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Abstract: The gauge invariant relativistic quantum equations of motion for 
the fermion and photon Wigner operators are derived from QED. In the mean 
field (Hartree) approximation, we extract the generalized quantum Vlasov and 
mass-shell constraint equations for fermions. In addition, a complete spinor 
decomposition is performed. A systematic method for computing quantum 
corrections to all orders in Ii is developed. First order quantum (spin) correc­
tions are computed explicitly. Finally, the relations between gauge dependent 
and independent definitions of the photon Wigner function and their corre­
sponding transport equations are discussed. 
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1. Introduction 

Interest in transport equations for gauge field theories has been stimulated by recent 
QCD calculations indicating the possible existence of a new phase of nuclear matter, 
the quark-gluon plasma (QGP) [1]. It is generally expected that this phase may 
be formed in violent collisions between heavy ions. Most signatures of QGP have 
been calculated using thermodynamic or hydrodynamic model assuming that local 
equilibrium is reached in such collisions. However, due to the short time scales 
involved, nonequilibrium and even quantum effects may play an important role. 
The impact of those effects on the proposed signatures of the QGP can be assessed 
only with the help of non-equilibrium quantum transport theory. 

In dealing with fermions interacting via gauge bosons the transport theory 
should also be invariant under local gauge transformations. Recently, such a gauge 
covariant formulation of quantum transport theory for QCD has been proposed 
[2,3] (subsequently referred to as EGV). In order to gain further insight into the 
structure of that theory without the additional complication caused by specifically 
non-abelian effects, it is instructive to study the abelian (QED) limit in more detail. 
The primary objective of this paper is to complement EGV in this respect. In ad­
dition, gauge invariant abelian transport theory is interesting in its own right since 
up to now most formulations, e.g. [4,5], were implicitly based on gauge dependent 
definitions of the fermion Wigner function. Only the special cases of scalar QED in 
the semiclassical approximation [6] and the non-relativistic limit [7] were considered 
in a gauge invariant way. 

Classical kinetic theory characterizes an ensemble of point-like particles by their 
one-particle phase-space distribution function f(x,p), where x and p are the parti­
cle co-ordinate and kinetic momentum, respectively. The time development of the 
function f(x,p) is governed by the Vlasov-Boltzmann transport equation [8]. Quan­
tum corrections can be calculated rigorously by considering the quantum transport 
equation for the appropriate Wigner function [9], which is the quantum mechan­
ical analogue of f(x,p) . .Its equation of motion can be derived from Heisenberg's 
equations of motion for the associated field operators [10,U]. In the case of gauge 
theories though, the Wigner function must be defined in such a way as to insure 
gauge invariance [12]. 

In this paper we consider the Lorentz covariant, gauge invariant quantum trans­
port theory of fermions and vector gauge bosons. After introducing our notation in 
section 2, we discuss the appropriate form of the gauge invariant fermion Wigner 
operator in section 3. The form of that operator is uniquely determined by requiring 
that the momentum variable correspond to the kinetic momentum. We derive the 
exact quantum equation for the Wigner operator in section 4. For arbitrary external 
or self-consistent (Hartree) fields, that equation reduces to a linear quantum oper­
ator equation which contains in the classical limit the familiar relativistic Vlasov 
equation modified by specific spin dependent terms. This is shown by isolating the 
hermitian and anti-hermitian parts of the quadratic form of that operator equation. 
In this way we derive not only the generalized quantum Vlasov equation but also a 
generalized mass-shell constraint equation. Quantum corrections to classical trans-
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port theory can be calculated systematically from those equations by an expansion 
in powers of the triangle operator, l:::. = az • ap , introduced in EGV. We find that 
unlike in classical transport theory, the quantum transport equation is incomplete 
without the generalized mass";shell constraint equation because of the uncertainty 
principle. Finally, we derive an expression for the quantum transport equation that 
follows when the operator nature of the electromagnetic field is taken into account. 

Beyond the scope of EGV we perform in section 5 a complete decomposition of 
the Wigner function in spinor space. This spinor decomposition complements EGV 
in an important way because in that work only a decomposition in color space was 
considered. We show that the large set of coupled equations for the moments of the 
Wigner function reduces to a set of coupled equations for the scalar and axial vector 
components. The resulting equations and solutions are shown to have an especially 
transparent physical interpretation in the classical limit. Finally, in section 6 we 
propose an extension of the phase-space formalism· to vector gauge bosons and 
derive transport equations for gauge dependent and gauge independent versions of 
the photon Wigner operator. We also discuss the additional complication in that 
case associated with the separation of coherent and chaotic field components. 

2. Definitions 

Our conventions, notation, and the basic relations employed in the following sections 
are listed below. In general, we follow the conventions of ref. [13]. Natural units 
(Ii = c = 1) are used except for emphasis in cases where displaying Ii helps to clarify 
the presentation. 

The Lagrangian for the abelian gauge theory of fermions (electrons) with mass 
m and charge e, 

.c(x) = "'(x) (i'Y·a - m) t/J(x) - e "'(x) 'Y'A(x) t/J(x) - ~F"II(X)F"II(x) , 

leads to Dirac's equations for the fermion field operator and its adjoint, 

(2.1) 

where the "gauge invariant derivatives" 

-+. <-

involve the ordinary derivatives, a" = 8:" ~d at = 8:'" acting to the right and to 
the left, respectively. The gauge field tensor, 

(2.2) 

satisfies the homogeneous Maxwell's equation 

(2.3) 
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.... 

and the inhomogeneous Maxwell's equation 

(2.4) 

In quantum field theory the above equations are understood to be operator equa­
tions in the Heisenberg picture. 

The form of the coupling between the fermions and the real vector field is moti­
vated by the requirement of local gauge invariance. This means that under a local 
gauge transformation, 

tP(x) --. tP'(x) = tP(x) eieA(z) , (2.5) 

with an arbitrary real function A(x), the equations of motion (2.1), (2.3) and (2.4) 
should retain their form. This can be achieved only if simultaneously with (2.5) the 
vector field transforms inhomogeneously according to 

For later reference we also display here the quadratic form of Dirac's equation 
and its adjoint 

(D",D'" + leu"'v F",v + m 2
) tP - 0, 

ib (D~Dt'" + leu"'v F",v + m 2
) - 0, (2.6) 

where u"'V = lib"', -yV] and g"'V = l{ -y"', -yV}. 

3. The Wigner Operator 

The quantum mechanical analogue of the classical phase-space distribution func­
tion f(t,x,PJ is called the Wigner function W(x,p) and is obtained by applying 
Weyl's correspondence principle [9]-[12]. In relativistic field theory that function 
corresponds to the ensemble average of the Wigner operator 

A I d4
y . - ! ·a t -! ·a Wap(x,p)= (27r)4 e-'P'" tPp(x) e2" e 2" tPa(X). (3.1) 

Here the derivatives at and a", play the role of generators of translations acting to 
the left and to the right, respectively. The spinors are Heisenberg operators. The 
attached indices a and fJ are spinor indices, such that W is a (4 x 4)-matrix. The 
Wigner function is then 

W(x,p) = (: W(x,p) :) . 

