department of Plastic 
Surgery, Faculty of Health Sciences, University of the 
Witwatersrand. Many of the keloids had developed fol-
lowing ear piercing or shaving and because of being 
located on the face the patients requested removal. The 
time between the injury and the onset of keloid scarring 
was not recorded. Black African control subjects of the 
same sex and within 5 years of age with previous surgery/
trauma and no keloid development were enrolled.

Laboratory variables
After informed consent 20mL blood was drawn from a 
cubital vein. Total cholesterol, triglycerides, high density 
lipoprotein cholesterol (HDL-C) calculated low density 
lipoprotein cholesterol (LDL-C), high sensitivity-C-reac-
tive protein (hsCRP) and serum creatinine were mea-
sured using standard assays.

Measurement of lp(a), oxidized phospholipids on 
apolipoprotein B-100 (OxPL-apoB) and other oxidation-
specific epitopes
Lp(a) [27], OxPL-apoB [28], IgG and IgM apoB-immune 
complexes [29] and IgG and IgM autoantibodies to a 
malondialdehyde mimotope (MDA-mimotope) [30] were 
measured by using in house chemiluminescent enzyme-
linked immunosorbent assays (ELISA) developed at 
the University of California San Diego as previously 
described.

Immunohistochemistry of keloid tissue
Details of immunohistochemical techniques to stain for 
the apolipoprotein(a) component of Lp(a) with murine 
monoclonal antibody LPA4, developed at UCSD [27], 
OxPL epitopes with murine monoclonal antibody E06 
and apoB-100 with murine monoclonal antibody MB47 
have been previously described [20, 29, 31]. In brief, 
keloid tissues were paraffin embedded, cut into 7  μm 
thick sections and mounted on charged slides. The sec-
tions were deparaffinized with Histoclear and rehydrated 
through graded ethanol. For antigen retrieval, sections 
were incubated with Sodium Citrate buffer (pH 6.0) in 
water bath at 95–100  °C for 20  min, then blocked with 
5% normal goat serum/1% BSA/TBS for 30 min at room 
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temperature. Monoclonal antibodies LPA4, E06 and 
MB47 diluted with blocking buffer to 5 µg/ml were used 
to stain sections in a humidified chamber at 4  °C over-
night to detect apolipoprotein(a), OxPL and apoB-100, 
respectively. Sections were then incubated with an anti-
mouse IgG-alkaline phosphatase (Sigma A3438) diluted 
with blocking buffer at 1:50 for 30  min at room tem-
perature, and then visualized with Vector Red substrate 
(Vector SK-5100). Sections were counterstained with 
hematoxylin for 30  s and mounted with Simpo-Mount 
(IHCWorld EO3-18). Immunostaining of consecutive 
sections in the absence of primary Abs was used as a 
negative control. Images were captured with Hamamatsu 
Nanozoomer 2.0HT slide scanner with a 20X lens.

The methodology for immunostaining for 
apolipoprotein(a) is established and uses murine mono-
clonal antibody LPA4 that detects the 14-amino acid epi-
tope TRNYCRNPDAEIRP present on KIV5, KIV7 and 
KIV8 of apolipoprotein(a), and also detects the partial 
sequence of NYCRNPDA present on KIV2. Furthermore, 
LPA4 has been used widely in the past and heavily stains 
apo(a) in coronary, carotid and aortic valve tissues [20, 
31]. In addition, it was also used in the ELISA used to 
document the higher Lp(a) levels in subjects with keloids 
in this study.

Statistical analyses
Data were analyzed using Statistica, version 13.3.0, 
June 2017, licensed through the University of the Wit-
watersrand. Standard descriptive statistics were used 
to describe the data for continuous variables (mean, 
median, range and standard deviation), and numbers 
and percentages were used for categorical variables. The 
Kolmogorov-Smirnov and Shapiro-Wilk tests were used 

to assess normality of the distribution of the data. For 
normally distributed data, 1-way ANOVA and unpaired 
Student t tests were used to compare differences between 
the groups, and for skewed data, the Mann-Whitney U 
test was used. Significance was defined as P < 0.05.

