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Abstract

Background: While numerous genetic loci associated with atopic dermatitis (AD) have been 

discovered, to date, work leveraging the combined burden of AD risk variants across the genome 

to predict disease risk has been limited.
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Objectives: This study aims to determine whether polygenic risk scores (PRSs) relying on 

genetic determinants for AD provide useful predictions for disease occurrence and severity. It 

also explicitly tests the value of including genome-wide association studies of related allergic 

phenotypes and known FLG loss-of-function (LOF) variants.

Methods: AD PRSs were constructed for 1619 European American individuals from the Atopic 

Dermatitis Research Network using an AD training dataset and an atopic training dataset including 

AD, childhood onset asthma, and general allergy. Additionally, whole genome sequencing data 

were used to explore genetic scoring specific to FLG LOF mutations.

Results: Genetic scores derived from the AD-only genome-wide association studies were 

predictive of AD cases (PRSAD: odds ratio [OR], 1.70; 95% CI, 1.49–1.93). Accuracy was first 

improved when PRSs were built off the larger atopy genome-wide association studies (PRSAD+: 

OR, 2.16; 95% CI, 1.89–2.47) and further improved when including FLG LOF mutations 

(PRSAD++: OR, 3.23; 95% CI, 2.57–4.07). Importantly, while all 3 PRSs correlated with AD 

severity, the best prediction was from PRSAD++, which distinguished individuals with severe AD 

from control subjects with OR of 3.86 (95% CI, 2.77–5.36).

Conclusions: This study demonstrates how PRSs for AD that include genetic determinants 

across atopic phenotypes and FLG LOF variants may be a promising tool for identifying 

individuals at high risk for developing disease and specifically severe disease.

Keywords

Atopic dermatitis; polygenic risk score; atopic march; allergic disease; genetic architecture; 
filaggrin; disease prediction; genetic predisposition

Atopic dermatitis (AD) is a common skin disease often characterized by pruritus; dryness; 

and eczematous, erythematous skin lesions. AD has a broad health impact as it is estimated 

to be prevalent in 6% to 11% of the US population,1,2 is more common in children than in 

adults, and affects individuals worldwide.3 Reducing the burden of AD would be financially 

beneficial to both individuals and the overall health care system. The national cost of AD has 

been conservatively estimated to be $5.297 billion annually,4,5 and survey results report the 

median affected adult spends $600 out of pocket on AD-related expenses per year.6 These 

large nationwide and personal costs are important to contextualize among the profound 

psychological impacts and decreased quality of life associated with AD.7,8

Environmental factors such as climate, pollution, food, and use of personal care products 

are considered to play a role in disease development,9,10 but AD has been noted for its 

especially high heritability (71%-90%)11–13 among atopic diseases, suggesting a prominent 

role for genetic risk factors. AD often precedes the onset of other atopic diseases such 

as allergic rhinitis, food allergy, and asthma,14,15 described as the atopic march, and 

importantly, there is shared genetic etiology among asthma, AD, and allergic rhinitis.16,17 

A recent review supports these overlaps in AD and asthma genetic loci with food allergy, 

notably a nonspecific role for FLG loss-of-function (LOF) variants, and HLA alleles.18 The 

common progression from AD to other atopic conditions further highlights the importance 

of identifying at-risk individuals for targeted interventions that might reduce the risk of AD, 

mitigate severity, or lower the propensity to march toward other comorbid conditions.
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AD persists on a spectrum, and the improvement patients may attain through treatment 

options is often dependent on the severity of the disease.19 In addition, patients with AD 

are uniquely susceptible to cutaneous infections,20 including the viral complication known 

as eczema herpeticum and increased frequency of bacterial colonization and infection with 

Staphylococcus aureus.21,22 Moderate and severe AD is characterized by skin patches that 

are dry, red, inflamed, and itchy, and the resulting limitations to lifestyle (eg, avoidance 

of social interaction, sleep disturbance) have been associated with indicators for decreased 

quality of life.8

Polygenic risk scores (PRSs) are a summation of an individual’s particular genetic 

variants weighted by their disease-specific effect sizes, in which these effect sizes are 

typically derived from an external and independent genome-wide association study (GWAS). 

These scores are becoming more accurate as GWAS sample sizes increase23 and have 

demonstrated potential clinically utility.24–26 Genetic scores using <30 variants27–29 and 

PRSs using hundreds of variants30 have recently been applied to allergic phenotypes 

including AD. However, extensive investigation into PRS modeling methods specific to 

the genetic architecture of AD and analysis of the associations of these scores with measures 

of AD severity has yet to be addressed.

