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Abstract 

According to mental model theory, spatial reasoning is based 
on the construction and variation of mental models 
representing spatial arrangements. Several effects in human 
spatial reasoning are known to support this theory, for 
example the ordering effect. Yet, reasoning effects have been 
observed for which the cognitive mechanisms are not entirely 
explained. To investigate how these effects can be attributed 
to neural computation, we modeled spatial reasoning in the 
Neural Engineering Framework. 
We selected three experiments to simulate tasks in a cognitive 
model based on an internal display. In our model, 
performance declines with an increase of objects which is 
explained by the neural drift over time. We replicated effects 
from the studies which we have found to be due to continuous 
premise integration. By modeling and simulating spatial 
reasoning tasks, we showed that effects reported in 
psychological studies can be explained by the emergent 
properties of neural computation. 

Keywords: Neural Engineering Framework; spatial 
reasoning; relational Reasoning; cognitive Modeling 

Introduction 

When interacting with the world, we are in need of 
navigating in the immediate moment or planning for the 
future. For that, we rarely have complete information about 
the relational dependencies so that we have to use the given 
information effectively. Deductive relational reasoning 
facilitates this process by decompressing implicit 
information from the given. By that, we mean inferring the 
connections between objects, in this case in space. For 
example, imagine that you are planning to visit a friend. 
Your friend lives behind the train station which is behind 
the old church. Standing in front of the church, you infer 
that your friend’s home is behind the church because you 
know the relation between train station and church and your 
friend’s home and church. 

Although relational reasoning is so prevalent, its 
mechanisms are still relatively unclear (Hobeika, 
Diard‐Detoeuf, Garcin, Levy & Volle, 2016). From a 
cognitive perspective, mental model theory (Johnson-Laird, 
1983) provides a framework for conceptualizing relational 
reasoning as a mental action requiring the engagement of 
spatial cognition. It postulates that the solving of relational 
reasoning problems functions via the construction of mental 
models representing abstracted versions of the objects and 
their relations. According to this framework, first the mental 
model is constructed, and the abstracted version of the 

objects are generated. After that, the information is 
integrated into one mental model which is consequently 
validated by crosschecking with the given premises or the 
proposed conclusion (Knauff, 2013). 

Computational models of higher cognition and reasoning 
add to the findings we gain from psychological testing and 
neuroimaging studies by giving us insights into the 
cognitive mechanisms underlying the solving of relational 
reasoning problems. Several attempts have been made to 
model relational reasoning in frameworks such as ACT-R 
for spatial reasoning (Boeddinghaus, Ragni, Knauff & 
Nebel, 2006) and Raven’s progressive matrices (Rieman, 
Lewis, Young, & Polson, 1994, April) and LISA 
(Knowlton, Morrison, Hummel & Holyoak, 2012). Models 
in the Neural Engineering Framework (NEF), c.f. 
Rasmussen & Eliasmith (2011) for analogical reasoning, are 
particularly interesting because a biologically plausible 
modeling approach can be taken in which we can try to 
bridge subsymbolic and symbolic processing to gain 
insights into the effects of neural information processing. 
Our previous model of relational reasoning by Wertheim & 
Lohmeyer (2017) aimed at simulating relational reasoning 
but was intended as an exploration of modeling possibilities 
regarding relational reasoning in the NEF. Since mental 
model theory suggests that relational reasoning does not rely 
on specific rules but on spatial manipulation and 
verification, the modeling of relational reasoning in the NEF 
remains an interesting domain.  

We aim at modeling relational spatial reasoning in the 
NEF for which we have constructed a model based on a 
spatial display representing the object’s relations. We expect 
this to be representative of the mental model theory’s 
account of reasoning. With subsequent simulations, we aim 
at observing that the model exhibits a sensitivity to 
cognitive load in terms of number of premises, the 
replication of continuity effects, meaning that continuous 
premises are easier to process than discontinuous ones 
(Nejasmic, Bucher and Knauff, 2015), and generally an 
enhanced understanding of these phenomena.   

