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Abstract

Brain plasticity refers to changes in brain function and structure that arise in a number of contexts. 

One area in which brain plasticity is of considerable interest is recovery from stroke, both 

spontaneous and treatment-induced. A number of factors influence these poststroke brain events. 

The current review considers the impact of genetic factors. Polymorphisms in the human genes 

coding for brain-derived neurotrophic factor (BDNF) and apolipoprotein E (ApoE) have been 

studied in the context of plasticity and/or stroke recovery and are discussed here in detail. Several 

other genetic polymorphisms are indirectly involved in stroke recovery through their modulating 

influences on processes such as depression and pharmacotherapy effects. Finally, new genetic 

polymorphisms that have not been studied in the context of stroke are proposed as new directions 

for study. A better understanding of genetic influences on recovery and response to therapy might 

allow improved treatment after stroke.
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Stroke is the leading cause of serious, long-term disability in the United States, affecting 5.8 

million stroke survivors in the United States alone. More than 75% of those who survive 

stroke suffer disability severe enough to affect employment, and 80% suffer motor 

impairments requiring rehabilitation., Although motor rehabilitation therapy is 

recommended for most stroke survivors, results of this therapy are highly variable between 

individuals. Understanding factors related to motor recovery and increasing the efficacy of 

motor rehabilitation strategies could drastically improve quality of life for many stroke 

survivors.

Successful motor recovery requires plasticity in many areas of the brain. Brain plasticity 

includes the capability of neural circuits to alter their functional organization in response to 

experience and is a crucial component of both functional recovery after injury and skill 

learning in healthy individuals. Reorganization and remapping of both affected and 

unaffected brain areas serve recovery, observed most readily in the chronic phase of stroke. 

Throughout the early phases of stroke and rehabilitation, neural networks are gradually 
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restored to some degree around the lesion itself, while secondary brain regions in a 

distributed network are often recruited to progressively compensate and, depending on the 

extent of damage to a given region, may perhaps adopt some of the functions of the damaged 

area. When injury is restricted to white matter, many of the same changes are apparent in the 

overlying gray matter.– Such cortical plasticity occurs in many different forms, from 

synaptic plasticity at the cellular level to map plasticity at the organizational level. 

Functional reorganization emerges from neuronal processes, such as synaptic plasticity, 

which in turn are driven by specific intracellular and extracellular neural signaling pathways. 

Plasticity is crucial to recovery and learning, but the rates and extent of recovery and 

learning vary considerably between individuals. Whereas individual factors such as lesion 

size and location, mechanism of infarct, functional magnetic resonance imaging (fMRI) 

activation patterns, and demographics like age all affect the extent and rate of recovery,, the 

underlying neural mechanisms remain incompletely understood.

With such a multitude of molecular events being related to recovery, not surprisingly a 

number of genes have been suggested as important to variability in stroke recovery. Genetic 

variation in any of these components could thus influence each individual’s capacity for 

brain plasticity and could explain the variability encountered in motor rehabilitation efficacy. 

Those individuals with a greater capacity for adapting and favorably altering cortical 

connections have a theoretical advantage with regard to stroke recovery. Further, genetic 

differences may also influence the amount or type of rehabilitation therapy required to 

induce cortical plasticity and concomitant functional recovery. This emphasizes the need for 

a precise understanding of the factors that can favorably influence plasticity and the 

relationship between these factors and the capacity for functional recovery.

Forms of Brain Plasticity and Their Measurement

Brain plasticity in the central nervous system (CNS) can be described at several different 

levels. At the cellular level, plasticity can be observed as changes in the number and/or 

strength of synapses that can in turn be manifested at a neural network level as 

reorganization of representational maps.

A number of events underlie plasticity at the cellular level. At the synaptic level, plasticity 

can occur in relation to increased dendritic spine formation, pruning, and remodeling; 

calcium channel regulation; changes in NMDA receptors; or changes in AMPA receptor 

trafficking. A commonly studied example of plasticity at the cellular level is long-term 

potentiation (LTP), that is, the long-lasting enhancement of synaptic strength between two 

neurons that can result from application of high-frequency stimulation to a presynaptic 

excitatory pathway.