We aim to build on these primary frameworks of AD prediction through exploring the 

contribution of genetic signals across allergic phenotypes, PRS model types, thresholds for 

variant inclusion, FLG-specific genetic components, and an emphasis on the severity of 

AD. To the best of our knowledge, such an exhaustive score-based application of genetic 

data has not yet been applied to AD, despite the potential utility to inform preventative 

treatment options31–34 of high-risk individuals. It is important to frame our findings in the 

context of the following: (1) the genetic component for AD is complex35–37 and prediction 

methods have yet to be optimized; (2) a meta-analysis of AD GWASs has identified 27 AD 

risk loci across 15 chromosomes with gene sets enriched for innate immune cell signaling 

and T-cell polarization;11 (3) among these risk loci, LOF mutations in FLG that result 

in epidermal barrier deficiency are the strongest known risk factors;11,38 (4) AD fits into 

the larger genetic framework of the atopic march (eg, childhood onset asthma associations 

showed enrichment for dysregulated allergy and epithelial barrier function genes, suggesting 

broader connections between genetic risk factors for allergic disease and AD39); and (5) 

accurate methods for identifying high-risk individuals at birth who might benefit from 

prophylactic treatments currently under investigation.32–34,40–46 Thus, we compare methods 

involving external genome-wide training datasets for 3 atopic phenotypes (AD, childhood 

onset asthma, and general allergic disease) along with a score pertaining to 4 specific 

variants widely studied for their strong association with AD and LOF in the FLG gene.47–49 

Through focusing on the genetic components of AD, we demonstrate notable differentiation 

between cases and control subjects and illustrate strong associations between PRSs and 

measures of AD severity.

METHODS

Our overall study design is summarized in Fig 1. Briefly, we used GWAS summary 

statistics from large external studies (see Table E1 in this article’s Online Repository at 
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www.jacionline.org) to derive several PRS models for AD prediction. For each of these 

external training datasets, we perform model selection tailored to the genetic architecture 

of AD. The first model we name PRSAD (Fig 1, orange) as it uses a meta-analyzed AD-

only GWAS dataset to train scores weighted specifically to AD. The second score, named 

PRSAD+ (Fig 1, green), is trained using a common factor GWAS that incorporates childhood 

onset asthma and general allergy GWASs in addition to the meta-analyzed AD GWAS. The 

third model, named PRSAD++ (Fig 1, yellow), combines the PRSAD+ with FLG genetic risk 

score (Fig 1, blue) for the presence of ≥1 of 4 well characterized LOF FLG mutations. The 

comparison of the 3 alternative PRS models is to allow us to evaluate (1) whether there 

is additional information to be gleaned from atopy-general rather than AD-specific GWAS 

signals (noting that some of the gain may arise from larger sample sizes rather than true 

pleiotropic genetic effects), and (2) the added value of specific FLG LOF variants that are 

known to carry high risk for AD.

External AD GWAS

Summary statistics from external training GWASs were used to derive PRS models and 

are summarized in Table E2 of this article’s Online Repository at www.jacionline.org. 

Effect sizes for AD risk variants were derived by inverse-variance meta-analysis 

(METAL software)50 for 2 AD GWASs of European-ancestry subjects: (1) The Early 

Genetics and Lifecourse Epidemiology (EAGLE) Eczema Consortium’s GWAS11 (European 

ancestry summary statistics excluding 23andMe available at https://data.bris.ac.uk/data/

dataset/28uchsdpmub118uex26ylacqm; see note E1 in this article’s Online Repository at 

www.jacionline.org from Paternoster et al11 for case-control definitions; 23andMe summary 

statistics were obtained from 23andMe by visiting research.23andme.com/collaborate/

#publication); and (2) the Neale Lab UK Biobank GWAS manifest for phenotype code 

20002_1452 describing self-reported eczema/dermatitis for 9,321 cases and 351,820 control 

subjects.51 Because the effect sizes from the UK Biobank GWAS were estimated using a 

linear model, prior to meta-analysis, coefficients were transformed to odds ratios (ORs) 

using the linear-mixed model OR method52 (see this article’s Online Repository at 

www.jacionline.org, especially Table E2 for specifics).

External atopic phenotype GWASs

Given overlap with other atopic diseases such as allergic rhinitis and asthma,18 summary 

statistics from 2 large external GWASs—allergic disease and childhood onset asthma—

were leveraged to assess whether genetic risk for these phenotypes can improve prediction 

of genetic risk for AD. In the GWAS of allergic disease,16 cases were defined via a 

broad allergic disease classification—the presence of any of these: asthma, hay fever 

(allergic rhinitis), or AD (available at https://genepi.qimr.edu.au/staff/manuelf/gwas_results/

main.html). The GWAS summary statistics for childhood onset asthma39 (onset before 12 

years of age) were obtained from the study investigators. Childhood onset asthma was 

used over adult-onset asthma because it is more TH2 cell–driven and associated with more 

epithelial barrier function genes.