Results
Baseline characteristics
Table 1 displays the baseline characteristics of the study 
groups. There were no significant differences in mean 
age (27 vs. 29 years), sex (40% vs. 44% females) or weight 
(70.5 vs. 74.0 kg) between the cases and controls. Nota-
bly, there was a higher family history incidence of keloid 
in cases (13% vs. 0%) than controls. There were no signifi-
cant differences in the lipid profiles or hsCRP, but cases 
had lower creatinine and higher eGFR than controls.

Lp(a), oxidized phospholipids on apolipoprotein B-100 
(OxPL-apoB) and other oxidation-specific epitopes
Table 2 displays the levels of Lp(a), OxPL-apoB and oxi-
dation-specific biomarkers in cases and controls. Both 
baseline Lp(a) (normal < 30  mg/dL) and OxPL-apoB 
(> 75th percentile is > 7.5 nmol/L) levels were elevated 
in both keloid cases and controls. However, compared to 
controls, keloid cases had higher levels of Lp(a) (57.8 vs. 
44.2 mg/dL; P = 0.01), OxPL-apoB (17.4 vs. 15.7 nmol/L; 
P = 0.009), IgG MDA-mimotope titers (607 vs. 422 RLU, 
P = 0.001), IgM MDA-mimotope titers (1512 vs. 1346 
RLU, P = 0.001), IgG ApoB-IC titers (1291 vs. 888 RLU, 
P < 0.0001) and IgM MDA-mimotope titers (1404 vs. 814 
RLU, P < 0.0001).

Immunohistochemistry of keloid tissue
Representative sections of keloid immunostaining are 
shown in the Fig.  1. Staining of keloid tissue with von 
Giesen stain revealed significant amounts of collagen 
(Fig. 1, panel A, red) in a highly cellular specimen (blue). 
Interestingly, there was no evidence for the presence of 
apolipoprotein(a) in keloid tissue (Fig. 1, panel B). How-
ever, there was significant amount of E06-detectable 
OxPL (Fig. 1, panel C, red), which appeared to be in more 

Table 1 Baseline characteristics of the study groups
Variable Keloid cases

(n = 100)
Controls
(n = 100)

P-value

Age (years) 27 (22, 34.5) 29 (23, 37.5) 0.20

Females (%) 40 44 0.57

Weight (kg) 70.5 (60.0, 81.0) 74.0 (62.5, 
85.5)

0.26

Family history of keloids (%) 13 0 < 0.0001

Smokers (%) 2 8 0.05

Previous cardiac event (%) 0 1 0.32

Total cholesterol (mmol/L) 4.12 ± 0.88 4.30 ± 0.89 0.15

HDL-cholesterol (mmol/L) 1.40 ± 0.36 1.40 ± 0.36 0.91

LDL-cholesterol (mmol/L) 2.48 ± 2.00 2.40 ± 0.79 0.78

Triglycerides (mmol/L) 0.99 ± 0.98 1.09 ± 0.60 0.03

hsCRP (mg/dL) 1.20 (0.57, 3.84) 1.28 (0.57, 
3.58)

0.66

Creatinine (µmol/L) 65.2 ± 15.4 74.2 ± 16.4 < 0.0001

eGFR (mL/min/1.73m2) 138 (116, 166) 122 (103, 
149)

< 0.0001

Data are presented as percentages (%), mean ± SD or median (IQR)

Table 2 Levels of Lp(a), OxPL-apoB and oxidation-specific 
biomarkers in cases and controls
Variable Keloid cases 

(n = 100)
Controls 
(n = 100)

P-value

Lp(a) (mg/dL) 57.8 (34.7, 93.5) 44.2 (20.8, 72.3) 0.01

OxPL-apoB (nmol/L) 17.4 (14.3, 20.9) 15.7 (12.6, 19.3) 0.009

IgG MDA-mimotope, 
RLU

607 (408, 853) 422 (311, 639) 0.001

IgM MDA-mimotope, 
RLU

1512 (997, 2424) 1346 (857, 1923) 0.02

IgG ApoB-IC, RLU 1291 (916, 1764) 888 (691, 1184) < 0.0001

IgM ApoB-IC, RLU 1404 (1010, 1997) 814 (574, 1185) < 0.0001
Data represented as medians and interquartile ranges
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cellular areas and less so in areas of abundant collagen. 
Very faint staining for human apoB-100 was also pres-
ent (Fig.  1, panel D, red). A higher resolution image of 
the OxPL staining is shown in the Fig. 1, panel E. The no 
antibody control did not reveal any staining (not shown).

