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ABSTRACT OF THE DISSERTATION

Design of Robust Feedback Networks From Ultrasensitive Modules

by

Christian Erik Cuba Samaniego

Doctor of Philosophy, Graduate Program in Mechanical Engineering
University of California, Riverside, June 2017

Dr. Elisa Franco, Chairperson

Synthetic biology promise to provide solution to many challenges in energy, agri-

culture, and health by reprogramming cells to execute new tasks in the host organism. In

order to do that, it requires (1) the understanding of the design principles that underlie

complex dynamics in biology, (2) the development of computational tools that support the

identification those principles and (3) the use of those principles and computational tools

to guide the experimental implementation of novel biomolecular programs. The main mo-

tivation of this thesis is to describe my current progress and future plans to expand (1)-(3).

We incorporate a new design principle, known as ultrasensitivity response, to de-

sign robust biomolecular dynamical system. We show that molecular titration in the context

of feedback circuits enhance the emergence of oscillations and bistable behavior in the pa-

rameter space. We also propose and analyze a new molecular network, termed Brink motif,

which exhibits an ultrasensitive input-output response similar to a zero-order ultrasensitive

switch. We discuss the Brink motif in the context of robust feedback circuits as a suitable

mechanism to build (1) reliable circuits, oscillatory and bistable dynamical behaviors, un-

vii



der parameters uncertainty, downstream load effects and shared resources and (2) robust

closed loop controllers that overcome the limitation of unidirectional action controllers. Ul-

trasensitivity is achieved by combining molecular titration and an activation/deactivation

cycle and requires fast titration and switching rates. Additionally, the response of the Brink

motif has a precisely tunable threshold, which can be determined by an external input to

the motif. We assess the robustness of feedback circuits with numerical simulations and

mathematical analysis.
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Chapter 1

Introduction

In 1992, Eric Drexler wrote of tiny molecular robots that could travel inside the

body, repair living cells, treat diseases, reverse aging, and make our bodies faster and

stronger than before. The scale of those tiny intelligent robots ranged from nanometers to

hundreds of microns. Although it sounds as though it belongs to the realm of science fiction,

it has become fact. Now it is actually possible to program cells to sense their environment

and react by producing specific molecules for biomedical applications.

Ten years later, the new fields of synthetic and systems biology emerged. Engi-

neering intelligent biomolecular systems has enabled the development of many solutions

to challenges in agriculture, energy and health, beginning with the implementation of the

first three well-known synthetic circuits. In 2000, a toggle switch (memory device) [46],

repressilator (autonomous oscillator) [35] and negative feedback [6] (enhance the stability

of a circuit in a noisy environment), were all implemented in genetic circuits. A great deal

of progress has been made in bacterial and mammalian cells, but lack practical applications

1



in most cases [33].

Engineering these autonomous and intelligent biomolecular systems (molecular

robots) requires (1) the understanding of the design principles that underlie the complex

dynamics in biology, (2) the development of computational tools that support the identifica-

tion of these principles and (3) the use of these principles and computational tools to guide

the experimental implementation of novel biomolecular programs. The main motivation of

this thesis is to describe my current progress and future plans to expand (1)-(3).

My work aims to understand the feedback principles in biology by designing a

variety of simple and detail synthetic circuits that produce dynamical behavior such as

oscillations (negative feedback), bistability (positive feedback), a frequency divider (nega-

tive/positive feedback) and a robust biomolecular controller (special negative feedback). To

do this, I combine different tools from control theory, nonlinear systems, systems biology,

and synthetic biology to model, analysis and interpret those principles to address questions

such as: How do we automate an oscillator? What are the conditions that raise bistability

in a positive feedback loop? What are the working conditions for a frequency divider and

its input/output rating to work as such? How can we build robust biomolecular controllers?

In order to build robust biomolecular controllers, we look to digital circuits. Tran-

sistors are the key to reliability in digital circuits, applicable to many implementations. A

sharp transition is present in the transistor’s input/output mapping, known in engineering

as a high gain and in biology as an ultrasensitive response. Inspired by this principle, we

introduce a new design principle in biomolecular circuits: ultrasensitivity. Our results show

that in oscillatory and bistable biomolecular systems, the desired dynamical behavior in-
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creases in the parameter space and is robust to parameter variability. Chapter 2 will discuss

this in detail.

Mechanisms to incorporate ultrasensitivity into these systems include cooperativ-

ity, molecular sequestration and zero-order ultrasensitivity. Although incorporating the first

two mechanisms improve the robustness of dynamical circuits, it is not yet reliable enough

for use in applications. Zero-order ultrasensitive mechanisms are also ideal for designing

circuits and are present in a variety of dynamical circuits found in nature. However, it is

very challenging to work with synthetic circuits, and so we introduce a new network mo-

tif, named the Brink Motif. In Chapters 2 and 3, we use the Brink Motif to produce an

ultrasensitive response and analyze it in the context of oscillatory and bistable biomolecu-

lar networks. Our results show very robust dynamical circuits with respect to parameter

variability and perform reliably under shared resource conditions.

Synthetic Biology has the potential to deliver valuable real-world applications and

requires biomolecular feedback controllers to do so. In Chapters 4 and 5, we propose the

use of the Brink Controller to design a robust closed loop control for biomolecular systems.

Our results suggest that the key requirement for robust tracking and constant disturbance

rejection in the system is an ultrasensitive steady state.

1.1 Contribution

Chapter 2: Elisa Franco developed the initial design idea. Christian Cuba Samaniego ex-

ecuted the analysis and numerical simulations. Franco Blanchini and Giulia Giordano

focused on the technical results. Jongmin Kim discussed the result in a biological
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context [28].

Chapter 3: Franco Blanchini and Giulia Giordano suggested the oscillator. Christian

Cuba Samaniego executed the analysis and numerical simulations. Elisa Franco fo-

cused on the technical results [26].

Chapter 4: Christian Cuba Samaniego developed the initial design idea and executed the

analysis and numerical simulations. Elisa Franco and Christian Cuba Samaniego fo-

cused on the technical results. Hari Subramanian provided feedback on the CRISPR/Cas

system. Christian Cuba Samaniego interpreted the results in a biological context [30].

Chapter 5: Christian Cuba Samaniego developed the initial design idea and executed

the analysis and numerical simulations. Elisa Franco and Christian Cuba Samaniego

focused on the technical results and interpreted the result in a biological context [25].

Chapter 6: Christian Cuba Samaniego developed the initial design idea and executed

the analysis and numerical simulations. Elisa Franco and Christian Cuba Samaniego

focused on the technical results and interpreted the results in a biological context.

1.2 Support

My graduate studies at U.C. Riverside were supported by Dean’s Distinguished

Fellowship Award, National Science Foundation through grant CMMI-1266402 and the

Department of Energy under grant DE-SC0010595.
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Chapter 2

Molecular titration enhances

robustness to parameter variability

in oscillatory and bistable minimal

networks

2.1 Results

In this chapter we show that biomolecular processes driven by monomeric regula-

tors can be combined to obtain oscillations and bistability. We consider minimal systems

whose output can be repressed or activated by an increase in input monomers. These

monomers bind to and control the production rate of a target molecule that represents

the module output; the monomer input can be titrated by competing species that serve as
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constitutive activators or inhibitors. By modulating the parameters of the titration process

we can control the steady state and the temporal response of the modules. In particular,

we show the total concentration of titrating species modulates the steady state response

threshold (or “dead-zone”) and the delay in the temporal response; the titration reaction

rate speed influences the steepness of the on/off transitions in the steady state and transient

response.

We interconnect modules to form canonical signal generators in biomolecular sys-

tems. Oscillators are important in biological organisms because they drive and synchronize

the activity of downstream pathways [47]. Timing signals are needed for synthetic molecular

systems as well, and many artificial oscillators have been built in vivo [36, 5, 45, 85, 89, 31]

and in vitro [51, 42, 65]. Bistable systems are equally relevant as they achieve robust

on-off behaviors and serve as memory elements in signal transduction and developmental

networks[38, 2], as well as being important components in artificial systems[46, 5, 53, 70].

Our approach combines numerical simulations and rigorous mathematical analysis.

The models we consider have many parameters, and it is desirable to establish what their

admissible dynamic behaviors are in a wide range of parameter variability, or – ideally –

for arbitrary parameter choices. We employ control and dynamical systems methods and

identify stability and monotonicity[2, 4] properties of the inhibited and activated modules;

we say these properties are structural because they do not depend on the specific parameters

chosen[10]. When these modules are interconnected to form a negative or a positive feedback

loop, we can conclude that they can exclusively admit instability of oscillatory or bistable

nature (respectively). Simulations are required to identify parameter values yielding the
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desired dynamics: we numerically integrate the models of the candidate dynamic networks

and study the parameter range in which the desired behavior is achieved. The simulations

reveals that direct titration is not necessary to achieve oscillations and bistability, but it

significantly enhances their robustness to parameter variability.

2.1.1 Minimal inhibited and activated modules

We consider molecular modules where monomeric activators and inhibitors com-

pete to determine the fraction of a target that is in an active (XT ) or inactive (X∗T ) state.

We say that our models are minimal because activators and repressors are monomeric, and

regulatory reactions are solely uni- and bi-molecular. In the rest of this paper we indicate

a chemical species with an uppercase letter, and its concentration with the corresponding

lowercase letter (e.g. species A has concentration a).

An inhibited module is composed of the target XT , a constitutive activator XA,

and is regulated by the inhibiting species RI (2.1 A). Similarly, an activated module is

composed of the target XT , a constitutive inhibitor XI , and an activator RA (2.1 F). We

assume that the total concentration of target is constant: xT + x∗T = xtotT at any point in

time. This assumption is reasonable if the target is, for instance, a gene whose copy number

is constant. Similarly, we assume that the total concentration of constitutive inhibitor and

constitutive activator are constant in each module; in other words, we assume that the

timescale of their production and degradation is much slower than the regulatory reactions

within the modules, and can thus be neglected for the purpose of our analysis. Like the

target XT , the constitutive inhibitor XI and activator XA switch between a functional

and inert state while their total concentrations remain constant. This assumption is handy
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because it allows us to examine the behavior of each system treating the total concentration

of constitutive activator/inhibitor species as a design parameter. The inert constitutive

activators/inhibitors are converted back to their active form at a constant rate. Finally, we

assume that the activators and inhibitors RA and RI are produced by “input” species UA

and UI respectively, and are degraded at a constant rate.

