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ABSTRACT

A general computer program has been developed which is capable
of analyzing any prismatic cellular or open folded plate structure
with transverse diaphragms and planar frames at any section as well
as longitudinal beams, The structure may be subjected to surface
loads, line loads, concentrated loads as well as known displacements,
The solution is based on the finite element method in conjunction with
the direct stiffness method. All final nodal displacements; reactions,
and internal forces and moments in frame elements and within finite

elements are printed out at points selected by the user,
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1, INTRODUCTION

The purpose of this report is to present a computer program by
means of which it is possible to analyze prismatic structures com-
posed of rectangular plate elements integrated into a three-dimension-
al frame,.

The need for analyzing folded plate or shell structures as well
as bridges which are reinforced by transverse or longitudinal ribs
as well as transverse diaphragms and single or multiple column bent
supports, becomes important whenever it appears that the interaction
between the plate structure proper and its supporting structural
elements may be of considerable significance for the overall struc-
tural behavior of the integrated system. For example the state of
stress in a cylindrical shell continuous over transverse rigid frame
supports will depend largely on the stiffness of these transverse
frames,

Analytically, the problem is extremely difficult, and only the
finite element method of analysis seems to be versatile enough to
cope with the problem in its broadest sense,

The computer program to be presented below is an extension of
the program FINPLA which has been previously reported [2]. In its
original version, the program was capable of treating prismatic
folded plate structures subjected to any type of loading and boun-
dary conditions, 1In its present version, it is possible to add
transverse diaphragms and beam and column elements at any section
of the structure as well as longitudinal ribs or beam elements,

Fig. 1.
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2, METHOD OF ANALYSIS

2.1 Finite Element Analysis

The finite element method has been extensively described in numer-
ous technical papers and textbooks, The rectangular plate finite ele-
ment used in this analysis has been developed by Abu Ghazeleh [3] and
has been described in detail in a report by Scordelis [27.

This finite element is an incompatible displacement model with
six degrees of freedom at each of its four corner nodes, three for
the in-plane, and three for the plate bending stiffness, The incom-
pability appears as angular discontinuity at the nodes because of the
assumed average rotation for the in-plane rotational degreé of freedom,
Constant strain states and rigid body modes of displacement are in-
cluded,

For additional information refer to the mentioned references
(2] [3].

2,2 Direct Stiffness Method

Once the element stiffnesses have been computed they can be trans-
formed into a common global coordinate system and assembled into the
structure stiffness matrix according to the principles of the well-
known direct stiffness method, This method applies to two-dimensional
elements as well as to one-dimensional beam elements, Care has to be
taken only as to where the appropriate stiffness contributions have
to be added,

If transverse diaphragms are subdivided into finite elements
such that new nodal points are being created, Fig, 6, then the pro-

gram performs a substructure assembly of the diaphragm stiffness only,



and the added degrees of freedom are condensed out by means of a
static condensation process before the stiffness contributions of
other structural elements are added. By saving the eliminated por-
tion of the diaphragm stiffness matrix on tape, later, after the
displacements of all regular nodal points have been calculated, the

displacements of the interior diaphragm nodes also can be determined,

2.3 Beam Type Elements

Three different classes of beam type elements are defined:
(1) transverse ribs, which are stiffeners of plate type finite
elements and are connected to the nodal points i and j of
a plate element as shown in Fig. 2;
(2) transverse frame elements, which may or may not be con-
nected to nodal points already defined by plate type finite
elements, Fig. 3;
(3) longitudinal rib elements, which must be connected to any
two consecutive nodal points on a longitudinal joint, Fig. 4,
Neglecting shear deformations, the element coordinate stiffness for
any beam type element is given on the next page. The twelve degrees
of freedom are ordered in accordance with the following numbering

scheme in conjunction with a right-hand element coordinate system,

node Jj
node i J\

1 s 1
\ﬁi§2 e X S 7
5 S -
W 6 l\ Y 12¥;9 1
z

where x is the element axis pointing from node i to node j and

/Y
3.
o

=
s

y and z are the principal axes of the cross-section,
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For a transverse rib element, whose axis by definition is
parallel to the i-j edge of a plate element, and which has the eccen-
tricities of connection and the rotation of the element principal
axes shown in Fig. 2, the transformation from element to global

coordinates is given by

C ) u AR
v 0 ca sa -e- -e. sa e_ca r
1 Z X X 1
v2 ~-Cp =-sa°*sp ca°‘*sp 0 -S ca*cos Y -s sa°cos Y r2
v3 L Sp -sa°cp cac°cp 0 -s cae*sin Y =~s sa°sin Y r3 P
< 0
v4 0 0 0 ca sa ﬁ r4
0 - - .
Ve 0 0 cp sae*sp car*sp r5
v 0 0 0 S -sae*cC ca*c r
L 6) L_ p p |Y GJ
1 \
in which
sa = sin & ca = cos ¢
sp = sin @ Cp = COSs ¢
/2 2
s =Ve_ + e-
X zZ
e

<
i}
o
=
[¢]
o+
»
=

I
S

Writing the above transformation as
= [a, 1 {r
(v;} =[] {r)

the element stiffness in global coordinates becomes

[kK] = [a]” [k] [al
with
a, 0
[a]l = .
0 a
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For a transverse frame element whose axis by definition lies in a
plane normal to the span direction, X , Fig. 3, the transformation

matrix becomes

) — £
0 -e o ]
vy ca sa S5 e *sa e ca r
- - . . . - + -
v, cp sa*sp ca*sp S,°sp ca(eycp exsp) sa(epr +exsp) r,
{ Vg - Sp ~-sa‘Cp ca‘cp s,°Cp ca(eysp-—excp) sa(eysp-—excp).J ry
0 0 >
Vg 0 0 ca sa r,
0 0] - -sas .
v5 0 cp sa*sp ca°*sp r5
\Y 0 0 0 s -sa°*c casc
L 6) p p p r6
" R,

or simply,

{v,} = [ai] {ri}

with the abbreviations

sa = sin ¢ ca = CcoSs o
sp = sin ¢ cp = cos @
/2 2
s. =Ve + e [sin(y - V]
1 y z
2
s, =Ve + e [cos(x - Y]
ez
Y = arc tan —
e
y