Table E1 and Table E3 include specifics on sample size and the genetic-impact correlation of 

these GWASs.
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Common factor GWASAD+

Recently, methods that incorporate multiple GWASs to derive a single PRS have been 

proposed53,54 that might further improve the prediction of related diseases such as AD, 

asthma, and allergic rhinitis. While food allergy is a phenotype of interest for inclusion, 

it was not included due to the lack of a large GWAS from which to derive PRS. 

We implemented the software Genomic Structural Equation Modeling (Genomic SEM; 

https://github.com/GenomicSEM/GenomicSEM) to produce a common-factor GWAS for 

AD, childhood onset asthma, and general allergies, which we refer to as the "a-factor 

GWAS" to build the downstream PRSAD+. Genomic SEM accounts for overlaps between 

subjects included in the constituent GWASs53 (an important consideration for our study, 

given that the same subjects from the UK Biobank were included in the AD, asthma, 

and general allergies GWASs). The effective sample size of the common-factor GWAS 

when implementing LDpred (https://github.com/bvilhjal/ldpred) was back-calculated using 

the averaging approach derived in Mallard et al55 (see the Online Repository).

PRS validation data from ADRN

Our study’s primary purpose was to estimate PRSs for a large group of unrelated European-

ancestry Americans from the Atopic Dermatitis Research Network (ADRN) and to assess 

PRS prediction of AD risk and AD severity. All samples used for this study were 

obtained following written informed consent from participants. The University of Colorado; 

Johns Hopkins University; National Jewish Health; Oregon Health and Science University; 

University of California, San Diego; Boston Children’s Hospital; Northwestern University; 

Ann and Robert H. Lurie Children’s Hospital of Chicago; University of Rochester Medical 

Center; Children’s Hospital Los Angeles; Children’s Hospital of Philadelphia; and Mount 

Sinai School of Medicine institutional review boards approved the conduct of this study.

GWAS array data were generated in 2 batches: (1) 793 samples (683 cases and 110 

controls) genotyped on the Multi-Ethnic Global Array (MEGA; Illumina, San Diego, Calif) 

genotyping chip, and (2) 833 subjects (594 cases and 239 controls) genotyped on the 

Illumina OMNI 2.5 array chip.56 Sample quality control steps included checks for duplicates 

and first- or second-degree relationships (resulting in the exclusion of 7 subjects) and 

principal component analysis to verify European ancestry (no subjects were excluded). We 

imputed the ADRN GWAS array data separately for each batch to the TOPMed Freeze5 

reference panel on the Michigan Imputation Server.57 Post-imputation, variants with low 

minor allele frequency (<0.01) and genotype probability (<0.9) were removed within each 

batch. The 2 batches were then merged to a common set of 5,663,079 variants. Details on 

quality control and genotype imputation steps are available in the Online Repository. The 

clinical characteristics of the 1619 ADRN subjects (1274 cases and 345 nonatopic controls) 

available for PRS estimation, including measures of AD severity are further discussed below 

and are summarized in Figs E1 and E2 and Table E4 in this article’s Online Repository 

at www.jacionline.org. Cases were defined using AD standard diagnosis criteria with the 

extra requirement that subjects <4 years of age presented AD for at least 6 months (to 

avoid misdiagnosis). The nonatopic control subjects were defined as having no individual or 

family history of atopy and average total IgE < 100 kU/L.20
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PRS model derivation and selection

We used 3 alternative linkage disequilibrium (LD) modeling methods in LDpred,58 

relying on the above-mentioned external GWAS results while computing PRS for different 

parameter settings. These 3 models include (1) LD pruning followed by P value thresholding 

(P+T); (2) LDpred where posterior mean effect sizes are estimated given a proportion of 

causal markers and accounting for LD; and (3) LDpred-inf where the LDpred model is 

specialized to an infinitesimal prior, and all variants are considered causal. Because the 

complex genetic architecture of AD has not yet been well characterized, we implemented all 

3 models across LDpred’s standard P+T grid (1, 3 × 10−1, 1 × 10−1, 3 × 10−2, 1 × 10−2, 3 × 

10−3, 1 × 10−3, 3 × 10−4, 1 × 10−4, 3 × 10−5, 1 × 10−5, 1 × 10−6, 1 × 10−7, 1 × 10−8 for the 

P+T model) and proportion of causal variants grid (1, 3 × 10−1, 1 × 10−1, 3 × 10−2, 1 × 10−2, 

