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Boundary-layer model for the population dynamics of
single species

(population growth/logistic equation/0 model /Drosophila)

ALAN HASTINGS*, JUAN M. SERRADILLAt, AND FRANCISCO J. AYALAt
*Department of Mathematics and tDepartment of Genetics, University of California, Davis, California 95616

Contributed by Francisco J. Ayala, November 25, 1980

ABSTRACT We develop a new discrete-time model, called,
the boundary-layer model, to describe the dynamics of'single spe-
cies that have a capacity for fast growth, at very low population
densities, The model explicitly separates the dynamics of the pop-
ulation at very low densities (within the "boundary layer") and at
high densities. The boundary-layer model, provides a better fit
than other models such as the logistic or the 0 model to data from
experimental populations of Drosophila willistoni and D. pseudo-
obscura.

A fundamental problem in theoretical ecology is the description
of the dynamics of single-species populations'. Approaches to
this problem can be traced to Verhulst, Pearl, Lotka, and Vol-
terra (for recent reviews, see refs. 1 and 2). The logistic equation
and simple modifications of it are the models most commonly
used to describe the population dynamics of single species, but
they fail to describe adequately the dynamics of even simple
laboratory populations of Drosophila. The 0 model (3), which
adds a third parameter (0) to the two (rand K) used in the logistic
equation, has been shown to provide a reasonably good fit to
experimental data, but it fails to account for the very fast rate
of population growth observed' in some organisms when their
density is very low.

The general form of the logistic and related models is an
equation for exponential growth multiplied by a term that ex-
presses intraspecific competition. In the present paper, we de-
velop a new model that explicitly separates population growth
into two regions. One region encompasses the population dens-
ities at which fecundity is the main limiting factor of population
growth-i.e., population densities below what we shall call the
"fecundity-saturation" of the environment. The second region
encompasses the population densities at which survival in com-
petition for limited resources is the limiting factor-i.e., densi-
ties above the capacity of the population for fecundity-satura-
tion of the environment. This new model contains three
parameters to which a direct biological interpretation can be
given and provides a strikingly better fit than does the logistic
or the 6 model to certain data from laboratory populations of
Drosophila.

THE MODEL
The model herein developed is a discrete-time model, of the
form

Nt+ = g(Nt), [1]

where Nt is the size of the population at time t. A discrete-time
model is used in order to simplify the derivation as well as to

make possible* its application to laboratory experiments that
provide discrete-time data.

First, we consider the basic features that the model should
have. The processes determining the number of organisms at
the next census time, in terms of the current population size,
are separated into several categories depending on the current
population size. At very low population densities (on the order
of 1% of the carrying capacity), the population does not have
the capacity for fecundity-saturation of the environment and the
limitation to growth is determined by fecundity. The range of
densities below fecundity-saturation will be called-the "bound-
ary layer. " Within the boundary layer, population size from one
census to the next increases rapidly as a function of current
population size. At all but these very low densities, the fe-
cundity of the organisms is high enough to saturate the available
resources; the environment is then fecundity-saturated, and
survival in competition for limited resources is the major de-
terminant of population size from one census to the next. The
form of the model at densities above the fecundity-saturation
of the environment is the outer solution, which provides for
slow changes in population density from census to census. Be-
tween the boundary layer and the region governed by the outer
solution, there is a transition region where both fecundity and
survival play roles.

Previous discrete models of population growth usually are
discrete versions of the logistic equation (or of simple modifi-
cations of the logistic equation). The logistic equation is based
upon a Taylor series, which is a reasonable way to approximate
the right-hand side of Eq. 1 if the rate of population growth
does not experience sudden changes as a function of population.
density. When sudden changes occur, it is appropriate to use
a singular-perturbation approach (cf. refs. 4 and 5). The form
of our model is therefore based upon ideas from singular-per-
turbation theory.