The brackets indicate ensemble averaging and the colons normal ordering with 
respect to the vacuum state. The physical interpretation of the Wigner function is 
made clear if we note that in terms of the four momentum operator, as represented 
here by p", = li(a", - at), the integration over y gives formally 

(3.2) 
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Thus trW(x,p) measures the Lorentz scalar density of electrons at space-time point 
XIS with four momentum PIS" In terms of the Wigner function other quantities of 
interest such as the fermion vector current can be written as 

(i1S(X» = e (: .;p(X),IStJ1(X) :) = etr f d4p,IA(: W(x,p) :) = etr f d4p,ISW(X,p) . 
(3.3) 

; The trace refers to spinor indices. This relation is obvious from (3.2). As another 
example, the ensemble average of the non-interacting part of the (unsymmetrized) 
fermion stress tensor [13] is given by 

In order to describe the dynamics of an ensemble of interacting particles, we 
have to specify the equation of motion for the Wigner function W (x, p). However, 
as we shall see below its derivation does not refer to the particular ensemble under 
consideration. Hence we may in the following address the Wigner operator W (x, p), 
as defined ineq. (3.1), directly. Note that unlike the classical distribution function, 
!(t,x,jf), the relativistic Wigner function depends on eight variables, (xlS'PlA)'" 

In dealing with gauge theories such as QED, the definition of W(x,p) must be 
modified if we want to insure local gauge invariance. The problem is that ordinary 
translations produced by the operator exp(ip . y) are not well defined in a gauge 
theories. To see this, note that under a gauge transformation (2.5), 

W
A 

( ) _/ d
4
y -ip"1/ J. ( 1) .1. ( 1) 

0l{J X, P = (21(")4 e 'I/{J x +"2Y '1/01 X -"2Y -+ 

/ 
d4y -i[p"l/-eA(z-!I/)+eA(z+!I/)] .7. ( ! )_,. ( _! ) 

(21(")4 e 'I/{J x + 2Y '1/01 X 2 Y • 

The shift in the argume:nts of the fermion field operators caused by the action of the 
translation in eq. (3.1) has been written out explicitly. With the definition (3.1) 
physical quantities such as the momentum distribution of electrons would therefore 
not be gauge invariant. 

The unwanted gauge dependence of W(x,p) can be removed [12] by inserting a 
suitable phase factor of the form 

U(Aj x + ly, x -ly) = eie/(A;z,l/) 

in the definition (3.1): 

W ( ) - f d
4
y -ip"1/ .7. ( + 1 ) U(A' + 1 1 )" .1. ( 1) 

0l{J x, P = (21(")4 e 'I/{J x"2Y ,x "2 Y' x -"2Y '1/01 X -"2Y ; (3.5) 

In order to cancel the gauge dependent phases generated by the spinors and to 
retain the property (3.3), the phase !(A; x, y) has to satisfy 

!(A;x,y = 0) = 0, 
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f(A - 8Aj x, y) = f(Aj x, y) + A(x + !y) - A(x - !y) . 

Due to the inhomogeneous transformation property of the gauge fields, it is readily 
seen that the ansatz 

f(Aj x, y) - -y~ fo\M A~(x - ~y + SY) , 

involving a line integral over the gauge field A~ along a straight path between the 
points x - !y and x + !y, satisfies the above requirements. When A~ is regarded 
as a field operator, the unitary phase factor must be written in terms of a path 
ordered exponential 

P U(Aj x + !y, x -!y) = P e-ie/(Ajz,fI) = P e-iefl" fold6 A,,(Z-!fI+6f1) , (3.6) 

where P denotes an ordering with respect to the parameter s in the same way as 
the familiar Dyson time ordering deals with the time variable t = XO [13]. The 
Wigner operator (3.5) with this unitary phase factor is indeed gauge invariant. The 
fact that A~(x) is an operator rather than an ordinary function implies that we 
cannot move the phase factor (3.6) outside the "sandwiching" fermion operators. 
Only if the gauge field operators are approximated by c-number fields we can drop 
the difficulty of operator ordering alltogether. . 

For further manipulations it is convenient to define the gauge invariant Wigner 
kernel 

Wa,,(X,y) = ~,,(x + ~y) P U(A,x+ ~y,x - ~y) tPa(x - ~y) , 

which is related to the Wigner operator by 

W" ( ) f d
4

y -ip'fI ,T. ( ) a"x,p= (27J")4e 'lI!a"x,y. 

It is important to note that the short-hand notation for f, 
1 . r+- fI 

f(A) = - }z_l: dz~ A~(z) , 
2 

should be avoided because it suggests path independence of the integral. However, 
f(A) is known to depend on the path in general [14]. It is independent of the path 
only in the trivial case that the vector field is pure gauge, Le., A~(x) = a~A(x). The 
question then arises whether the gauge invariant definition (3.5) is unique in view 
of our choice of the straight line in the path integral in (3.6). It is indeed possible 
to choose other paths which still leave W(x,p) gauge invariant. We only need to 
assign an arbitrary path, Z~(SjXbX2)' to every pair of points, (XbX2), such that 
z~(Oj Xb X2) = Xl and z~(1j Xl, X2) = X2, and define the phase factor as [2] 

PU(Aj Xb X2) = lim (1 -ie dZn . A(zn)) ... (1 - ie dZl . A(Zl)), (3.7) 
n--oo 

where Zi = z(s =i/nj Xl, X2) and dZi = Zi - Zi-l with i = 1,···, n. However, we find 
in section 4 that the specific choice of the path enters explicitly in the equation of 
motion for W. 
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This path ambiguity can be removed only by requiring the proper physical in­
terpretation of the momentum variable in W(x,p). It was recognized long ago [15] 
that the straight line path is special in connection with identifying p as the kinetic 
momentum. Recall that in classical electrodynamics [16] the kinetic momentum is 
given by 'Jr'" = p'" - eA"', where p'" is the canonical momentum conjugate to the 
coordinate x"'. In quantum mechanics p'" can be represented by the operator p'" as 
defined above (3.2). Thus, the operator representing the kinetic momentum is given 
by n-", = p", - eA",(x) = ~i(D - nt) in terms of the gauge invariant derivatives. Note 
that up to spin corrections n-2 = m 2 follows from the quadratic Dirac equation (2.6). 
We are thUs led to define the gauge invariant Wigner operator by substituting the 
gauge invariant derivative n'" and its adjoint in place of a'" and its adjoint in the 
original gauge dependent definition (3.1). Applying this minimal substitution rule 
turns the familiar translation operators into gauge invariant ones: 

The symbol.® denotes a tensor product in spinor space. Integrating over y gives 
formally 

W(x,p) = ~(x) ® .s4(p - n-(x)) 1/1(x) , (3.9) 

which shows explicitly that this Wigner operator measures the density of particles at 
x with kinetic momentum p. Remarkably, the definition (3.8) of the Wigner operator 
based on these physical arguements is completely equivalent to the definition (3.5) 
in terms of the phase factor (3.6). The path is determined uniquely to be a straight 
line with the help of the generalized Baker-Campbell-Haussdorff formula, 

e-lIoD(Z)1/1(X) = U(Aj x, x - y)1/1(x - y) , (3.10) 

that holds only if U is given by (3.6). This relation was proved in EGV (see also 
ref. [12]). We thus see that the path ambiguity is removed by requiring the proper 
physical interpretation of W (x, p). 

We note in passing that under hermitian conjugation the gauge invariant Wigner 
operator behaves like an ordinary 'Y-matrix: 

(3.11) 

This property insures that physical currents, such as tr(-y",W), are real. 

4. Dynamics of the Wigner Operator 

4.1 Exact Linear Quantum Equation 

The equation of motion for the Wigner operator is determined by eq. (2.1) for the 
fermion Heisenberg field operators. To derive that equation we observe first that 
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.... 

... 

