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Abstract
A general methdd has béen developed to golve the creebing—flpw
equations in a continuous, periodic, arbitrarily shaped tube. Interior
collocation on a finite-difference grid.was used to solve the Stokes
stream function equation. Résults are presented for a parabolic
and a sinusoidal periodically constricted tube (PCT). A friction
factor, Reynolds number relationship for a pécked bed modeled asvan

array of sinusoidal PCT has been calculated.
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Scope

The transfer rates across a packed bed can be predicted a priori
if the exact'geomeﬁry of flow channels éan be described; This isv
usually impossible except for a.uniformly structured bed. It then
becomes necessary to introduce microscopic'models for the bed.- The
simplest mbdel considers the bed to be an artay of straight cylinders.
Recently, Payatakes et al. (1973a,b) introduced a new ﬁodel for the
flow channels in a packed bed. Thése authors consider the“béd to coﬁsist
of an array of periodically constricted tubes (PCT)l The‘converginé,
diverging'character of the flow in these tubes is a better approximétion
to the true natu?e of the flow in the actual bed. They have presented
results of numerically solQing the full Navieﬁ—Stokes equations for
Reynolds Qumbers between i and 75. .This paper extends their results
tovtheiéreéping—flow regime. These results can be ﬁsed to predict
the’Reynolds number,‘friqtiqn factof product for a pécked bed és a
function of the PCT geometry. Furthefmore, the vélocity‘profilesv
calculated are to bé used in solving the mass—transfer problem in

these PCT.

Conclusions and Significance
Tﬁis study has presented a teéhnique for solving thefincompressible,
Newtonian fluid, creepiﬁg—flow equatioﬁs in a periodically constricted
tube. Interior collocation on é finite-difference grid waé Qsed
to reduce the partial differential stream function equation to a set

of coupled, ordinary differential equations. This approach is much



more.ecoﬁomical than éolving the fﬁll elliptic équation by ovef—
relaxation. Thevgeﬁeralizéd’coordinate system in which the problem
is solved facilitates a straightforward calcﬁlation'for the velocity
.field in any tube.in ihe shape of a periodic, continuous body of
rerlutiOn.

A.packed bed-qan be modeled‘asban array of tbese tuBes. Figure 7
shows the relatiénshiﬁ bétWeen the bed frictioﬁ factor and Reynolds |
number for a bed consisting.of sinusoidal_PCI. The results deben&

upon the two dimensionless geometry variables r

A an@ A/rA

(figure 1). The results‘¢an be used in solving the convective

diffusion equation in a PCT.

. Introduction

The behavior of packed.beds can be simuléted by utilizing‘a
microédopic ﬁodelbfor tﬁevflow channels in the Bed. 'The'aﬁprppriaté
equations can then be solved ‘to predict traﬁsfef rates across the
bed.r The simﬁlest model'éénsiders the flpw éhénnels to be an array
of straight tube capillaries. Sheideggef (l957).and mote recently
: Duliien'(l975) have-provided a review of this approach. VSgch a first
drdér model cannot, howeﬁer, satisfaqtorily correlate experimental
data. The straight streamlines which result from applying the
capillary model seem to be an inappropriatg approximation tb the
twisting, con?erging, diverging character of the flow in a bedf
Recently, a new microséopic model for a.packedlbed was introduced by

Payatakes et al. (1973a,b). These authors envision the flow channels
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to be an array of periodically constricted tubes (PCT) of.random>
dimensioné. The converging, diverging nature of the flow in these
tubes is a better approximation to the true cﬁéracter of the flow in
a packed bed. These authors show by statistical and heuristic
arguments that the problem of modeling‘the flow behavior in an array
of these randomly sized PCT reduces to considering one dimensionless
PCT. They present a technique to calculate the model paraﬁeters.

The purpose of this series of work has beén to éalculate transfer
rates across a bed modeled as an‘array of PCT. Creeping flow
conditions have been assumed in the bed.. This first paper
specifically concerns itself with solving the creeping flow eduations
in a PCT. These results will be used as the velocity profiles in the
subsequent work.

‘Since the Navier-Stokes equations beéome linear for creeping
flow, interior collocation on a finité—difference grid was used to
éolve the fluid dynaﬁics. This novel technique is more economical
than the'over—relakétion techniques generally used in solviﬁg
elliptic equations. Furthermofe, the velocity<fields can be easily
féund for a tube in the shaﬁe of any continuous, periodic body of

revolution.