3 × 10−3, 1 × 10−3 for the LDpred model). We used the 1619 ADRN European-ancestry 

American subjects for the LD reference panel. To account for the unbalanced case and 

control count of the training GWASs, we computed the effective samples size (neff) using the 

relevant variance inflation factor: neff = 4/(1/ncases+1/ncontrols).59

We compared results across these different model types and thresholds to determine the 

best approach for each of the 3 PRSs. Likelihood ratio tests were used to compare 

model fit for all pairs of models. Fig E3 in this article’s Online Repository (available at 

www.jacionline.org) illustrates the model selection process for PRSAD in which the LDpred 

model (proportion of causal variants = 3 × 10−2) was the selected based on these metrics. 

To visually interpret disease risk by strata, we include violin boxplots and quantile plots 

that were constructed using relative quantile status to distinguish AD cases and controls.60 

Logistic regression models were used to validate each of the 3 PRSs in the ADRN data 

(n = 1274 cases, N = 1619 of European ancestry) where PRS was used as the predictor 

of case-control status. Models were ranked on the basis of area under the curve (AUC),61 

OR, Nagelkerke R2, and McFadden R2. These metrics are widely used and provide slightly 

different methods for evaluation of PRS prediction accuracy.58,60

Contribution of FLG mutations to the PRSAD++

Because FLG LOF mutations48 were not included in the general PRS (see Fig E4 and 

Table E5 in this article’s Online Repository at www.jacionline.org), we used whole genome 

sequencing data, available for 758 ADRN subjects (described in the Online Repository), to 

assess enrichment of FLG mutations by PRS quantile. We used carrier status for any FLG 
LOF variant: that is, individuals with an alternate genotype for ≥1 of these—2282del4,38 

R501X,11,38,51 S3247X,6,25 or R2447X6,25—were coded as 1 (carrier), and individuals 

without any of these LOF variants were coded as 0 (noncarrier). This FLG indicator was 

standardized and combined with the standardized PRSAD+ for the 758 individuals with 

whole genome sequencing data to create a composite PRSAD++.

AD severity correlations with PRSAD, PRSAD+, and PRSAD++

We used several measures to test for association between PRS and AD severity (Figs E1 

and E2 and Table E4). The total eosinophil count (cells/mm3; calculated from the "CBC 

with differential" blood test), log-transformed values for total serum IgE, infant age of 

onset (AD onset before 1 year of age), eosinophil count, Rajka-Langeland (RL) scores, 
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and Eczema Area and Severity Index (EASI) scores (a standardized system used to grade 

an individual’s degree of severity on a scale from 0 to 7262) were used in this analysis. 

Prior to log-transforming and adjusting individual severity measure values for age and sex 

(using linear model residuals), we added 1 to each EASI score to avoid taking the log10 

of 0. A Box-Cox transformation with a λ of 1.5 was applied to the RL score to normalize 

the distribution. To assess prediction of moderate and severe AD, we classified individuals 

in the ADRN based on their adjusted EASI scores relative to the following definition of 

severity strata: clear = 0.0, 0.0 < mild < 6.0, 6.0 ≤ moderate < 23.0, 23.0 ≤ severe ≤ 72.0,63 

transformed to the log10(EASI+1) scale. The distribution of AD severity is illustrated in Fig 

E1 and classification totals of the 1619 individuals are as follows: control, 345; clear AD, 

2; mild AD, 447; moderate AD, 597; severe AD, 228. Finally, we tested for association 

between genetic principal components and PRSs (see Table E6 in this article’s Online 

Repository at www.jacionline.org).

RESULTS

PRS Model Selection

Accuracy of the various AD PRS models are summarized in Figs E5 to E10 and Table E7 

in this article’s Online Repository (available at www.jacionline.org). Using LDpred’s default 

array of thresholds for P values (P+T models) and proportion of causal variants (LDpred 

models), AD was best predicted by the LDpred model with the proportion of causal markers 

set to 0.03 (Fig E3). The worst performing models included the P+T models with highly 

stringent thresholds (eg, P = 1 × 10−7). The most inclusive models, such as the LDpred 

infinitesimal and P+T P = 1 models, fell in between. These results regarding model selection 

suggest that there is some middle ground for how many variants with weak effect sizes are 

relevant toward the prediction of AD.

PRSAD, PRSAD+, and PRSAD++

The standardized PRSAD followed a normal distribution and ranged 7.74 SD units from 

−2.62 to 5.12 (Fig 2). The model had an AUC of 0.64, describing a 0.64 probability that the 

PRS model is able to correctly distinguish between AD cases and controls, based solely on 

PRS and no other clinical risk factors. When comparing controls to only individuals with 

severe AD, the AUC increased to 0.70.