The regulators RI and RA bind directly to their target XT controlling the amount

of its active fraction. In addition, we also consider the case where regulators can bind to

the constitutive inhibitor or activator: these interactions result in titration of the regulators

available for direct target binding. Inhibitor RI binds to active target XT , converting it

to inactive target X∗T and releasing inert constitutive activator X∗A; however, RI also binds

to free XA, yielding an inert complex X∗A where RI is sequestered. A large amount of

free XA in solution can thus titrate RI , delaying inhibition of the target. The activated

module works in a similar manner. In practice, XI and XA could be proteins or RNA

species designed to bind to and titrate the input regulators RA and RI respecitvely[?,

41]. We refer to these reactions as “direct titration” or simply titration. The reactions

between regulators RI and RA, and the complexes XA and XI bound to targets X∗T and

XT , respectively, can be classified as titration reactions as well, but in this context we refer

to them as “indirect titration”. Molecular titration is a well known mechanism to generate

ultrasensitivity and delays [19, 18]; we will describe how these properties can be achieved

and tuned by controlling the direct titration reaction.

The reactions defining each module are listed below. (For simplicity we denote
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reaction rates with the same symbols when they have the same function in the two modules.)

Inhibited module Activated module

Activator: X∗
T +XA

α−−⇀ XT Inhibitor: XT +XI
δ−−⇀ X∗

T

Inhibitor: UI
β−−⇀ UI +RI Activator: UA

β−−⇀ UA +RA

Inhibition: XT +RI
δ−−⇀ X∗

T +X∗
A Activation: X∗

T +RA
α−−⇀ XT +X∗

I

Direct titration: XA +RI
ν−−⇀ X∗

A Direct titration: XI +RA
ν−−⇀ X∗

I

Recovery: X∗
A

κ−−⇀ XA Recovery: X∗
I

κ−−⇀ XI

Degradation: RI
φ−−⇀ ∅ Degradation: RA

φ−−⇀ ∅

Because the total concentration of species XT , XI , and XA is constant, we can write

the following mass conservation equalities: xtotT = xT + x∗T , xtotI = xI + x∗I + x∗T , and

xtotA = xA + x∗A + xT . 2.1 A and F show a graphical representation of the two modules

and their reactions. Using the law of mass action and the mass conservation equalities, we

obtain the following model for the inhibited module:

ẋT = α(xtotT − xT )xA − δxT rI (2.1)

ẋA = κ(xtotA − xA − xT )− α(xtotT − xT )xA − νxArI (2.2)

ṙI = βuI − φrI − δxT rI − νxArI . (2.3)

The differential equations describing the activated module are:

ẋT = α(xtotT − xT )rA − δxTxI (2.4)

ẋI = κ(xtotI − xI − (xtotT − xT ))− δxTxI − νxIrA (2.5)

ṙA = βuA − φrA − α(xtotT − xT )rA − νxIrA . (2.6)
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Boxes highlight terms associated with the titration reactions between constitutive acti-

vators/inhibitors and the input regulators. Before exploring numerically the behavior of

these differential equations, we point out some important properties of the stationary and

transient behavior of these systems.

Boundedness of the solutions, monotonicity of the equilibrium input/output maps,

monotonicity of the linearized dynamics, and unconditional stability are all important prop-

erties when considering these modules in the context of larger circuits[3, 10]. The fact that

these properties hold for (nearly) arbitrary choices of parameters indicates that our mini-

mal systems may be treated as input/output “gray box” modules. These modules can be

interconnected creating predictable, robust feedback loops whose net positive or negative

sign does not depend on the parameters. More detail can be found in [28].

2.1.2 The concentration of titrating species modulates the dose response

threshold and the delay of the time response.

Using the parameters reported in Table 2.1, we numerically solved the differential

equations describing the inhibited and the activated modules, examining their steady state

(Fig. 2.1 B, C, G, H) and their transient response (Fig. 2.1 D, E, I and J). The steady

state fraction of active target xT /x
tot
T shows a Hill-type dose response to the concentration

of species UA or UI that produce the regulator; the response threshold can be increased by

increasing the total concentration of constitutive activator or inhibitor (titrating species).

For example, Fig. 2.1 B shows that the steady state fraction of active target decreases as

the concentration of UI (the species producing inhibitor) increases; as the concentration of
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Figure 2.1: Stationary and transient behavior of the inhibited and activated modules de-
scribed in 2.1.1. A: Scheme of the inhibited module. B: Steady state fraction of target XT

as a function of the input uI (source of inhibitor RI), for varying amounts of total consti-
tutive activator XA. By increasing xtotA we move the “dead zone” of the response to the
right. C: Steady state fraction of active target as the titration rate ν varies, for xtotA = 400
nM; a large titration rate corresponds to a sharper on-off transition. D: Transient response
of the active fraction of xT for varying amounts of xtotA ; large xtotA introduces a delay in
the time it takes for the system to reach steady state. E: The transient response of the
activated module (active fraction of xT ) shows a sharper transition for large titration rate
ν. F: Scheme of the activated module. G: Steady state fraction of target xT as a function
of uA, for varying amounts of xtotI . H: Steady state response of the inhibited module, with
increasing titration rate ν, and xtotI = 400 nM. I: Transient response of the active fraction
of xT in the inhibited module as a function of xtotI , showing how delay is increased. J:
Transient response of the inhibited module (active fraction of xT ); the transition is sharper
as the titration rate ν increases.
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Figure 2.2: Rise time of the active fraction of target in the inhibited and activated module.
A significant increase in rise time occurs for low values of the input source, and large
concentration of constitutive activator/inhibitor. Below a certain concentration threshold
of uI and uA, the rise time is small because the target is not affected by activation and
inhibition reactions.

constitutive activator (titrating species) is increased up to 500 nM, the inhibition threshold

moves to the right reaching about 100 nM. A similar behavior is observed for the activated

module in Fig. 2.1 G. The dynamical effect of an increase in titrating species concentration is

a temporal delay in reaching steady state, as shown in Fig. 2.1 D and I; for the reaction rates

chosen in this example, the delay can reach 25-30 minutes. We numerically explored the

role of the titration reaction rate, whereby constitutive activators and inhibitors sequester

available regulator input. While the titration reactions are not required to obtain the

qualitative threshold-dependent dose response and the time delay, their presence sharpens

both responses. As shown in Fig. 2.1 C and H, the larger the titration rate the sharper is

the transition between on and off modules at steady state, once a certain UI or UA input

threshold is reached. Fig. 2.1 E and J show that the temporal switch between fully on and

fully off states of the target becomes sharper as the titration rate increases. We remark

that in the absence of titration (ν = 0) the systems still exhibit a dose response threshold

and a delay in the time response; large values of ν yield sharper nonlinear behaviors, in
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Table 2.1: Parameters for the inhibited system equations (2.1)-(2.3) and for the activated
system equations (2.4)-(2.6)

Rate Description Value Other studies

α (/M/s) Activation 3 · 105 Bimolecular reactions
δ (/M/s) Inhibition 3 · 105 Nucleic acids: 104 − 106 Refs.[53, 97]
ν (/M/s) Titration rate 3 · 105 Protein/Protein: 104 − 106 Refs.[79, 80]

β (/s) Production of regulator 5 · 10−3 RNA: 10−3 − 1 Refs.[91, 22]
Proteins: 3 · 10−3 − 1 Refs.[19]

κ (/s) Recovery of titrating 1 · 10−3 RNA: 10−5 − 10−2 Refs.[7, 22]
φ (/s) Degradation of regulator 1 · 10−3 Proteins: 10−4 − 10−3 Refs.[19]

particolar increased ultrasensitivity and faster temporal switch in activity.

To characterize the dynamic response of the modules we integrated the differential

equations varying the signal source, target and titrating species concentration. As a measure

of the delay, we then quantified the rise time of the target response, defined as the time

it takes for the target concentration to reach 60% of its steady state value. Results are

shown in Fig. 2.2: the rise time is most dramatically influenced by the concentration of

titrating species, and increases proportionally to it; as expected, the rise time is reduced by

increasing the concentration of source signal.

In summary, by modulating the concentration of titrating species and the titration

rate, we can control the characteristics of both the dynamic and the steady state response

of each modules. Specifically, we can determine the threshold and steepness of the steady

state nonlinearity, and we can modulate the delay of the temporal response. These features

are essential to build complex dynamical systems using the titration-based modules as

components.
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2.1.3 The feedback interconnection of inhibitor and activator modules

creates a negative feedback loop and is a structural oscillator

By interconnecting the inhibited and the activated module described in the previ-

ous sections, we create a negative feedback loop circuit and explore its capacity to exhibit

oscillations. A scheme of the interconnection is shown in Fig. 2.3 A. The differential equa-

tions of the oscillator are:

żT = αz(z
tot
T − zT )xR,A − δzzT zI , (2.7)

żI = κz(z
tot
I − zI − (ztotT − zT ))− δzzT zI − νzxR,A zI , (2.8)

ẋR,A = βxxT − αz(ztotT − zT ) xR,A − νzxR,A zI − φxxR,A, (2.9)

ẋT = αx(xtotT − xT )xA − δxxT zR,I , (2.10)

ẋA = κx(xtotA − xA − xT )− αx(xtotT − xT ) xA − νxxA zR,I , (2.11)

żR,I = βzzT − δxxT zR,I − νxxA zR,I − φzzR,I . (2.12)

The equations are ordered to highlight two groups of variables: zT , zI , xR,A and xT ,

xA, zR,I . The first group represents the inhibited subsystem, the second group represents

the activated subsystem (Fig. 2.3 A). First, we establish mathematically that this system

has the correct structure to oscillate, and that its only admissible transition to instability is

oscillatory. Second, we characterize the circuit behavior as a function of the concentration

of titrating species (constitutive activator and inhibitor), of titration reaction rate, and

production rate of regulators.
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Structural analysis

The oscillator is designed to have a negative feedback loop, which is generally

a necessary (not sufficient) condition for oscillations. However, equations (2.7)–(2.12) are

nonlinear ODEs with 16 parameters, which makes the system quite complex: it is reasonable

to ask what dynamic behaviors are admissible when the parameter values are varied. In

addition to verifying that the system can oscillate with numerical analysis (shown in the next

section), it is possible to establish analytically that – depending on the chosen parameters –

this model either behaves as an oscillator, or as a system with a unique, stable equilibrium

point. We can exclude multiple equilibria. We can reach this conclusion following different

routes.