The global element stiffness in this case is

[k] = [all [k] [al
with
a. 0
[a]l = N
0 a
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where [aj] is the degenerate case of [ai] with e, = e  =e, = o .
For a longitudinal rib element whose longitudinal axis by defini-

tion is parallel to the global X axis, Fig. 4, the transformation

matrix is given by

rvlw —1 0 0 0 eZ -eY—.1 frlw
Vo 0 cos @ sin ¢ -s sin o 0 0 r,
< Vg L - 0 -sin ¢ cos ¢ s cos @ 0] 0 ry
V4 0] 0 0] 1 0] 0] ﬁ r,
Vg 0] 0] 0 0 cos @ sin ¢ re
Vg J —O 0] 0 0 -sin @ cos cp_ LrG )
in which

s=Ve2+e§

Y

e
Z
arc tan — - )
e
Y

R
I

The global element stiffness is again

[kl = [alT [k] [al

with

2.4 Solution Process

The general scheme of the total solution process is illustrated

schematically in Fig. 5. 1In this flow chart it can be seen that the
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execution times for multiple load cases are greatly reduced because

the structure stiffness has to be reduced only once for the first load
case, and the time for reducing additional load vectors and solving

for the unknown displacements is small compared to the reduction of the
stiffness matrix. The equation solver itself is based on the basic
Gauss algorithm and takes advantage of the bandedness of the equations
and of zero coefficients within the band. If a complete row of coeffi-
cients is zero, for example if a boundary condition has been applied,

then this equation is skipped automatically.
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3. PROGRAM DESCRIPTION

The program has been written in Fortran IV language for the CDC
6400 computer of the Computer Center at Berkeley, California, It
consists of one main program called FINPLA and the 13 subroutines
INPUT, ELSTIF, TOSTIF, FORMK, STORE, SPECIAL, LOADS, BANSOL, OUTPUT,
ELDIS, INTFOS, FL, SSDISK, The order of the subroutines is irrele-
vant because no overlay system has been utilized, The Fortran list-
ings of the main program and the first 11 subroutines are given in
Appendix A together with short descriptions on comment cards at the
beginning of each,

Subroutine FL is written in Compass language and serves two pur-
poses, If called as CALL LWA(N), it stores into the number desig-
nated by N the last word address of the program, i.,e, the storage
required by the program, excluding blank common area., If called as
CALL RFL(M), it resets the field length dynamically. Thus, having cal-
culated the required blank common area, one would set

CALL RFL(M)
where M = N+L

N

program length

L

1

blank common length

This subroutine adjusts the total storage area for each problem to be
analyzed, If for a different computer system, an equivalent sub-
routine is not available, a fixed amount of blank common has to be
calculated as shown in the next chapter, and dimensioned for in the

main program,
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Subroutine SSDISK is also a Compass subroutine which provides
random access to the scratch area of the disk, To open the random
file and provide the SSDISK subroutines access to the index and buffer
arrays, the routine OPDISK has to be called before calls are made to
the other random routines. To write information on the disk, one
calls WRDISK, and to read a record which has been written on the disk,
one calls RDDISK,

In addition, seven tapes are used for temporary storage purposes,
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4, PROGRAM USAGE

4,1 Capabilities and Restrictions

The program has been written primarily for prismatic plate struc-
tures which can be described by defining just one longitudinal segment
at the origin having a typical cross~section which then repeats itself
as one proceeds along the span. For example, defining the first block
of the structure shown in Fig, la, by specifying its nodal point num-
bering and finite element configuration, supplies sufficient informa-
tion to build up the rest of the structure provided the X-coordinates
of all sections separating the various structure segments along the
span direction are known,

However, variations of the typical or ''regular’ block are per-
mitted but have to be treated as so-called ''special' elements, For
example, the cut—out.in the 6th block of the structure, Fig, la, can
be input as a special element with zero thickness or zero elastic
modulus,

Transverse diaphragms at up to 10 sections may be assembled out
of rectangular finite elements., Several approaches for discretizing
the transverse diaphragm of a box beam are illustrated in Fig, 6, In
most cases, a diaphragm element will extend either through the total
height, Fig, 6b, or through the total width of the diaphragm, Fig, 60.'
But the diaphragm may be further subdivided such that additional
nodal points are created, Fig, 6d. As long as these additional nodal
points are assigned numbers following the last ordinary nodal point
number, they will not increase the band width of fhe structure stiff-

ness matrix,
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If the shape of a diaphragm is not rectangular, it may be approxi-
mated in some cases using rectangular elements as long as the stiff-
nesses formed with "average heights' or "average widths" is not much
different from those of the actual diaphragm, Fig., 6e,

A planar frame may be assembled at up to 10 sections, using one-
dimensional beam elements, which may leave the geometric domain of
the plate system (for example free standing columns), thus intro-
ducing additional nodal points. Frame elements may also be intro-
duced as braces., If used as stiffeners of plates they are referred
to as transverse ribs,.

By defining a diaphragm or planar frame at one typical or
"regular' section, it is implied that it is repeated identically at
all other sections specified as such, unless this implication is
overridden by the use of the special element option.

Longitudinal beam elements may be connected to any nodal joints
within an arbitrary set of structure segments, Variations of the
regular types can be again introduced by the special element option,

These various special element options give the user freedom in
defining his structure and permit the treatment of very irregular
structures, However, the user must bear in mind that the program
becomes less efficient, the less the input system resembles a regu;
lar prismatic structure.