These cellular events can be influenced by experience and environment, for example, 

complexity of the housing environment,, maze training, avoidance conditioning, and 

sensitization. Increased protein and RNA synthesis– support these events. Study of such 

molecular/cellular plasticity events in humans is very difficult, but this issue can be 

approached by considering the genetics of such syntheses by physiological and human brain 
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mapping approaches. In these cases, synaptic plasticity within individual neurons is often 

inferred from measures taken across large populations of neurons.

Plasticity across neural networks in humans can be studied with a number of methods. 

Common examples include transcranial magnetic stimulation (TMS) or transcranial direct 

current stimulation (tDCS). These techniques have been used to probe cortical excitability, 

short interval cortical inhibition (SICI), intracortical facilitation (ICF), paired associative 

stimulation (PAS), representational map size, and movement directional targets.– One 

example of such physiological plasticity involves serial measurement of SICI or ICF. A 

motor map can be evaluated by using TMS to measure the motor-evoked potential (MEP) in 

1-cm increments along a grid placed over the scalp, then reassessed following an 

intervention in order to measure short-term plasticity. Another motor-TMS paradigm 

involves stimulating a site in the cortex that controls thumb movement, measuring the 

direction of movement, and then “training” the thumb in the opposite direction. Following 

training, TMS stimulation of this same site results in more evoked thumb movements in the 

direction of training.

Plasticity of cortical representational maps has been studied in animals, across a wide range 

of motor and sensory domains., A key method for its measurement has been intracortical 

microstimulation.– Nudo et al mapped the area of primate M1 that evoked a response in 

either the muscles of the digits or those of the forearm; monkeys then underwent training for 

either a skilled digit task (pellet retrieval) or a forearm task (key turning), and M1 was 

remapped. The authors found that training in each specific behavioral task differentially 

altered movement representations, with digit task training specifically associated with 

expansion of finger movement representations and forearm task training specifically 

associated with expansion of forearm movement representations. These map changes were 

accompanied by an enhancement in performance on the trained task. Similarly in rats, Kleim 

et al found that rats performing a skilled reaching task showed expanded distal forelimb 

representations and more synapses per neuron compared to rats performing an unskilled 

reaching task. Enhancements in task performance accompanied map expansion and 

synaptogenesis. Animal studies also suggest that motor map plasticity is characteristic of, 

and may be crucial to, rehabilitation success after stroke.

In humans, a number of methods have been used to study cortical map plasticity after stroke, 

including fMRI, positron emission tomography (PET), and TMS. Overall, these studies 

suggest that after stroke, reorganization of function can occur in surviving tissue that 

surrounds an infarct and in distant areas such as nodes in a distributed network and 

homologous regions in the contralesional hemisphere. Measurement and interpretation of 

poststroke plasticity in humans have been reviewed elsewhere.,–

The interrelationship of these measures of plasticity suggests that individuals with a greater 

capacity for synaptic plasticity, dendritic branching, protein and RNA synthesis, synapse 

formation, physiological changes, and map reorganization may be more likely to experience 

greater behavioral improvements following stroke. Because many of the neural signals 

driving plasticity involve the activation of specific genes, genetic variation in humans might 
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influence the expression of these plasticity-related events and thus their impact on reducing 

disability in humans after stroke.

Genetic Factors Affecting Plasticity

Either directly or indirectly, genetic factors might have an influence on many of the 

processes related to brain plasticity. These likely have a variable relationship with 

nongenetic factors that have been shown to influence brain plasticity, such as age, 

experience, mood, features of CNS injury, severity of behavioral deficit, training intensity, 

medication effects, social factors, and even the point in the estrous or menstrual cycle.,–

The human genome has a number of polymorphisms, or common and different versions, for 

genes that influence plasticity through diverse mechanisms. This genetic variation might 

allow for identification of markers that may predict an individual’s capacity for brain 

plasticity and thus potential for recovery following CNS injury such as stroke. Knowledge of 

such markers might allow investigators to (a) study the biological role of a particular protein 

via polymorphisms that enhance or decrease its efficacy, (b) design novel treatments based 

on experimentally manipulating the activity of a protein in a similar way a gene variant does 

endogenously, (c) predict which patients would be most likely to benefit from such 

interventions based on the presence or absence of these polymorphisms, and (d) identify 

biologically distinct subpopulations prospectively, which might be of particular value to 

clinical trials. Two specific candidate genes toward these goals are considered below: a 

single nucleotide polymorphism (SNP) on the gene for human brain-derived neurotrophic 

factor (BDNF) and the group of SNPs on the gene for apolipoprotein-E (ApoE) resulting in 

the gene variants ε2–4. Following this, several less studied but potentially important genetic 

polymorphisms will be explored.