... 

using the short-hand notation Xl = X + !y and X2 = X - !y 

a . 
-a Wap(x,y) = 

Xis 
[a~r ~p(X1) 1 PU(Aj XI, X2) tPa(X2) 

+ ~p(X1) PU(Aj Xl, X2) [a~~ tPa(X2) 1 
- ie ~p(X1) P [yV fo l

dS a,sAv(x - ~y + sy) U(Aj XI, X2)] tPa(X2) . 

(4.1) 

The chain rule then allows us to re-write the path integral in the third term as 
follows: 

(4.2) 

Because the gauge fields commute at equal times, the above relation applies within 
the path ordered product. Therefore, we find that 

i a~,s WaP(x, y) = ~p(X1) iD~(X1) PU(Aj Xl, X2) tPa(X2) 

+ ~p(X1) PU(Aj XI, X2) iD,s(X2) tPa(X2) 

+ e ~p(X1) P [yV fol
dS F,sv(x - !y + sy) U(Aj Xl, X2)] tPa(X2) . 

(4.3) 

In a similar way we find that 

iaa WaP(X, y) ! ~P(X1) iD~(X1) PU(Aj XI, X2) tPa(X2) y,s 

- ! ~p(X1) PU(Aj Xl, X2) iD,s(X2) tPa(X2) 

- e ~P(X1) P [yV fo l
dS (! - s) F,sv(x - !y + sy) U(Aj Xl, X2)] tPa(X2) . 

(4.4) 

Taking next the Fourier transform of h . (!az - all)W(x,y) and using the Dirac 
equation (2.1) leads finally to the exact linear quantum equation of motion 

[ 
1 ] A a ! d

4
y . - 1 

m - "'Y. (p + "2 ia) W(x,p) = ieap,s (271")4 e-1P
•
1I tP(X + "2Y) 

® P [fo l
dS (1 - S) F,sv(x - !y + sy) U(Aj X + !y, X - !y)] "'Yv tP(X - !y) 

(4.5) 
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where ia / apIJ arose by pulling yIJ out of the integral. This equation for the gauge 
invariant fermion Wigner operator W(x,p) is completely equivalent to Heisenberg's 
equation (2.1) for the spinor field operator. This equation is clearly invariant under 
local gauge transformations. On the other hand, we see that the choice of the path 
enters this equation because derivatives of the phase factor depend on it. Had we 
chosen another path zIJ(Sj Xl; X2), the factor YQgQIJ(l - s) would, for example, be 
replaced by 

Because of the conjugation property (3.11) of W(x,p) the equation which is 
equivalent to the adjoint Dirac equation can be obtained from eq. (4.5)..by hermitian 
conjugation. Hence the Wigner operator contains the same amount of information 
as the field operators. In this sense we might call it "complete". 

Notice that the ensemble average of the stress tensor for interacting fermions 
[13], which we obtain from eq. (3.4) by replacing the usual derivatives a and at by 
their gauge invariant analogues D and Dt, reads 

i.e., it retains its form. This is in consequence of eq. (4.4) and the fact that the last 
term there corresponds to a total derivative with respect to the kinetic momentum 
pIJ and therefore does not contribute to the integral. 

The equation of motion for the Wigner function, W(x,p), is obtained by taking 
the ensemble average of eq. (4.5). The averaged equation involves in general a two­
body term due to the operator property of the field tensor FIJV which, for a fully 
interacting system, is a linear functional of the fermion current operator. Since 
the two-body function satisfies an equation of motion depending on three-body 
functions etc., this generates the so-called BBGKY-hierarchy [10]. In principle, this 
is an infinite hierarchy of equations similar to the hierarchy of Dyson equations [13], 
and we shall encounter all the problems familiar in field theory like the appearance 
of infinities which require their regularization, the necessity of renormalization, etc. 
(for the nucleon-pion system this is discussed in ref. [17]). 

4.2 Homogeneous External Fields 

The physical content of the equation of motion (4.5) can be seen most clearly by 
considering the special case of slowly varying external (c-number) fields, which can 
be expanded as 

(4.6) 

We call a c-number field homogeneous if the derivative term in (4.6) can be neglected. 
We remark that for homogeneous fields, we can choose a gauge in which AV(x) = 
~xIJF::'. In that gauge, the associated Wigner function can be shown to coincide 
with the naive, gauge dependent definition (3.1) except that the momentum p in 
the exponential of the Fourier transformation is replaced by p + eA(x). Obviously 
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this form of the Wigner function, which has been employed for example in ref. [18] 
for a constant magnetic field, is gauge dependent! 

For a homogeneous external field, FI-'v can be pulled out of the y integral in 
(4.5), and the gauge invariant equation of motion reduces to 

(I·K - m) WE(x,p) = 0 . (4.7) 

The superscript E on W indicates that the gauge field is a constant external c­
number field. In this case the BBGKY-hierarchy truncates at the one body level. 
The operator K is defined by 

KI-' = pI-' + 1i(81-' - eFl-'v 8P) = pI-' + 1i'\1l-' - 2 z ezt v 2 (4.8) 

with 
'\1 I-' = 8: - eFt;; 8~ , 

where 8z (8P) is the derivative with respect to x (p). This is a coupled first-order 
equation for sixteen components of W~(x,p) which, as a matrix, is an element of 
the Clifford algebra. 

To illustrate its relation to classical transport theory we convert it into a "quad­
ratic" equation. By quadratic we mean that it involves combinations of pI-' and 8~ 
which we have seen above to generate second derivatives of the field operators. To 
this end we simply multiply eq. (4.7) by (I·K + m) and obtain 

[p2 _ m 2 
- H8z - eFezt.8P)2 + i(p.8z - ep.Fezt.8P) - ~eul-'vF~~] WE(x,p) = o. 

The operator acting on the Wigner function is complex. As was already mentioned 
in EGV we can isolate the hermitian or anti-hermitian part of the this equation 
by adding or subtracting its adjoint. This leads, by virtue of eq. (3.11), to the 
following two equations: . 

(p·8z - ep·Fezt ·8P) WE(x,p) = -~ieF::; [uI-'V' WE(X,p)] , (4.9) 

(4.10) 

The left-hand side of the first equation is recognized to be the relativistic Vlasov 
equation known from classical kinetic theory. It describes the flow of particles influ­
enced by the external Lorentz force. The convective derivative p·8z on its left-hand 
side gives the total time rate of change of a quantity moving with the momentum 
p, and eF:;;pv is the covariant Lorentz force. Its right-hand side displays correc­
tions due to spin. The second equation generalizes the classical mass-shell condition 
and may be regarded as a constraint equation. In classical physics, the condition 
p2 = m 2 is assumed implicitly. However, the uncertainty principle modifies the 
dispersion relation by an amount Am2 = ~li2( 8z - eFezt8p )2 plus spin corrections, . 
where we have reinstated Ii to display the quantum origin of the term and where 
8z and 8p can be replaced by the inverse characteristic length and momentum scale 
of variations of W(x,p). Thus strongly varying Wigner functions necessarily lead 
to off mass-shell effects. Note that even for F = 0, off mass-shell effects become 
important due to the uncertainty principle if the plasma distribution varies rapidly 
on the scale of the Compton wavelength. 
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4.3 Arbitrary c-Number Fields 

For the case of arbitrary external or self-consistent mean fields, eq. (4.7) can be 
easily generalized since the BBGKY-hierarchy still truncates at the one body level. 
In this case we approximate the quantum gauge field by the self-consistent mean 
field 

(4.11) 

This c-number field is calculable from the ensemble average of Maxwell's equations, 
(2.4), via 

(4.12) 