The loading may consist of surface loads (dead load, horizontal
and vertical load) which are uniformly distributed over a finite
element, again implying that the loads specified for some block, are

applied to all blocks of the structure, unless this assumption is



19
overridden by the special element option. Line loads along nodal
joints between two specified sections and concentrated nodal point
loads may be applied anywhere on the structure. But transverse line
loads have to be lumped at the nodal points (for example, using the
tributary area concept) before being input. Also dead load of dia-
phragms and beam elements has to be input in the form of concentrated
nodal point loads.

Boundary conditions, including nonzero‘displacements, may be
specified for any points on the structure. For a given set of boundary
conditions, there is no restriction on the number of load cases that
may be analyzed for a given structure. It should be stressed again
that the execution time for each additional load case is greatly
reduced compared to that for the first load case.

There is no restriction on the number of nodal points within a
cross section, but as for limitations regarding maximum number of
plate elements, plate types, etc., see the input specifications,

Section 4.3.

4.2 Definitions

In order to aid the efficient use of the program, exact defini-
tions of various terms used in this chapter and mainly in the input

specifications are summarized below.

Sign Conventions

Use of three right-hand coordinate systems is made: a global, a plate
element, and a beam element coordinate system. The global coordinate

system, Fig. 1, has its origin at one end of the structure, the X-axis
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pointing towards the other end, the Z-axis pointing downwards, and

the Y-axis following from the right-hand rule. This coordinate

system is used for loads, displacements, and plate projections. The
X-axis of the plate element coordinates, Fig. 1, is identical with the
global X-axis, the j-axis points from node i to node j , and the
z-axis follows from the right-hand rule. Internal forces and moments
of plate elements are expressed in these coordinates. The X-axis of
the beam element coordinates, Figs. 2 and 3; points from node i to
node j , or in the case of longitudinal ribs, Fig. 4, along the global
X-axis, and the y and z-axes are the principal axes of the element

cross section.

Block

A segment cut out of the plate system by two transverse sections,
Fig. 1. The block which is repeated often within the structure (the
longitudinal width may be variable), may be defined as the regular

block.

Section
A plane separating two adjacent blocks or forming the end faces of the

structure and containing all nodal points in this plane. Note that

N =N
sections blocks

Finite Element

A rectangular element whose position within the structure is defined
by two nodal joints i and j , and by its block between two con-

secutive sections.
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Nodal Point
A point at which finite elements or beam elements are interconnected.
Each nodal point is assigned a number in a regular section. A nodal
joint is the line parallel to the global X-axis and passing through

a nodal point. There is no limit on the maximum number of nodal points.

Bandwidth
The bandwidth of the structure stiffness maprix is a function of the
number of nodal points in a section and of the maximum nodal point
difference in a regular finite element, but independent of the nodal
point difference in beam and diaphragm elements. The nodal points
should be numbered such as to keep the maximum difference within an

element at a minimum.

Finite Element Type

A finite element characterized by its horizontal and vertical projec-
tions, VY and VZ , within a section, Fig. 2, by its thickness and
material properties, but not by its length along the span.

Rib Element
One-dimensional beam element connecting two nodal points pre-defined
by plate finite elements. A transverse rib element has an x-axis
which lies in a transverse section and is parallel to the i-j edge
of the associated plate type finite element connecting the same two
nodal points, Fig. 2. A longitudinal rib belongs to a specified block

and must be associated with the nodal joint to which it is connected,

Fig. 4.
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Frame Element

One-dimensional beam element lying in the plane of a transverse section
(or at some eccentricity parallel to it) and connecting any two nodal
points which may or may not be predefined by the plate system (for

example, columns), Fig. 3.

Beam Element Connections

The end points of transverse ribs may be eccentric with respect to

the nodal points in the X and 3Z-directions, and the element prin-
cipal axes may be rotated about an angle, v , Fig. 2. Both ends must
have the same eccentricities. If a frame element is connected With
ora end point to the plate system, this end point should be node i

and may be eccentric in the X , Y , and Z-directions, and the
principal axes may be rotated, Fig. 3. A longitudinal rib may be con-
nected to a nodal joint with eccentricies in the Y and Z-directions,
and the principal axes may be rotated, Fig. 4. Both ends must have

the same eccentricities.

Beam Element Type

A beam element type is characterized by its section properties,

eccentricities of connection, and orientation within a section or block.

Diaphragm
An assembly of rectangular finite elements within any designated sec-
tion. The creation of additional interior nodal points by subdividing

the diaphragm is permissible, Fig. 1lb.
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Special Element

A one- or two-dimensional element with a different type than the
corresponding element in the regular block, diaphragm, or frame; for

example, if the material or section properties are different, Fig. 1.

Applied Group Displacement

A specified displacement component applied simultaneously to a desig-

nated group of nodal points of a given section.

Prescribed Line Displacement

A specified displacement component applied simultaneously to all nodal
points along a given nodal joint between two designated sections.
These two sections may be identical if the displacement is applied

to only one nodal point.

4,3 Input Specifications

Input data are key punched on cards as specified below. It is
very important that the sequential order is strictly adhered to and

consistent units are used throughout a problem.

1) Title Card (8A10)

Col., 1 to 80 - Title of problem to be printed with output = TITLE(I)

2) Control Card (F10.3,914)

Col. 1 to 10 - Span length = SPAN

Col. 11 to 14 - Number of finite element types = NFEL, max. = 90

Col. 15 to 18 - Number of nodal points in typical cross section = NPTS
Do not count points created by subdividing transverse
diaphragms, but count all those created by any frame

elements. No restriction on maximum number,
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Col. 19 to 22 ~ Number of blocks along x-axis = NUMELX, max. = 40

Col. 23 to 26 - Number of finite elements in one block = NUMELY,

max. = 30
Col. 27 to 30 - Number of sections with transverse ribs = NTRIB,
max., = 20
Col. 31 to 34 - Number of blocks with longitudinal ribs = NLRIB,
max, = 40
Col, 35 to 38 - Number of sections with fraﬁes = NFRAME, max. = 10
Col. 29 to 42 - Number of sections with diaphragms = NDIAPH, max. = 10

3) X-Coordinate Cards (10F7.2)

X-Coordinates of sections along. X-axis =XS(I)
Start with the origin X = 0.0.