_ .Creeping Flow in a PCT
The PCT is generatedvby the surface of revolution of a
cosine function about the axis of symmetry as shown in figure 1. .

(The wall function proposed by Payatakes et al. was pavrabolic. The



choice ié'immaterial to the concept of a PCT however.) All lengthé
are made dimensionless witﬁ thevperiod of oscillation & . The
creeping-flow equafi&nS'are to bé.solved‘in this geometry. Because
no inertial effects.are présent,»the radial Velocityv v, will bé
zero at z = 0, 0.5, andvl.O , and ‘the streamwise velécity vg will.
be an even function of .zv with the same frequency as'thé wall
oscillation. Tﬁése considefations.make it clear’thét the governing
equations need be solved only in 0 § z 0.5 . .

A packéd bed_is modeled ésAan array of these PCT. - Thé fluid
approaches fhevbed at a superficial approach velocity ?S .. The
average dimensional veldcity <v, ,> thrbugh;each ;ube is'definéd'

Ad

such that the flow raté in each tube is equal to <vAd$ ﬂrid where

Tad is the length averaged dimensional radius. Geometrical'consid—

erations show that <vAd> ‘can be written in terms of the approach

velocity as

I/ Vidrs [1 ty (/T ]

where A is the dimensionless wall oscillation amplitude. The

governing equations need be solved in a éingle'PCT. These fesults
can theﬁ be applied to the entire.bed due to thé aééumed homogeneity
and periodicity of the structure..

The dimensionless, incompressible Navier—Stokes équations»fof
creeping-flow with axial symmetry can be reduced to a singlé, linear,
- fourth order partial differential equation»by introdﬁcing the

‘normalized stream function VY as

o ¥

fa



(1) -

E'Y = 0
where
2 2
2 d 1 o 0
Ef = —r - = o=~ + — (2)
Brz r ar Bzz :
r2
v =AY
z 2r or
(3)
r2
oo tady
r 2r 9z

The stream function equation is to be solved subject to the boundary

conditions

Y =0 l 4(41)
2 1l f . 4(i1)
or r or
l%Q;O ' | 4(111)
r or v .r - rw(z) |
lP =1 ‘ B [g(iv)
and a periodicity condition
OSSRt ) | (5)
——— Y(r,2z) = —F— r,z +m) n,m= 0,1,2, ... 5
BZ(n) az(“)

The boundary conditions of equation 4 state that at the centerline
i) the radial velocity is zero, ii) the axial velocity is symmetric,

and at the wall iii) there is no slip on the;axial‘vélocity, and



iv) the flow raﬁe at eaph.cross section is a comstant, hefe fgferred

to a étraight cylinder of radius LI
No analytical solutibn for equations l,.4, and 5 could be found.

Boundary and interior pollocétion oﬁ a finite4differencé grid was

used. These approximatioh techniques. are examiﬁed by Finlayson (1972),

Villadsen (1970), and Villadsen and Stewart (1967).

Boundary collocation approximation for

By considering the periodicity conditions, a separable solution

of the férm
v, ='fj(t) cos (Aié)“ .’4. : _' :".'(6).'

J

where

can be postulated. ' If equation 6 is substituted into equation.1l,

a governing equation for the fj(r) is obtﬁined~

as. ST als. {22 df .
i_2 ;w.é_n%wgq;*;_j__i
r r - :

dr dr i dr2 T _r3, dr

+2%, =0 o @

The general solution to this equation which remainS»finité at

r =0 is

v— | ,
fj(r) = Aerl(Ajr) + Bjr Iz(kjr) c : (8?



It can be shown that the Hagen—Poiseuille solution for the stream
function is recovered when Aj + 0 . The‘approximate solution for

the stream function can then be written as

' \2 \4 NCF 9 . -
Y(r,z) = ZAO(i;> - Bo<——> - Z [Ajrll(kjr) + Bjr Iz(kjri] cos (A z): (9

g A j=1 ]
The first two terms on the right represent the steam function for a -

straight tube ofvrédius r, if A = Bo =1 . The summation of

A
terms can be thought of as a correction function for the basic Hagen-

Poiseuille flow.