It is simpler to present our model in terms of a nondimen-
sional population size, defined as

n = N/K. [2]
This transformation simply ensures that at the carrying ca-

pacity (N = K), n is 1.
We will advance, first, the form of the model within the

boundary layer, then present the outer solution, and, finally,
describe how to integrate these two components of the model.
This integration will allow us to obtain the solution in the tran-
sition region-and to achieve a single model valid for all popu-
lation densities.

In the boundary layer, when population density is very low,
the model~has the form --

nt+ = c(l -e-n/E) [3]
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The publication costs of this article were defrayed in part by page charge
payment. This article must therefore be hereby marked "advertise-
ment" in accordance with 18 U. S. C. §1734 solely to indicate this fact.



Proc. NatL Acad. Sci. USA 78 (1981) 1973

where E is a small parameter which measures the magnitude
of the boundary layer [i.e., the fraction of the range of popu-
lation densities from 0 to K within which the environment is not
fecundity-saturated (see below)] and the constant c, which will
be specified later, reflects the population size at the census im-
mediately after the fecundity-saturation is reached.
The general form of Eq. 3 incorporates the notion of dimin-

ishing returns for each additional individual added to the pop-
ulation. A model of such a-form has been shown (3) to provide
a good fit to data from experimental Drosophila populations.

For all values of n, except very low ones (i.e., except those
within the boundary layer), we will model population growth
by

nt 1 = b(l-n') [4]

Eq. 4 is a general exponential model that satisfies the condition
that if nt is 1, so is nt,,. The constant b reflects density de-
pendence in the region of the outer solution.

Note that Eq. 3 does not satisfy the condition that nt+1 is 1
whenever nt is equal to 1 and that Eq. 4 does not satisfy the
condition that nt+I is 0 whenever nt -is 0. Therefore, neither
equation alone provides a uniformly valid model. In order to
obtain such a valid model, we must "match" Eq. 3 with Eq. 4
(5).
We will specify that the limit of the right-hand side of Eq.

3 as nje E X be also the limit of the right-hand side of Eq. 4
as nt 0. We then add-the two solutions and subtract their com-
mon part (i.e., the limit above) in order to obtain a single so-
lution or model. This procedure forces c in Eq. 3 to be eb and
yields the composite model

nt+ = eb( - e-nt/E) + eb(l-nt) - eb. [5]

This can be rewritten as
= eb(e-bne - e-nt/e) [6]

or

Nt+ I = Keb(e-bN/K - e-Nt/KE) [7]

Eq. 7 is the model that we sought.
The value of r, which measures the discrete-time intrinsic

rate of growth in the logistic equation, can be approximated
closely by taking the limit of.n+I/n in Eq. 3 as nt 0, namely

er - eble [8]

high population levels. This simply implies that the applicability
of the model is restricted to population sizes less than several
times the carrying capacity.

If b is positive, the population overshoots K, whereas if b is
negative, K is approached monotonically. This is because b is
approximately the natural logarithm of the nondimensional
measure of population size at the census after the population
reaches the fecundity-saturation density (and the natural loga-
rithm of the nondimensional carrying capacity is, of course, 0).

It should be noted that the form of the model advanced here
was suggested by the approximate solution to the singularly
perturbed boundary-value problem (4, 5):

d2y dyep+ dx + by = 0;0 <x <1,0< << 1

y(O)= 0 [12]
y(l)= 1.

We identify y with n,+l, and x with n. This solution has the
desired properties and requires only three parameters, the
same as-the 0 model and only one more than the logistic model.

EXPERIMENTAL RESULTS AND DISCUSSION
We now describe an application of the model by using experi-
mental laboratory populations of Drosophila. The experiments
were carried out with each of two species, D. willistoni and D.
pseudoobscura, using the type-2 experimental procedure (3).
Briefly, a specified number of adults, Nt, were allowed to lay
eggs for 1 week in a half-pint culture with fresh medium. After
I week, the survivors were counted and discarded; the adults
emerging from the culture were then recorded at 1 week in-
tervals over the following 4-5 weeks, so as to obtain the com-
plete first-generation progeny while avoiding a second gener-
ation. The sum of the survivors plus the emerging adults
estimates the number of individuals after 1 week, N,+1, in a
population maintained by serial transfer [type-l experiments
(3)]. The change in numbers after 1 week (AN = Nt+I- N) for
various initial numbers is given in the second column of Tables
1 and 2 and in Fig. 1.
The experimental details are given in ref. 6, where fits to the

data are made by using discrete-time versions of the.logistic

Table 1. Dynamics of experimental populations of D. willistoni
and best fit by the boundary-layer model using the parameters
given in Table 3.