In the absence of titration reactions, the system is the negative feedback inter-

connection of two unconditionally stable monotone subsystems (Section 3 of the SI). In

Fig. 2.3 A, the monotone subsystems are highlighted by gray boxes; the target species xT

and zT generate a single negative loop between the modules (orange lines). The equilibrium

conditions (derived analytically for each module) intersect in a single point for arbitrary

choices of the parameters. Due to the boundedness of the solution of each subsystem, the

solution of ODEs (2.7)–(2.12) is also bounded and we can identify a “box” in the space of

concentrations where the solution is trapped. These properties (together with other mild

assumptions listed in Sections 1 and 2 of the SI in [28]), imply that the only type of transi-

tion to instability admitted by this system is oscillatory: in other words, by changing one or

more parameters (reaction rates or total concentrations), we can push the only equilibrium

admitted by the system to become unstable, and this transition is driven by a pair of com-

15



plex conjugate eigenvalues which correspond to an oscillating solution. This is a behavior

akin to the well-known Hopf bifurcation. We say that this is a strong candidate oscillator

(Proposition 17, Section 3.1 of the SI in [28]), because the only admissible transition to

instability is oscillatory [10]. This is a structural property, in the sense that it does not

depend on the chosen system parameters.

When titration reactions are present the system is still a strong candidate oscil-

lator, even though the inhibited and activated module lose their structural monotonicity

properties (Section 3.2 of the SI in [28]). This can be demonstrated by computing explicitly

the characteristic polynomial of the Jacobian matrix: because its coefficients are all positive

(for any value of the parameters and equilibria), it cannot have positive real roots (Proposi-

tion 18, Section 3.2 of the SI in [28]). Thus, unstable eigenvalues must be complex conjugate

and this implies that transitions to instability can only be oscillatory. (This approach can

be also applied to the system in the absence of titration reactions.)

Numerical analysis

We integrate the differential equations (2.7)–(2.12) numerically, and we test the

capacity of the system to oscillate when certain parameters are varied. First, we randomly

varied reaction rates and total concentrations of species[24, 15] (Section 3.3.1 of the SI),

and we used that infomation to identify a nominal set of parameters (Table 2.2) that yields

oscillations with a period of roughly one hour, as shown in Fig. 2.3 B. Equilibrium conditions

intersect at a single equilibrium point, as expected based on our analytical derivations

(Fig. 2.3 C).

Varying the concentration of titrating species affects both the amplitude and the
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frequency of oscillation (Fig. 2.3 B): in particular, the higher xtotA and ztotI , the larger the

amplitude of oscillations. This is likely a consequence of two phenomena: the first is

the temporal delay observed when the titrating species concentration increases in each

module (Fig. 2.1 D, I and Fig. 2.2 A and B); the the second is the steady state response

threshold directly proportional to the titrating species concentration (Fig. 2.1 B, G). We

explored systematically period and amplitude as a function of xtotA and ztotI in Fig. 3.8 A,

for varying strength of the titration rate which we assumed for simplicity to be identical in

both subsystems (ν = νx = νz). All the other parameters are chosen as in Table 2.2. In

this figure, we computed period and amplitude numerically from trajectories integrated for

20 hours. These plots include also slowly damped oscillations; the region where oscillations

are sustained (found as the area where the eigenvalues of the Jacobian are complex with

positive real part) is inside the cyan contour. In the space xtotA and ztotI , the region where

oscillations are detected becomes larger as the titration rate is increased. This is likely

caused by the fact that a large titration rate sharpens the stationary and dynamic response

of each module. It is worth noting that the concentration of titrating species promotes

oscillations only in a certain range, which may change depending on the nominal operating

point; both excess or lack of xtotA and ztotI can cause loss of oscillations.

We also varied the total concentration of targets xtotT and ztotT , and observed that

the system is very sensitive to variations in the total concentration of inhibited target xtotT ,

which is the species responsible for creating negative feedback; in contrast, the system is

robust to variations in the total concentration of activated target ztotT , as shown in Fig. 3.8

B.
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The production rate of each regulator species is another particularly important

parameter: the feedback interconnection of the two linearized subsystems is defined pri-

marily by βx and βz, which can be thought of as parameters that control the “loop gain” of

the system. This is evident from the Jacobian matrix of the system, where two blocks are

interconnected precisely by βx and βz (SI Section 3.1.2 and 3.2.2 in [28]). The oscillatory

region in the βx-βz space is also increased when the titration rate is higher.

While the period is only moderately affected by the variations we considered,

the amplitude changes more significantly. A complete analysis of the oscillatory regions

as a function of all the system parameters is presented in the SI, Section 3.3.2 in [28].

Increasing the titration rate always expands the parameter areas where oscillations are

observed (Figures S2 and S3 in [28]).

Table 2.2: Nominal parameters for the oscillator

Rate Value Rate Value

αz (/M/s) 75 · 103 αx (/M/s) 3 · 105

δz (/M/s) 3 · 105 δx (/M/s) 3 · 105

νz (/M/s) 3 · 105 νx (/M/s) 3 · 105

βz (/s) 5 · 10−3 βx (/s) 2 · 10−2

κz (/s) 1 · 10−3 κx (/s) 1 · 10−3

φz (/s) 1 · 10−3 φx (/s) 1 · 10−3

ztotT (nM) 250 xtotT (nM) 120
ztotI (nM) 700 xtotA (nM) 300
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Figure 2.3: A: Schematic of the oscillator system built by interconnecting an inhibited and
an activated module. B: Trajectories of the target species when equations (2.7)–(2.12) are
integrated using nominal parameters (Table 2.2). C: Trajectories in panel B overlapped with
the system equilibrium equations (Section 3.2 of the SI file [28]). D and E: Trajectories
of the target species for variable concentrations of constitutive activators and inhibitors,
obtained by integrating equations (2.7)–(2.12) using nominal parameters (Table 2.2). The
concentration of titrating species affect primarily the amplitude of the oscillations.
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Figure 2.4: Period and amplitude of the oscillations when key parameters are varied near
their nominal value (2.2), for increasing value of the titration rates. Axes are in log scale;
parameters are varied between one tenth and ten times their nominal value. Oscillations
(sustained or damped) occur in the gray areas; the cyan contour indicates the region of sus-
tained oscillations (the linearized system has dominant unstable complex conjugate eigen-
values); the orange diamond indicates the nominal value of the parameters. A: Variation
of the concentration of constitutive activators and inhibitors xtotA and ztotI . B: Variations of
total target concentrations xtotT and ztotT . The system is robust to variations in the target
molecule of the activated subsystem. C: Variations of the production rates of regulators,
which control primarily the strength of the feedback loop. In all cases, a larger titration
rate expands the oscillatory regions.
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2.1.4 Mutually inhibiting modules create a positive feedback loop and a

structural bistable system

Two inhibited modules can be mutually interconnected by designing the output of

one module to be the inhibitor input of the other, as sketched in Fig. 2.5 A. The differential

equations are:

żT = αz(z
tot
T − zT )zA − δzzTxR,I , (2.13)

żA = κz(z
tot
A − zA − zT )− αz(ztotT − zT )zA − νzxR,IzA, (2.14)

ẋR,I = βxxT − δzzTxR,I − φxxR,I − νzxR,IzA, (2.15)

ẋT = αx(xtotT − xT )xA − δxxT zR,I , (2.16)

ẋA = κx(xtotA − xA − xT )− αx(xtotT − xT )xA − νxxAzR,I , (2.17)

żR,I = βzzT − δxxT zR,I − φzzR,I − νxxAzR,I . (2.18)

As done for the oscillator, the variables have been grouped as zT , zA, xR,I and xT ,

xA, zR,I to separate the two inhibited subsystems (Fig. 2.5 A). The list of chemical reactions

is reported in the SI, Section 4. In the next sections, first we establish if this system has the

capacity to exhibit multistationary behaviors. Then, we explore the bistability regions as a

function of various species concentrations and of the titration rate. Fast titration reaction

rates always yield larger bistability regions, although this effect is less prominent than in

the oscillator.
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Figure 2.5: A: Schematic of the bistable system built by interconnecting two inhibited mod-
ules. B: Trajectories of the target species when equations (2.13)–(2.18) are integrated using
nominal parameters (Table 2.3). C: Trajectories in panel B (solid grey lines) overlapped
with the system equilibrium equations (Section 4.2 of the SI file [28]). D and E: Bifurca-
tion diagram of equations (2.13)–(2.18) using nominal parameters (Table 2.3) for varying
concentrations of the two constitutive activators.
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Structural analysis

As for the oscillator circuit, model (2.13)–(2.18) is quite complex: nevertheless,

we can establish mathematically that for appropriate choices of parameters, the system ei-

ther presents a single stable equilibrium or more than one stable equilibrium (accompanied

by the emergence of unstable equilibria) where the dominant eigenvalue is real. There is

no choice of the parameters that will make the system oscillate. In fact, the two inhib-

ited modules in the absence of titration reactions are both unconditionally stable, their

solutions are bounded, and they are input-output monotone systems (SI Section 2.1 and

2.2 [28]). The two monotone modules are connected via a single positive feedback loop;

in Fig. 2.5 A, the modules are represented by components in the gray boxes; the positive

feedback loop is generated by the target species and is highlighted with the orange lines.

The properties satisfied by the modules imply that their interconnection (2.13)–(2.18) can

only undergo real transitions to instability [10]; this kind of instability is related to the

well-known saddle-node bifurcation. We say that this system is a strong candidate bistable

system (Proposition 20 in the SI, Section 4.1.2 [28]): no matter how its reaction rates and

total component concentrations are varied, the system dynamics are restricted to be either

bistable or monostable.

In the presence of titration reactions, we cannot reach the same analytical con-

clusions without making assumptions on the region where the system equilibria fall (which

depends on the specific choice of parameters). However, numerical simulations presented in

the next section show that the presence of titration reactions expands the bistability region

of the system significantly.
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Numerical analysis

We identified a set of nominal parameters (Table 2.3) via a preliminary randomized

exploration[24, 15] of the parameter space (SI Section 4.3.1 [28]), where for simplicity we

assumed the two subsystems have the same parameters. The trajectories of xT and zT

obtained with the nominal parameter set are shown in Fig. 2.5 B, and their behavior in

phase space is shown in Fig. 2.5 C. When we vary the concentration of the titrating species

near their nominal values, we obtain bifurcation diagrams that clearly show the coexistence

of three equilibria, of which two are stable and one is unstable, as shown in Fig. 2.5 D and

E.