BDNF

BDNF is the most abundant growth factor in the brain. It is involved in plasticity directly 

through its modulation of cellular processes as well as indirectly through its modulation of 

other processes that influence plasticity such as depression. Its direct involvement will be 

discussed here and indirect involvement will be covered in a subsequent section.

The direct involvement of BDNF in brain plasticity is related to both short- and long-term 

influences.– Shortly after being released, BDNF can rapidly depolarize postsynaptic neurons 

and elicit short-term postsynaptic effects on ion channels and NMDA receptors, in addition 

to potentiating excitatory synaptic transmission by promoting presynaptic neurotransmitter 

release.– In the long-term, BDNF can induce lasting changes in synaptic plasticity, 

neurotransmitter and neuropeptide production, and excitability.– BDNF is crucial in 

development but plays an important role in adulthood as well by modulating neuronal 

structure, function, and survival; enhancing synaptic transmission; facilitating long-term 

potentiation; and mediating use-dependent plasticity.–

Decreased BDNF levels in the brain have been associated with numerous functional deficits, 

providing further insight into the role of BDNF. BDNF heterozygote mice fail to form new 

synapses or modify the balance between excitatory and inhibitory synapses in the 
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somatosensory cortex following 24 hours of whisker stimulation, whereas control mice 

undergo these structural changes. Inhibition of BDNF via gene knockout or infusion of 

antisense BDNF impairs spatial learning and memory in rodents,– and blocking BDNF in 

the hippocampus erases the cognitive benefits of exercise. Injecting antisense 

oligonucleotides, receptor antagonists, or BDNF receptor antibodies into the motor cortex to 

inhibit BDNF function results in impaired skilled motor performance and disrupted cortical 

reorganization., Subsequent application of exogenous BDNF in the motor cortex can 

partially restore motor skill acquisition and motor cortical movement representation.

Together, these observations emphasize the role of BDNF in modulating the functional 

organization of the cortex.

BDNF levels can increase in relation to a number of experience and environmental stimuli. 

In rats, spatial learning and contextual fear conditioning both increase BDNF mRNA and 

protein in the hippocampus,,– whereas amygdala-dependent fear conditioning increases 

BDNF mRNA in the amygdala and whisker stimulation results in enhanced BDNF mRNA 

expression in barrel fields corresponding to the stimulated whisker. Rodent studies have 

shown increased BDNF in motor cortex following motor learning. Similarly, monkeys 

undergoing motor learning show motor map reorganization associated with region-specific 

upregulation of BDNF expression, suggesting that BDNF is capable of altering cortical 

connections at a very specific level in response to experience., These studies emphasize the 

specificity of stimuli and of spatial effects in the CNS.

BDNF is important to many forms of plasticity in relation to repair of neurological 

conditions.– BDNF and its receptor TrkB have previously been used as markers of 

motoneuron survival and neuronal plasticity.– In a mouse model of spinal cord injury, BDNF 

expression provided a neuroprotective role, and BDNF levels have been associated with 

CNS repair in several rodent stroke models.– Treatment with exogenous BDNF is associated 

with better motor recovery. These findings suggest that influences on CNS levels can 

influence plasticity and thereby affect recovery of function after stroke.

A functional SNP (rs6265) has been identified in the BDNF gene, in which a G to A 

substitution at nucleotide 196 results in an amino acid switch from valine to methionine at 

codon 66 (val66met). Approximately 30%–50% of the population is either heterozygous 

(Val/Met) or homozygous (Met/Met) for this BDNF val66met polymorphism. The SNP 

occurs in the 5′ prodomain of the BDNF gene, a region that encodes the precursor peptide 

proBDNF, which is later cleaved to form the mature protein. Assuch, the polymorphism 

affects neither mature BDNF protein function nor constitutive release but rather the 

intracellular trafficking of pro-BDNF is dramatically altered, affecting experience-dependent 

BDNF release.,

The val66met polymorphism has been associated with abnormal cortical morphology. 