This is referred to as the Hartree approximation (hence the superscript H). Of 
course, an arbitrary external current could be added to the r.h.s. of (4.12). Al­
ternatively, choosing the gauge such that (8· A) = 0, we might employ the mean 
electromagnetic potential A" = (A") and solve the Poisson equation 

OA"(x) = (j"(x)) = etr f crP"Y"WH(x,p) 

with 0 = 8,,8". The general solution of this equation can be expressed in terms of 
Green's functions which obey the equation 

o D""(X, y) = g"" 64 (x - y) , 

and are determined solely by the boundary conditions. H we choose the retarded 
Green's function D~:ax, y) '" 6(xO - yO), which vanishes in the backward light cone 
in consequence of causality, the potential is given by 

(4.13) 

The incoming part of the mean field, Arn = (Arn)' which is a solution of the homo­
geneous Poisson equation, vanishes in isotropic media where no direction is spec­
ified, e.g. in the vacuum or in equilibrated ensembles. It might, however, be im­
portant in practical applications, for example in situations where the plasma is 
heated by a laser beam. It should be noticed, incidentally, that the above expres­
sion contains radiation arising from the dynamics of the fermion current (coherent 
"bremsstrahlung"), cf. for example ref. [131. The mean field strength tensor is then 
given by 

with 
D ID',,,l" ( ) - 8D'D""( ) 8"DD''' ( ) ret X, Y = ret X, Y - ret X, Y . 

To generalize eq. (4.7) for arbitrarily varying c-number fields, we follow the 
method introduced in EGV. First, we note that we can write 

(4.14) 
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Next, we observe that formally 

Therefore, we can pull F~v out of the d4y integral in eq. (4.5) replacing y by i8P and 
using eq. (4.14). The integral over s is then elementary giving rise to the following 
linear quantum equation of motion: 

[m--y.(p+ ~iIi8z)] WH(x,p) = -~lie[iio(~1i6)+il(~1i6)lF~V(x)8~-y~WH(x,p), 
(4.15) 

where i.(z) are conv~ntional spherical Bessel funtions and the triangle operator, 6, 
denotes the mixed derivative 

(4.16) 

We emphasize that the derivative with respect to x in 6 acts only on the field 
strength tensor and not on the Wigner function. Of course, the derivative with 
respect to momentum acts here only on the· Wigner function. We have explicitly 
reinstated Ii into eq. (4.15) to show the quantum character of that equation. Notice 
that the triangle operator has the dimension of inverse action. Therefore, a power 
series expansion of the Bessel functions coincides with an expansion in terms of 
the ratio of Ii to a characteristic angular momentum, L, of the plasma. That 
characteristic angular momentum measures the product of the spatial scale, ~RF' 
over which the field tensor, F~V(x), varies appreciably and the momentum scale, 
~Pw, over which the Wigner function varies appreciably. Therefore, a necessary 
condition for the validity of a power series expansion of the Bessel functions is that 

(4.17) 

Note that even for general mean fields the linear equation of motion (4.15) for 
the Wigner function may be cast into a form similar to (4.7), i.e., 

in terms of the operator 

with 

(-y·K - m) WH(x,p) = 0, (4.18) 

(4.19) 

(4.20) 

(4.21) 

To zeroth order in 6 we recover eq. (4.8). To second order these operators are 
given by 

(4.22) 
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The generalized constraint and transport equations can be extracted as in the ho­
mogeneous field example by first multiplying (4.18) by b . K + m). Noting that 
"I","t = g"'V - iu"'v, the following quadratic quantum equation of motion follows: 

(K2 - m 2 
- ~iu"'V[K"" KvD WH(x,p) = 0 . (4.23) 

Adding and subtracting the adjoint of this equation then leads to 

(II2 - m 2 - ~1i,2V2) WH(x,p) -~liI"'V{u",v, WH(x,p)} + ~iliR"'V[u",v, WH(X,p)] , 
(4.24) 

II"'V", WH (x,p) = ~iI"'V[u",v, WH (x,p)] + ~R"'v {u",v, WH (x,p)} , . 
(4.25) 

where the l.h.s. of the quantum transport equation (4.25) acquires the remarkably 
simple form on account of the relation 

[V"" II"'] = 0 , 
and where the real operators R and I ~n the r.h.s. are given by 

R"'v + iI"'v _ Ii-I [K"', KV] 

(4.26) 

(4.27) 

The generalized quantum constraint and quantum Vlasov equations, (4.24) and 
(4.25), specify the dynamics of abelian plasmas in the "collisionless" regime. Quan­
tum corrections to any order in Ii may be computed systematically by expanding the 
Bessel functions in powers of the triangle operator. Together with eq. (4.12) they 
form a coupled set of equations to determine simultaneously the fermion Wigner 
function and the field F"'V(x) in a self-consistent way. They form a closed set of 
equations because the expectation value of the current is directly related to the 
Wigner function in the Hartree approximation. The "collision" terms neglected in . 
this approximation follow from the operator equation (4.5) only when correlations 
such as (F"'V W) - F"'v W are not neglected, i.e., only if the operator character of 
the gauge field is explicitly taken into account. Using the methods outlined in ref. 
[10] for non-gauge theories, it should be possible to extract such collisions terms. 
However, for gauge theories with long range forces, such as QED, the infrared di­
vergences arising in perturbation theory need special care. As in classical plasmas, 
Debye screening has to be taken into account, and we expect collision terms of the 
Balescu-Lenard form [8]. However, the explicit construction of such terms is beyond 
the scope of this paper. 

To second order in Ii, the quantum Vlasov equation including spin corrections 
is thus given by 

(p.az - ep",F"'v a~) WH (x,p) + ~ieF"'v [u",v, WH (x, p)] 

= -112li2e6F",v[a~ - eFv~a~la: WH(x,p) -llie6F"'v {u",v, WH(x,p)} 

(4.28) 
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It coincides with eq. (4.9) in the special case au F"v = o. In EGV eq. (4.28) was 
also derived directly via the triangle operator expansion method. Equation (4.28) 
reduces to Remler's result [6] for scalar QED when the spin terms are neglected. 

It is important to note that the above quantum Vlasov equation is not complete 
without the quantum constraint equation (4.24). As soon as quantum corrections 
become important in the transport equation, quantum corrections to the constraint 
equation must also be considered. This important point was not discussed in ref. 
[6]. To second order in h, the constraint equation in the Hartree approximation is 
given by 

(p2 _ m2) WH{X,p) = iheFIIV{ullv, WH{X,p)} -lih2e~FIIV[ullv' WH{x,p)] 

2 ( 1 - 1 ( -) 1 ( -) 2) H ) +h eep· ~F· ap + 12e a~Fllv a~ + i az - eF· ap W (x,p 

(4.29) 

From eqs. (4.28) and (4.29) we see that quantum transport theory reduces to 
classical transport theory only if several conditions are satisfied simultaneously. In 
addition to the condition (4.17) necessary for the validit)' of the triangle operator 
expansion, the field strength must be small compared to the typical energy scale of 
particles in the plasma, i.e., 

(4.30) 

Thus the field strength has to be relatively weak and slowly varying for classical 
theory to hold. In addition, spatial and momentum gradients of the Wigner function 
need to be sufficiently small such that none of the order h2 terms on the r.h.s. of 
(4.29) are large compared to the typical energy scale on the l.h.s. 

In any specific application, where the solution, We" of the classical (h = 0) trans­
port equation is known, the magnitude of quantum corrections can be estimated 
by substituting Wei for WH on the right hand side of the above equations. More 
specifically, writing WH = Wei + oW, the quantum correction, oW, obeys (4.28) 
and (4.29) with WH replaced by oW on the l.h.s and WH replaced by Wei on the 
r .h.s. of those equations. 

