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Abstract 

A general method has been developed to solve the creeping-flow 

equations in a continuous, periodic, arbitrarily shaped tube. Interior 

collocation on a finite-difference grid was used to solve the Stokes 

stream function equation. Results are.presented for a parabolic 

and a sinusoidal periodically constricted tube (PCT). A friction 

factor, Reynolds number relationship for a packed bed modeled as an 

array of sinusoidal PCT has been calculated. 
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Scope 

The transfer rates across a packed bed can be predicted ~ priori 

if the exact geometry of flow channels can be described. This is 

usually impossible except for a uniformly structured bed. It then 

becomes necessary to introduce microscopic models for the bed. The 

simplest model considers the bed to be an array of straight cylinders. 

Recently, Payatakes et al. (1973a,b) introduced a new model for the 

flow channels in a packed bed. These authors consider the bed to consist 

of an array of periodically constricted tubes (PCT). The converging, 

diverging character of the flow in these tubes is a better approximation. 

to the true nature of the flow in the actual bed. They have presented 

results of numerically solving the full Navier-Stokes equations for 

Reynolds numbers between 1 and 75. This paper extends their results 

to the creeping-flow regime. These results can be used to predict 

the Reynolds number, friction factor product for a packed bed as a 

function of the PCT geometry. Furthermore, the velocity profiles 

calculated are to be used in solving the mass-transfer problem in 

these PCT. 

Conclusions and Significance 

This study has presented a technique for solving the"incompressible, 

Newtonian fluid, creeping-flow equations in a periodically constricted 

tube. Interior collocation on a finite-difference grid was used 

to reduce the partial differential stream function equation to a set 

of coupled, ordinary differential equations. This approach is much 
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more economical than solving the full elliptic equation by over-

relaxation. The generalized coordinate system in which the problem 

is solved facilitates a straightforward calculation for the velocity 

field in any tube in the shape of a periodic, continuous body of 

revolution. 

A packed bed can be modeled as an array of these tubes. Figure 7 

shows the relationship between the' bed friction factor and Reynolds 

number for a bed consisting of sinusoidal PCT. The results depend 

upon the two dimensionless geometry variables and 

(figure 1). The results can be used in solving the convective 

diffusion equation in a PCT. 

Introduction 

The behavior of packed beds can be simulated by utilizing a 

microscopic model for the flow channels in the bed. The·appropriate 

equations can then be solved to predict transfer rates acro.ss the 

bed. The simplest model considers the flow channels to be an array 

of straight tube capillaries. Sheidegger (1957) and more recently 

Dullien (1975) have provided a review of this approach. Such a first 

order model cannot, however, satisfactorily correlate experimental 

data. The straight streamlines which result from applying the 

capillary model seem to be an inappropriate approximation to the 

twisting~ converging, diverging character of the flow in a bed. 

Recently, a new nrlcroscopic model for a packed bed was introduced by 

Payatakes et al. (1973a, b). These authors envision the flow channels 

.. 
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to be an array of periodically constricted tubes (PCT) of random 

dimensions. The converging, diverging nature of the flow in these 

tubes is a better approximation to the true character of the. flow in 

a packed bed. These authors show by statistical and heuristic 

arguments that the problem of modeling the flow behavior in an array 

of these randomly sized PCT reduces to considering one dimensionless 

PCT. They present a technique to calculate the model parameters. 

The purpose of this series of work has been to calculate transfer 

rates across a bed modeled as an array of PCT. Creeping flow 

conditions have been assumed in the bed. This first paper 

specifically concerns itself with solving the creeping flow equations 

in a PCT. These results will be used as the velocity profiles in the 

subsequent work. 

Since the Navier-Stokes equations become linear for creeping 

flow, interior collo~ation on a finite-difference grid was used to 

solve the fluid dynamics. This novel technique is more economical 

than the over-relaxation techniques generally used in solving 

elliptic equations. Furthermore, the velocity fields can be easily 

found for a tube in the shape of any continuous, periodic body of 

revolution. 

Creeping Flow in a PCT 

The PCT is generated by the surface of revolution of a 

cosine function about the axis of symmetry as shown in figure 1. 