Interior collocation approximation for

By introducing a new set of coordinates (n,z) defined by

n = r/rw(Z) (10)

the boundary conditions of equation 4 along the wall can be transferred
to a coordinate curve n = 1’. The interior collocation teChnique_
on a finite-difference grid can be used to approximate the hydro-
dynamics. Assume an approximate solution for the normalized
stream functibn of the form

NCP ' :

2 4 2 2,2, 2
Y,2z) =2 -+ ] Tl - (g ) . AD
. Tk ~1

k=1 : : o

The first two terms on the right side represent the Hagen-Poiseuille

solution. The summation of terms can again be considered as a correction



function.to the'basic_parabolic flow. The functions ¢k_1(n2) in

the summation term can be any complete éet of functions. The
weighting factor n2(1 - n2)2 assures the correct behavior of the
solution at the bouﬂdary points =0 and 1n =1 . The coefficients
Ak(z) ‘are unknown functiéns of 2z to be determined subject to the

boundary conditions

A1(0) = AI'T(0) = O

(12)
Aﬁ(O.S) = Aﬂ"(0.5) =0 _
These éonditionS'result from the even behavior of the streamwise |
vélocity vE .
Friction factor for a packed bed
A friction factor forva packed bed may be defined as
SR (o) W S @)
B . a L 2°° ' a
B pVS - . ' .

‘The porosity dependence has been explicitly iﬁcorporated‘into this -
definition. For cfeeping flow, the product of the Reyndldsvnumber

and the bed friction factor is a constant given by

2 r NCP |
2¢ 1. 2 a\ | ,
; = 72 1+1 {4}
B (arAd> [ MY ] -{(%) I k——z—l ()

[24,

. | | |
MO ‘_¢k—1(0)/2]g dz . | : (14)

1y



This equation was derived by integratiné the pressﬁre'gradieﬁt in thé
Nayier—Stékes equations over a period at the centerline. The ieft
side of eqﬁafion 14 depends upon the maéroscépic bed quantities while
the right side depends updn the microscopic model parameters. T

A
and A/rA only..

Method of'Solution

Boundary collocatiqn was ﬁsed to determine the cbefficiehts
Aj s Bj of equatioﬁ 9. Equation 9 identically sétisfieé the
centerline conditions. It was forced to satisfy the remaining
boundary conditions along tﬁe wall at a discrete number NCP of
‘axial collocation points: These axial points were picked to bé'the
zeros of the shifted Legendre or Tchebycheff polynomials. 1In
addition to the wall boundary conditions given by equation'4(iii) and
4(iv), it was found neéessary explicitiy to force equation 9 to
satisfy the no slip condition on the radial velocity v, - Thus gt
each collocation point there afe 3 boundary conditions to be satisfied.
The number of appfoximating functions NCF are_chbsen so that the
linear system of eqhétions generated 1s determinant.

A comment should be made regarding ﬁhe necessity of forcing _vf
to equal zero at the wall. It was found that when this condition was
not imposed on the solution, the v, on. the Wall did nét‘équal zero’
at the collocation points even though v, did. This might seem
suspicious since VY = 0 ‘at rw(z) . Bﬁt this is énly true when

the Y wused in the gradient.operation is the "correct" solution.
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ft does not apply to the approximating Solution-unless the approximétion
is forced to satisfy that eqﬁation., The wall direction was ﬁot
correctly specified by the two wall boundary conditions élone.

The unknown coefficiénts Ak(z) in the intefior—céllocation ‘
approximation for the stream function can be determined as follows.
Equation 1 in the (n,z) coordinate system is applied to equation 11.
(Thé Ea- operator in the (n,z) coordinate system is given in
Appendix A). . Interior collocation is then used at NCP points in the -
N coordinate. Since the n functional dependence is:g_priori
pospulated through the ¢k_l(n2) , this step reduces the pértial
differential equation.to a set of coupled, fourth order, ordinary
differential equaéions for the unknown A.k . This set of equations
is solved on a finite-difference gfid in the =z coordinate by the
method of Newﬁan (1973). Legeﬁdre polynomials were‘used for thé
¢k—1(n2) . The ‘n collécation points were chosen to be the zeros

of the shifted Legendre polynomials of order NCP-1

where X, is the zero of the ordinary Legendre polynomial. The
wall n =1 was also used as a collocation.point.
Further details of the calculational procedure are given by

Fedkiw. All calculations were done on a CDC 7600 computer.
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Results and Discussion

No numerical difficulty was encountered in solving the
hydrodynamics in a PCT when the dimensionless wall oscillation
_aﬁplitude was smali (< 0.05). The two apbroacﬁes outlined gave essen-
tialiy,the same velocity profiles. HoWever,.as the wall amplitude
was increased, the boundary collocation solution became a progressively
‘worse approximation. .Increasing the number of eeiloeafion points -
did not help. The expaneion for the correction function in_the
boundary—collocation solution at any positien z 1is 1n terms of.the
weighte& quified Bessel functions of the first kind. Unfortunately,
these functions'do not form a complete set. TThus as the COrreetion
function becomes mere dominant (increasing amplitude) the approximating.
ISOIution breaks down.