4.4 General Quantum Fields 

For general quantum gauge fields, it is still possible to employ a generalized triangle 
operator expansion. In order to take the operator ordering into account we have to 
generalize the derivative az in the triangle operator ~ to include also a commutator 
term. We define a new derivative Vex) such that its action on the field operator 
F"v (x) is given by 

(4.31) 

This form bears resemblance to gauge covariant derivatives familiar from non­
abelian gauge theories. However, whereas for non-abelian fields the commutator 
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is also of algebraic origin and does not vanish in the limit of c-number fields, it van­
ishes in the abelian limit when the quantum nature of the vector field is neglected. 

Now, in consequence of definition (4.31) the "translation" 

e-·oO(z) FIAV(x) = P[U(Aj x, x - z) FIAV(x - z) U(Aj x - z, x)] , 

when employed on the right-hand side of eq. (4.5) with z = (t - s) y, automatically 
moves the gauge field operator to the right place in the path-ordered product (for 
a proof and further details see EGV). With this trick the path integral may be 
formally evaluated even in the fully general case of coupled quantum fields. We 
obtain again, in analogy to eq. (4.15), a sum of two spherical Bessel functions, since 
the integral under consideration is similar to that encountered above in the Hartree 
approximation. However, the triangle operator in their argument is now defined 
with the derivative az replaced by V(x), the latter acting again on the quantum 
field FIAV(x) only. Moreover, the Bessel functions have to be kept between the 
fermion operators. In the Hartree limit the arising equation consequently reduces 0 

to eq. (4.15). 
In the previous section we have extracted the transport equation from the linear 

equation of motion (4.7) by squaring the operator acting on W(x,p) and isolating 
the anti-hermitian part. This method is straightforward for the case of c-number 
fields but is much less transparent for the general quantum field case. In order to 
collect all quantum mechanical corrections to the Vlasov equation we shall therefore 
derive the quantum transport equation directly rather than employ the exact linear 
equation (4.5). This can be acomplished by calculating the action of the convective 
derivative p' az on the Wigner operator. By similar reasoning as was applied when 
deriving the linear equation (4.5) this automatically generates the anti-hermitian 
combination of the quadratic form of Dirac's equation and its adjoint for the fermion 
field operators, cf. eqs. (2.6), plus additional terms involving the field strength 
tensor operator FlAv. The quantum transport equation in natural units is then 
found to be 

{[~(x + ty) ulAv]~ FlAv(x + ty) PU(Aj x + ly, x - ty) .,pat (x -lY) 

[ulAv.,p(x - ~Y)L} 

. a f d
4
y -ipo" a7. ( 1) + ,e apIA (211")4 e .,.,~ x + 2Y 

x { P [foldS (s - t) FIAV(x - ty + sy) U(Ajx + ty,x - t y)] Dv 

+ Dt P [10
1 

ds (s -l) FIAV(x - ty + sy) U(Aj x + ty, x - t y)] } .,pat (x - ty) 

a f d
4
y 0 

- epv apIA (211")4 e-
tPo

" 
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.. ~ 

xibp(x + lY) P [fo
l
ds F~V(x -lY + SY) U(Aj x + ly, x ~ ly)] 1/;a(X -lY) . 

(4.32) 

To connect this equation with the abelian limit of the general quantum transport 
equation derived EGV, the derivatives Dv and Dt must still be extracted from 
the middle term on the right hand side. However, the resulting equation is not 
significantly simpler than for the more general non-abelian case as a result of the 
necessity of keeping track of the operator ordering. The main simplicity arises only 
in the limit of c-number fields considered in the last section. We display (4.32) 
mainly to record the starting point from which future derivations of collision terms 
could begin using methods as discussed in ref. [10]. We note again that the general 
quantum constraint equation has to be considered at the same time. It can be 
derived along similar lines by computing (p2 - m 2) W. 
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5. Spinor Decomposition 

5.1 Arbitrary c-Number Fields 

The equations of motion derived in the previous sections apply to the Wigner func­
tion W(x,p) viewed as a four by four matrix in spinor indices. In this section 
we decompose the spinor structure of that equation and derive a set of coupled 
equations for the components of W. We consider here only the case of arbitrary 
c-number fields in the Hartree approximation. 

The Wigner function matrix can always be expanded in terms of the sixteen 
independent generators of the Clifford algebra. We choose the conventional basis 
[13] 

ri = 1, "'1'\ i'Y6=-'Y0'Yl'Y2'YS, "'1"''''16, u"'v . 

Under hermitian conjugation rl ' 'Y°rno. In this basis the expansion ofthe Wigner 
function (see also ref. [4]) is given by 

(5.1) 

where the superscript H has been suppressed. The sixteen components of W, 

.1(x,p) = ltrW(x,p) , 

P(x,p) = -litr'Y6W(x,p) , 

V",(x,p) = ltr'Y",W(x,p) , 

A",(x,p) = l tr'Y6'Y",W(X,p) , 

S",v(x,p) = l tru",vW(x,p) = -Sv",(x,p) , 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

are real due to property (3.11) of the Wigner function, and behave under Lorentz 
transformation like a scalar, pseudoscalar, vector, axial vector and an antisymmetric 
tensor, respectively. Next, using trace properties of the r-matrices listed in ref. [13], 
we decompose the first-order eq. (4.18) in this basis. The result is the following set 
of coupled equations: 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

i(K", Vv - Kv V",) - f.",VClP K CI AP + mS",v = 0 , (5.11) 

where K'" is given by (4.19) in terms of the operators V'" and TI'" defined in (4.20) 
and (4.21), respectively. Since the moments of the Wigner function are real but the 

16 



-

operator K,s is complex, the real and imaginary parts of the above set of equations 
have to be satisfied separately. The real parts of the above equations are given by 

IT,s'V,s = ml , 

hV,s A,s = 2mP , 

-h V ,sP + f,svap ITv sap = 2mA,s , 

lh (V,s 'Vv - V v 'V,s) + f,svap ITa AP = mS,sJi , 

whereas the imaginary parts lead to 

h V,s'V,s = 0 , 

IT"A,s = 0, 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

This generalized set of equations reduces to those derived in ref. [4] for the special 
case of a constant external magnetic field. However, our equations apply for the 
more general case of arbitrarily varying c-number fields. 

The linear equations can also be combined to form quadratic equations for the 
different components: Substituting (5.9) into (5.7) gives, for example, 

(5.22) 

Similarly, the quadratic equation satisfied by A,s is obtained by substituting (5.8) 
and (5.11) into (5.10) with the result 

(5.23) 

The real and imaginary parts of (5.22) and (5.23) together with equations (5.8), 
(5.9), and (5.11) are of course equivalent to the 32 equations (5.7)-{5.11) for the 
16 components (5.2)-(5.6). As we show below, this particular regrouping of the 
equations is useful because it leads to a simple physical interpretation in the classical 
limit. 