With the addition of related phenotypes in the common factor training dataset (PRSAD+) the 

AUC improved from 0.64 to 0.71, and further combining this score with the FLG genetic 

risk score shown in Fig E9 yielded a larger AUC of 0.76 (PRSAD++). Moreover, the scores 

explained most of the single nucleotide polymorphism–based heritability (h2
SNP) (PRSAD+: 

Nagelkerke R2 = 0.132 and McFadden R2 = 0.086) captured by the training AD GWAS 

(h2
SNP = 0.135) (Table E1). In terms of effect size, the PRSAD produced an OR of 1.70 

(95% CI, 1.49–1.93) that improved to 3.23 (95% CI, 2.57–4.47) for the PRSAD++. These 

standardized PRSs are equivalent to Z-scores and a 1-unit SD increase in the PRSAD++ 

corresponded to an OR of 3.23 and a 3-unit SD increase resulted in an OR of 3.233 

or 33.7. When including both age and sex as covariates, the AUC for PRSAD improved 

from 0.64 to 0.71, the AUC for PRSAD+ improved from 0.71 to 0.75, and the AUC for 
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PRSAD++ improved from 0.76 to 0.80 (see Table E8 in this article’s Online Repository at 

www.jacionline.org).

When comparing PRS quantiles in Fig 3, we found that belonging to the upper quantiles 

(60%-100%) relative to the middle quantile (40%-50%) trended with an OR >1, and this 

trend strengthened for PRSAD+ and PRSAD++. The lower quantiles (0%-40%) followed 

this trend with ORs consistently <1. Notably, the PRSAD++ quantile plot illustrates that 

belonging to the top quantile relative to belonging to the middle quantile had a large OR of 

10.56 (95% CI, 3.01–36.99) (Fig 3, top right).

PRS correlates with AD severity

In addition to tracking phenotypic outcomes, PRS was positively correlated with disease 

severity among individuals affected with AD (Table I). The linear model between log-

transformed EASI and PRS had a positive β slope of 0.036 (95% CI, 0.015–0.057; P < .001). 

All regressions between PRS and severity measures (EASI, total serum IgE, eosinophils, 

RL) and age of onset were statistically significant. The R2 increased for each severity 

measure along the progression from PRSAD to PRSAD+ to PRSAD++.

FLG mutations and the PRSs

The PRSAD and PRSAD+ models segregated a considerable number of AD cases without 

considering LOF FLG mutations into the upper quantiles, and in Fig 4, we examine FLG 
carrier frequency by quantile for each PRS distribution (Fig 4). For PRSAD on the bottom 

left of Fig 4, there was a trend of increasing prevalence of FLG LOF carriers toward the 

upper quantiles (mean PRSAD without FLG mutation, −0.213; mean PRSAD with FLG 

mutation, 0.349; difference of means, 0.562; t-test P < 1 × 10−11). In comparing the bottom 

left (PRSAD) and bottom middle plots (PRSAD+) of Fig 4, we did not observe an increase 

in separation of PRS by FLG carrier status (mean PRSAD+ without FLG mutation, −0.171; 

mean PRSAD+ with FLG mutation, 0.290; difference of means, 0.461; t-test P < 1 × 10−8). 

This was noteworthy because the progression from AD to PRSAD+ introduced a 0.64 to 0.71 

(+0.07) improvement in AUC. Therefore, this improvement in accuracy from training on the 

common factor GWAS compared to the AD-only GWAS seemed to be driven by signals 

different from epidermal barrier deficiency via FLG LOF. As expected, by explicitly adding 

in the FLG indicator with PRSAD++, there was a distinct shift toward nearly all FLG LOF 

carriers being placed in the upper PRS quantiles (mean PRSAD++ without FLG mutation, 

−0.432; mean PRSAD++ with FLG mutation, 1.387; difference of means, 1.818; t-test P < 

1 × 10−15) (bottom right of Fig 4) that resulted in a 0.71 to 0.76 (+0.05) improvement 

in AUC. Although the first 2 principal components were marginally correlated with PRSs, 

the principal components were not predictive of AD risk (see Table E6 in this article’s 

Online Repository at www.jacionline.org), suggesting that population substructure (as would 

be captured by these principal components) is not a significant contributor to the trend in 

enrichment of FLG mutation carriers in the top PRS quantile. An auxiliary analysis in which 

we compared genetic scores for the epidermal differentiation complex (EDC) versus scores 

excluding the EDC suggested that FLG variants stand out as the primary signal within the 

EDC (see the PRS and the EDC section in the Online Repository).
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DISCUSSION