Structural MRI studies of healthy humans have linked the Met allele of this polymorphism 

with reduced volume of temporal and occipital gray matter, prefrontal cortex, and 

hippocampus.– In Asian subjects, the Met allele has been associated with decreased volumes 

of the parahippocampal gyrus and the caudate nucleus. These differences may be related to 

the role of BDNF in development, to effects of continued plasticity throughout the lifespan, 
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or both., Volumetric differences could arise through any combination of changes, including 

decreased dendritic complexity, fewer neuronal and supporting cells, and increased cell 

death or decreased neurogenesis during development or over the lifespan. BDNF and its 

receptors have been shown to be important in mediating all of these processes.

In addition to modifying cortical structure and function, the BDNF val66met polymorphism 

has been associated with behavioral effects, primarily in the domain of hippocampal-

dependent memory. Using a battery of neuropsychological tests, Met allele carriers (those 

with one copy of the polymorphism, i.e., Val/Met; and those with two copies, i.e., Met/Met) 

as compared to noncarriers (i.e., Val/Val) have been shown to have poorer performance on 

episodic memory tasks that involved recalling places and events but no differences on tasks 

that have been classically shown to be less hippocampal-dependent, such as word learning, 

semantic memory, verbal fluency, and working memory/executive function planning tasks.,,,

A good deal of research conducted thus far has examined effects of the BDNF val66met 

polymorphism on the hippocampus, but BDNF and its TrkB receptor are widely distributed 

throughout the brain and the BDNF val66met polymorphism has been shown to broadly 

influence physiological and experience-dependent forms of plasticity.,

A study by Kleim and colleagues investigated how the BDNF val66met polymorphism 

influences plasticity in the motor cortex. This study used TMS to study the motor cortex 

representational map for a hand muscle before and after short-term motor practice. Whereas 

subjects in the different BDNF genotype groups showed similar organization of motor maps 

at baseline, Met allele carriers showed reduced short-term, experience-dependent plasticity 

by several measures. Similarly, McHughen et al examined the effect of the BDNF val66met 

polymorphism on the same short-term experience-dependent plasticity paradigm, but used 

fMRI, and found similar results in many brain regions. Given the importance of cortical 

reorganization in the motor system following stroke, these findings suggest that this 

polymorphism might affect poststroke recovery potential, though studies of polymorphism 

effects in long-term models of plasticity are needed.

Further evidence, across several plasticity-inducing paradigms, comes from a study by 

Cheeran and colleagues. These authors used several brain stimulation paradigms to study the 

effect of the val66met polymorphism on physiological plasticity. The authors utilized the 

repetitive TMS (rTMS) techniques: continuous theta burst stimulation (cTBS) and 

intermittent theta burst stimulation (iTBS). Bursts of three stimuli at 50 Hz are given 

continuously at a rate of five bursts per second during cTBS, which suppresses corticospinal 

excitability. Such bursts given in 2-second trains constitute iTBS, which is excitatory. Using 

either cTBS or iTBS, they found that cTBS suppressed MEPs and iTBS facilitated MEPs as 

expected in Val/Val subjects; however, no difference was found in non-Val/Val (Val/Met or 

Met/Met) subjects with either paradigm. Carriers of this val66met polymorphism also did not 

show homeostatic plasticity after tDCS or facilitation with paired associative stimulation.

These polymorphism-related findings raise speculations as to potential clinical implications. 

Evidence supports a role for BDNF in CNS repair after neurological injury such as stroke,

traumatic brain injury, spinal cord injury, and Alzheimer’s disease. The Met allele has been 
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associated with a poorer outcome following subarachnoid hemorrhage; among individuals 

with no cerebral infarction, Met carriers performed worse on tests of learning and memory.,

This raises the concern that if the 30% of humans carrying at least one Met allele have 

abnormal BDNF release and responsiveness, these individuals might have decreased CNS 

repair and thus poorer functional recovery following neurological insult.

It is clear from studies in both animals and humans that BDNF and the BDNF val66met 

polymorphism play a role in brain plasticity. Future studies might examine how these 

findings relate to functional recovery after stroke and the therapeutic implications.