If there are more than 10 sections, use second card.

4) Plate Element Type Cards (7X,13,5F10.3) - One Card for Each Type

Col. 8 to 10 - Type number =1
Col. 11 to 20 - Horizontal projection = H(I)

Col. 21 to 30

Vertical projection = V(I)

Col. 31 to 40 Thickness = TH (I)

Col. 41 to 50 - Modulus of elasticity =E(I)

Col. 51 to 60 - Poisson's ratio = FNU(I)

5) Plate Element Cards (414) - One Card for Each Element in

Regular Block

Col., 1 to 4 Element number = I

Col. 5 to 8 - Nodal point I = NPI(I)

Col. 9 to 12 - Nodal point J = NPJ(I)

Col. 13 to 16 Element type number = KPL(I)
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6) Special Plate Element Indicator Card (7X,I3)

Col. 8 to 10 - Number of special elements with plate types different
from those of the corresponding elements in the regular

block = NPE, max. = 60

7) Special Plate Element Cards (4I4) - One Card for Each Special

Element - No Cards Required if No Such Elements
Col. 1 to 4 - Special element number = I
Col. 5 to 8 - Number of corresponding element in regular block = NFL(I)
Col. 9 to 12 - Block number = IBLK(I)

Col. 13 to 16

Type number for this special element = IPET(I)

8) Transverse Rib Cards - No Cards Required if No Such Ribs

First Card (314)

60

Col. 1 to 4 - Number of transverse rib element types = NTRT, max.
Col. 5 to 8 - Number of transverse rib elements at regular section
with such ribs = NTRE, max. = 30

Col. 9 to 12 - Number of special transverse rib elements = NTRS, max. = 30

Second Card (1013)
Numbers of sections with transverse ribs = NSTR(I) - Use second card if

necessary

Transverse Rib Element Type Cards (215,7F10.3) - One Card for Each Type
Col. 1 to 5 - Type number = 1I
Col. 6 to 10 - Corresponding plate element type number = NPT (I)

Col., 11 to 20 - Eccentricity of connection in global X-direct.= ETX(I)

Col. 21 to 30 Ece@entricity of connection normal to corresponding

plate element = FTY(I)



Col., 31 to

Col. 41 to

Col. 51 to

Col., 61 to

Col, 71 to

Transverse

Col. 1 to
Col. 5 to
Col., 9 to

26
40 - Rotation of element principal axes about element x-axis
(in radian) = ETR(I)

50 - EA, axial rigidity = TREA (I)

I

60 - EIY, bending rigidity about local y-axis TREIY(I)

70 - EIZ, bending rigidity about local z-axis TREIZ (1)

80 - GJX, torsional rigidity = TRGJX (I)

Rib Element Cards (3I4) - One Card for Each Element in
Regular Section with Transverse Ribs

4 - Rib element number = I

8 - Type number = NTRTY(I)

12 - Corresponding plate element number = NTRP(I)

Special Transverse Rib Element Cards (414) - One Card for Each Special

Col. 1 to

Col. 5 to

Col. 9 to

Col. 13 to

Element - No Cards Required if No Such Elements
4 - Special element number = I |
8 - Number of corresponding element in regular section = NTRSE (I)
12 - Section number = NTRSS (I)

16 - Type number for this special rib element = NTRST(I)

9) Longitudinal Rib Cards - No Cards Required if No Such Ribs

First Card
Col. 1 to
Col. 5 to
Col. 9 to

(314)
4 - Number of longitudinal rib element types = NLRT, max. = 50
8 - Number of longitudinal rib elements in regular block
with such ribs = NLRE, max. = 20
12 - Number of special rib elements = NLRS, max. = 30

Second Card (2013)

Numbers of

blocks with longitudinal ribs = NBLR(I)
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Longitudinal Rib Element Type Cards (7X,13,7F10.3) - One Card for Each

Col.

Col.

Col.

Col.

Col.

Col.

Col.

Col.

11

21

31

41

51

61

71

to

to

to

to

to

to

to

to

10

20

30

40

50

60

70

80

Type

Type number = I

Eccentricity of beam centroidal axis from nodal joint
in global y-direction = FLY(I)

Eccentricity of beam centroidal axis from nodal joint
in global Z-direction = ELZ(I)

Rotation of principal axes about element axis (in
radian) = ELR(I)

EA, axial rigidity = TLEA (I)

EIY, bending rigidity about local y-axis TLEIY(I)

EIZ, bending rigidity about local z-axis TLEIZ(I)

GJX, torsional rigidity = TLGJX(I)

Longitudinal Rib Element Cards (3I4) - One Card for Each Element in

Col. 1
Col, 5
Col. 9
Special
Col. 1
Col. 5
Col. 9
Col. 13

to

to

Regular Block with Longitudinal Ribs

4 - Rib element number = I

8 - Type number = NLRTY(I)

to 12 - Number of joint to which it is connected = NLRJ(I)

Longitudinal Rib Element Cards (414) - One Card for Each Special

to

to

to

to

12

16

Element - No Cards Required if No Such Elements
Special element number = I

Number of corresponding element in regular ribbed
block = NLRSE (I)

Block number = NLRSB(I)

Type number for this special rib element = NLRST(I)
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10) Frame Cards - No Cards Required if No Frame Elements

First Card (314)

Col.