To first order in h, IT" = pIS and Vis = a: - eF,sva~ and 
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To this order, the imaginary parts of (5.22) and (5.23) correspond to the following 
transport equations for ; and A: 

p·V;=o, 

The real parts form the constraint equations 

(m2 
- p2) ; = -!lieF"V S"v , 

(m2 _ p2) A" = -lieF"vVv , 

(5.26) 

(5.27) 

(5.28) 

(5.29) 

where F"v = !f"VC7p FC7
P is the dual field strength tensor. A" also satisfies the sub­

sidiary condition (5.18), which to first order in Ii reads 

p" A" = 0 . (5.30) 

The pseudo-scalar, vector and tensor densities are given by (5.13), (5.14), and (5.16) 
respectively: 

p = ~ V" A" , 
2m 

(5.31) 

(5.32) 

(5.33) 

These relations obviously hold only for m =1= o. Solving for V" and S"v in terms of 
7 and A" to first order in Ii gives finally 

V - p" -r + Ii ,",v C7AP 
" - - J' -2 2 f "VC7P v P , m m 

(5.34) 

(5.35) 

The relation (5.34) corresponds to Gordon's decomposition of the vector current 
into a convection and a spin part [13] (the connection between the pseudovector 
current and spin will become transparent below). The relation (5.35) displays the 
first order quantum correction to the classical connection [16,19] between the spin 
tensor and the axial vector current. Note that vv in (5.34) acts also on the pC7, and 
that 

, (5;36) 

We have thus shown that to first order in Ii all sixteen components of the Wigner 
matrix can be specified in terms of the four independent quantities; and A", where 
one component of A" is eliminated by (5.30). In fact, to any finite order in Ii, P, 
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'V,." and S"v can be computed in terms of 1 and A". Equation (5.13) fixes P to all 
orders in Ii. Furthermore, (5.14) and (5.16) have the generic structure 

S - OsA + li04 'V (5.37) 

where 0i are known operators expandable in a power series in li2 using (4.20) and 
(4.21): 

0i -:- Oi,O + li20 i ,2 + . .. . (5.38) 

The solution of (5.37) to any order in Ii can thus be obtained by iteration: 

'V = 01,01 + li02,oOs,oA + . .. , 

S = OsoA + ti0400 1 01 + .... , " (5.39) 

The explicit form of the lowest order operators can be read off from eqs. (5.34) 
and (5.35). Therefore, the quadratic equations (5.22) and (5.23) together with the 
subsidiary condition (5.30) form a closed system of equations for 1 and A" to any 
finite order in Ii. We have thus reduced the problem of the spinor decomposition of 
the Wigner function matrix to computing four independent phase-space densities, 
1 and AI" 

5.2 Consistency of First Order Equations 

We show next that the transport and constraint equations for 1, (5.26) and (5.28), 
and A", (5.27) and (5.29), together with the subsidiary condition (5.30) insure that 
to first order in Ii all 32 coupled equations are satisfied with 'V" and S"v given by 
(5.34) and (5.35). . 

Consider first eq. (5.12), where to this order II" = p". Substituting (5.34) for 
'V" gives 

p2 Ii 
p"'V = -1 + -e p"Vvpu AP (5.40) 

" m 2m2 "vup 

Using (5.36), VVpu can be replaced by -eFVU since by symmetry e"vupp"Pu = O. 
From (5.35) we see that lie"vupp" AP = limSvu to first order, and thus 

p"'V" = ~(p21 - ~lieFvu Svu) = m1 , 
m 

(5.41) 

where the last equality follows from the constraint equation (5.28). This proves 
that (5.12) is satisfied . 

Equation (5.13) is just the definition of P in terms of A to all orders in Ii. 
Equations (5.14) and (5.16) were used to calculate 'V and S in terms of 1 and A 
in the first place. That leaves only (5.15) among the first set of equations to be 
checked. 
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'Since 11,V"P = 0(11,2) by (5.13), we need only to calculate to first order 

(5.42) 

Using the contraction property f"vupfUPOt{J = -2(g:ge - g:g~), we see that the r.h.s. 
of (5.42) reduces to 

-~[p"(PvAV) - p2 A,,] = 2mA" , 
m 

where p"A" = 0 as a result of the contraint equation (5.30). 
Moving on to (5.17), we compute 

as follows from (5.26). Equation (5.18) is of course the subsidiary condition on A. 
To verify (5.19) we compute 

pV S"V -2~2 (pVV"p" - pVV vp,,) 1" 

- 2~2 (V"p2 - p,,(p' V)) 1" 

~V 1" 
- 2 " 

where we used (5.26), (5.28), and (5.36). 
To check (5.20), note that 

In the last line we used the definition (5.13). The desired relation (5.20) follows to 
order 11, using the transport equation (5.27). 

The final equation (5.21) can be verified by contracting both sides by fOt{J"". The 
convection part of 1.1 does not contribute by symmetry. The spin part gives 

h . 
- m2P,,{VOt (PP A" - p"A{J) - (0: +-+ fJ) - (0: +-+ Jt)} 

(5.43) 
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To simplify (5.43), we can employ the following first order relations obtained from 
eqs. (5.27), (5.29), (5.30), and (5.36): 

_ paeFIJ" A" - p"eF"a AIJ 

With these relations the r.h.s. of (5.43) reduces to Ii(va AIJ - V IJ Aa). Finally, 
·contracting with E""aIJ proves that (5.21) is satisfied. 

This completes the demonstration of the consistency of the coupled spinor equa­
tions to first order in Ii. Although we have not constructed a general proof of con­
sistency of the iterative solution (5.39) to all orders, we naturally expect this to 
hold. 

5.3 Physical Interpretation in the Classical Limit 

The physical interpretation of f and A" becomes especially clear in the classical 
limit corresponding to the Ii = 0 of the above equations. In that limit both densities 
vanish unless p2 = m 2 according to the constraint equations (5.28) and (5.29). 
Furthermore, P = 0 and 

"I5"1a"lIJpa AIJ / m , 

where the last line follows using the subsidiary condition (5.30). The complete 
Wigner matrix (5.1) in this limit is thus given by 

(5.44) 

To rewrite W in terms of conventional spin projection operators, P(s) = HI ± 
1 

"15"1· s), we note that the unit axial vector field, s"(x,p) = A"/(A· A)'2, satisfies on 
account of (5.30) the constraint 

(5.45) 

Therefore, s" must be space-like with 

(5.46) 
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Recalling conventional Dirac theory, 8~ is therefore a natural candidate for the spin 
phase-space density. As we show below, this interpretation is in fact correct. In 
terms of this field, 

A~ = -8~(8 • A) . (5.47) 

From the transport equation for A~, we see that 8~ obeys 

(5.48) 

since p. V A2 = o. 
Using (5.47) we can express the Wigner matrix (5.44) in terms of spin projection 

operators by rewriting 

,7 - '16'1· A, = HI + '16'1· 8))1, + Hl- '16'1· 8))1_, (5.49) , 

The spin "up" and "down" phase-space densities are thus given by 

)I±, = 7 ± 8 • A . (5.50) 

The transport equations obeyed by these densities follow from (5.26), (5.27), 
and (5.48): 

(5.51) 

Recall that in the claSsical limit V~ = a: - eF~Va!. Hence, we find that these 
particular spin components decouple and obey the usual relativistic Vlasov equation. 