The Reasoning Tasks 

We selected two articles investigating the principles on 
which human spatial reasoning is based (see Table 1). In the 
experiment by Bucher, Krumnack, Nejasmic and Knauff 
(2011), it was tested how reasoners, when confronted with 
inconsistent premises, adjust the previously built mental 
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model to fit to the last given premise. The reasoners were 
confronted with two initial premises: 

P1: A is left of B. 
P2: C is left of A. 
The mental model based on this information is: 
C – A – B 
Afterwards, the last premise is presented to the reasoner 

which can either be consistent (C is left of B) or inconsistent 
(B is left of C) with the formerly build model. Afterwards, 
the reasoner is asked to adjust the previous mental model so 
that the objects’ locations are consistent with the new 
premise. For this, two possible scenarios are hypothesized: 
either the reasoner relocates the last given object (A – B – 
C) or the to-be-located-object (B – C – A). Bucher et al. 
(2011) found that in 87.78% of the cases, participants 
relocated the to-be-located-object (LO). 

The second experiment was conducted by Nejasmic, 
Bucher and Knauff (2015). In this experiment, it was 
examined how the continuity of the premises’ content 
influences participants’ reasoning capabilities. It was found 
that it is easier for participants (in terms of enhanced and 
faster performance) to construct models from premises that 
are continuous (A is left of B, B is left of C, C is left of D) 
than semicontinuous (B is left of C, C is left of D, A is left 
of B) or discontinuous (C is left of D, A is left of B, B is left 
of C) tasks. Reasoners seek to integrate all tokens as fast as 
possible and try to avoid relocating objects that are already 
represented in the mental model. Moreover, reasoners solve 
discontinuous tasks by first constructing one model and then 
modifying it if necessary, thereby saving cognitive 
resources by working as sparingly as possible (Goodwin & 
Johnson-Laird, 2005). In discontinuous tasks, partial models 
are connected by a temporary link which is weaker than the 
links between the explicitly related objects. If new premises 
confirm the link, it is strengthened; if not, the effort is made 
to relocate. 

The Simulation 

For modeling reasoning as explained by mental model 
theory, we decided to incorporate the idea of an internal 
display (Ragni & Knauff, 2013) for representing the object’s 
locations, since the postulates of mental model theory are 
conceptually based on the objects being located in two-
dimensional space. That is why we have initialized rules 
about the meaning of the four directions “to the left/right of” 
and “above/below of” in terms of the internal display (shift 
on the X/Y-axis). 

To construct the model, the NEF (Eliasmith & Anderson, 
2003) provides a method for connecting spiking neurons 
(here we use standard Leaky Integrate-and-Fire neurons) 
such that groups of neurons represent values, and 
connections between groups of neurons approximate 
computations on those values. 

 
 
 
 

Table 1: Experimental tasks. 
 
Exp. Type Premises Concl. Belief 

revision 
Bucher et 
al., Exp. 1 

Consistent P1: A r B 
P2: C r A  
Model:  
C A B 

 C r B  

Inconsis-
tent 

P1: A r B 
P2: C r A  
Model:  
C A B 

B r C Reloc. 
last 
object:  
A B C 
 
Reloc. 
LO:  
B C A 

Nejasmic 
et al.,  
Exp. 1 

Contin-
uous 

P1: Ar B 
P2: B r C  

C r D  

Semi-
continuous 

P1: B r C 
P2: C r D  

A r B  

Nejasmic 
et al., Exp. 
1 & 4 

Quasidis-
continuous 

P1: C r D 
P2: A r B 

D r A  

Discon-
tinuous 

P1: C r D 
P2: A r B 

B r C  

Note: Exp.: Experiment, P1, P2: Premise 1, 2, concl.: 
conclusion, “r” denotes the relation ‘is to the left of’, reloc.: 
relocation, LO: to-be-located-object, “Model” indicates the 
mental model after the presentation of premise 2. 
 