ApoE

ApoE is primarily involved in lipid transport from one cell type or tissue to another, though 

it also plays a significant role in the growth and regeneration of peripheral and CNS tissues 

and in modulating neuronal repair, remodeling, and protection., There exists a set of two 

common SNPs on the human ApoE gene, one at amino acid position 112 and one at position 

158, which result in three distinct alleles, termed ε2–4 or ApoE2–4. The most common 

allele, ε3, has a cystine residue at position 112 and an arginine at position 158; ε2 has a 

cystine at both positions and ε4 has an arginine at both positions. The most common 

genotype, E3/E3, ranges in frequency between 43% and 74% of humans depending on 

ethnicity. Approximate frequencies for less common genotypes are as follows: 22% E3/

E4,12% E2/E3, 3% E4/E4, 2% E2/E4, and 1% E2/E2.,

Studies in animal models and cell culture suggest that ApoE is important in CNS plasticity. 

ApoE levels are elevated following olfactory bulb lesion, and ApoE knockout mice show 

delayed and diminished synaptic recovery following olfactory bulb lesions compared to wild 

type mice. A study examining synaptic plasticity using entorhinal cortex lesions found that 

transgenic mice expressing human ApoE4 had substantially less compensatory sprouting 

and reactive synaptogenesis than those mice expressing human ApoE3. In human neuronal 

cell cultures, adding nerve growth factor (NGF) plus ApoE3 enhanced neurite outgrowth, 

while NGF plus ApoE4 did not. A study of postmortem human brains from patients with 

Alzheimer’s disease found that patients with the ApoE4 allele showed higher levels of 

neuronal loss than those lacking ApoE4 and impairment of neuronal remodeling. This study 

also found a gene-dose effect, with the highest levels of neuronal loss occurring in E4/E4 

individuals.

In humans, the ApoE4 allele is highly implicated in the risk for Alzheimer’s disease, with 

individuals carrying one or more ApoE4 alleles being much more likely to have Alzheimer’s 

disease and have an earlier age of onset as well., One theory of the involvement of ApoE in 

Alzheimer’s disease is that ApoE3 facilitates the clearing of Aβ plaques and tangles at a 

much higher rate than ApoE4. Expanding beyond this, other studies have shown that the 

ApoE4 allele is linked to accelerated cognitive decline with age, impaired episodic memory,

decreased hippocampal volume and cortical thickness,– and memory, cognitive, and 

attentional impairments on other measures, (for review, see Parasuraman). Additionally, 

individuals carrying the ApoE4 allele have shown fMRI and PET activation patterns similar 

to patients diagnosed with Alzheimer’s disease.,
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These data related to ApoE genotype effect on brain morphology and cognitive function 

suggest that this polymorphism might affect brain plasticity after stroke as well. Studies 

examining the relationship between ApoE genotype and outcome after severe traumatic 

brain injury (TBI) support this. In a prospective cohort study, Teasdale and colleagues found 

that patients with the ApoE4 allele were more than twice as likely to have an unfavorable 

outcome 6 months after TBI as were those without this allele. A recent meta-analysis 

concluded that the presence of the ApoE4 allele was associated with increased risk for poor 

long-term outcome following TBI. Another meta-analysis examined outcome after 

subarachnoid hemorrhage (SAH), intracerebral hemorrhage (ICH), or ischemic stroke and 

found no overall influence of ApoE genotype on death or dependency in the 3 months post 

stroke. This analysis did find an effect of ApoE genotype on outcome following SAH 

specifically but not ischemic stroke., However, in a recent study of 241 patients with stroke 

followed as part of a clinical trial, ApoE genotype was associated with outcome at both 1 

and 3 months following stroke but not at baseline, with ApoE4 associated with worse 

outcome.

Even though the relationship between the ApoE polymorphism and poststroke plasticity has 

not been directly studied in humans, animal studies and acute stroke recovery studies point 

to its importance in plasticity and recovery. Further studies are needed to clarify the 

significance of ApoE genotype on plasticity and outcome after stroke in humans.

Genetic Factors Are Involved in Many Processes Influencing Plasticity

Factors such as learning, attention to task, depression, and type of intervention are integrally 

related to the process of brain plasticity, and each has its own set of relationships with 

genetic factors.

Learning

Recovery of function after stroke relies on mechanisms similar to, and in some cases directly 

overlapping with, those underlying normal learning. Furthermore, learning is often a key 

component of poststroke therapy., As discussed throughout this review, the BDNF val66met 

and ApoE ε2–4 polymorphisms have been shown to modulate cognitive and motor learning 

in healthy subjects, and some catecholamine gene polymorphisms affect cognitive and likely 

motor learning as well.