We then explored bistability trends in the region near the nominal parameters

(Table 2.3). Bistability regions were computed by numerically finding the intersections

of the equilibrium conditions, and then checking the magnitude of the eigenvalues of the

Jacobian matrix computed at the equilibrium (see SI, Section 4.3.2 for further details [28]).

In Fig. 2.6 we vary the concentration of titrating species, of targets, and the regulator

production rates (all other parameters are kept constant as in Table 2.3). First of all, we

note that in the absence of titration reactions (νx = νz = 0), the system becomes very

sensitive to variations in the concentration of titrating species, and the region of bistability

is very narrow; this limitation can be relaxed by increasing the titration rate (Fig. 2.6

A). In contrast, the concentration of target species can significantly vary without affecting

bistability, and again a fast titration rate expands the bistable region. Similarly, changes

in the regulator production rates (which determine the strength of the feedback loop) are

tolerated in a reasonably large range, as long as the rates remain large. As in the oscillator,
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increasing the titration rate always broadens the bistable regime; this is verified numerically

for all other parameters in the system (SI, Section 4.3.2, Figures S5 and S6 [28]).

Table 2.3: Nominal parameters for the bistable system

Rate Value

αz = αx (/M/s) 3 · 104

δz = δx (/M/s) 3 · 104

νz = νx = δz (/M/s) 3 · 104

βz = βx (/s) 0.0021
κz = κx (/s) 3 · 10−4

φz = φx (/s) 1 · 10−3

ztotT = xtotT (nM) 100
ztotA = xtotA (nM) 200

2.2 Discussion and Conclusions

We have demonstrated that biomolecular modules regulated by monomeric inputs

can be successfully interconnected to build two essential circuit components: an oscillator

and a bistable switch. We considered deterministic ODE models of these modules, which are

composed by a target molecule and by its constitutive regulators (activators or inhibitors);

input regulators compete with the constitutive regulators, which act as titrating species for

the input, to determine the active or inactive state of the target. The steady state and

transient response of the target molecule concentration can be finely tuned by appropriate

design of the titration rate and the concentration of the titrating species. Specifically, these

parameters determine the “dead-zone” and steepness of the on/off transitions in the steady

state dose response, and the speed and delay of the dynamic response, which promote the

emergence of oscillations and bistability when modules are interconnected in feedback loops.
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Figure 2.6: Regions of bistability near the nominal parameters (2.3) for increasing value
of the titration rates; we assume the two inhibited subsystems have identical parameters
for simplicity. Axes are in log scale; parameters are varied between one tenth and ten
times their nominal value. A: Variations in the concentration of constitutive activators; the
bistability region is very narrow, but can be expanded by increasing the titration rate. B:
Bistability region as a function of the total target concentration. C: Bistability region as
a function of the regulator production rates βx and βz which control the strength of the
feedback loop (Section 4 of the SI [28]).
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One important finding is that, although direct titration reactions significantly increase the

probability of the circuits to oscillate or have multiple steady states, they are not strictly

necessary to provide the systems with the capacity for these complex behaviors.

Our numerical simulations are accompanied by rigorous mathematical analysis:

we show that the modules and their interconnections have many important properties that

do not depend on the model parameters (reaction rates and total concentrations of compo-

nents). We say our analysis is structural precisely because it allows us to establish properties

of the systems that hold for arbitrary parameter values; this approach can yield useful in-

sights in nonlinear systems with many parameters. In particular, we show that in the

absence of direct titration the modules are bounded, unconditionally stable input-output

monotone systems[2, 4] under very mild assumptions (the concentration of constitutive reg-

ulators should be larger than the concentration of their target molecule). These properties

guarantee that when a positive or negative feedback loop is generated by their intercon-

nection, the admissible bifurcations in the system are either exclusively multistationary

(positive feedback) or exclusively oscillatory (negative feedback). These results build on

previous theoretical work[10] where a complete classification of oscillatory and multista-

tionary systems is proposed based on Jacobian cycles. The presence of titration reactions

weakens these structural properties, making them dependent on the location of the equi-

libria and on the strength of the titration rate. However, numerical simulations show that

titration increases the probability of bistability and oscillations, because it sharpens the

stationary and temporal response of the modules, and increases the delay in the system.

In addition to the concentration of titrating species and to the titration rates, key
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parameters in the modules are the production rates of the regulators βx and βz. These

rates primarily influence the strength of the feedback loops both in the oscillator and in

the bistable system, as can be seen from the linearization of the modules’ ODEs shown in

the SI Sections 3 and 4. High gain in a feedback loop can generally destabilize a dynamical

system; however, βx and βz influence other parts of the linearized dynamics as well, thus

their increase does not guarantee that the desired bifurcation will occur.

While it is well known (experimentally and theoretically) that molecular titration

can be tuned to generate nonlinear ultrasensitive responses and delays[19, 18, 73], to our

knowledge very few attempts have been made to build complex dynamic networks using

this mechanism. Experimentally, molecular titration obtained via RNA polymerase sigma

factors was used in vivo to build a bistable switch with tunable domain boundaries and

the capacity for state toggling[21]. In vitro, titration pathways very similar to those we

describe here were used to build a bistable switch[53] and an oscillator[51, 42]. In these sys-

tems, the target molecules are DNA templates that produce RNA outputs acting as mutual

template regulators; template activity is switched on and off via a partial promoter dis-

placement reaction, whose speed is determined by sequence and length of toehold domains

on the nicked promoter (?? B). In these systems, templates are constitutively activated

or repressed depending on the presence of DNA activators (which complete the promoter)

and DNA inhibitors (which displace the activators). RNA regulators either inhibit (by

displacing DNA activators) or activate (by displacing DNA inhibitors) the templates, gen-

erating inert activator or inhibitor complexes which can be recovered by RNase H-mediated

degradation of RNA bound to DNA. By increasing the concentration of titrating species
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(DNA activators/inhibitors) within certain bounds, the oscillatory or bistable behavior of

the systems is significantly enhanced[42]. The molecular oscillator is also highly sensitive

to the concentration of RNA polymerase, which in the system determines the production

rates. These experimental findings are consistent with the results of our analysis.

A common feature of existing dynamic systems built using molecular titration[21,

53, 51, 42] is that the domains in parameter space where oscillations or bistability are

achieved is generally narrow. Recently, this was clearly highlighted in a series of experiments

where the in vitro oscillator by Kim and Winfree was encapsulated in microdroplets[92];

the droplet production process causes a perturbation of the nominal operating point of the

system (in particular, there is a loss of enzymes activity), and results in a striking dynamical

diversity and often a loss of oscillations in droplets. This is consistent with our numerical

analysis, and we speculate that this might be a consequence of the monomeric nature of the

regulators in the system. In a regime where stochastic effects are predominant, however,

the lack of cooperativity may not be a significant limitation to achieve complex behaviors,

depending on the system architecture[90, 58].

We expect that our analysis of molecular titration in the context of feedback

systems will be useful to build circuits with new classes of monomeric regulators such

as the CRISPR-Cas system . Logic circuits based on CRISPR-Cas have been recently

characterized[68, 9], however feedback loops with bistable or oscillatory responses have not

yet been obtained, presumably due to the difficulty in obtaining sharp nonlinear responses

required for these behaviors. While building circuits with multiple, interconnected feed-

back loops may prove helpful[56], we speculate that titration of the guide RNA with over
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expressed titrating RNA species might be an effective strategy.
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Chapter 3

Stability analysis of an artificial

biomolecular oscillator with

non-cooperative regulatory

interactions

3.1 Introduction

All organisms require timing circuits to orchstrate processes related to their life

cycle, such as cell growth, metabolism, and division [93]. By building molecular timers from

the bottom up, we have an opportunity to understand the design requirements to program

periodic biochemical behaviours. In addition, synthetic oscillators are useful components

to direct autonomous molecular operations in vivo and in vitro [36, 85, 89, 31, 92].
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In vitro nucleic acid oscillators can be built with a small number of parts, and

their behaviour is quantitatively predictable [51, 42, 65, 44, 92]. Nucleic acids have become

molecular building blocks for a variety of logic and dynamic circuits, because their thermo-

dynamic and kinetic interactions can be programmed by choosing their sequence content

with rational optimisation algorithms. Existing nucleic acid oscillators however cannot be

ported to the cellular environment, because they rely on the presence of multiple single-

stranded or partially single-stranded DNA species, which are incompatible with the cellular

machinery [51, 42, 65, 44]. Here we describe a new nucleic acid oscillator architecture that

has the potential to overcome this limitation, as it does not require single stranded DNA

molecules. A particularly interesting aspect of our model is that it does not include Hill-type

nonlinearities, present in the majority of models for molecular oscillators. All regulatory

interactions in this circuit are non-cooperative.

Our molecular oscillator comprises three polymerases, two of which mutually reg-

ulate each other (Fig 3.1 A). The interactions among enzymes are defined by four synthetic

genes and four RNA species (Fig 3.1 B). The activity of two of the enzymes is modulated

by RNA species that serve as inhibitors or activators. The third enzyme species controls

the baseline production of two of the RNA species, and has a net effect of counteracting

the mutual regulation of the other two enzymes. For instance, let us consider the pathway

by which enzyme E2 is inhibited by enzyme E1 and activated by enzyme E3. E1 produces

RNA species R1 by transcribing gene g1; R1 binds to and inhibits enzyme E2, converting it

to inactive enzyme E∗2 (a reaction experimentally demonstrated, for instance, in [69, 67]).

RNA species R4 (transcribed by E3) counteracts this pathway and causes reactivation of
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Figure 3.1: A: Architecture of the three-node oscillator: enzymes E1 and E2 mutually reg-
ulate their concentration (arrows indicate activation, flat arrows indicate repression) gener-
ating a negative feedback loop; enzyme E3 counteracts the loop regulation. B: Schematic of
the chemical reactions underlying the oscillator architecture. Different enzyme species are
indicated as circles of different color; bright color indicates active enzyme, and dim color
indicates inactive enzyme. RNA species are transcribed (dashed arrows) from synthetic
genes present at constant concentration; enzymes are activated or inhibited by a given
RNA species according to the illustrated reactions and corresponding rates. The full set of
reactions is listed in Section 2, and result in ODE systems (3.1) and (3.2).