For this model, there are two basic things that need to be 
represented: the premise currently being considered, and the 
current state of the mental model.  Importantly, we assume 
that only one premise is being considered at a time, and we 
do not model the process of deciding to switch from one 
premise to the next.  As each premise is considered, the 
internal mental model should change, such that at the end 
we have a mental model that respects all the premises. 

Representing Premises 

To represent the symbolic nature of the premise, we use the 
idea of “semantic pointers” (Eliasmith, 2013).  Here, the 
neurons are structured so as to represent a high-dimensional 
space (here, 256 dimensions), and every point in that space 
is a different possible premise.  Specifically, we randomly 
choose unit vectors in the 256-dimensional space for each of 
the basic concepts (A, B, C, leftof, rightof, below, above, 
subject, etc.).  We then form a premise such as “A leftof B” 
by computing A*subject + leftof*relation + B*object, where 
* is circular convolution.  All of the steps in this process 
have been shown to be computable by spiking neurons, and 
this is the basis of many existing neural symbolic models 
(e.g. Rasmussen & Eliasmith, 2011), allowing for the 
compositionality, systematicity, and productivity seen in 
human symbol usage. Effectively, this approach means that 
each premise will have a unique spiking pattern, and that 
neurons can be organized to extract out this information and 
respond appropriately. 
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Figure 1: Visualization of our neural model of relational 

reasoning. Each box consists of the given number of spiking 
neurons and arrows show neural connectivity. 

 
Figure 1 shows the overall structure of the neural model.  

The PREMISE neurons store the premise (e.g. “A leftof B”) 
that is currently being input.  The SUBJECT, RELATION, 
and OBJECT neurons extract out the individual parts of the 
premise (i.e. the connections from the PREMISE neurons to 
the SUBJECT neurons are set such that if “B leftof C” is in 
the PREMISE, then the SUBJECT neurons will be driven to 
fire with the randomly-chosen pattern for “B”). 

Representing a Mental Model 

The MODEL neurons store the current mental model.  This 
mental model is also represented as a 256-dimensional 
vector.  Initially, the neural activity is just the default 
background activity which represents the vector 0 and the 
all objects are located at position X,Y (0, 0). As the mental 
model is built up, the objects are relocated according to the 
incoming spatial information from the premises. For 
example, if A is at an X,Y position of (0.3, 0.7) and B is at 
an X,Y position of (-0.2, -0.5), then we would have the 
vector 0.3A*X+0.7A*Y-0.2B*X-0.5B*Y, representing the 
object’s positions on the display. 

Importantly, this approach means that the MODEL 
neurons are highly generic.  We can add more objects just 
by adding onto that vector.  Indeed, we can also add more 
spatial relations (Z), or even abstract relations (height, age, 
cleanliness, etc.) without modifying the neurons 
representing the mental model, since all of those additions 
simply result in different 256-dimensional vectors, and the 
neurons are optimized to represent any vector in the 256-
dimensional space.  As with all semantic pointer approaches 
for representing symbol structures using vectors, the more 
information that is combined into the vector, the lower the 
accuracy of extracting information from the vector, and 
there will be a graceful degradation in this accuracy. 

Action Selection and Execution 

Given the above neural groups' capability of representing 
both the premise and the mental model, the remainder of the 
system involves deciding how to modify the mental model 
given the premises.  We do this by implementing a Neural 
Production System using a model of the mammalian Basal 
Ganglia and Thalamus.  This has been used to model tasks 
such as Tower of Hanoi (Stewart & Eliasmith, 2011) and 

the neuroanatomy, spiking activity, and temporal dynamics 
are matched to empirical data (e.g. Stewart, Choo, & 
Eliasmith, 2010). 