(The wall function proposed by Payatakes et al. was parabolic. The 
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choice is ·immaterial to the concept of a PCT however.) All lengths 

are made dimensionless with the period of oscillation ~ . The 

creeping-flow equations are to be solved in this geometry. Because 

no inertial effects are present, the radial velocity vr will be 

zero at z = 0, 0. 5, and 1. 0 , and the streamwise velocity vr;, will 

be an even function of z with the same frequency as the wall 

oscillation. These considerations make it clear that the governing 

equations need be solved only in 0 < z < 0.5 . 

A packed bed is modeled as an array of these PCT. - The fluid 

approaches the bed at a superficial approach velocity v 
.s 

The 

average dimensional velocity <v > 
Ad through each tube is defined 

such that the flow rate in each tube is equal to < > 2 v Ad Trr Ad where 

rAd is the length averaged dimensional radius. Geometrical consid

erations show that <vAd> can be written in terms of the approach 

velocity as 

- <v > Ad· 

where A is the dimensionless wall oscillation amplitude. The 

governing equations need be solved in a single PCT. These results 

can then be applied to the entire bed due to the assumed homogeneity 

and periodicity of the structure. 

The dimensionless, incompressible Navier-Stokes equations for 

creeping-flow with axial symmetry can be reduced to a single, linear, 

fourth order partial differential equation by introducing the 

normalized stream function ~ as 
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where 

v 
z 
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0 

2 
= rA~ 

2r Clr 

2 
-- rA ~ 

vr- 2r Clz 

(1) 

(2) 

(3) 

The stream function equation is to be solved subject to the boundary 

conditions 

ljJ = 0 

~ r = 0 a l~ oj Clr r Clr 

4 (i) 

4(ii) 

l~= 0 l r Clr 
r (z) r = w 

ljJ = 1 

4 (iii) 

and a periodicity condition 

a(n) a(n) 
( ) ljJ ( r , z) = ( ) ljJ ( r, z + m) n, m = 0, 1, 2, • . • ( 5) 

Clz n ~z n 

The boundary conditions of equation 4 state that at the centerline 

i) the radial velocity is zero, ii) the axial velocity is synunetri.c, 

and at the wall iii) there is no slip on the axial velocity, and 
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iv) the flow rate at eachcross section is a constant, here referred 

to a straight cylinder of radius rA • 

No analytical solution for equations 1, 4, and 5 could be found. 

Boundary and interior collocation on a finite~difference grid was 

used. These approximation techniques are examined by Finlayson (1972), 

Villadsen (1970), and Villadsen and Stewart (1967). 

Boundary collocation approximation for ~ 

By considering the periodicity conditions, a separable solution 

of the form 

where 

f. (r) cos (A. z) 
J J 

A. - 2nj , j 
J 

0,1,2, ... 

can be postulated. If equation 6 is substituted into equation 1, 

a governing equation for the f. (r) 
J 

is obt.ained . 

4 3 ( ~2 (2) d f. 2 d f . 3 2 d f. 2A. 3. df .. · 
___J_ - - ___.1. + ...,.. - 2A ___.1. + _j_ - - _j_ 

d 4 r d 3 r j d 2 · r 3 dr r r r · r 

4 + A.f. 0 
J J 

The general solution to this equation which remains finite at 

r = 0 is 

f. (r) 
J 

2 
A.rr1 (A.r) + B.r r 2 (A.r) 

J J J . J 

(6) 

(7) 

(8) 
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It can be shown that the Hagen-Poiseuille solution f~r the stream 

function is recovered when .A. -+ 0 . The approximate solution for 
J 

the stream function can then be written as 

ljJ ( r, z) 
( )

2 )4 NCF 2 
2A _E_ - B (~ - I [A.ri

1
(.A.r) + B.r r 2 (.A.r)l cos(Ajz). (9) 

o r A o r A j=l J J J J ~ , 

The first two terms on the right represent the steam function for a 

straight tube of radius if A = :B 
0 0 

1 . The summation of 

terms can be thought of as a correction function for the basic Hagen-

Poiseuille flow. 