or
r b - In e. [9]

Note that very small values of E correspond to very large values
of r, an inverse relation that we would expect because the
greater the intrinsic capacity of growth (r), the lower the density
at which the environment will be fecundity-saturated (i.e., the

'smaller the range of densities encompassed within the bound-
ary layer).

By taking the derivative of the right-hand side of Eq. 7, we
observe that the equilibrium point, given by

N - K, [10]
is stable if

-1 <b <1, [11]

that is, whenever the population size at the generation after
saturation lies between K/e and Ke, a condition that will almost
certainly be satisfied in any real populations. However, if b is
negative, the modelhas a second, unstable, equilibrium at very

Initial
number

8
16
32
64
96
128
192
256
384
512
768
1024
1280
1536
1792
2048

AN

415 ± 49
763 ± 79
905 ± 29
937 ± 51
948 ± 75
872 ± 49
781 ± 36
689 ± 37
614 ± 39
595 ± 49
439 ± 58
87 ± 56

-90 ± 64
-526 ± 49
-1068 ± 50
-1360 ± 39

Best fit of
model, to AN

428
678
903
982
959
925
852
779
634
489
200
-88
-374
-660
-945
-1229

The change in population numbers after 1 week (AN) is given as the
mean ± SEM of 20 observations.

Population -Biology: Hastings et aL
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Table 2. Dynamics of experimental populations of D.
pseudoobscura and best fit by the boundary-layer model
using the parameters given in Table 3.

Initial
number

8
16
32
64
96

128
192
256
384
512
768
1024
1280

AN

264 ± 21
327 ± 14
282 ± 33
213 ± 19
185 ± 20.
194 ± 19
95 ± 23
98 + 19
64 ± 18

-22 ± 25
-239 ± 17
-462 ± 34
-655 ± 42

Best fit of
model to AN

280
298
287
262
236
211
160
110
12

-84
-267
-438
-594

Nt

400

200

The change in population numbers after 1 week (AN) is given as the
mean ± SEM of 20 observations.

"11model, the 0 model, and other modifications of the logistic
equation. In the case of nonlinear models, numerical tech-
niques were used to optimize.the following goodness-of-fit mea-
sure (3):

R2 =

-20

-40

-60

1- (AN(i) - AN(i))2/o2]/[ (AN(i))2/], [13]

where AN(i) and odj are the mean and variance of the experi-
mental observations and AN(i) is the prediction from the model.
The m different values of Nt are listed in Tables 1 and 2.

The largest values of R2 obtained in ref. 6 for the logistic, the
6, and related models are around 0.70. In contrast, a similar
numerical optimization of R12 for the boundary-layer model
yields values of R2 above 0.97. This considerable improvement
occurs in spite of the fact that the boundary layer model has no
more parameters than the model or some other models used
in ref. 6. The values of AN predicted by the boundary-layer
model are given in the third column of Tables 1 and 2 and in
Fig. 1. The values of the various parameters for each one of the
two species are given in Table 3.

It should be noted that experimental data of the kind re-

ported here can be used to obtain estimates of "growth rate"
(7) for a population at various densities. The model has been
shown to provide good fit for the growth rate of experimental
populations of Drosophila, but we are interested in a model that
provides good fit to "net productivity" data (see ref. 7)-i.e.,
to the data directly obtained in type-2 experiments-because
the question whether or not growth rate measures population
dynamics better than net productivity is moot.
The behavior of the present model as a function of E, which

measures the width of the boundary layer, is of great interest.
For either species, the value of e is truly small-namely,
smaller than 0.02-indicating that fecundity-saturation occurs

at densities lesser than 2% of the carrying capacity (K). It should
be noted, however, that the dependence of R2 on e is quite
weak, because of the scarcity of data points in the boundary
layer.