Col.

Col.

1 to 4 - Number of frame element types = NFT, max. = 40
5 to 8 - Number of elements in regular frame = NFE, max. = 10
9 to 12 - Number of special frame elements = NFS, max. = 30

Second Card (1013)

Numbers of sections with transverse frames =_NSF(I)

Frame Element

Col.

Col.

Col.

Col.

Col.

Col.

Col,

Col.

Col.

Col.

Col.

1

5

11

17

23

29

35

41

51

61

71

to

to

to

to

to

to

to

to

to

to

to

4

10

16

22

28

34

40

50

60

70

80 -

Frame Element

Col.

Col.

1

5

to

to

4

8

Type Cards (14,6F6.3,4F10.3) - One Card for Each Type

- Type number = I

- Global X-eccentricity of node i connection = EFX(I)
- Global y-eccentricity of node i connection = EFY(I)
- Global zZ-eccentricity of node i connection = EFZ(I)

- Rotation of element principal axes about element axis
(in radian) = EFR(I)

- Horizontal projection of node j with respect to 1
= FH(I)

- Vertical projection of node j with respect to 1
= FV(I)

- EA, axial rigidity = FEA(I)

- EI_, bending rigidity about local y-axis FEIY(I)

Y

- EI_, bending rigidity about local z-axis FEIZ (I)

Z
GJX, torsional rigidity = FGJX(I)
Cards (414) - One Card for Each Element in Regular Frame

- Frame element number = I

- Type number = NFTY(I)



Col. 9
Col. 13
Special
Col, 1
Col. 5
Col, 9
Col. 13

First Card (314)

Col.

Col.

Col.

to 12 - Nodal point i

to 16 - Nodal point j

Frame

to

to

to

to

4

8

12

16

29

NFI (1)

NFJ(I)

If one end is connected to the plate system, this end

should be called node i.

Element Cards (41I4) - One Card for Each Special Element -~

No Cards Required if No Such Elements

Special element number = I

Number of corresponding element in regular frame = NFSF(I)
Frame number = NFSF (I)

Type number for this special frame element = NFST(I)

11) Diaphragm Cards - No Cards Required if No Diaphragms

1

5

to

to

4 - Number of diaphragm element types = NDT, max. = 40

8 - Number of elements in regular diaphragm = NDE, max. = 20

9 to 12 ~ Number of special diaphragm elements = NDS, max. = 20

Second Card (5I3)

Numbers of sections with diaphragms = NSD(I)

Diaphragm Element Type Cards (7X,13,5F10.3) - One Card for Each Type

Col.

Col.

Col.

Col,

Col.

Col.

8 to 10

11

21

31

41

51

to

to

to

to

to

20

30

40

50

60

Type number = I

Element height = DIAH(I)
Horizontal width = DIAW(I)
Thickness = DIATH(I)

Modulus of elasticity = DIAE(I)

Poisson's ratio = DIAN(I)
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Diaphragm Element Cards (6I4) - One Card for Each Element of Regular
Diaphragm
Col. 1 to 4 - Diaphragm element number = I

NDTY (I)

Col. 5 to 8 - Type number

Col. 9 to 12 - Nodal point (upper left) = NPID(I)

e

Col. 13 to 16 - Nodal point j (upper right) = NPJD(I)

Col. 17 to 20 - Nodal point k (lower left) = NPKD(I)

Col. 21 to 24 - Nodal point 1 (lower right) ; NPLD (1)
If additional nodal points are created by diaphragm
subdivisions these points are assigned numbers following
those assigned to ordinary nodal points defined by

plate or frame elements.

Special Diaphragm Element Cards (4I4) - One Card for Each Special
Diaphragm Element - No Cards Required if No Such Elements
Col. 1 to 4 - Special element number =1
Col, 5 to 8 - Number of corresponding element in regular diaphragm
= NDSE (1)
Col. 9 to 12 - Diaphragm number = NDSD (I)
Col. 13 to 16 - Type number for this special diaphragm element

= NDST(I)

12) Internal Force Output Cards

Block Cards (31I4) - One Card for Each Block

Col. 1 to 4 - Block number =1

Col, 5 to 8 - Number of longitudinal subdivisions within individual
plate elements for internal force output = NSEGX(I),

max, = 4
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Col. 9 to 12 - Number of transverse subdivisions within individual
plate elements for internal force output = NSEGY(I),
max., = 4
Two O's give no results in that block -
Two 4's give results at 25 (= (4+1)**2) points

throughout each element in that block

Diaphragm Cards (314) - One Card for Each Diaphragm - No Cards
Required if No Diaphragms

Col. 1 to 4 - Diaphragm number = I

Col. 5 to 8 - Number of vertical subdivisions within individual
diaphragm elements for internal force output = NSEGV (1),
max. = 4

Col. 9 to 12 - Number of horizontal subdivisions within individual
diaphragm elements for internal force output = NSEGH(I),

max. = 4

13) Applied Group Displacement Cards

First Card (7X,13)

Col. 8 to 10 - Number of applied group dispvlacements = NTAD, max. = 25

Displacement Component Cards - Each Applied Displacement Component
Requires a Set of Two Cards - If All Nodes are Likewise

Affected, Only One Card - No cards if NTAD = O

First Card (414,4X,F10.3)

Col. 1 to 4 - Displacement component number = I
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Col. 5 to 8 - Component indicator = INDT(I), which is equal to

1 - prescribed displacement in X-direction

2 - prescribed displacement in Y-direction

3 - prescribed displacement in Z-direction

4 - prescribed rotation about X-axis

5 - prescribed rotation about Y-axis

6 - prescribed rotation about z-axis
Col. 9 to 12 - Number of affected nodal poiﬁts = NAN(I)