Interior collocation approximation for ljJ 

By introducing a new set of coordinates (n,z) defined by 

n r/r (z) 
w 

(10) 

the boundary conditions of equation 4 along the wall can be transferred 

to a coordinate curve n = 1 . The interior collocation technique 

on a finite-difference grid can be used to approximate the hydro~ 

dynamics. Assume an approximate solution for the normalized 

stream function of the form 

ljJ (n, z) 
2 4 NCP 2 2 2 2 

2n - n + I n (1-n) Ak(z)~_1 <n). k=l 
(11) 

The first two terms on the right side represent the Hagen-Poiseuille 

solution. The summation of terms can again be considered as a correction 
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function to the basic parabolic flow. The functions 
2 

<Pk-1(11 ) in 

the summation term can be any complete set of functions. The 

weighting factor 11
2

(1 - 11 2)2 assures the correct behavior of the 

solution at the boundary points 11 = 0 and 11 = 1 The coefficients 

~(z) are unknown functions of z to be determined subject to the 

boundary conditions 

AkCO) = Ak''(O) = 0 

AkC0.5) = Ak''(O.s) o 

These conditions result from the even behavior of the streamwise 

velocity v~ • 

Friction factor for a packed bed 

A friction factor for a packed bed may be defined as 

1 
2 . 

pv 
s 

(12) 

(13) 

The porosity dependence has been explicitly incorporated into this 

definition. For creeping flow, the product of the Reynolds number 

and the bed friction factor is a constant given by 

2 l 4 ~ NCP 

n(a;~) [1 + t<A/rAl2] f(::) 11 + k~1 Vzl 

[2 <Pk-l (0) - <Pk-l (0) /2] ~ dz . (14) 



• 

:.d h.·~ P __ , OOUO·-~J u 
f.J 0 Q 

-9-

This equation was derived by integrating the pressure gradient in the 

Navier-Stokes equations over a period at the centerline. The left 

side of equation 14 depends upon the macroscopic bed quantities while 

the right side depends upon the microscopic model parameters rA 

and A/rA only. 

Method of Solution 

Boundary collocation was used to determine the coefficients 

A. , B. of equation 9. Equation 9 identically satisfies the 
. J J 

centerline conditions. It was forced to satisfy the remaining 

boundary conditions along the wall at a discrete number NCP of 

·axial collocation points. These axial points were picked to be the 

zeros of the shifted Legendre or Tchebycheff polynomials. In 

addition to the wall boundary conditions given by equation 4(iii) and 

4(iv), it was found necessary explicitly to force equation 9 to 
. I 

satisfy the no slip condition on the radial velocity v ·• r 
Thus at 

each collocation point there are 3 boundary conditions to be satisfied. 

The number of approximating functions NCF are chosen so that the 

linear system of equations generated is determinant. 

A comment should be made regarding the necessity of forcing 

to equal zero at the wall. It was found that when this condition was 

not imposed on the solution, the v 
r 

at the coll6cat~on points even though 

suspicious since v~ = 0 at r (z) • 
w 

on the wall did not equal zero 

v z 
did. This vnight seem 

But this is only true when 

the ljJ used in the gradient.operation is the "correct11 solution. 
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It does not apply to the approximating solution unless the approximation 

is forced to satisfy that equation. The wall direction was not 

correctly specified by the two wall boundary conditions alone. 

The unknown coefficients ~(z) in the interior-collocation 

approximation for the stream function can be determined as follows. 

Equation 1 in the (n,z) coordinate system is applied to equation 11. 

(The E
4 

operator in the (n,z) coordinate system is given in 

Appendix A). Interior collocation is then used at NCP points in the 

n coordinate. Since the n functional dependence is ~ priori 

postulated through the ¢k-l (n
2

) , this step reduces the partial 

differential equation to a set ot coupled, fourth order, ordinary 

differential equations for the unknown Ak . This set of equations 

is solved on a finite-difference grid in the z coordinate by the 

method of Newman (1973). Legendre polynomials were used for the 

2 
¢k_1 (n ) . The n collocation points were chosen to be the zeros 

of the shifted Legendre polynomials of order NCP-1 

_rx;+l 
ni-v~ 

where x. is the zero of the ordinary Legendre polynomial. The 
l 

wall n = 1 was also used as a collocation point. 