E2 (conversion of E∗2 to E2), because it is designed to displace R1 bound to E2, and to

titrate free R1 as well. Similar reactions generate inhibition and activation pathways for

E1 (due to E3 and to E2, respectively). Overall, these interactions contribute to creating a

negative feedback loop. This system can be experimentally implemented using T7, T3, and

SP6 bacteriophage RNA polymerases [86, 62, 55], which can be purchased off-the-shelf from

many vendors. RNA sequences (known as aptamers [34]) that bind to bacteriophage RNA

polymerases and work as inhibitors have been experimentally characterised [67, 69]. RNA

activators can be designed as strands whose sequence are complementary to the sequences

of the inhibitors via the mechanism of strand displacement and strand titration [94, 53].
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We describe this system by means of ordinary differential equations (ODEs) built

using the law of mass action, starting from a list of chemical reactions reported in Sec-

tion 2. We demonstrate that the system is a candidate oscillator due to the sign pattern

of its Jacobian matrix [10, 14]; in particular we show that the system admits transitions to

instability that are exclusively oscillatory.

Our analysis relies on monotone systems theory (background is provided in Sec-

tion 3) and the theory of invariant sets. In Section 4 we study the capacity of this dynamical

system to structurally exhibit sustained oscillations whenever it becomes unstable, in view

of its particular Jacobian structure; this approach can be applied to a variety of chemical

reaction networks, as we have shown, for instance, in the context of other titration-based

regulatory networks [77]. Structural (namely, parameter-free) results can greatly help un-

ravel the functioning of biological systems, which are affected by intrinsic uncertainties and

variabilities in their parameters, but can nonetheless exhibit an extraordinary robustness

and resilience [12]. We conclude with a numerical bifurcation analysis and study of period

and amplitude as a function of variations in individual parameters, showing that for real-

istic reaction rates the system exhibits oscillatory behaviours (Section 5). We previously

described a two-enzyme oscillator relying on RNA aptamers [15, 29]; we claim that a three-

enzyme system is more tunable, and simulation results indicate that in a certain region of

parameter space its amplitude can be modulated independently from the period.
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3.2 A three-enzyme oscillator regulated by first and second

order reactions

In the following, capital letters represent chemical species and the corresponding

lowercase letters represent species concentrations (e.g., species A has concentration a). Our

three node oscillator is described by the biochemical reactions below. Reactions are grouped

in two sets corresponding to functional modules (Fig. 3.2), whose common external input

is E3. For simplicity we assume a common degradation rate for all products Ri, i = 1, ..., 4.

Module 1:

E1
α1−−⇀ E1 +R1 Production

E3
α3−−⇀ E3 +R3

E2 +R1
β1−−⇀ E∗2 Inhibition

E∗2 +R3
γ1−−⇀ E2 Conversion

R1 +R3
δ1−−⇀ 0 Titration

R1
φ−−⇀ 0 Degradation

R3
φ−−⇀ 0

Module 2:

E2
α2−−⇀ E2 +R2 Production

E3
α4−−⇀ E3 +R4

E1 +R4
β2−−⇀ E∗1 Inhibition

E∗1 +R2
γ2−−⇀ E1 Conversion

R2 +R4
δ2−−⇀ 0 Titration

R2
φ−−⇀ 0 Degradation

R4
φ−−⇀ 0

The differential equations describing Module 1 are:

ṙ1 = α1e1 − β1r1e2 − δ1r1r3 − φr1,

ṙ3 = α3e3 − γ1r3e
∗
2 − δ1r1r3 − φr3, (3.1)

ė2 = γ1r3e
∗
2 − β1r1e2.
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Figure 3.2: Schematic of the interconnections between reaction Modules 1 and 2, with
enzyme concentrations as inputs and outputs.

The differential equations describing Module 2 are:

ṙ2 = α2e2 − γ2r2e
∗
1 − δ2r2r4 − φr2,

ṙ4 = α4e3 − β2r4e1 − δ2r2r4 − φr4, (3.2)

ė1 = γ2r2e
∗
1 − β2r4e1.

The total concentration of E1 and E2 is assumed to be constant, and equal to etot1

and etot2 respectively; hence, mass conservation laws yield e∗1 = etot1 − e1 and e∗2 = etot2 − e2.

The two modules are interconnected and form a feedback loop: Module 1 (associated with

variables r1, r3 and e2) receives input e1 from Module 2; in turn, Module 2 (associated with

variables r2, r4 and e1) receives input e2 from Module 1. Both modules receive input e3,

which we assume is constant (Fig. 3.2); we assume that the timescale at which e3 binds

to a gene and transcribes RNA is fast relative to the other timescales in the system, so

that it can be neglected; this assumption is sensible for short transcripts (30-60 bases). In

the next sections we demonstrate that transitions to instability in this system can occur

exclusively due to a pair of complex conjugate eigenvalues crossing the imaginary axis,

hence sustained oscillations necessarily arise whenever the system is driven to instability.
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From numerical simulations it is apparent that the system can actually be destabilised, for

suitable parameter choices, and is therefore a good candidate oscillator.

3.3 Background

We summarise several background notions that are required to introduce our main

results in Section 3.4. Additional information can be found in references [10, 14]. Consider

a system:

ẋ(t) = f(x(t), µ), x ∈ Rn, (3.3)

where µ is a real-valued parameter and f(·, ·) is a sufficiently smooth function, continuous

in µ, satisfying the following Assumptions for every admissible value of µ.

Assumption 1 All the solutions of (3.3) are globally uniformly asymptotically bounded in

the compact set S ⊂ Rn.

Hence, system (3.3) admits an equilibrium x̄ in S ([83, 74, 75]).

Assumption 2 ∂fi/∂xj is either always positive, always negative, or always null in the

considered domain.

Assumption 3 For all i, ∂fi/∂xi < 0, i.e., the system is non-autocatalytic.

Due to the monotonicity of fi(·) with respect to each argument xj , the Jacobian matrix J

of system (3.3) is sign definite.

Definition 1 Given a system with a sign-definite Jacobian J, its structure is the sign

pattern matrix Σ = sign[J].
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The structure Σ of system (3.3) is assumed to be invariant with respect to µ. Assumption 1

ensures that an equilibrium exists; all the following definitions refer to this equilibrium,

which is, in general, a function of µ: f(x̄µ, µ) = 0. We assume that x̄µ depends continuously

on µ. Note that a suitable change of coordinates always allows us to shift the equilibrium

to the origin, without affecting our analysis.

Definition 2 System (3.3) undergoes a Transition to Instability (TI) at µ = µ∗ iff its

Jacobian matrix J(x̄µ) is asymptotically stable in a left neighborhood of µ∗, and unstable in

a right neighborhood1. A TI is simple if at most a single real eigenvalue or a single pair of

complex conjugate eigenvalues crosses the imaginary axis.

Definition 3 System (3.3) undergoes an Oscillatory Transition to Instability (OTI) at µ =

µ∗ iff its Jacobian matrix J(x̄µ∗) has a single pair of pure imaginary eigenvalues, while all

the other eigenvalues have negative real part:

σ (J(x̄µ∗)) = {λ1, λ2, . . . , λn}, where λ1,2 = ±jω,

with Re(λk) < 0 for k > 2 and Re(λk) > 0 for k = 1, 2 in a right neighborhood of µ∗.

We now provide general definitions for candidate oscillatory and multistationary

systems. We consider system (3.3), with its given structure Σ (invariant with respect to µ),

under Assumptions 1, 2 and 3.

Definition 4 A system of the form (3.3), with structure Σ, is structurally a candidate

1. oscillator in the weak sense iff it admits an OTI for some µ = µ∗;

1The definition holds as well for systems transitioning to instability from the right to the left neighborhood
of µ∗: just take µ̂ = µ∗ − µ as the bifurcation parameter.
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2. oscillator in the strong sense iff every simple TI (if any) is an OTI;

Necessary and sufficient conditions characterizing strong and weak oscillators/

multistationary systems are provided in [10] in terms of cycles in the structure graph. We

associate matrix Σ with a directed n-node graph, whose arcs are positive (+1), negative

(−1), or zero depending on the sign of the corresponding matrix entries.

Definition 5 Given a graph, a cycle is an oriented, closed sequence of distinct nodes con-

nected by distinct directed arcs. A cycle is negative (positive) if the number of negative arcs

is odd (even). The order of a cycle is the number of arcs involved in the cycle. We say a

system is critical when all negative cycles (if any) are of order two.

Proposition 6 A non-critical system is a candidate oscillator in the weak sense if and only

if its structure has at least one negative cycle (necessarily of order greater than two).

Proposition 7 A non-critical system is a candidate oscillator in the strong sense if and

only if its structure has only negative cycles.

Proofs for Propositions 6 and 7 can be found in [10].

Remark 8 The results above are verified as well if we drop Assumption 1 and we restrict

our analysis to solutions that belong to a compact positively invariant set S, with a non-

empty interior and with no equilibrium points on the boundary.

The graph-based results in [10] have been generalised in [14] to the case of systems

composed of the sign definite interconnection of subsystem that are either monotone or

anti-monotone. We provide below the definitions of monotone and anti-monotone system.
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Definition 9 A system

ẋ(t) = f(x(t), u(t)), (3.4)

where u(·) ∈ R is a scalar, time varying input, is input-to-state monotone if, denoting as

x1(t) and x2(t) the solutions of the system corresponding to inputs u1(t) and u2(t), the fact

that x2(0) ≥ x1(0) and u2(t) ≥ u1(t) for t > 0 implies that x2(t) ≥ x1(t) for t > 0, where

inequalities are intended to hold componentwise. The system is input-to-state anti-monotone

if the input has the opposite effect on the state, i.e., if x2(0) ≥ x1(0) and u2(t) ≤ u1(t) for

t > 0, then x2(t) ≥ x1(t) for t > 0. If the system includes an output y = g(x), the system is

input-output monotone (anti-monotone) if it is input-to-state monotone (anti-monotone)

and if x2 ≥ x1 implies g(x2) ≥ g(x1).