Attention to task

One key moderator of plasticity is task salience and attention to task. This is seen in animals, 

where reward gated attentional valence and influenced plasticity, and in humans with the 

paired associative stimulation TMS paradigm, which elicits plasticity only when the subject 

is paying attention to the paired stimulus. Because rehabilitation generally involves intense 

and repetitive activity over a long period of time, constant attention can be difficult. 

Polymorphisms in genes related to dopamine, steroid sulfatase, acetylcholine, and ApoE 

have all been linked to attention. In support of this, several studies of children with attention 

deficit hyperactivity disorder (ADHD) have generated considerable evidence that the 

dopaminergic system and polymorphisms affecting it are involved in attention modulation, 
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particularly because inattention is a hallmark symptom of ADHD, and tests of attention can 

be used as endophenotypes.–

Another gene recently associated with inattention is the X-linked steroid sulfatase (STS) 

gene. Deletion of this gene results in a higher likelihood of ADHD, particularly the 

inattentive (non-hyperactivity) subtype. Recently two polymorphisms on the gene have been 

associated with ADHD in children having the combined or inattentive subtype.

A cholinergic receptor gene, CHRNA4, and the ApoE ε2–4 polymorphisms have also been 

implicated in spatial attention, speed of attentional reorienting, and sustained attention, and 

ApoE genotype has been shown to modulate attention in healthy middle-aged individuals.

To combat inattention, robot studies often combine therapeutic maneuvers with highly 

salient virtual reality games. This type of salient therapy may involve the dopaminergic 

system and therefore may be modulated by dopamine-related polymorphisms.

Several polymorphisms are related to abnormalities in attentional control, as evidenced by 

their association with ADHD. Some of these genes may affect a patient’s ability to pay 

attention to rehabilitation training and therefore affect plasticity and the efficacy of such 

training. In subjects with stroke, it is likely that attention to rehabilitation is to some extent 

modulated by the effects of depression and related emotions.

Depression

Depression is a serious condition affecting 12% of men and 20% of women, but anywhere 

from 20% to 79% of stroke victims, depending on the measure used to assess the patient.,

Stroke patients with concurrent depression show worse functional recovery and are 3.4 times 

less likely to survive the first 10 years after stroke., Several factors influence poststroke 

depression, including age of onset, gender, lesion location, social support, psychiatric 

history, stroke severity, and functional outcome, but genetics are likely influential here as 

well. Depression is a multifaceted illness, and several genetic factors have emerged as 

potential risk factors, particularly in the context of gene-environment interactions.,

One logical step is to examine the effects of polymorphisms in the monoamine 

neurotransmitter systems, particularly serotonin. Depression has been suggested by some to 

be often related to a deficiency in serotonin or norepinephrine, because presently the most 

effective antidepressant drugs act by increasing their levels in the CNS. One key 

polymorphism, termed 5-HTTLPR, is found in the serotonin transporter gene SLC6A4 and 

occurs in either a “long” or “short” form.,, The short form, which arises from a 44-bp 

deletion, results in less serotonin transporter synthesized and therefore reduced uptake in the 

presynaptic neurons. Studies have linked the 5-HTTLPR short allele with depression and 

vulnerability to stress. This and several other serotonin-related polymorphisms are examined 

in several reviews.,, Caution should be used in interpreting genotype results, as there are 

many negative studies also. In the 1953-patient STAR*D (sequenced treatment alternatives 

to relieve depression) study, 768 SNPs were examined for their relationship to major 

depression, and only one SNP in the gene for serotonin receptor 2A was significantly 
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associated with treatment response, although such high-throughput analyses have their 

drawbacks as well.

The BDNF val66met polymorphism has also been studied in relation to depression; although 

studies show mixed results, they generally point toward higher susceptibility to depression 

with the Met allele. Geriatric depressed Taiwanese and American subjects have been shown 

to have a higher incidence of the Met allele,, but this association was not replicated in either 

Chinese, or German populations. Frodl et al suggested that the lower hippocampal volumes 

associated with Met allele carriers might make these subjects more susceptible to 

depression, consistent with the observed reduction in postmortem BDNF levels within 

hippocampus and prefrontal cortex (PFC) of depressed patients. Additionally, among 

subjects with treatment-resistant depression, repetitive TMS has been shown to improve 

depression symptoms in Val/Val subjects to a significantly greater extent than Val/Met or 

Met/Met subjects, a suggestion that treatment strategies may differ between the two groups.