The interior collocation technique; on the other hand, encountered
- no problems. As the.wall oscillatien ampli;ude was 1ncfeesed in
the calculations, ehe'nqmber of collocation fupetions NCP was
increased to assure accuracy. It was found thaf for the range of
parameters studied.in this report, NbP = 9 insured suffieieﬁt
aecuracy of the selution. All results‘reported hefe_use the interior-
colloeation solution to the hydrodynamics.-

The interior colloCatien approximation for the stream function
is eolved in a generalized (n,i) coordinate sysfem. Tﬁis facilitates
a straightforward calculation fpr_the velocity field.in any'tube in
the shaée of a periodic, piecewise cehtinuous body of revoiutionn-

Results are reported here for a parabolic and a sinusoidal PCT.
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Figuré‘Z shows a comﬁarison between the creeping £1ow'
axial Qelocity profile.and that reported by PayatakES'EE_él. for a
tube.Reynqlds number eqﬁal to one. The profiles are compared at the
minimum énd-maximum (z = 0.5) constriction diameters. The tube
wall for fhese profiles is piecewise continuoué, generated By two
patabolas intersecting at z = 0.5 with their respective‘minima at
z = 0 and =z =Al . (See figure 1 of Payatékes EE.El')' Thg vélocity
here -is scaled with respect to the average velocity in a tube of
éonétant radius equal to the constriction radius. At the centerline
.thé viscousvflow profilé is Slightly 1érgef tﬁan that of'Payatakes
gﬁ_gl, calculations. - However, near the wall this trend is reversed.
The.integral of all the profilés is eéUal'to a constant defined by
'_ the flowrate. | |
figures 3 thru 6 show some typical créepingaflow prbfileé iﬁ.a

and.uA/rA

sinusoidal PCT. The two dimensionless geometry groups ‘rA

completely determiné‘the solution behavior.. These four figures
illustrate the effect on the;velocity ?rofiles of manipulating one
of these variables with thevother held constaht;. The’velocity
profiles have been normaiizéd with' the average'Velociﬁy at the
average radius;. )

The effect on .the axial and'radial veloéiﬁy profiles of varying
the wall amplitude at a constant average radius is shown iﬂ figﬁres 3
and 4. The radial velocity profile is plotted at =z = 0;25 .. At this

position v, attains its maximum value. These figures indicate -

that at a constant radius the variation in the velocity profiles
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across a haif period becomes more dramatic as £he oscillation émplitude
increases.

Figure 5 and 6 illustrate the velocity profiles for a Varying‘.
wéll radiué at a constant .A/rA . The effec£ of the.tube geométry is

again seen. The radial velocity increases with r, since the velocity

A
of- the fluid in the radial direction is proportional to the slope of
vthe wall.. However, the variations in the axial'veloéityvprofiles
acfoss the half period become less pronounced with increasiﬁé rA .
This.éffect>is due to the drag induced by the wall. As er. increaéeé
the effect of the wall fluctuations become less important to the
fluid iﬁ the centrél éore of the tube.

The profileé of figures 3 thru.6 have been nondimensionalizéd
“with reSpect‘po ﬁhe average axial vglocity.at the average tubé
radius. This nofmaiization pfocedure illustrates the variation of
the profiles from that at the average tube_radius; " If these prqfiles“

_ r_(2)
are multiplied by -

2 .
) » the resulting profiles are then
A ' '
normalized by the average axial velocity at position z . Such a

calculation shows that the parabolic axial velocity profile'is

approached as rAv becomes smaller. The radial velocity profile is

then given by continuity. In the limit of T, * 0 , the Hagen-

Poiseuille case is recovered.
. Figure 7 illustrates the bed friction factor, Reynolds number

product of equation 14 as a function of and A/rA . The product

A

fBReB depends upon the macroscopic bed parameters LB » € , and a .