A simple characterisation of input-to-state monotonicity and anti-monotonicity [2,

82] can be provided by exploiting the concept of Metzler matrix: a matrix is Metzler if its

elements satisfy aij ≥ 0, ∀(i, j) such that i 6= j.

Theorem 10 System (3.4) is input-to-state monotone if its Jacobian matrix J = ∂f/∂x

is a Metzler matrix and ∂f/∂u ≥ 0 componentwise. Conversely, system (3.4) is input-to-

state anti-monotone if its Jacobian matrix J = ∂f/∂x is a Metzler matrix and ∂f/∂u ≤ 0

componentwise.

A more general concept, which we will use in the following, is given by monotonicity

(or anti-monotonicity) with respect to a given signature tuple (s1, . . . , sn), where si = 1 or

−1 for all i [37]: this amounts to requiring that, after changing the sign of the state variables

as x̂i = sixi for all i, the system becomes monotone (or anti-monotone). Hence, Theorem 10

applies to the system in the new coordinates.
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3.4 Analytical results

3.4.1 Existence of equilibria

First, we show that this system always admits a steady state (equilibrium).

Proposition 11 Consider the interconnection of systems (3.1) and (3.2). For any constant

e3 > 0, there exists a suitably large ρ ∈ R+ such that the compact set

Sρ =
{
r1, r2, r3, r4, e1, e2 ≥ 0 : r1 + r3 ≤ ρ, r2 + r4 ≤ ρ, e1 ≤ etot1 , e2 ≤ etot2

}
is positively invariant. Moreover, all of the solutions of the system are globally uniformly

asymptotically bounded in Sρ, hence the interconnection of systems (3.1) and (3.2) satisfies

Assumption 1.

Proof. The inequalities e1(t) ≤ etot1 and e2(t) ≤ etot2 are always satisfied by construction.

Consider the constraint r1 + r3 ≤ ρ and assume that at some point r1 + r3 = ρ. Then

d

dt
(r1 + r3) = α1e1 − β1r1e2 − δ1r1r3 − φr1 + α3e3 − γ1r3e

∗
2 − δ1r1r3 − φr3

≤ α1e
tot
1 + α3e3 − φr1 − φr3 = α1e

tot
1 + α3e3 − φρ < 0

for ρ large enough: ρ >
α1etot1 +α3e3

φ . Hence, the constraint r1 + r3 ≤ ρ cannot be violated.

Analogously, the constraint r2+r4 ≤ ρ cannot be violated because, if at some point r2+r4 =

ρ, then

d

dt
(r2 + r4) ≤ α2e

tot
2 + α4e3 − φr2 − φr4 = α2e

tot
2 + α4e3 − φρ < 0

for ρ >
α2etot2 +α4e3

φ . Then, any value ρ > max
{
α1etot1 +α3e3

φ ,
α2etot2 +α4e3

φ

}
ensures that Sρ is

positively invariant. Also, since d
dt(r1 + r3) is negative whenever r1 + r3 ≥ ρ and d

dt(r2 + r4)
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is negative whenever r2 + r4 ≥ ρ, any trajectory of the system is uniformly asymptotically

bounded in Sρ (indeed, V1 = r1 + r3 and V2 = r2 + r4 can be taken as Lyapunov-like

functions for modules 1 and 2, respectively, to show that all the trajectories of the system

are uniformly ultimately bounded in the compact set Sρ [11]).

Proposition 12 The dynamical system defined by the interconnection of systems (3.1)

and (3.2) always admits the existence of a steady state.

Proof. The existence of the compact invariant set Sρ where the solutions of the system

are globally uniformly asymptotically bounded (Proposition 11) implies the existence of a

steady state [83, 74, 75].

We later demonstrate that this steady state is unique.

Remark 13 The presence of degradation reactions (at rate φ > 0) is essential to have

structural boundedness. In fact, if we set φ = 0 and we consider the function ψ = −r1 +

r3 + e2, we have

ψ̇ = −ṙ1 + ṙ3 + ė2 = −α1e1 + α3e3 ≥ −α1e
tot
1 + α3e3,

which may grow unbounded for a large value of e3.

3.4.2 Monotonicity properties and uniqueness of equilibrium point

Now we show that the overall system is the feedback interconnection of two sub-

system, corresponding to the modules defined earlier, that are respectively anti-monotone

and monotone. This property further implies that the system admits a unique equilibrium.
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We individually linearise subsystems (3.1) and (3.2) around an equilibrium point

(which is guaranteed to exist), and we begin by studying each subsystem in isolation.

Module 1: ż = A1z + B1δe1, (3.5)

Module 2: ẇ = A2w + B2δe2, (3.6)

where the linearised state variables of each subsystems are z = [δr1 δr3 δe2]> and w =

[δr2 δr4 δe1]>. We denote equilibrium values of each variable with a ¯ symbol (e.g., ē1 is

the equilibrium of e1). The linearised dynamics are defined by matrices:

A1 =


−β1ē2 − δ1r̄3 − φ −δ1r̄1 −β1r̄1

−δ1r̄3 −γ1ē
∗
2 − δ1r̄1 − φ γ1r̄3

−β1ē2 γ1ē
∗
2 −β1r̄1 − γ1r̄3

 , B1 =


α1

0

0


and

A2 =


−γ2ē

∗
1 − δ2r̄4 − φ −δ2r̄2 γ2r̄2

−δ2r̄4 −β2ē1 − δ2r̄2 − φ −β2r̄4

γ2ē
∗
1 −β2ē1 −γ2r̄2 − β2r̄4

 , B2 =


α2

0

0

 .

The two linearised subsystems are stable, and the matrices defining their dynamics

(Jacobian matrices of the nonlinear systems) are Metzler up to changes in the sign of some

variables. This can be easily shown by changing sign to the first component of z and to the

second component of w: z1 := −z1 and w2 := −w2. This is equivalent to changing sign to

the variables r1 and r4 in the original system and provides matrices

Â1 =


−β1ē2 − δ1r̄3 − φ +δ1r̄1 +β1r̄1

+δ1r̄3 −γ1ē
∗
2 − δ1r̄1 − φ γ1r̄3

+β1ē2 γ1ē
∗
2 −β1r̄1 − γ1r̄3

 B̂1 =


−α1

0

0

 (3.7)
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and

Â2 =


−γ2ē

∗
1 − δ2r̄4 − φ +δ2r̄2 γ2r̄2

+δ2r̄4 −β2ē1 − δ2r̄2 − φ +β2r̄4

γ2ē
∗
1 +β2ē1 −γ2r̄2 − β2r̄4

 B̂2 =


α2

0

0

 (3.8)

Proposition 14 Matrices Â1 in (3.7) and Â2 in (3.8) are Metzler and are Hurwitz stable.

Moreover, their inverse matrices are (element-wise) negative.

Proof. Consider systems (3.5) and (3.6), which after the sign change have matrices (3.7)

and (3.8). Since all of their off-diagonal entries are non-negative, Â1 and Â2 are Metzler

matrices. They are also irreducible2. Hurwitz stability (all the eigenvalues of the Jacobian

J = ∂f/∂x(x̄) have a negative real part) immediately follows from the fact that Â1 and Â2

are Metzler and diagonally dominant, with negative diagonal entries (this is a consequence

of Gershgorin’s circle theorem). Finally, any stable and irreducible Metzler matrix has an

element-wise negative inverse (see [11] for details).

We are now ready to demonstrate monotonicity properties of the two nonlinear

modules.

Proposition 15 Systems (3.1) and (3.2) are respectively input-to-state anti-monotone and

monotone after the sign change in the variables:

r̂1 = −r1 and r̂4 = −r4. (3.9)

Proof. This follows from Theorem 10, since the state matrices Â1 and Â2 are Metzler,

while the input matrices B̂1 and B̂2 are respectively nonpositive and nonnegative.

2A matrix is irreducible if there does not exist a permutation of its rows or columns that transforms it
into a block triangular matrix.
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Monotonicity and stability have important consequences on the static input-state

and input-output characteristics (input-output equilibrium conditions) and on uniqueness

of the equilibrium point. Indeed, the feedback of two systems that are either monotone or

anti-monotone always admits a single equilibrium point (if any).

We have shown in Proposition 12 that an equilibrium always exists; we prove

below, for completeness, that the static input-output characteristics of the two modules are

monotonic, hence such an equilibrium point is unique.

Proposition 16 We assume that inputs e1 and e2 in systems (3.1) and (3.2) are constant.

Then, the steady-state values of the modules, r̄1(e1), r̄3(e1), ē2(e1) and r̄2(e2), r̄4(e2), ē1(e2),

depend monotonically on the inputs. Precisely, r̄2(e2), r̄4(e2) and ē1(e2) monotonically

increase as a function of e2, while r̄1(e1), r̄3(e1) and ē2(e1) monotonically decrease as a

function of e1.

Proof. We recall that, for a generic system ẋ = f(x, u), the steady-state characteristic

x̄(u) is implicitly defined by

0 = f(x̄, u).

We can apply the implicit function theorem to find its derivative:

d

du
x̄(u) =

(
−∂f
∂x̄

)−1 ∂f

∂u
.

Consider Module 1, after the sign change in the variables at equation (3.9):

d

de1
z̄(e1) = −(Â1)−1B̂1 < 0.

The inequality holds componentwise (Proposition 14), hence after the sign change equilibria

r̄1(e1), r̄3(e1) and ē2(e1) are monotonically decreasing functions of e1.
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As for Module 2, after the sign change at equation (3.9):

d

de2
w̄(e2) = −(Â2)−1B̂2 > 0

componentwise, hence after the sign change r̄2(e2), r̄4(e2) and ē1(e2) are monotonically

increasing functions of input e2.

Proposition 17 The interconnection of systems (3.1) and (3.2) admits a unique equilib-

rium.

Proof. The system always admits a steady state, as shown in Proposition (12). Due to

Proposition 16, ē2(e1) is a decreasing function and ē1(e2) is an increasing function. Thus,

the system of equations: 
e2 = ē2(e1),

e1 = ē1(e2),

has a unique solution. It is possible to demonstrate that this unique equilibrium is strictly

positive, and there cannot be equilibria with zero components. This claim can be proved by

showing that the two equilibrium equations intersect for positive values of e1 and e2. Then,

we can show that all other variables have a positive steady state from their equilibrium

conditions, which are all derived analytically in Appendix ??.