The present study quantifies predisposed genetic risk using multiple methods and training 

datasets. Consistent with those of Simard et al,29 our findings support the utility of 

using genetic scores to predict AD and to identify high-risk neonates. We illustrate how 

prediction accuracy can be optimized through the improvements across PRSAD, PRSAD+, 

and PRSAD++. Specifically, the PRSAD++ model outlines the utility of a training dataset that 

includes related atopic phenotypes, and the PRSAD++ model emphasizes the distinct signal 

of FLG LOF variants. Comparing these 3 genetic scores furthers our understanding of the 

complex genetic architecture underlying AD (through the evaluation of FLG vs non-FLG 

genetic components, multiple training datasets, and model selection across an array of causal 

variant thresholds) and quantifies the association between genetics and disease severity.

The ability to identify high-risk individuals at an early age might open the door for 

preventative measures, and 3 small, randomized trials have suggested a reduced risk of 

AD development by 32% to 50% from the daily application of emollients in the first few 

months of life.32–34 However, subsequent studies in larger cohorts failed to substantiate 

these findings of reduced risk of AD and dampened enthusiasm for easy-to-use and low-

cost40 topical therapies.41–43 Investigators continue to study the utility of emollients for AD 

prevention,44,45 and there remains a need for high-quality data on the efficacy of primary 

prevention strategies.46 AD clinical trials have commonly used family history to identify 

high-risk infants, and the addition of PRS would enhance the accuracy of inclusion criteria 

for future studies. For example, PRS might be useful in investigating whether the efficacy 

of emollient therapy differs as a function of genetic determinants of skin barrier dysfunction 

compared to patients with low genetic risk and/or an AD phenotype primarily driven by TH2 

cell imbalance. In addition, the positive correlation between PRS and AD severity suggests 

that PRS could be used to better understand the genetic predisposition to not only the 

development of AD, but also its severity. As exemplified by the AUCs calculated (without 

covariates) for food allergy (0.74), asthma (0.69), and allergic rhinitis (0.69) by Simard et 

al,29 PRS of AD has a broad scope of potential utility for predicting other allergic diseases 

as well.

In the context of clinical applications of PRS, there are imperative considerations regarding 

the social inequality of PRS-informed treatment options.64 As has been pointed out by 

many in the field, a critical ethical consideration of PRS stems from evidence that 

PRS can be biased and unreliable when there is misalignment between ethnicities of 

the target population and the GWAS.65 We are alarmed by the lack of non-European 

GWASs pertaining to AD and related phenotypes because the power harnessed in the large 

sample sizes from these external training datasets is essential to generating meaningful PRS 

calculations. This concern is compounded by increased morbidity of AD in ethnic minorities 

such as African Americans37 and evidence that AD likely has differing genetic architecture 

across ethnicities; for example, multiple studies have noted the differences in frequencies 

of FLG mutations associating with AD in individuals of European and non-European 

ancestry.66–69

Arehart et al. Page 9

J Allergy Clin Immunol. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Another limitation of our study lies in the definition of cases and controls. The inclusion 

criteria for cases might be biased toward including persistent AD rather than early infancy 

or transient AD. As aforementioned, all of the controls in this study were nonatopic, and 

this greatly limited our ability to disentangle atopy versus risk for AD. On one hand, these 

limitations might explain why the general allergy GWAS (Fig E6) was a more effective 

training dataset than the AD GWAS was (although some of the increase in prediction 

accuracy is likely due to the general allergy GWAS having an effective sample size ~2.3 

times larger than that of the AD GWAS). In addition, some ADRN subjects have related 

comorbidities (51% of AD cases and 0% of controls are asthmatic) that might inflate the 

accuracy of these PRSs within the context of the atopic march. The comorbid nature of 

atopic diseases and the increased accuracy from the general allergy training dataset might be 

explained by recent findings showing AD and allergy sensitization are strong atopic disease 

risk markers early in life.70

Identifying ideal control subjects for AD is a pervasive challenge: when using population-

based controls, it is extremely difficult to ascertain when AD onset can occur throughout 

one’s life span, and both atopy and AD are common diseases in the general population. 

While population controls are commonly used in GWAS for gene discovery, we note 

the challenges here in evaluating true prediction accuracy. Because our primary measures 

of severity (EASI and RL) were measured at the time of enrollment, it is important 

to acknowledge that severity ratings might vary over time and depend on the course of 

treatment (eg, a patient who needs systemic medications to achieve a mild EASI score is not 

mild but severe).

In the future, we hope to see further improvements in the predictive accuracy and breadth of 

these genetic models. Specifically, we urge the following areas of potential growth:

• Larger effective GWAS sample sizes (of all ethnicities) will improve the 

accuracy of training datasets. Increasing effective sample sizes from tens of 

thousands to hundreds of thousands could greatly improve PRS accuracy of AD.