Type of therapy

Exercise therapy—Therapy including exercise would take advantage of the positive 

relationship between exercise, BDNF, and brain plasticity. Exercise increases BDNF mRNA 

and protein in cerebral cortex, cerebellum, and spinal cords of rodents,,– sometimes in as 

little as 30 minutes. In humans with spinal cord injury, multiple brain regions show activity-

dependent increases in BDNF levels following 10 to 30 minutes of activity. Seeing that 

exercise has been shown to upregulate BDNF, including exercise therapy in a stroke 

patient’s daily routine may have a positive impact on plasticity. Initial evidence suggests that 

the BDNF val66met polymorphism modulates response to exercise. Such an interaction 

suggests that various therapy strategies may differentially impact patients of each genotype, 

and therefore genotype could be used to guide therapy choice.

Pharmacotherapy—A number of different drugs have been examined as pharmacological 

means to improve function after stroke, particularly agents that affect monoamine 

neurotransmitters; genetic factors can be strong determinants of drug effects. Drugs studied 

include the selective serotonin reuptake inhibitors (SSRIs) fluoxetine and citalopram,– the 

norepinephrine reuptake inhibitors maprotiline and reboxetine,, and catecholamine 

enhancers such as amphetamine, levodopa,, and methylphenidate. An understanding of the 

interaction between relevant polymorphisms and pharmacotherapy effects will allow 

treatment options to be tailored to the individual patient. As an example, Mattay and 

coauthors found a differential effect of amphetamine administration on cognitive 

performance between subjects with and without a val108/158met polymorphism in the gene 

for the enzyme catechol-O-methyl transferase (COMT), which affects the level of 

catecholamines in the CNS (described in detail below). Amphetamine improved 

performance in subjects carrying both Val alleles but degraded performance in subjects 

carrying at least one Met allele. Another drug used in the context of stroke recovery is 

methylphenidate, and a polymorphism in the dopamine transporter protein has been shown 

to affect TMS response to methylphenidate in children with ADHD.,
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In a similar manner, several serotonin-related genes have been studied for their effects on 

response to fluoxetine and citalopram. Peters and colleagues found that polymorphisms and 

SNP haplotypes in genes for the enzyme tryptophan hydroxylase, the serotonin transporter 

protein, and serotonin receptor genes all predicted response to fluoxetine, though these same 

polymorphisms had no effect on citalopram response in the large STAR*D clinical trial. A 

meta-analysis done by Smits suggests that the short allele of the SLC6A4 gene is related to 

unfavorable response to SSRIs in Caucasian populations. In addition to polymorphisms 

closely related to individual compounds, the cytochrome P450 superfamily of drug-

metabolizing enzymes have polymorphic alleles that affect the efficacy of numerous 

pharmacological agents, including most antidepressants. Knowledge of a patient’s genotype 

for several of these genes might predict response to a particular pharmacological treatment, a 

consideration that gains importance when considering the large effect that depression has on 

outcome after stroke.

Brain stimulation therapy—Several forms of brain stimulation have been used to 

enhance plasticity after stroke; these include rTMS, tDCS, and direct electrical stimulation. 

With the use of rTMS in depression, researchers have found that rTMS helps ameliorate 

depression symptoms in individuals with the BDNF Val/Val genotype more than in those 

with the Val/Met or Met/Met alleles. In rats, rTMS has been found to modulate expression 

and function of monoamine transporter proteins. Further studies are needed to understand 

the molecular mechanisms underlying effects of brain stimulation in order to identify those 

genes whose variation might impact therapy effects.

Less Studied Genetic Factors for Future Consideration

There are numerous growth factors, signaling pathways, receptors, and other proteins that 

play a role in the many events related to cortical plasticity. Theoretically, mutations in the 

genes for any of these factors that alter function or availability of recovery-related proteins 

might have an effect on cortical plasticity and recovery of function. Two highly studied 

polymorphisms that have established effects on plasticity-related molecules were described 

previously. Other potentially important factors are considered below.

NT-3

In addition to BDNF, neurotrophin 3 (NT-3) is highly expressed in neural structures, and a 

polymorphism in the NT-3 gene has been associated with schizophrenia., The gene has not 

been studied in the context of stroke, but if it affects function enough to influence 

schizophrenia risk it may affect plasticity as well.