3.4.3 The interconnected system admits exclusively oscillatory transi-

tions to instability

Based on the properties demonstrated in the previous sections, we establish that

our three-enzyme network has the appropriate structure to exhibit sustained oscillations,
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Figure 3.3: Left: Time evolution of e1 and e2 when parameters are chosen as in Table 3.2.
Right: Trajectories in the plane e1-e2 (black) and equilibrium conditions (red and blue).

whenever it is driven to instability. More precisely, the network admits exclusively oscilla-

tory transitions to instability.

Proposition 18 The interconnection of systems (3.1) and (3.2) is a strong candidate os-

cillator.

Proof. The Jacobian of the overall system, with variables ordered as (r1, r3, e2, r2, r4, e1)

and with the variable sign change r̂1 = −r1 and r̂4 = −r4, highlights that the system is the

negative feedback interconnection of two monotone subsystems:

J =



−β1e2 − δ1r3 − φ δ1r1 β1r1 0 0 −α1

δ1r3 −γ1e∗2 − δ1r1 − φ γ1r3 0 0 0

β1e2 γ1e
∗
2 −β1r1 − γ1r3 0 0 0

0 0 α2 −γ2e∗1 − δ2r4 − φ δ2r2 γ2r2

0 0 0 δ2r4 −β2e1 − δ2r2 − φ β2r4

0 0 0 γ2e
∗
1 β2e1 −γ2r2 − β2r4


(3.10)

Due to Proposition 11, the system satisfies Assumption 1. By inspecting the Jacobian

matrix, it is apparent that Assumptions 2 and 3 are also satisfied. Therefore, the system is a

strong candidate oscillator [10, 14]. This means that the system can transition to instability
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exclusively due to a pair of complex conjugate eigenvalues crossing the imaginary axis (OTI)

and yielding oscillatory dynamics.

3.5 Numerical analysis

Model (3.1)-(3.2) was integrated using the MATLAB routine ode23. Bifurcation

analysis, period and amplitude computation was also done writing MATLAB scripts ad hoc.

In the numerical analysis that follows, we choose nominal parameters (Table 3.2)

that are compatible with reaction rates measured in nucleic acid strand displacement re-

actions and in vitro transcription. An example solution trajectory for Model (3.1)-(3.2),

integrated with the nominal parameters, is shown in Fig. 3.3

3.5.1 Randomised parameter sampling

First, we selected random values for the parameters sampling from a uniform

distribution in the interval 10−2 to 102 times the nominal parameter value (Table 3.2). We

locate peaks and wells of the oscillations and compute period and amplitude as averaged

over all the measured peaks and wells. A trajectory is classified as oscillatory if at least

three oscillations are measured, if the period of the trajectory is between 0.5h to 40h, and

its amplitude is larger than 1nM. This plot highlights that high degradation rates and low

concentrations of e1 and e2 are associated with loss of oscillations.
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3.5.2 Bifurcation analysis

Using analytical equilibrium conditions, we find equilibria numerically and com-

pute the eigenvalues of Jacobian (3.10) at the equilibria. If at least one pair of complex

conjugate eigenvalues with non-negative real part is found, the equilibrium is classified as

oscillatory. We vary two parameters simultaneously, while all others are kept constant as

in Table 3.2. Oscillatory regions are shown in orange in Fig. 3.5, while stable regions are

shown in blue.

3.5.3 Period and amplitude

We focus on the influence of reaction rates and total concentrations of ei on the

period and amplitude. Parameters α1, α2, α3, α4, e3, etot1 and etot2 are particularly relevant

because they are experimentally easy to change (Fig 3.1 B): αi, i = 1, ..., 4, are transcription

rates, which can be tuned by mutating the promoter region; etot1 , etot2 and e3 can be chosen

by the experimenter.

We compute the period and amplitude from integrated solutions to the ODEs. As

done in Section 3.5.1, we locate peaks and wells of the oscillations and compute period and

amplitude as averaged over all the measured peaks and wells. We require at least three

oscillations, and amplitude larger than 1 nM.

From Figs. 3.6 and 3.7 we observe that the period can be tuned from 0 to 5 hours.

Also, the parameters related to the kinetics rate can change the period up to 3 hours in the

range of one tenth to ten times their nominal value.

These plots show that when varying e3 in a range between 0.1-10 times its nominal
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value, the period remains flat. In that same range, amplitude varies significantly. We also

observe that varying δ1 between 0.1-10 times its nominal value, amplitudes stays flat while

the period varies between 0-3 hours. It is worth noting that the titration rates δ1 and

δ2 do not affect drastically neither amplitude nor period, which indicates that the system

performance is robust relative to variations in the titration rates.

We observe that there is a range in which parameters α2 and α4 could be varied

to tune exclusively the period, while the amplitude remains nearly constant. Alternatively,

there is a range in which parameters etot1 and e3 could be varied to modulate exclusively the

amplitude, keeping the period nearly unchanged (and slow). Correlation between period

and amplitude is shown in Fig. 3.8.

3.6 Conclusion

We have described an artificial three-enzyme biochemical network that has the

capacity to oscillate. The network is designed for in vitro implementation with nucleic acid

components and bacteriophage RNA polymerases, but has the potential to be implemented

in vivo as well. The polymerases transcribe synthetic genes whose RNA transcripts in turn

regulate enzyme activity, generating a negative feedback loop that is necessary for oscil-

lations (the famous Thomas’ conjecture [88, 81]). We analytically demonstrated that this

architecture can exclusively undergo oscillatory transitions to instability, due to the struc-

ture of its Jacobian matrix. Numerical analysis shows that in a range of realistic parameters

the system oscillates; simulations are useful to direct the experimental implementation of
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Table 3.1: Nominal simulation parameters

Parameter α1 α2 α3 α4 β1 β2 φ
Units 1/s 1/s 1/s 1/s 1/M.s 1/M.s 1/s
Value 0.1 0.1 0.1 0.1 5× 105 5× 105 5× 10−5

Parameter γ1 γ2 δ1 δ2 e3 etot1 etot2

Units 1/M.s 1/M.s 1/M.s 1/M.s nM nM nM
Value 105 105 4× 104 4× 104 10 100 100

Table 3.2: Nominal simulation parameters

Rate Description Value Other studies

α1,2,3,4 (/s) Production 0.1 RNA: 10−3 − 1 Refs.[91, 22]
β1 = β2 (/M/s) Inhibition 5 · 105 Nucleic acids: 104 − 106 Refs.[53, 97]
γ1 = γ2 (/M/s) Activation 105 Nucleic acids: 104 − 106 Refs.[53, 97]
δ!1 = δ2 (/M/s) Titration 4 · 104 Nucleic acids: 104 − 106 Refs.[53, 97]
φ (/s) Degradation 5 · 10−5 Proteins: 10−4 − 10−3 Refs.[19]
e1(nM) Concentration 100
e2(nM) Concentration 100
e3(nM) Concentration 10

this circuit, which is currently being pursued.
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Figure 3.4: We randomly choose parameters in the interval 10−2 to 102 times their nominal
value. Each black dot in this plot indicates that the (randomly) chosen parameter vector
results in oscillations. Axes are in log scale. Orange diamonds represent the nominal value
of each parameter (Table 3.2).
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Figure 3.5: Log plots showing how varying pairs of parameters influences the stability of
the equilibrium. Each parameter was varied between one tenth to ten times its nominal
value (black diamond). Orange regions indicate oscillatory behaviour; blue regions indicate
a single stable equilibrium.
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Figure 3.6: Period (h) as a function of each parameter (x axis in log scale). Blue circles
represent when the Jacobian has at least one pair of complex eigenvalue with negative real
part. The red circles represent when Jacobian has at least one pair of complex eigenvalue
with positive real part. The grey circles represent when all eigenvalues are negative. The
parameters were changed in the range of one tenth to ten times their nominal values.
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Chapter 4

Design of a biomolecular bistable

network using the CRISPR/Cas

system

4.1 Introduction

The ability to engineer biomolecular circuits is essential to add desired functionality

in cells and it has wide-ranging applications from personalized medicine to making designer

organisms for materials production. While there exist many strategies to build biomolecular

circuits, it is still difficult to systematically scale them up. For example, an approach using

transcription factors for building genetic circuits is often limited in scale due a limited

number of orthogonal transcription factors. Recently, the CRISPR/Cas based gene editing

and gene regulation tools have provided a revolutionary way to control virtually any gene
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inside the cell [71]. The CRISPR system was first found in a bacterial immune system [64].

This system was then successfully engineered into a tool to edit mammalian genes at will

[23, 50]. It consists of a DNA endonuclease enzyme (Cas9), which cleaves the DNA and

a guide RNA (gRNA), which recognizes the target DNA and localizes the enzyme on the

target. Later, researchers also engineered Cas9 into a catalytically inactive form called dead

Cas9 (dCas9) [71], which binds to the target site of the gRNA without cutting the DNA.

Binding of dCas9 in the promoter region of a gene can inactivate the gene by blocking

transcription.

In this paper, using analysis and simulations, we discuss a novel approach which

use the dCas9-gRNA system to build biomolecular circuits. First, we present a regulatory

module that achieves tunable input/output ultrasensitivity by combining molecular titra-

tion and an activation/deactivation cycle. Second, we use this module to build a multi-gene

bistable switch, where the transcription product of each gene directs activation or inacti-

vation of other genetic components of the circuit. Gene inhibition is accomplished by the

dCas9-gRNA system; for reactivation of genes inhibited by dCas9, we propose to reverse

the binding of dCas9 to the target gene using an anti-gRNA molecule.

In previous work, we proposed RNA-regulated genetic circuits that relied on RNA

aptamers to modulate activity of RNA polymerases [61, 16, 59, 78, 76, 60]. In these systems,

to reverse the aptamer-target binding pathway in a programmable manner, we developed

anti-aptamer strands, which are DNA or RNA strands that are complementary to the

aptamers. We also experimentally demonstrated the feasibility of using anti-aptamers to

reactivate the aptamer-inhibited enzymes [1]. In the system presented in this manuscript, we
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propose to use a similar idea to reactivate the gene inhibited by the dCas9-gRNA complex

using an anti-gRNA species. The anti-gRNA is designed to be partly complementary to the

gRNA and is expected to displace it from the target and the dCas9. While the feasibility of

this approach is yet to be demonstrated experimentally, we postulate that this is feasible if

the gRNA is designed to have single stranded “toehold” domains [53] at the target binding

end, to facilitate displacement using the anti-gRNA species.