The value of b is positive-forD. willistoni, indicating that the
population would overshoot in its approach to K; it is negative
for D. pseudoobscura, indicating monotonic increase for this
species. In both cases, b is close to 0, evidencing stability in

0

t0 -OD. pseudoobscura

)o~ ~~f
I I I I I I I

0 200 400 600 800 1000 1200
Nt

FIG. 1. Change in numbers (AN) as a function of density (N,) in
experimental populations of D. willistoni (Upper) and D. pseudoob-
scura (Lower). The error bars indicate 2 SEM. (based on 20 observa-
tions) on each side of the points. The solid line represents the best fit
of the boundary-layer model.

spite of the fact that r, calculated from Eq. 9, is greater than
4 in both cases (see Table 3).

Although the values of r for the two species (4.24 for D. wil-
listoni and 4.56 for D. pseudoobscura) are similar, the value of
e for D. pseudoobscura is half that for D. willistoni. The value
of e may be a better indicator of colonizing ability than the value
of r because E indicates how quickly, relative to K, a population
reaches its fecundity-saturation density. D. pseudoobscura is a
temperate species that maintains very low densities during
much of the year but multiplies rapidly in the spring, whereas
D. willistoni is a tropical species with relatively small fluctua-
tions in population size throughout the year. The low value of
E obtained for D. pseudoobscura is consistent with the notion
that this species may be r-selected, so that it can rapidly reach
its fecundity-saturation density whenever the environmental
conditions are favorable.

Some properties of the present model in relation to other
models deserve attention. The logistic and related models use
the parameters r and K; the 6-model uses, in addition, a "shape"
parameter, 6. Of these parameters, only K is directly used in
the boundary-layer model. The exponential capacity for growth,

Table 3. Parameter values obtained in the best fit of the
boundary-layer model to the data in Tables 1 and 2

R2 E K b r

D. willistoni 0.982 0.0161 946.06 0.114 4.24
D. pseudoobscura 0.974 0.0081 400.00 -0.255 4.56

Proc. Natl. Acad. Sci. USA 78 (1981)
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r, has been replaced by a combination of two parameters: E,

which measures the fractional value of K at which the environ-
ment is fecundity-saturated (and, hence, where the maximum
rate of growth is approached), and b, a measure of population
density after fecundity-saturation. The form of the model in-
cludes the property that the maximum rate of growth of a pop-

ulation need not be at half the carrying capacity (as is the case

for the logistic model) but may occur at a small fraction of the
carrying capacity-a situation that appears to be almost uni-
versal among arthropods (8). The model also makes it possible
to have the maximum rate of growth at a value other than
K/2, but it cannot be at a density less than K/e; this restriction
does not occur in the present model.
An additional feature of the model is that it can yield a stable

equilibrium even when the rate of population increase at very

low densities is very high. This stands in marked contrast to the
situation obtained for other simple difference-equation models
(9, 10).

It seems likely that the boundary-layer model may provide
a good description of the population dynamics of organisms
with very high fecundity or growth-rate potential, for which the
fecundity-saturation of the environment may occur at very low
densities. Whether or not this conjecture will be corroborated
must wait for future tests. The significance of the model will

also depend on the possibility of its extension to other problems,
such as multispecies interactions and evolutionary questions.

Note Added in Proof. David J. Wollkind has kindly pointed out to us
that our nondimensional Eq. 6 has previously been presented as a model
of population growth-namely, equation 20c in ref. 11. In that paper,
the authors proposed asymptotic models for various biological processes.

This work was supported by grants from the National Science Foun-
dation (to A. H.) and the National Institutes of Health (to F.J.A.) and
by a fellowship from the Fundaci6n Juan March of Spain (to J. M. S.).
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