NTKR

Polymorphisms in the neurotrophic tyrosine kinase receptors (NTKRs) have been studied in 

the context of Alzheimer’s disease. These are the receptors for BDNF and other 

neurotrophic factors, so polymorphisms that alter their efficacy may produce some of the 

same changes seen with the BDNF polymorphism.
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COMT

The enzyme catechol-O-methyl transferase (COMT) is responsible for catabolizing 

catecholamine neurotransmitters such as dopamine and norepinephrine and has the highest 

affinity for dopamine., The gene for COMT has one highly studied SNP, a valine to 

methionine amino acid substitution at position 108 in the soluble form and 158 in the 

membrane-bound form (val108/158met). Substituting Met at position 108/158 results in a 

protein with three to four times lower enzymatic activity and thus higher baseline CNS 

dopamine levels., This polymorphism in the COMT gene has primarily been studied in the 

context of working memory and has been associated with risk and therapeutic interventions 

in schizophrenia.,– Participants with the low activity Met allele, and thus higher levels of 

PFC dopamine, exhibit superior performance on working memory tasks, and administering 

amphetamines to increase CNS dopamine shows differential results based on genotype. In 

patients with psychosis, cognitive deterioration was the greatest in patients with the Val/Val 

genotype, intermediate in patients with Val/Met, and the least in patients with the Met/Met 

genotype. The COMT Val/Val genotype is also associated with motor impairments in 

patients with severe deficit schizophrenia, giving it at least one direct link to motor 

performance. Two longitudinal studies have associated the Val/Val genotype with greater 

cognitive decline with aging, a potentially important finding considering the late age of 

onset for stroke., Such biochemical and behavior-related studies demonstrate that CNS 

dopamine levels are increased with the Met allele, enough to see several behavioral effects, 

which may be a factor in plasticity and rehabilitation.

Cholinergic polymorphisms

Luria, a founder of modern neuropsychology, concluded that cholinergic drugs had a 

favorable effect on brain repair. The activation or blockage of cholinergic receptors has been 

shown to influence LTP administration in several paradigms.– Administration of 

scopolamine or other muscarinic acetylcholine receptor antagonists has been shown to 

impair memory performance in several domains,– and administration of nicotine or nicotinic 

acetylcholine receptor agonists enhances memory and memory-related tasks– (and see 

Giocomo for detailed review). There are several cholinergic receptor SNPs that are 

beginning to be studied in relation to a variety of neurological conditions.– These 

polymorphisms may represent a future direction to take in the study of genetic factors in 

brain plasticity.

DYT1

A DYT1 SNP is related to abnormally excessive plasticity to the point of dystonia. Future 

studies might examine the effects of this SNP in the context of brain repair.

UCHL1

Ubiquitin carboxyl-terminal hydroxylase (UCHL) is an enzyme highly expressed in neurons 

and is part of the ubiquitin proteasome pathway. UCHL proteins have been shown to be 

necessary for long-term facilitation in Aplysia and hippocampal-dependent memory in rats.,

The UCHL1 gene in humans contains an SNP that affects its enzymatic activity and might 

be evaluated in future studies of stroke recovery.
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Many of these polymorphisms have undergone little or no study in the context of stroke 

recovery, but evidence suggests these might be potential avenues for research into genetic 

effects on plasticity and rehabilitation.

Conclusions

The above findings suggest that genetic factors are important considerations in the context of 

recovery from stroke, both spontaneous and therapy-induced. Genetic factors may work 

directly to influence plasticity, or they may modulate other processes that then more directly 

influence plasticity.

A key question in these studies is how this information can be used to improve patient 

outcomes. As described previously, such data might be used to design new therapies taking 

advantage of molecular insights, predict treatment response for individual patients, improve 

efficiency of resource utilization, and inform entry criteria in clinical trials. Pharmacogenetic 

approaches will become increasingly popular as SNPs are discovered that modulate drug 

response. Once effects of single genes are understood, the impact that multiple genes have 

can be studied.– As always, genetic data must be treated with the highest of ethics and 

respect. Genetic studies show great promise in explaining and enhancing plasticity and 

recovery of function after stroke. As rehabilitation techniques become more and more 

refined, genetics will likely play a larger role in determination of treatment strategies.
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