The core idea is that we specify a set of possible actions, 
and the basal ganglia selects which one to perform, and then 
this action is executed by the output of the basal ganglia 
controlling routing in the model of the thalamus.  In this 
case, there are two actions for each relation (“leftof”, 
“rightof”, “below”, etc.).  The first action for “leftof” is the 
action that should occur if the pattern in the RELATION 
neurons is “leftof” but those objects in the mental MODEL 
are the wrong way around (i.e. the X value for the 
SUBJECT is larger than the X value for the OBJECT).  The 
second action is the one that should happen if the objects are 
the correct way around.   

 

 
Figure 2: Output of the model presented with two 

premises ("A leftof B" and "B leftof C").  Each row shows 
spiking activity of some of the neurons in that region, plus 
text and lines indicating the meaning of those spikes. 

 
To select among these actions, each action has a utility 

function: a mathematical calculation that takes the vectors 
currently stored in the SUBJECT, RELATION, OBJECT, 
and MODEL neurons and computes a single scalar value 
that represents how relevant this rule is to the current 
situation.  This calculation is computed in the connections 
from those areas into the input to the basal ganglia.  The rest 
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of the basal ganglia then determines which of those 
resulting utility values is largest and selects that action. 

If the first action is selected, two things occur.  First, the 
STATUS neurons are driven towards the pattern for 
INVALID (so that we know the neural system has decided 
there's something wrong with the mental model), and, more 
importantly, the mental model is adjusted.  In particular, for 
“leftof”, the neurons will have their activity adjusted 
towards the pattern for object*X-subject*X (where subject 
is the vector for the subject of the premise, such as A, and 
object is the object, such as B).  This has the effect of 
gradually changing the mental model until such a time as 
the objects in the mental are the right way around, at which 
point the action selection system will stop choosing that first 
action, and instead select the second action.  The second 
action does not change the mental model; instead it just 
adjusts the STATUS neurons towards the pattern for 
VALID. 

Importantly, all of the model presented here is entirely 
implemented in spiking neurons with synaptic connections 
between them.  The only input is the pattern of activity for 
the currently considered premise (into the PREMISE) 
neurons.  This input is manually changed after 0.4 seconds 
to the next premise. 

Figure 2 shows the neural activity of randomly selected 
neurons from different regions of the model as it is 
presented with the premises “A leftof B” and “B leftof C”.  
Each row shows the spiking activity of individual neurons.  
The overlaid text indicates the interpretation of that activity 
(each possible value has a different ideal pattern of activity, 
and we show the value whose pattern is closest to the 
observed activity).  For the MODEL neurons, we plot the 
current represented X value for the three objects in the 
model (A, B, and C). 

For the first 0.1 seconds, the system recognizes that its 
current model (where A, B, and C are all at X=0) is 
INVALID for the given premise “A leftof B”.  The effect of 
this action is to decrease the X value for A and increase the 
X value for B.  Eventually, these values are different enough 
that the basal ganglia changes to the VALID action, and it 
stops adjusting the mental model.  At t=0.4s, the premise is 
changed to “B leftof C”.  Now the basal ganglia recognize 
that this premise is invalid, and starts changing the X values 
for B and C. 

It should be noted that the odd oscillation pattern seen 
from t=0.5 to t=0.8 is because neurons do not perfectly store 
information.  The mental model itself drifts slightly, just due 
to randomness in neural firing.  This means that the system 
is finding the mental model slightly invalid, fixing it, 
recognizing it as valid, and then the model drifts back to 
being invalid.  This sort of neural drift has been useful for 
modeling forgetting in working memory (Choo & Eliasmith 
2010). 

Concerning our tasks, we expect to observe degrading 
performance when the number of objects is increased, due 
to the inherent randomness of neural computation. Further, 
we expect to simulate the effects by Bucher et al. (2011) and 

Nejasmic et al. (2015). Considering the former, we expect to 
see 1) a correct ordering of the objects, 2) in inconsistency 
detection and a preferred relocation of the LO in contrast to 
the last object. Considering the latter, we expect a 
degradation of the model’s performance from continuous, to 
semicontinuous, to quasicontinuous, to discontinuous tasks. 