Correlations among biomarkers
In the combined groups, Lp(a) was strongly correlated 
with OxPL-apoB (r = 0.79, P < 0.0001), and more mod-
estly with IgG and IgM apoB-IC and MDA-mimotope 
(Table  3). The correlation coefficients were similar 
between keloid cases and non-keloid controls.

Discussion
This study demonstrates that darkly pigmented African 
subjects with keloid formation had significantly higher 
levels of Lp(a), OxPL-apoB, circulating IgG and IgM 
apoB-immune complexes and MDA-mimotope levels 
compared to the non-keloid control group. Second, the 
presence of E06-detecatable OxPL within keloid scars 
was documented by immunostaining. The commonality 
of excessive wound healing in keloids and certain aspects 
of CABG and PCI that lead to vessel occlusion suggests 
avenues of investigation to define common mechanisms 
driven by Lp(a) and the innate response to oxidized lip-
ids. It is estimated that 100 million patients develop scars 
in the developed world alone each year following surgery 
or trauma [32]. As opposed to excessive hypertrophic 
scar formation, keloids typically project beyond the origi-
nal wound margins.

The prevalence of elevated Lp(a), defined as > 75 
nmol/L ( ~ > 30 mg/dL) is approximately 20% of the popu-
lation, or 1.5 billion people [33]. In this study, Lp(a) levels 
in both groups were higher than what is considered nor-
mal by most clinical laboratories. However, it is known 
that Lp(a) levels are 2–4 times higher in people of African 
descent compared to Caucasians [34, 35]. As opposed to 
most other racial/ethnic groups, darkly pigmented indi-
viduals of African descent tend to have higher population 
mean Lp(a) levels despite not necessarily having small 
isoforms, as documented in the Dallas Heart Study in US 
African Americans [35], suggesting additional unknown 
influences on apolipoprotein(a) expression and/or clear-
ance. In the current study, despite the overall increased 
Lp(a) levels, the subjects with keloid formation had sig-
nificantly higher Lp(a) levels. Keloid formation appears 
to be genetically determined as well, as suggested by the 
significant proportion of these subjects with keloids who 
also had a family history of keloid.

The higher circulating levels of OxPL-apoB in both 
groups may be related to the fact that the main lipopro-
tein carrier of OxPL, Lp(a), was also elevated. In prior 
studies, the 75th percentile for population cutoffs of 
OxPL-apoB are > 7.5 nmol/L [28, 36–38], but patients 

with elevated Lp(a) have significantly higher levels, often 
exceeding > 20 nmol/L [39, 40]. These findings were repli-
cated in this study, but the subjects with keloid had even 
higher levels than the no-keloid controls. The findings on 
OxPL-apoB were complimented and consistent with the 
data on autoantibodies to MDA-mimotope and apoB-
immune complexes, which generally reflect innate and 
adaptive immune activation awareness of the presence 
of pro-inflammatory oxidation specific epitopes. These 
biomarkers have often been associated with cardiovascu-
lar risk. For example, in epidemiological studies in stable 
patients, the IgG autoantibodies to oxidation-specific epi-
topes are positively associated with higher cardiovascular 
risk, but the IgM autoantibodies to oxidation-specific 
epitopes, which tend to be natural antibodies present at 
birth, seem to be protective [41]. In contrast, in more 
acute situations such as acute coronary syndromes and 
percutaneous coronary interventions, they tend to risk in 
parallel [27, 42]. The fact that both IgG and IgM biomark-
ers are higher in subjects with keloids suggests persistent 
immune activation to oxidation specific epitopes.