To understand why this decoupling occurs, we show next that eq. (5.48) is 
just the phase-space formulation of the classical Bargmann-Michel-Telegdi (BMT) 
equation [21] for spin. Equation (5.51) specifies contours in phase space (x(r),p(r)) 
along which the density of spin "up" and "down" particles does not change. The 
parameter r can be thought of as a label specifying where along that contour a test 
particle is located. The equations of motion for that test particle can be deduced 
directly from the Vlasov equation. Because the number of test particles along 
(x(r),p(r)) does not change, 

! )I,(x(r) ,p(r)) = (x· az + p. ap))I,(x(r),p(r)) = 0 (5.52) 

IT we follow those contours which can be parametrized such that 

(5.53) 

then since both (5.52) and (5.51) must hold, we see that the test particle must obey 
the classical equations of motion, 

(5.54) 

In this case r can be interpreted as the proper time of that particle along its world 
line x( r). 
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Furthermore, along the contours specified by (5.53) and (5.54) we can interpret 
sl'(r) = sl'(x(r),p(r)) as the unit spin vector specifying the direction of the intrinsic 
magnetic moment of our test particle. The equation of motion of that spin vector 
following from (5.48) is given by 

d 
m drsl'(r) = p(r)· Vsl'(r) = eFI'V(r)sv(r) , (5.55) 

Equation (5.55) is recognized as the BMT-equation for spinning particles with gyro­
magnetic ratio g = 2. What we have shown, therefore, is that the familiar relativistic 
classical mechanics of spin-i particles emerges naturally from the Ii --. 0 limit of 
the gauge invariant transport theory developed here. 

We now also see explicitly why the transport equations decouple for the different 
spin components. As the particles move along the classical trajectories determined 
from the self-consistent mean field, their spin vectors wobble around as described 
by the BMT-equation. The number of particles with spin parallel or antiparallel to 
the varying sl'(x,p) does not change in the local co-moving frame of those particles. 
Hence, sl' is the optimal choice of the spin quantization direction. 

Having fully resolved the spin structure of the Wigner function in the classical 
limit, we turn finally to the decomposition in terms of positive and negative energy 
components. The dispersion relation, p2 = m 2 , obviously has two branches with 
pO > 0 and pO < o. As usual a negative energy spin "down" electron has the 
interpretation of a positive energy positron with spin "up". Therefore, we can 
decompose the spin phase-space densities as 

JJ.(x,p) = 6(p2_ m2) [O(pO) f!+)(x,p) + O(-pO) fl~)(x,-p)] 

_ ! d4q O(qO)6(q2 - m2) [64 (p - q) f!+) (x, q) + 64(p + q) fl~)(x, q)] 

The superscripts + and - refer to electrons with positive and negative energies, 
respectively. The "components" fJ±) (x, ±p) of JJ. are defined in disjoint portions 
(on different sheets of the mass shell) of the eight-dimensional phase space. Hence 
the transport equation (5.51) holds separately for particles with a definite sign of 
energy, 

(5.56) 

Note that the negative energy component obeys the Vlasov equation for positrons. 
The electron and positron phase-space densities for each spin component can 

therefore be expressed as 

(5.57) 

In terms of these densities the scalar and axial vector densities are then given by 

-; JJ/ + JJ~B + JJ.- + JJ~. , 
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These relations make the physical interpretation of those densities clear. However, 
beyond the classical limit, this simple physical interpretation gets obscured by the 
fact that the dispersion relation for spin up and down particles changes to first order 
in h, and P, V" and S"v acquire spin corrections to order h. We note that .in the 
case of non-abelian theories, there is the additional complication that even in the 
classical limit the spin motion is coupled to the motion of the internal color vector 
[19,20j. 

6. Transport Equation for Photons 

Up to now, we have only considered quantum transport theory for fermions. In 
ultra-relativistic plasmas we may need to consider the transport of photons as well. 
For dense enough plasmas, it may be important to take into account Compton scat­
tering or even Delbruck scattering in order to study the approach to local thermal 
equilibrium. In such situations a need for a phase-space description of gauge bosons 
might arise. A more immediate motiVation for studying photon transport theory is 
to gain insight into theory of gauge bosons in non-abelian theories discussed else.­
where [3j. In this section we discuss the basic starting point for the formulation of 
quantum transport theory for photons. 

The extention of transport formalism to scalar bosons is well known [10j. How­
ever, for gauge vector bosons a Lorentz covariant, gauge invariant formulation has 
to our knowledge not been discussed up to now.- The naive ansatz for the Wigner 
operator would be 

X"V(x,p) = f (::)4 e- ip
." AV(x + ~y) A"(x - ~y) . (6.1) 

However, this construction is obviously not gauge invariant. Since all gauge inde.­
pendent quantities associated with the gauge fields may be expressed in terms of 
the field strengths F"v, we propose instead the following definition for the gauge 
invariant phase.-space distribution operator for photons: 

Y"V(7P(x, p) = ! (~:)4 e-ip
." F(7P(x + ~y) F"V(x - ~y) . (6.2) 

By antisymmetry of the field operators, this operator is antisymmetric separately 
in the first and second pair of indices. 

This gauge invariant operator is related to the energy momentum flux of vec­
tor gauge bosons rather than to the number density as is the case for fermions. 
Specifically, the ensemble average of stress tensor of the gauge field [131 is given by 

(T"Ax» = (: FI'I7(x) F(7v(x) + ~g"vF(7P(x) F(7p(x) :) 

(6.3) 

A novel aspect of the transport theory of photons that does not arise for fermions 
is that both definitions of the gauge boson Wigner operator may include a mean field 
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part if (Fl£v) 1= o. However, that part is already taken into account when we solve 
the mean field Maxwell's equations (4.12), and therefore, it should be subtracted 
to avoid redundancy. The part left over describes only the fluctuating or "chaotiC" 
component of the field. We adopt the simplified definition of chaotic fields as those 
characterized by (FI£V(X)) = 0 but with (FI£V Fl£v) 1= O. The simplest example [10] 
of such a field is a photon gas in local thermal equilibrium with (FI£V) = 0 but with 

(6.4) 

in terms of the fluid four velocity and temperature fields, UI£(X) and T(x). Clearly, 
quantum fluctuations also lead to (FI£V Fl£v) 1= O. However, we are particularly 
interested in fluctuations that survive in the classical limit and are associated with 
a chaotic gas of photons interacting with the surrounding plasma. 

We therefore redefine the gauge invariant photon distribution as 

d4 . 

Yj,VUP(x,p) = f (211")4 e-ip
'lI [FUP(x + !y) FI£V(X - !y) - (FUP(x + !y))(FI£V(X - !y))] 

(6.5) 
Similarly, we redefine the gauge dependent Wigner operator (6.1). The subscript 
II emphasizes that only the fluctuation parts of the fields contribute. 

It is important to recall that mean fields not only describe the self-consistent 
Coulomb and magnetic fields in the plasma but also coherent radiation fields, such 
as bremsstrahlung or synchrotron radiation. In general the mean field can be de­
composed from (4.13) as 

(6.6) 

where the "near and intermediate" Coulomb and magnetic fields surrounding the 
particles are given by [13] 

A;art(x) = fd4y D'::v(x,y)(iv(y)) , (6.7) 

and the radiation field is given by 

(6.8) 

The advanced Green's function vanishes in the asymptotic future, while D(_) = 
Dret - Dadv satisfies homogeneous Maxwell's equations. The incoming field, Afn, 
may specify for example an external laser or Coulomb field as was noted before. 
. The radiation field described by the mean field is characterized by a coherent 
state [22]. Of course, one could consider ensembles leading to partially coherent 
states (see, e.g., ref. [23]) as well. In such cases, the separation between coherent and 
chaotic field components is not so simple and more complex correlation functions are 
required to characterize the fields. We will assume below that such a complication 
does not arise and that there is a clean separation between coherent and chaotic 
components. 
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The gauge independent definition (6.2) of the photon Wigner operator can be 
expected to obey more complicated equations of motion than the gauge dependent 
one since, in general, it is more difficult to solve the coupled set of Maxwell's equa­
tions directly rather than detouring to the Poisson equation via the electromagnetic 
potential method. Nevertheless, since F"'v is simply related to A"', we can easily 
relate the gauge invariant Wigner operators for photons to the gauge dependent 
one. As we have already encountered when discussing the fermion problem, the 
operator 

k'" = p'" + i!8: , 

applied to the mixed Fourier transform 

of two arbitrary functions (or operators) Bl(X) and B 2(x), acts as a derivative on 
the second function under the integral: 

k'" F(x,p) = I (~:)4e-iP." B1(x + !y) i8"'B2(x - !y) . 