Evaluation and Comparison 

After the development of the model, we evaluated it by 
comparing the outcomes of the simulation to behavioral 
data. For evaluating the model’s performance, we used a 
score of either 0 for arrangements inconsistent with the 
premises or 1 for arrangements consistent with the premises. 
In the case of the inconsistent task by Bucher et al. (2011), 
score 0 denotes inconsistent arrangements, score 1 the 
relocation of the last object and a score of 2 for the 
relocation of the LOs. We have simulated each task 60 
times to achieve robust results and evaluated how often the 
simulation’s outcome was a correctly arranged set of 
objects. We have set the timepoint of evaluation for the 
tasks by Bucher et al. (2011) and Nejasmic et al. (2015) to 
0.91 seconds, which is 0.11 seconds after the presentation of 
the last premise. For the tasks aiming at the cognitive load 
of reasoning, we have set the evaluation timepoint at 0.51 
seconds for the task with three items and added 0.4 seconds 
per additional premise. 
 
Table 2: Behavioral and simulation results. 
 
  Correctness 
Task Tested for Exp. Simulation [CI 95%] 
Bucher et 
al., Exp. 
1 

Correct order 98.64%  93.34% [0.84, 0.98] 
Relocation 
LO 

87.78%  94.00% [0.73, 0.99] 

Relocation 
last object 

12.22%  5.56% [0.00, 0.27] 

Nejasmic 
et al., 
Exp. 1, 4 

Continuous 92%  78.33% [0.66, 0.88] 
Semicon-
tinuous 

79%  6.67% [0.02, 0.16] 

Quasidis-
continuous 

81% 80.00% [0.67, 0.89] 

Discon-
tinuous 

59% 
(Exp.1)
/ 67% 
(Exp.4)  

76.67% [0.64, 0.87] 

Cognitive 
load 

2 premises  100% [0.95, 1] 
3 premises  80.00% [0.68, 0.89] 
4 premises  40.00% [0.28, 0.53] 
5 premises  15.00% [0.07, 0.27] 
6 premises  1.67% [0.00, 0.09] 

Note: Exp.: Experiment.  
 

Concerning the cognitive load, we have found that the 
more objects have to be considered by the model, the lower 
the performance (in terms of correct arrangement of the 
objects, see Table 2). This is because information is lost 
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after several seconds due to the instability accompanying 
neural computation, imitating the process of gradual 
forgetting. This means that information degenerates over 
time. Since each premise is only presented once, 
information from the first premises vanished over time (see 
Figure 3 for the arrangement of object 1 and object 3). 
Concerning the tasks by Bucher et al. (2011), the 
correctness in consistent tasks was 98%, which is almost 
identical with the behavioral results (98.64%). In 
inconsistent tasks, the simulations revealed that the LO is 
relocated in 93.75% of the cases. This is because the 
information conveyed by the new (third) premise 
temporarily overrides the constellations from the former 
premises. This explains the findings of Bucher et al. (2011) 
why the LO, rather than the last object, is relocated during 
the processing of the inconsistent premise. 
 

       

            

      

 
Figure 3: Internal displays during the simulations. Numbers 
1-6 indicate the respective objects. Positive directionality 
(y-axis) indicates the right side and vice versa., the x-axis 

represents time in miliseconds. 
  