Further details of the calculational procedure are given by 

Fedkiw. All calculations were done on a CDC 7600 computer. 

• 
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Results and Discussion 

No numerical difficulty was encountered in solving the 

hydrodynamics in a PCTwhen the dimensionless wall oscillation 

• amplitude was small (< 0.05). The two approaches outlined gave essen-

tially the same velocity profiles. However, as the wall amplitude 

was increased, the boundary collocation solution became a progressively 

worse approximation. Increasing the number of collocation points 

did not help. The expansion for the correction function in the 

boundary-collocation solution at any position z is in terms of the 

weighted modified Bessel functions of the first kind. Unfortunately, 

these functions do not form a complete set. Thus as the correction 

function becomes more dominant (increasing amplitude) the approximating 

solution breaks down. 

The interior collocation technique, on the other hand, encountered 

no problems. As the wall oscillation amplitude was increased in 

the calculations, the number of collocation functions NCP was 

increased to assure accuracy. It was found that for the range of 

parameters studied in this report, NCP = 9 insured sufficient 

accuracy of the solutiop. All results reported here use the interi.or-

collocation solution to the hydrodynamics. 

The interior collocation approximation for the stream func'tion 

is solved in a generalized (n ,z) coordinate system. This facilitates 

a straightforward calculation for the velocity field in any tube in 

the shape of a periodic, piecewise continuous body of revolution, 

Results are reported here for a parabolic and a sinusoidal PCT. 
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Figure 2 shows a comparison between the creeping flow 

axial velocity profile and that reported by Payatakes et al. for a 

tube Reynolds number equal to one. The profiles are compared at the 

minimum and maximum (z = 0.5) constriction diameters. The tube 

wall for these profiles is piecewise continuous, generated by two 

parabolas intersecting at z = 0.5 with their respective minima at 

z = 0 and z = 1 . (See figure 1 of Payatakes et al.). The velocity 

here is scaled with respect to the average velocity in a tube of 

constant radius equal to the constriction radius. At the centerline 

the viscous flow profile is slightly larger than that of Payatakes 

et al. calculations. However, near the wall this trend is reversed. 

The integral of all the profiles is equal to a constant defined by 

the flowrate. 

Figures 3 thru 6 show some typical creeping flow profiles in a 

sinusoidal PCT. The two dimensionless geometry groups and 

completely determine the solution behavior. These four figures 

illustrate the effect on the-velocity profiles of manipulating one 

of these variables with the other held constant.. The velocity 

profiles have been normalized with the average velocity at the 

average radim~. 

The effect on the axial and radial velocity profiles of varying 

the wall amplitude at a constant average radius is shown in figures 3 

and 4. The radial velocity profile is plotted at z = 0.25 • At this 

position v 
r 

attains its maximum value. These figures indicate 

that at a constant radius the variation in the velocity profiles 

• 
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across a half period becomes more dramatic as the oscillation amplitude 

increases.· 

Figure 5 and 6 illustrate the velocity profiles for a varying 

• wall radius at a constant A/rA • The effect of the tube geometry is 

again seen. The radial velocity increases with rA since the velocity 

of the fluid in the radial direction is proportional to the slope of 

the wall. However, the variations in the axial velocity profiles 

across the half period become less pronounced with increasing tA • 

This effect is due to the drag induced by the wall. As increases 

the effect of the wall fluctuations become less important to the 

fluid in the central core of the tube. 

The profiles of figures 3 thru 6 have been nondimensionalized 

with respect to the average axial velocity at the average tube 

radius. This normalization procedure illustrates the variation of 

the profiles from that at the average tube radius'. If these profiles 

are multiplied by (
rwrA(z))2 , the resulting profiles are then 

normalized by the average axial velocity at position z • Such a 

calculation shows that the parabolic axial velocity profile is 

approached as becomes smaller. The radial velocity profile is 

then given by continuity. In the limit of rA-+ 0 , the Hagen-

Poiseuille case is recovered. 