If this equals the total number of nodal points,

NPTS (see control card), omit the second card
Col. 13 to 16 - Section number of applied group displacement = NSAD(I)

Col. 21 to 30 - Displacement magnitude = DTIN(I)
Second Card (2013) - Affected Nodal Points = NAD(I,J)

14) Prescribed Displacement Cards

First Card (7X,I3)
Col. 8 to 10 - Number of prescribed line (or single node)

displacements = NPD, max. = 30

Prescribed Displacement Cards (414,4X,F10.3) - One Card for Each
Prescribed Displacement - No Cards if No Such
Prescribed Displacements

Col. 1 to 4 - Nodal joint number = NJPD(I)

Col. 5 to 8 - Number of section where prescribed displacement
starts = NSDS (I)

Col. 9 to 12 - Number of section where prescribed displacement
ends = NSDE(I) - For a 8ingle node fdisplacement the

last two entries are identical
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Col. 13 to 16 - Component indicator (values as in preceding cards)
= INPD(I)

Col. 21 to 30 - Prescribed displacement value = PDIS(I)

15) Load Case Card (7X,13)

Col. 8 to 10 - Number of load cases for this structure = NLC

No restriction on maximum number

16) Surface Load Cards

First Card (214)

Col, 1 to 4 - Number of elements in a block with regular surface
loads = NESL

Col. 5 to 8 - Number of elements with other than regular surface

loads = NSSL

Element Cards (7X,13,3F10.3) - One Card for Each Element in Block
with Regular Surface Loads - No Cards Required if No
Regular Surface Loads

Col. 8 to 10 - Element number = NELSL(I)

Col, 11 to 20 - Dead load (P/plate area) = DL(I)

Col., 21 to 30 - Load in Y-direction (P/vertical projected area) = YL(I)

Col. 31 to 40 - Load in Z-direction (P/horizontal projected area) = ZL(I)

Special Element Cards (215,3F10.3) - One Card for Each Element with
Other than Regular Surface Loads - No Cards Required
if No Such Surface Loads

Col. 1 to 5 - Block number = NBLSL(I)

Col, 6 to 10 - Element number = NSLSL(I)

Col. 11 to 20 - Dead load (P/plate area) = SDL(I)
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Col, 21 to 30 - Load in Y-direction (P/vertical projected area) = SYL(I)

Col. 31 to 40 - Load in Z-direction (P/horizontal projected area) = SZL(I)

Dead load of rib, frame, and diaphragm elements has to be input in form

of concentrated joint loads (tributary area concept)

17) Distributed and Concentrated Joint Load Cards

First Card (7X,I3)
Col. 8 to 10 - Number of concentrated or distributed line loads
along the nodal joints = NCL

For transverse line loads use tributary concept

Load Cards (414,4X,F10.3) - One Card for Each Load - No Cards
Required if No Such Loads

Col. 1 to 4 - Nodal joint number = NJL(I)

Col, 5 to 8 ~ Number of section where loading starts = NSA(I)

Col, 9 to 12 - Number of section where loading ends = NSO (I)

For a concentrated joint load the two last entries

are identical

Col. 13 to 16 -~ Component indicator = NID(I), which is equal to

1

applied load in X-direction
2 - applied load in y-direction
3 - applied load in Z-direction
4 - applied moment about X-axis
5 - applied moment about Y-axis
6 - applied moment about Z-axis
Col, 21 to 30 - Load intensity = FF(I)

For concentrated load input total value
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Repeat the decks 16) and 17) for each load case. Repeat the decks 1)
through 17) for the next problem. Two blank cards are added following

the last problem in order to terminate the job execution.

4.4 Output Description and Interpretation

The output of each correctly executed job contains the following

information:

1) The complete set of input data is printed out with proper
headings for an easy check for input errors.

2) The displacements of all nodal points of the structure are
printed out and are positive in the global coordinate system
defined above.

3) Similarly all reactions are printed out which have nonzero
values whenever the corresponding displacement components have
been specified as input.

4) As a check on the accuracy of the equation solver, the ''residual'

loads are printed out, i.e., the quantities

where

structure stiffness matrix

K =
r = final nodal displacement vector
R = input load vector, containing also all

calculated reactions

The residuals are theoretically zero and should be practically

very small quantities. If they are not very small compared
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6)
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to the input loads, then this will indicate that there must

be an error in the input data or that the set of equations is
ill-conditioned.

For all beam type elements, the end shears Vy and VZ , the
axial force S as well as the end moments My , MZ , T are
printed out grouped according to their classification as
longitudinal or transverse rib elements or frame elements.
While the user has no option to influence the output mentioned
so far, he can determine where to output internal forces and
moments in the plate type finite elements. If no results are
desired in some block I, zero's have to be input for the
quantities NSEGX (I) and NSEGY(I) (see input specifications,
section 12), 1Two l1l's give results at the nodal points only.
Additional subdivisions may be selected up to NSEGX = NSEGY = 4,
in which case results at 25 points will be printed with proper

coordinate labels XRAT and YRAT varying from zero to one as

shown:

XRAT =1 X

YRAT =

|
=

For plate type finite elements the X-axis is identical
with the global X-axis, and for diaphragm elements, the
X-axis points downward.
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It should be noted, however, that only results along the element
edges are meaningful, because of the displacement functions
used in deriving the finite element stiffness. Output quanti-
ties consist of the three membrane stress resultants NX ’
Ny , ny s and the three bending moments MX , My , MXy
as shown in Fig. 1lb, as well as the three membrane stresses
ck ) c& ) Txy which are just the stress resultants divided
by the element thickness.

7) For each executed problem, the elapsed time is printed out
separately for (1) input setup and calculation of all element
stiffnesses, (2) assembly and modification of the structure
stiffness, and then for each load case, (3) load input setup,

(4) solution of equations, and (5) calculation of internal

forces and output of all results.