Regarding the tasks by Nejasmic et al. (2015), the 
simulations showed that the model is most successful in 
predicting human performance (regarding correctness) in 
continuous tasks. Performance is second best in 
quasidiscontinuous and discontinuous tasks and lowest in 

semicontinuous tasks. This contrasts the behavioral results 
which exhibited the following order: continuous, 
quasidiscontinuous, semicontinuous and discontinuous 
tasks. The performance in continuous tasks has to be set in 
relation to the model’s performance in tasks with three 
premises (four objects). The correctness levels (81.6% and 
80.0%) are similar and performance in this range is 
comparable to the general model’s performance when 
processing continuous relations with four objects. The 
performance in quasidiscontinuous tasks is second highest 
in the simulation, because these relations are easy to process 
for the model. As can be seen in Figure 3, since the first two 
objects are not considered in premise two, these relations 
can be held steadily during the processing of the second 
premise. Concerning discontinuous tasks, the model can 
hold four objects (and their relations) during the first two 
premises but when the third premise is presented, 
connecting two of the former objects, the former relations 
are in some cases confused. A distinctively low performance 
is exhibited in semicontinuous relations (6%). In the first 
premise, object three is on the (relative) right side (of object 
2) and in the second premise, object three is on the (relative) 
left side (of object four). This poses a processing difficulty 
because information about object three is temporarily 
contradictory and the information about the relation 
between object two and object three is lost after the 
presentation of the second premise. 

Conclusion 

Our modeling idea of implementing a two-dimensional 
display to solve spatial relational reasoning tasks is based on 
findings of behavioral studies from cognitive psychology. 
Our intent was to gain insights into the effects of neural 
information processing in relational spatial reasoning. We 
found that model’s performance deteriorating when more 
objects are to be considered in continuous premises. This is 
due to information from former premises vanishing over 
time due to the drift inherent in neural computation. Also, 
we replicated the findings by Bucher et al. (2011), thus our 
model relocates the LOs in indeterminate tasks since 
information from the premises is integrated continuously, 
while temporarily overriding information from former 
premises. This effect is also exhibited when considering the 
quasidiscontinuous tasks by Nejasmic et al. (2015) in which 
the model performs second best since spatial information 
about an object is stored most effectively when the next 
premise does not contain any spatial relational information 
about the former object.  

Nonetheless, we faced some limitations concerning the 
model. The behavioral data were only reported as 
accumulated percentages, which limited our comparison 
between model and data. Concerning our decision when to 
stop the simulation and evaluate the results, we could have 
considered the participant’s reaction times. We decided to 
not use this measure since we do not yet expect the model to 
reflect all cognitive processes contributing to the reaction 
time. Hence we chose preliminary timepoints corresponding 
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to the number of objects involved. Concerning the 
inconsistent tasks by Bucher et al. (2011), we diverged from 
the task presentation they have used. Bucher et al. (2011) 
asked participants whether the task would be consistent or 
inconsistent and then demanded them to adjust their mental 
model in case of inconsistent tasks. In the inconsistent tasks, 
we just presented the inconsistent premise and did not 
explicitly inquire whether it is inconsistent or not. Lastly, 
the model’s performance was considerably lower in 
semicontinuous tasks compared to the behavioral results, 
due to the effects of continuous premise integration. This 
could be averted by magnifying the impact of the earlier 
premises and by that preventing the confusion of relational 
information about former objects.  

Future Work 

Since we tested our model on similar reasoning tasks, it 
would be interesting to test different task types in the model, 
such as tasks involving cardinal directions (Ligozat, 1998) 
or abstract relations (Knauff & Johnson-Laird, 2002). This 
would be feasible because of the vector space which does 
not only work for spatial tasks but also for abstract 
dichotomies (e.g. clean and dirty). Concerning the inference 
types, we envision improving the model in regard to the 
difficulties concerning processing semicontinuous tasks. For 
that, information from earlier premises could be valued 
more strongly than from latter premises so that later 
contradictory relations do not override them. Further, it 
would be interesting to conduct a thorough comparison 
between our model and the model built by Ragni & Knauff 
(2013). In this model, a two-dimensional display was 
implemented to simulate spatial relational reasoning. In 
contrast to our model, this one is based on different 
principles such as the solidity of the entities (they cannot 
easily cross each other) and rule-based, rather than dynamic 
processing. 
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