The microscopic PCT parameters r and A/rA can be varied while

A

holding these bed parameteis constant. As A/rA increases, the tubes
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become more marrow at'theirvconstrictioné. Because of the increased
resistance this reduced flow area offers, the bed pressure drop

increases with 'A/rA . This effect decreases with larger r, since

A
the constriction size at any A/rA' increases with L
The Blake-Kozeny equation as given in Bird et al. (1960)
‘empirically recqmmends a value of 150 for thevproduct fBReB .
S¢rénsonvand Stewart (1974) have calculated'the velocity profiiesv
across a simple cubic packipg of uniformly sized spheres. Their
preésure—drop results yield.a theoretical value of 158. Figure 7
shows that a rénge of parameteré (rA,A/rA)' will give a fBRéB
near these two values. The A/rA' ratio which giye fBReB a value
near.150‘seém to be concentrated near 0.33.

The straight tuBe capillary model gives the intercept value of
72 on figure 7. The usual argument gi&en in‘explainihg'the discrepency
betweén this value and tﬁe empirically best fit value of 150 is a
tortuosity and shape factor; The PCT mode1 of a packed bed does not

resort to these factors. However, another geometrical parameter

' (A/rA) has been added. -
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Notation,'
A dimensionless wall oscillation amplithde,VAd/Z _
Ak(z) interior collocation coefficient functions

‘A, ,B, boundary collocation coefficients

373
fj boundary collocatibn function defined by equatipn 7
fB bed friction factor.defined by equation 13
bLB_ * length of packed.Bed, cm’
L | length of a PCT period, cm

NCP number of collocation points

NCF ' number vaboundary collocation fuﬁctions
PB *  pressure in bed ‘

r " dimensionless radial coordinate,'ra/ﬁ

r, »_dimensioﬁless average PCT radiﬁs, rAd/l

rw(z) dimensionless PCT wall radius, rﬁd/ﬁ
_ Re bed Reynolds number, 6pvs/ua
v superficial bed approach velocity, cm/sec

<v, > average velocity in a tube of constant radius r, ., cm/sec.

Ad

imensi ' - v L <v. >
v, dimensionless radial velocity, Vrd/ Vad®

3 . X ] . . < ) >
Vzd dlmen51onlessvax1al velocity, Vzd/ vAd“wm_wﬁ
v, dimensionless streamwise velocity,\/vi + vi
z dimensionless axial coordinate, zd/Q
Greek
€ bed porosity'

. 3

P density, gm/cm

n r/rw(Z)
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'Aj 21§, j = 1,2, ...
U viscosity, gm/cm sec

| 2 2
P normalized dimensionless stream function —dek /<VAd>rA

{¢k} complete set of functions

Subscript

d dimensional quantity
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Appendix A

(n,2z) coordinate system

4 4
4 2,2 . 2.,2] @
EY = [1+nr]—-—.—4nrr l1+nr
{ | W 8n4 , wow W 323n3
' 4 " 4
+ ri[? + 6n2r&2] —4%——5 - 4nr3r' 33 + r:-g—z'+
929 Y 9z7%n dz
[4‘3 +1one'? + 12070 - o e - 60 "r'?] 23—.+
n nrw n \ nrw w n Tulw an3 :
3 Ly W3
r [—4r' - 24n2r'3 + 12n2r r'r" + rz 12nr'2 - énr r" - 212
W w w ww w| dzan w W wWw N BnBzz
3
. 24nx! 2
+ 2 24nr’'x"” - v o 4nr " o_ 4
w w W r nr W w w| dzan
_i_ﬁ 'l[‘ _ 12 2 4 om 2,2 _2_ "
[ n3 n + 24nrw 36nrwrw ro + 8nrwrwrw + 6nrwrw + n rwrw

d
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3 (iv)
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Figure 1. The wall of a PCT generated by rw(z) =T, - A cos (2mz) .

All lengths are dimensionless with respect to the period
length £ , '
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Figure 2. Compafison of calculated axial velocity profiles with
those of Payatakes et al. for a parabolic PCT.
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' Figure 4. Effect of amplitude/radius ratio on radial velocity
profiles in a sinusoidal PCT for r, = 0.1 at
z = 0.25 . '
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Figure 7. Friction factor, Reynolds number product for a packed bed modeled
as an array of sinusoidal PCT. '
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