The immunohistochemistry data showed only faint 
apoB staining and could not identify the presence of 
apolipoprotein(a) in keloid tissue, suggesting that the 
Lp(a) holoparticle was not accumulating to any signifi-
cant extent in the keloid tissue. In contrast, immunos-
taining for OxPL was present widely, but not necessarily 
strongest in areas of dense collagen deposition. Whether 
these OxPL are derived from the plasma or are generated 
by cells in situ within keloids cannot be determined from 
this study. In prior studies in mouse models which did 
not have the Lp(a) transgene or in cynomolgus monkeys 
which had Lp(a) but no associated OxPL due to varia-
tions in the KIV10 lysine binding pocket, OxPL could be 
documented to both accumulate and regress in response 
to high fat/cholesterol or regression diets, respectively 
[43, 44]. Finally, in human atheromata and aortic valve 
leaflets, Lp(a) and OxPL do necessarily always co-local-
ize, suggesting that OxPL can be derived from additional 
sources besides Lp(a), such as apoptotic cells, cell mem-
brane oxidation and other lipoproteins [20, 31].

There are additional clinical phenotypes that might be 
considered a response to injury, such as atherosclerosis, 
acute plaque rupture and restenosis in response to bal-
loon angioplasty and stent placement, where Lp(a) may 
play a role [43, 45]. Recent studies suggest elevated Lp(a) 
levels are associated with chromic complications for PCI, 
both within the stent and adjacent to it, suggesting neo-
atherosclerosis. For example, a prospective single-center 
registry of 12,064 patients undergoing PCI showed that 
31.1% of patients had Lp(a) levels > 30 mg/dL [24]. Dur-
ing a median follow-up of 7.4 years, the primary out-
come, a composite of cardiovascular death, spontaneous 
myocardial infarction, and ischemic stroke, and repeated 
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Fig. 1 Representative sections of keloid immunostaining for Lp(a) and OxPL. Panel A represents von Giesen stain revealing significant amounts of 
collagen (red) in a highly cellular specimen (blue). Panel B represents immunostaining for apolipoprotein(a), which is not visible. Panel C represents im-
munostaining for E06-detectable OxPL (red) and panel E represents the inset at higher resolution. Panel D immunostaining for human apoB-100 (red). 
Bar = 500 μm
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revascularization was significantly higher in the high 
Lp(a) group. Similarly, elevated Lp(a) and low molecular-
weight apo(a) phenotype were independently associated 
with three-fold increase in risk of major adverse cardio-
vascular events within 15 years after CABG [23]. Mecha-
nistically, the apo(a) component of Lp(a), which carries 
significant OxPL on KIV10, has been shown to stimu-
late smooth muscle cell proliferation and migration in a 
TGF-beta dependent process [46, 47]. These clinical phe-
notypes are considerably enriched in Lp(a)/OxPL, and 
specifically in advanced or ruptured plaques [20], chronic 
total occlusions [48], and in acute coronary syndromes 
[42]and PCI [27]. Direct evidence is also shown by the 
capture of plaque debris from carotid, coronary, renal 
and saphenous vein graft interventions, documenting the 
presence of OxPL [49].

Strengths and limitations
This study is novel in that no other studies have exam-
ined the association between Lp(a) and keloid formation. 
A limitation of this study is that it is observational and 
cannot be used as evidence of causality. Additional stud-
ies are required to confirm and expand on these findings. 
Furthermore, apo(a) isoforms were not measured in this 
study and may have provided additional insights into the 
observations. Finally, whether these findings pertain to 
individuals who are lightly pigmented is not known and 
requires further study.

Conclusion
In conclusion, darkly pigmented African individuals with 
keloids have higher plasma levels of Lp(a), OxPL-apoB 
and indirect biomarkers of oxidation-specific epitopes 
and higher levels of OxPL in keloid tissue. Given the rela-
tionship between raised Lp(a) and ASCVD, the presence 
of keloid formation may be an indicator of individuals 
at greater risk for ASCVD, however, these observations 
require additional study to determine whether a causal 
relationship exists.
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IgM  Immunoglobulin M
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