• High standards for GWAS phenotype accuracy, as we suspect that the notable 

differences between the meta-analyzed summary statistics may be attributable to 

variable case definitions (eg, doctor diagnosed vs self-reported). This includes 

better coverage and distinction of subphenotypes of AD within the GWAS 

catalog.

• AD outcomes are heavily influenced by the environment, and prediction could be 

improved by incorporating nongenetic covariates into these PRS models. While 

we explicitly focused on assessing genetic scores and their correlations with 

severity measures, covariates (that would be available for neonates) such as age, 

sex, and parents’ ethnicity have been shown to be useful for the prediction of 

AD.29 In our study, age was a more informative covariate than sex, and the 

inclusion of both variables as covariates in the model improved the AUCs for 

PRSAD by +0.07, PRSAD+ by +0.04, and PRSAD++ by +0.0 4(se eTabl eE 8i 

nthis article’s Online Repository at www.jacionline.org). Downstream measures 

such as total serum IgE or total eosinophil count would substantially improve 
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model accuracy and likely result in almost perfect case-control separation (given 

the nonatopic control definition), leaving little room to assess the role of 

genetically derived risk.

• The implementation of developing possibly superior statistical scoring 

methods71–73 might allow for models that are even more specifically tailored 

to the complex genetic architecture of AD.

• Large non-European training GWAS datasets and new PRS modeling approaches 

suited for admixed populations need to be developed and implemented (see the 

Online Repository for auxiliary PRS analysis in African Americans).

In conclusion, this study presents a thorough framework for the genetic prediction of 

complex disease. We reason that methods of AD care could greatly benefit from applications 

of genetic scoring and that there is room to grow in our ability to optimally predict AD. 

AD PRS associates with AD severity and was improved with a common factor GWAS 

of AD, childhood-onset asthma, and general allergic disease exemplifying the entangled 

genetic architecture of atopic diseases. While polygenic scoring could play a special role 

in identifying high-risk individuals without FLG mutations, these variants continue to be a 

primary focus for atopic disease prediction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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EDC Epidermal differentiation complex
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GRS Genetic risk score

GWAS Genome-wide association study

LD Linkage disequilibrium

LOF Loss of function

OR Odds ratio

P+T P value thresholding

PRS Polygenic risk score

RL Rajka Langeland (score)
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Clinical implications: A genetic risk model combining AD and atopy-related genetic 

variants with FLG LOF indicators could identify high-risk neonates for targeted therapies 

to prevent the onset (or severity) of AD.
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FIG 1. 
Workflow diagram for PRSAD (orange), PRSAD+ (green), and PRSAD++ (yellow) PRS 

derivation and validation. GRS, Genetic risk score.
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FIG 2. 
PRSAD PRSAD+, and PRSAD++. There is increased separation between cases and controls 

from left to right with the addition of related GWAS (PRSAD+) and FLG mutations 

(PRSAD++) and from top to bottom with increasing AD severity. The bottom right plot 

of PRSAD++ for severe AD versus controls has no interquartile overlap and an AUC of 0.82.
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FIG 3. 
Quantile plots describe ORs and 95% CIs for each quantile relative to the median quantile 

(40%, 50%) as a predictor of AD case status. Noting the nonlinear spacing of tick marks on 

the log-transformed y-axis, the ORs illustrate the most distinction at the extreme quantiles 

for the PRSAD++. There is notable ability of PRS–especially at the extremes–to distinguish 

between cases and controls for this complex disease.
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FIG 4. 
The top 3 × 3 stacked bar plots present the tally of cases and controls within each quantile 

of these PRS distributions. Cases tend to increase in frequency toward the upper quantiles 

while controls are increasingly common among the lower quantiles. This trend strengthens 

rightward (AD to AD+ to AD++) and downward (increased severity). In the bottom 3 plots, 

the gray bars in the background illustrate how roughly 50% of the individuals within each 

quantile had WGS data for investigation of the 4 FLG LOF genotypes. Among individuals 

with WGS data, the colored lines detail the percent of subjects who are carriers for R501X, 

2282del4, R2447X, and S3247X; solid lines indicate percentage of cases, and dashed lines 
represent percentage of controls who are carriers within each quantile.

Arehart et al. Page 20

J Allergy Clin Immunol. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Arehart et al. Page 21

TA
B

L
E

 I.