Similarly the operator 
k· = p - i!8 2 z 

acts as a derivative on the first function under the integral. Hence, once we know 
the Wigner operator X"'V(x,p) we might readily construct its gauge invariant alter­
native: 

Y,wup = -kvk; X",p + kvk; X/JU - kuk: X vp + k",k; Xvu . 

It is thus· a matter of taste to prefer one or the other definition in the case of 
abelian vector bosons. It should be noticed that neither of them is hermitian, and 
they transform under hermitian conjugation according to 

A t A 

Y",vup(x,p) = Yup",v(x,p) . 

Next we derive the equations of motion for both types of Wigner operators. 
Rather than starting with Maxwell's equations in analogy to the way we proceeded 
in the fermion case in section 4, we compute directly the action of k 2 and k·2 on 
those operators. Notice that (reinstating Ii) 

(6.9) 

Therefore, the hermitian part of this operator leads to the constraint equation and 
the anti-hermitian part leads to the transport equation as was the case for fermions 
using the operator (J.Kp-m2• Notice that k'" corresponds to the fermion operator 
K'" in (4.19) with F"'v = O. This just reflects the fact that photons do not interact 
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with the mean field. We stress that the full quantum transport theory for photons 
is again not complete without the constraint equation. 

The quantum constraint and transport equations for the gauge dependent Wigner 
operator in the Feynman gauge [13], where o A'" = iI', is then given by 

P2 _ -4
1 0 } / d

4
y -ip.a

z 
X"'V(x,p) = Hk*2 ± k2) X"'V(x,p) = -~ (211")4 e-ip

°
tl 

x [0 AV(x + ~y) A"'(x - ~y) ± AV(x + ~y) 0 A"'(x - ~y)] 

= -! / (::)4 e-iPo"[iV(x + ~y) A"'(x - ~y) ± AV(x + ~y) i"'(x - ~y)] 
(6.10) 

The equation of motion for the fluctuation part, X'Jr is given by (6.10) with the 
replacement 

etc. 
The equations for the gauge independent Wigner function are obtained similarly 

and are 

= -~ f (::y.e-ipotl [OF17P(x + ~y) F"'V(x - ~y) ± F17P(x + ~y) 0 F"'V(x - ~y)] 

= -l f (::y.e-iP
°
tl {[a17jP - apjI1](x + ~y) F"'V(x -lY) ± F17P(x + lY) [a"'iV - aVi"'](x -ly)} 

(6.U) 

The last line follows from the quadratic equation for the field tensor, 

(6.12) 

which involves the Lorentz-covariant curl of the fermion current. Notice that this 
equation invariant against curl-free modifications of the fermion current. 

Equation (6.11) can be derived also by isolating the hermitian and anti-hermitian 
parts of the equations that follow directly from Maxwell's equations. The homoge­
neous Maxwell's equations (2.3) for the field strength leads in particular to 

ka Y"'V17P(x,p) + k'" yva17P(x,p) + kV y aI-'l7P(x,p) = 0 . (6.13) 

(6.14) 

Multiplying (6.13) with ka and combining it with (6.14) and then adding or sub­
tracting the adjoint equations gives directly (6.11). 
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The large number of coupled equations arising here is not surprising in view of 
the large number of indices in the gauge invariant definition. This means that the 
gauge invariant formulation is much more awkward to deal with. The main advan­
tage of having a gauge invariant formulation is that appro?,imations to the collision 
terms on the right hand side may be obtained in a manifestly gauge invariant way. 
In practical calculations, we will always have to specify a gauge, in which case the 
gauge dependent formulation will probably be more useful. 

To compute the collision terms on the r .h.s. of these transport equations we 
would have to proceed with the program of extracting binary, tertiary, and higher 
order collision terms via the method discussed in detail in [10]. The above quantum 
transport equations provide the basic starting point for such a program. How­
~ver, we shall not pursue this path further here. We conclude by noting that the 
constraint equation shows that the uncertainty principle brings even free photons 
off-shell by the amount ~ 0 just as in. the case of fermions. An obvious difference is 
the absence of a Vlasov term and associated off-shell corrections because the pho­
tons do not interact directly with each other .Of course, a Vlasov term dqes arise 
in the non-abelian case as shown in ref. [3]. The absence of direct interactions in 
the abelian case also leads to a very much simpler spin structure. Different helicity 
states only couple via the collision terms. 

7. Summary and Conclusions 

In this paper we addressed the phase-space formulation of abelian quantum gauge 
field theory for fermions and vector gauge bosons. First the translation of classical 
phase-space distribution function into quantum theory was discussed with particular 
emphasis on the question of gauge independence. Gauge independence was shown 
to emerge automatically if we demand that the momentum variable in the Wigner 
function corresponds to the kinetic rather than the canonical momentum. 

Next an exact, complete and gauge independent linear equation of motion for 
the gauge invariant fermion Wigner operator was derived. By complete and linear 
we mean its equivalence to first order Dirac's equations of motion for the fermion 
Heisenberg field operator and its adjoint. The physical content of this equation and 
its relation to transport theory was discussed in detail. . We employed the quadratic 
(second order) form of Dirac's equations to generalize the classical Vlasov equation 
to include quantum and spin corrections. An additional constraint equation, redun­
dant in classical physics, emerges in quantum theory. That equation shows that the 
restriction of fermion kinetic momenta to mass shell may in general be violated by 
Heisenberg's uncertainty principle and spin interaction effects. 

In the Hartree approximation we demonstrated how the linear and quadratic 
equations may be expanded systematically in derivatives of the physical electric 
and magnetic c-number fields. This expansion, which can be formulated with help 
of the triangle operator l:::. = 8z • 8P , coincides with a semiclassical expansion in 
powers of n. In the limit n ---. 0 the relativistic Vlasov equation is recovered. 

Furthermore, we performed a decomposition of the Wigner function and its 
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linear equation of motion in spinor space. We found that in the case of arbitrary 
c-number fields only four out of the sixteen components of the Wigner function are 
dynamically independent. We showed that the scalar and axial vector components 
are sufficient to define the Wigner matrix and have a particularly simple physical 
interpretation in the classical limit. First order quantum corrections, corresponding 
to spin interaction effects, were considered explicitly, and we proposed a systematic 
method to unravel the 32 coupled equations for the components of W to any finite 
order in h. 

Finally, two alternative (gauge dependent and gauge independent) ways to for­
mulate the quantum transport theory for photons were proposed. A novel aspect of 
that theory is the necessity to separate coherent and chaotic field effects. The fluc­
tuation part of the photon Wigner operator was found to obey a general constraint 
and transport equation. Only the collision terms complicate the problem because 
of the absence of Vlasov type terms. 

Although in this paper we have studied quantum transport theory in the "col­
lisionless" (Hartree) regime in most detail, the general quantum equations derived 
here should provide a natural starting point for further work on deriving generalized 
quantum collision terms. The structure of collision terms in gauge theories, with 
special attention paid to infrared singularities associated with long range forces, is 
a particularly interesting problem for future investigation. 

Acknowledgement: We thank Walter Greiner for many fruitful discussions. 
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