The interpretation of output stress resultants in finite elements needs
some explanation. Plotting, for example, the direct output of the
normal stress resultant NX in the bottom plate of an eccentrically
loaded box girder (see also Example 4, Figs. 11 and 12) longitudinally,
the stepped functions of Fig. 7 are obtained with the characteristic
jumps between adjacent elements. Due to the selected type of displace-
ment functions, stresses are constant with x , or almost constant,
within one element. In striving for a meaningful output evaluation,
two methods are recommended, both of which are about equally useful,
The first method consists of averaging the stresses between adjacent
elements and thence fitting a curve between these averages, Fig. 7a.

The other method fits the curve between the mid-element values as
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illustrated in Fig. 7b. Both methods require extrapolation of the
midspan value which is often of prime interest. Unfortunately, for
curves with peaks, the extrapolation is usually so sensitive that it
can only supply estimates of the peak values. It might in some cases
not even be clear, if the Nx—curve has a positive or a negative curva-
ture at midspan. But the following general rule might be helpful in
overcoming this difficulty: The Nx—curve for a girder loaded by a
concentrated load has always a peak, Fig. 7a, while for an unloaded
girder, it always has a horizontal tangent at midspan, Fig. 7b. 1If

a transverse diaphragm is present at the point of load application,
then the curves of all girders tend to have small peaks.

In view of the difficulty of extrapolating important stress
quantities, and considering the large amount of tedious work involved,
it is recommended that the structure blocks next to a concentrated
load or reaction at an interior support be subdivided longitudinally
at least once and preferably more often. Not only does the extrapola-
tion procedure become more accurate with this fine mesh, but also, for
sufficient subdivisions, the direct output of stress for the last
block may already be an acceptable estimate of the actual peak value
for practical purposes since the peak itself (theoretically a
singularity) has no meaning for practical application. Transversely,
the stress discontinuity between elements is much smaller than longi-
tudinally, because stresses vary linearly over the width of ¢&ne
element. Often, there is no discontinuity at all.

Concluding, it must be cautioned that the finite element method

on which this program is based, although an efficient numerical tool
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in solving difficult problems, is only approximate, and careful engineer-
ing judgment has to be used in interpreting the results. However, in
refining the mesh layout of a given structure, the results are known to

converge towards the theoretically correct values.

4,5 Storage Requirements and Execution Time Estimate

Program FINPIA, if compiled by the FUN compiler of the CDC 6400 of
the University of California Computer Center, requires together with all

subroutines a central memory area of about 67'0008 ~ 28,000, , not counting

10
the blank common area. This additional storage requirement can be cal-
culated as follows.
For the execution of subroutine INPUT,
COMMON1 = 3*%NT + 25*NPTS
= (18%NX + 25) *NPTS
where
NX = number of sections
NPTS = number of nodal points in a section, counting

also all nodes defined by frame elements

For the execution of subroutine FORMK,

COMMONZ = NL + NT + 2*NH
= NL + (6*%NX + 24) *NPTS
where
NL = MAX (6*NPTS*MB, 36*NPTS'*NPT8’)
MB = half bandwidth
- (e ot posny dittorones s 1 1) s
NPTS’ = NPTS + all interior nodes of diaphragms
If NPTS’ = NPTS, then NL = 6*NPTS*MB
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For the execution of subroutine BANSOL,

COMMON3 = NH + NH*MB

12%NPTS* (MB + 1)

If an automatic change of field length is not desired or possible, the
maximum common area required is usually given by (especially if no inte-
rior diaphragm nodes are used)

COMMON = 12*NPTS* (MB + 1)

which may have to be converted into octal units.
Execution times largely depend on the computer. The estimate given
below is based on experience with the CDC 6400, The solution of equa-

tions requires approximately
-5 2
T. = 2-10 “(NT) (MB) seconds )

where

NT total number of nonzero equations

MB half bandwidth

The larger the system, the larger is also the percentage of total execu-~
tion time spent in solving the equations., Up to about 70%, this per-

centage is approximately p = 40 + T1 so that the estimate for the

total execution time becomes

-5 2
o - _ 2°10 " (NT) (MB) . 100 @)

2 40 +2-107°(NT) (MB)

For example, a system with 462 equations and a bandwidth of 54 would

approximately require

- 2
T, =2-10 5 (462) (54)° ~ 27 seconds
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for solving the equations and

27

; = ZB_ITT; * 100 ~ 40 seconds

T

for the overall execution. The actual times in an example of this size
were 30.3 and 36.4 seconds, respectively.

While the estimate (1) is valid for virtually any size of equation
system, the estimate (2) holds only up to about Tz = 50 seconds,

because for longer runs, not enough data are available.
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5. EXAMPLES:

5.1 Plane Stress Problem

The cantilever of Fig. 8a has been analyzed using the three mesh

layouts shown in Fig. 8b. Results are summarized in Table 1.

Table 1., Results for Cantilever, Fig. 8

End Deflection, Top Fibre Stress at
inch Point A, psi
FINPLA, mesh a 0.11906 17.23
FINPLA, mesh b 0.35582 64 .92
FINPLA, mesh c 0,35290 62,21
Theoretlcal Solutlén 0.35583 60.00
(incl. shear deformation)

5.2 Plate Bending Problem

The square plate of Fig. 9a has been analyzed using the four mesh
layouts shown in Fig. 9b. The results are summarized in Table 2 and are
compared with the theoretical solution [4] as well as with the solution
using Felippa's Q19 element [5]. Table 2 presents also the results of
analyzing the plate with a hole, Fig. 9c, using the fine mesh idealiza-
tion., Note that the hole has to be input as a special finite element
with zero stiffness and zero loading, and the results given in Table 2

are those for the midside of the hole edge.
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Table 2, Results for Square Plate, Fig. 9
Center Deflection, Center Moment,

_ ft £t-1b
FINPLIA, mesh a 0.0774 15.11
FINPLA, mesh b 0.1156 16.18
FINPLIA, mesh c 0.1275 18.33
FINPLA, mesh d 0.1304 18.94
Felippa, mesh c 0.1273 18.48

| Theoretical Solution 0.1312 19.16
FINFLA, mesh 4 0.1427" 32,22%)

*) at midside of hole edge

5.3 Three-Dimensional Frame

The 3D-frame shown in Fig.

defining dummy finite elements,

10a has been analyzed with FINPLA by

i.e., elements with zero stiffness. The

results, some of which are shown in Fig. 10b and 10c agreed with the

results of a standard frame program to all figures that were printed

out.