PR
S A

D
, P

R
S A

D
+

, a
nd

 P
R

S A
D

+
+
 v

er
su

s 
ad

ju
st

ed
 s

ev
er

ity
 m

ea
su

re
s

L
in

ea
r 

m
od

el
A

dj
us

te
d 

R
2

β 
(9

5%
 C

I)
P

 v
al

ue

A
dj

us
te

d 
E

A
SI

 
~ 

PR
S A

D
0.

00
8

0.
03

6 
(0

.0
15

–0
.0

57
)

9.
12

 3
 1

0−
4

 
~ 

PR
S A

D
+

0.
01

2
0.

04
4 

(0
.0

22
–0

.0
66

)
7.

66
 3

 1
0−

5

 
~ 

PR
S A

D
+

+
0.

02
8

0.
06

8 
(0

.0
35

–0
.1

02
)

6.
55

 3
 1

0−
5

A
dj

us
te

d 
to

ta
l I

gE

 
~ 

PR
S A

D
0.

04
5

0.
18

1 
(0

.1
40

–0
.2

22
)

7.
93

 3
 1

0−
18

 
~ 

PR
S A

D
+

0.
06

1
0.

20
9 

(0
.1

69
–0

.2
50

)
1.

33
 3

 1
0−

23

 
~ 

PR
S A

D
+

+
0.

13
6

0.
34

9 
(0

.2
86

–0
.4

12
)

1.
85

 3
 1

0−
25

A
dj

us
te

d 
to

ta
l e

os
in

op
hi

ls

 
~ 

PR
S A

D
0.

01
6

0.
06

1 
(0

.0
38

–0
.0

84
)

2.
1 

3 
10

−
7

 
~ 

PR
S A

D
+

0.
05

4
0.

11
1 

(0
.0

88
–0

.1
33

)
1.

77
 3

 1
0−

21

 
~ 

PR
S A

D
+

+
0.

06
8

0.
12

0 
(0

.0
89

–0
.1

52
)

2.
23

 3
 1

0−
13

A
dj

us
te

d 
R

L

 
~ 

PR
S A

D
0.

00
5

0.
29

4 
(0

.0
73

–0
.5

15
)

9.
06

 3
 1

0−
3

 
~ 

PR
S A

D
+

0.
01

0
0.

43
6 

(0
.2

10
–0

.6
61

)
1.

60
 3

 1
0−

4

 
~ 

PR
S A

D
+

+
0.

01
8

0.
55

7 
(0

.2
17

–0
.8

96
)

1.
35

 3
 1

0−
3

L
og

is
ti

c 
re

gr
es

si
on

 m
od

el
M

cF
ad

de
n 

R
2

N
ag

el
ke

rk
e 

R
2

A
U

C
O

R
 (

95
%

 C
I)

P
 v

al
ue

In
fa

nt
 a

ge
 o

f 
on

se
t

 
~ 

PR
S A

D
0.

02
3

0.
04

1
0.

60
8

1.
45

 (
1.

30
–1

.6
2)

1.
14

 3
 1

0−
11

 
~ 

PR
S A

D
+

0.
03

1
0.

05
4

0.
62

2
1.

55
 (

1.
39

–1
.7

3)
9.

37
 3

 1
0−

15

 
~ 

PR
S A

D
+

+
0.

08
5

0.
14

3
0.

69
7

2.
07

 (
1.

75
–2

.4
4)

1.
10

 3
 1

0−
17

M
ea

su
re

s 
fo

r 
E

A
SI

, t
ot

al
 I

gE
, t

ot
al

 e
os

in
op

hi
ls

, a
nd

 R
L

 w
er

e 
tr

an
sf

or
m

ed
 a

nd
 a

dj
us

te
d 

fo
r 

se
x,

 b
at

ch
, a

nd
 a

ge
. S

ee
 th

e 
O

nl
in

e 
R

ep
os

ito
ry

 f
or

 f
ur

th
er

 d
et

ai
ls

. I
nf

an
t a

ge
 o

f 
on

se
t r

ef
er

s 
to

 A
D

 o
ns

et
 b

ef
or

e 
1 

ye
ar

 o
f 

ag
e.

J Allergy Clin Immunol. Author manuscript; available in PMC 2022 April 01.


	Abstract
	METHODS
	External AD GWAS
	External atopic phenotype GWASs
	Common factor GWASAD+
	PRS validation data from ADRN
	PRS model derivation and selection
	Contribution of FLG mutations to the PRSAD++
	AD severity correlations with PRSAD, PRSAD+, and PRSAD++

	RESULTS
	PRS Model Selection
	PRSAD, PRSAD+, and PRSAD++
	PRS correlates with AD severity
	FLG mutations and the PRSs

	DISCUSSION
	References
	FIG 1.
	FIG 2.
	FIG 3.
	FIG 4.
	TABLE I.