Figure 7 illustrates the bed friction factor, Reynolds number 

product of equation 14 as a function of and The product 

fBReB depends upon the macroscopic bed parameters LB £ , and a , 

The microscopic PCT parameters and can be varied while 

holding these bed parameters constant. As A/rA increases, the tubes 



-14-

become more narrow at their constrictions. Because of the increased 

resistance this reduced flow area offers, the bed pressure drop 

increases with A/rA . This effect decreases with larger since 

the constriction size at any A/rA increases with rA . 

The Blake-Kozeny equation as given in Bird ~ al. (1960) 

empirically recommends a value of 150 for the product fBReB . 

S~renson and Stewart (1974) have calculated the velocity profiles 

across a simple cubic packing of uniformly sized spheres. Their 

pressure-drop results yield a theoretical value of 158. Figure 7 

shows that a range of parameters (rA,A/rA) will give a fBReB 

near these two values. The A/rA ratio which give fBReB a value 

near 150 seem to be concentrated near 0.33. 

The straight tube capillary model gives the intercept value of 

72 on figure 7. The usual argument given in explaining the discrepency 

between this value and the empirically best fit value of 150 is a 

tortuosity and shape factor. The PCT model of a packed bed does not 

resort to these factors. However, another geometrical parameter 

(A/rA) has been added. 
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Notation 

dimensionless wall oscillation amplitude, AiQ, 

interior collocation coefficient functions 

boundary collocation coefficients 

boundary collocation function defined by equation 7 

bed friction factor defined b~ eq~ation 13 

length of packed bed, em 

length rif a PCT period, em 

number of collocation points 

number of boundary collocation func-tions 

pressure in bed 

dimensionless radial coordinate, rd/Q, 

dimensionless average PCT radius, rAd/Q, 

dimensionless PCT wall radius, rwd/Q, 

bed Reynolds number, 6pv /~a 
s 

superficial bed approach velocity, em/sec 

average velocity in a tube of constant radius rAd' em/sec 

dimensionless radial velocity, vrd/<vAd> 

dimensionless axial velocity, v
2

d/<vAd> 
--------

dimensionless . . 2 streamw1se veloc1ty, + v 

dimensionless axial coordinate, zd/Q, 

bed porosity 

3 
density, gm/cm 

r/r (z) 
w 

r 
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\. 
J 

2nj , j = 1,2, ... 

viscosity, gm/cm sec 

2 2 
normalized dimensionless stream function -2\jJdfi, /<vAd>rA 

{¢k} complete set of functions 

Subscript 

d dimensional quantity 
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Appendix A 

4 E operator in (n,z) coordinate system 

E4ljJ • { [1 + n2r~2] a4 
4nr r 1 [1 + n2

r
12

] 
a4 

-4- 3 
an 

w w w 
a zan 

+ r;[2 + 6n2r~ 2] 
a4 3 a4 4 a4 

az
2

an
2 - 4nr r 1 

3 + r --·+ 
w w 

az an W dZ4 

+ r
2 

[24nr 1 r" w ww ] 
a2 

r 1 - 4nr r" -- + 
w w w azan 
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Figure 2. Comparison of calculated axial velocity profiles with 
those of Payatakes ~ al. for ·a parabolic PCT. 
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Figure 3. Effect of amplitude/radius ratio on axial velocity profiles 
for a sinusoidal PCT with rA = 0.1 . 
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Figure 4. Effect of amplitude/radius ratio on radial velocity 
profiles in a sinusoidal PCT for rA = 0.1 at 
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Figure 5. Effect of average tube radius on axial velocity profiles 
in a sinusoidal PCT for A/rA = 0.1 . 
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Figure 6. Effect of average tube radius on radial velocity 
profiles in a sinusoidal PCT for A/rA = 0.1 at 
z = 0.25 . . 
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Figure 7. Friction factor, Reynolds number product for a packed bed modeled 
as an array of sinusoidal PCT. 
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