Note that by defining the dummy finite elements as shown, this

structure is made up of 6 longitudinal rib elements, 6 transverse rib

elements, and 4 frame elements, but the transverse beams could also be

treated as frame elements if desired.

5.4 Box Girder

The box girder of Fig.

phragms.

1la has been analyzed with and without dia-

The idealized end diaphragms (with zero bending and infinite

in-plane stiffness) have been simulated by finite elements with very

small thickness and very large elastic modulus.

The box with diaphragms
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has been analyzed with several mesh layouts, two of which are shown in
Fig. 11b.

Midspan deflections are summarized in Table 3 and longitudinal
stress resultants Nx at midspan are shown in Fig. 12. They have been
extrapolated as outlined earlier. For comparison also, the results of

two computer programs, MULTPL and MUPDI, are shown. These computer

Table 3. Midspan Deflections of Box Girder

Midspan Deflection, ft
Unloaded Web Loaded Web
=] m - -—
5, g| FINPLA .3957 « 10°° .4887 » 1073
C 3 8! mesh a
> Q& -3 -3
l? g | muLTPL .4197 « 10 .5167 + 10
g | FINPLA .4159 « 10°° .4700 « 10°°
& mesh a
£ § | FINPIA .4353 + 1075 4906 « 1073
- g mesh b
= e -3 -3
= | MUPDI .4439 « 10 .4933 + 10

programs are based on the elasticity solution of folded plate structures
with or without transverse rigid diaphragms, and have been described

elsewhere [1] [2].

5.5 Two-Span Box Girder Bridge

The continuous box girder bridge shown in Fig. 13 has been analyzed
for three load cases: (1) dead load only; (2) a settlement of 1 inch at
the base of the center column; and (3) two standard AASHO-trucks posi-
tioned as shown in Fig. 13. For the first two load cases, symmetry
allows an input of only one quarter of the structure, Fig. l4a, but be-

cause of the different boundary condition for the center column, the
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multiple load case option cannot be used. For the third load case, the
entire bridge has to be input, Fig. 14b. The complete set of input data
for the third load case is given in Appendix B. The change in the column
arrangement has to be handled by defining dummy columns with zero stiff-
ness as shown in Fig. 14, and by changing the frame element types by use
of the special element option.

The trapezoidal diaphragm elements have been approximated with
rectangular elements of 10.5 ft. width as discussed earlier.

Some results are shown in Figs. 15 and 16. Longitudinal stress re-
sultants NX are shown for all three load cases at the sections x = 25 ft,
and x = 56.5 ft., which is only 3.5 ft. away from the center support.

It is interesting to note that the severe truck loading produces less
than half of the dead load stresses, while the one inch settlement of
the center column almost cancels the negative support moment. Note that
the irregularity of the Nx—distribution at x = 56.5 in the top deck
is due to the fact that nodal joint 6 is not connected to the diaphragms.

Some vertical deflections have been plotted in Fig. 16. The axial
shortening of the columns under dead load is small but visible. Under
the truck loading, the diaphragm over the center column undergoes an
average rotation of about 0.00037 radian, which causes joint 8 to deflect
.0051 ft. over the support. The bending moment in the center column due
to the truck loading is 138.,1 ft-kip.

The third load case involved the solution of (12) (19) (6) = 1368
equations, with a band width of (2 + 1 + 12) (6) = 90. The total execu-
tion time was 3 minutes 54.0 seconds, of which 166.6 seconds were needed

to solve the equations, This surprisingly low figure was due to the
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many zero-equations. All frame end points are either dummy (no stiff-
ness coefficients are ever formed) or subject to boundary conditions, so
that actually only 1368 - (3) (19) (6) = 1026 equations ﬁad to be solved.
This example illustrates the fact that dummy nodal points may be intro-
duced without increasing the execution time.

A number of equilibrium checks were performed on this example.
First, the entire structure was taken as a free bodyAand the total forces
and moments in the global X, Y, Z directions produced by the applied
loads were compared with the column base reactions. These were
found to be in exact agreement, thus satisfying statics. Second, a por-
tion of the structure from the left end to a section at x = 25.0 ft.
was taken as a free body and the total force in the global X direction
and the total moment at the section about the global Y-axis produced by
the applied loads and the column base reactions were compared with those
found by integrating the internal stresses in the finite elements at
this section. The results of these comparisons as well as those for a

section at x = 56.5 ft. are shown in Table 4.

Table 4. Statics Checks on Example 5

Load Case Dead Load Column Settlement Truck Loading
At Section x=25,0' [x=56,5' |[x=25,0' |x=56,5' |[x=25,0'{ x=56,5"
Net External
-19.3 -19.3 -43.2 -43.,2 -10.7 -10.7
Axial Force (Kip) ,
T -
Internal Axial | .o, o | _372.8 -89.4 | -422.0 | -131.8 | -174.6
Compr ession (Kip)
Internal Axial
2 244 .2 6. 381.2 121, 151.
Tensile Force (Kip) 177 4 46.6 »8 0 51.6
Net Internal
-17. -28., -42, -40, -10. -2<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>