4.2 Circuit description and modeling

4.2.1 A CRISPR/CAS9 regulatory module

We describe a basic module, shown in Fig. 4.1 that will be used as the building

block to design more complex circuits systematically. It consists of three genes: a target

gene GT , an inhibitor gene GI and an activator gene GA.

The inhibitor gene GI transcribes RNA species RI , which works as a gRNA that

associates with dCas9 Cf forming a complex CRI ; this complex binds to the target gene

GT , thereby inhibiting it and converting it to species G∗T . The activator gene GA produces

the anti gRNA species RA, which displaces the gRNA RI form the target gene G∗T and the

dCas9-RI complex CRI , thereby reactivating the target gene GT . In the equations given

below, free dCas9 concentration is denoted as Cf , the dCas9-RI complex is denoted as

CRI and the inactive gene is represented by G∗T . Species RA and RI bind to each other to

produce a waste product which does not interfere with rest of the circuit. In the following,

chemical species are indicated with capital letters (e.g. GI) and their concentration with
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GI

GA

RI

RA

Cf CRI G*T GT

GI

GA

GA

GT
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Cf Cf

MODULE 

A B

RI

RA

dCas9
target

CRISPR based building block

TT
Cf CRI

GT

ONOFF

GT

G*T

Figure 4.1: Ultrasensitive regulatory module based on CRISPR/Cas system A)
Top: Schematic summary of the reactions defining the module. ”G” stands for gene and ”R”
stands for RNA; subscript ”I” stands for inhibitor, ”A” stands for activator and ”T” stands
for target. Bottom: depiction of the proposed implementation using the CRISPR/Cas
system and anti-gRNA. B) Inputs and output of the building block.

the corresponding lowercase letters (e.g. gI).
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Inhibitor process

GI
κ−−⇀ GI +RI gRNA Production

RI
φ−−⇀ 0 Degradation

RI + Cf
β−−⇀ CRI dCas9 Activation

GT + CRI
α−−⇀ G∗

T Gene Inhibition

Activator process

GA
κ−−⇀ GA +RA Anti-gRNA Production

RA
φ−−⇀ 0 Degradation

RA + CRI
θ−−⇀ Cf dCas9 Inhibition

G∗
T +RA

γ−−⇀ GT + Cf Gene Inhibition

RA +RI
ρ−−⇀ 0 Waste

The total concentration of species GT and Cf are constant, as captured by the following

mass conservation equations:


gtotT = gT + g∗T

ctot = cf + crI + g∗T .

(4.1)

Using the law of mass action and the mass conservation equalities, we obtain the
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following model for the regulatory module:

ṙI = κgI − βrIcf − φrI − ρrArI (4.2)

ṙA = κgA − γg∗T rA − φrA − ρrIrA − θcrIrA (4.3)

ġT = γg∗T rA − αcrIgT (4.4)

ċrI = βrIcf − αcrIgT − θcrIrA. (4.5)

4.2.2 Equilibrium conditions for the regulatory module

Here we derive expressions for the unique equilibrium of system (4.2)-(4.4). From

ṙI = ṙA, we obtain:

κgI − βrIcf − φrI = κgA − γg∗T rA − φrA − θcrIrA. (4.6)

From ċrI = ġT , we obtain:

βrIcf = θcrIrA + γrAg
∗
T . (4.7)

Substituting expression (4.7) in (4.6), we obtain:

κgI − φrI = κgA − φrA. (4.8)

Replacing (4.7) in ṙA = 0 and finding rA:

rA =
κgA − βrIcf
φ+ ρrI

. (4.9)

Combining (4.8) and (4.9), we obtain the polynomial:

P (rA) = arr
2
A + brrA + cr = 0, (4.10)
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where

ar = φρ,

br = φ2 + κρ(gI − gA) + βφcf ,

cr = βκ(gI − gA)cf − φκgA.

If cr is positive, both solutions are negative; one positive solution appears when cr is nega-

tive, i.e. gI <
βcf+φ
βcf

gA. In this case the unique positive solution of the polynomial is:

r̄A(gI , gA) =
−br +

√
b2r − 4arcr

2ar
. (4.11)

Then, we can obtain r̄I from epxression (4.8):

rI =
κ(gI − gA) + φrA

φ
. (4.12)

We can obtain crI by combining ċrI = 0 and ġT = 0:

crI =
βrIcf

αgT + θrA
=
γrA(gtotT − gT )

αgT
. (4.13)

We derive a polynomial:

P (gT ) = agg
2
T + bggT + cg = 0, (4.14)

where

ag = αγrA,

bg = αβrIcf − αγgtotT rA + γθr2
A,

cg = −γθgtotT r2
A.

The sign of cg is always negative. Then the unique solution of the polynomial is:

gT (gI , gA) =
−bg +

√
b2g − 4agcg

2ag
(4.15)
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4.2.3 Ultrasensitivity input-output relationship
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Figure 4.2: Ultrasensitive characterization. Stationary behavior of our regulatory
module. Input-output equilibrium conditions from equations (4.2)-(4.5) as parameters are
changed. Nominal parameters are in Table 4.1.

Fig. 4.2 shows numerical simulations of the steady state behavior of gT and gI ,

which highlight the ultrasensitive steady state response of the module. We numerically

solve equations (4.2)-(4.5) and find the steady state values to find the input-output rela-

tionship. In every panel, a single parameter is varied as specified in the legend relative to

its nominal value listed Table 4.1. We note that smaller values for the degradation rate

φ boost ultrasensitivity, while smaller values of ctot can reduce the ultrasensitive response.

For larger parameter values, the system resemble a zero-order ultrasensitive response [39].

Titration of RI and RA enables precise tuning of threshold of the ultrasensitive

response by varying either the input gA or gI , as shown inside the grey box in Fig. 4.2.

64



This result agrees with our previous detailed studies of the isolated mechanism inside the

grey box in Fig. 4.1, where exploited this tunability to design a robust oscillator [27] and

biomolecular feedback control [25].

4.2.4 Effects of loading and shared resources

We now examine two important phenomena that are known to affect molecular

circuits: first, the influence of downstream processes on the performance of the regulatory

module (loading [63, ?]); second, the influence of Cas9 sharing with other circuits that may

be present in solution (resource sharing [?, ?]). To consider the first problem, we introduce

additional reactions by which GT is coupled to a downstream process; for example, the gene

may become bound to a polymerase or a transcription factor. If the gene is depleted due

to the binding to other molecules, we want to quantify the effect of this sequestration on

the module. We consider the downstream process:

Downstream process

GT + E
κ+

−−⇀↽−−
κ−

CE Binding/unbinding of the load E

Then, equation (4.4) becomes

ġT = γg∗T rA − αcrIgT + κ−ce − κ+gT e

load

(4.16)

If we assume that binding/unbinding (κ+/κ−) are fast with respect to the time

scale of the module, at steady state we find that ce = e
e+κM

gT , where κM = κ+

κ− . We define

the effective load on the system as λ = e/κM . Then, we update equation (6.6):

gtot = gT + g∗T +
λ

1 + λ
gT (4.17)
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We plot the module input/output response as a function of the effective load λ in

Fig. 4.3A; the results indicate that the presence of a load does not affect ultrasensitivity.

This suggests that this regulatory network could be used within complex networks and

maintain the ultrasensitivity observed when the circuit is in isolation.
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Figure 4.3: Retroactivity and shared resources analysis A) Shows the input-output
mapping for different values of available Cas9 cf . B) Shows for different loads of the module.
Nominal parameters are in Table 4.1.

We now examine how competition for Cas9 available in the system affects the

input/output mapping of the circuit. Fig. 4.3B shows the numerical analysis when we

titrate the total amount of Cas9, suggesting that the ultrasensitive behavior is maintained

up to a critical amount of enzyme. This result suggests that in the presence of a limited

amount of Cas9, the module can maintain its ultrasensitive response. Therefore, we believe

that this is a robust module to build synthetic circuits because it maintains its ultrasensitive

behavior under loading and resource limitation.

4.3 Interconnecting ultrasensitive modules to build a bistable

swtich based on CRISPR/CAS9

We now combine two modules (G1−G2−G4 and G2−G1−G3) to create a bistable

system, schematically represented in Fig. 4.4. We create a positive feedback loop circuit
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with two external inputs. In the rest of this section, we explore its capacity to exhibit

bistability.

G2

G3

MODULE

I 

G1

G4

G2

Cf

SHARED
RESOURCES

MODULE

II

0

0.1

0 0.1

A B 1

Figure 4.4: Bistable system A) Schematic of the interconnected inhibition and activation
modules used to build the bistable network. B) Equilibrium conditions for system g1 = F1
(red), equation (4.33), and g2 = F2 (blue), equation (4.29), and trajectories with different
initial conditions (grey).

The differential equations of the bistable system are:

ṙ1 = κg1 − βr1cf − φr1 − ρr1r4 (4.18)

ṙ4 = κg4 − γr4g
∗
2 − φr4 − ρr1r4 − θr4cr1 (4.19)

ġ2 = γr4g
∗
2 − αg2cr1 (4.20)

˙cr1 = βr1cf − αg2cr1 − θr4cr1 (4.21)

ṙ2 = κg2 − βr2cf − φr2 − ρr2r3 (4.22)

ṙ3 = κg3 − γr3g
∗
1 − φr3 − ρr2r3 − θr3cr2 (4.23)

ġ1 = γr3g
∗
1 − αg1cr2 (4.24)

˙cr2 = βr2cf − αg1cr2 − θr3cr2. (4.25)
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We assume there is mass conservation for the following components:

g∗1 = gtot1 − g1 (4.26)

g∗2 = gtot2 − g2 (4.27)

cf = ctot − cr1 − g∗1 − cr2 − g∗2. (4.28)

Additionally, g3 < gtot2 and g4 < gtot1 .

4.3.1 Stability analysis

First, we derive equilibrium conditions for the circuits. Then, we demonstrate

that the structure of this circuit is appropriate to obtain a bistable behavior; our proofs

are modeled on previous work characterizing robust transitions to instability [13], where we

need to demonstrate that each regulatory module is monotone and dissipative.

Equilibrium conditions

First, we derive the equilibrium conditions by setting each ODE in the model (4.18-

4.25) equal to zero. The equilibrium conditions for a single building module are shown in

Appendix A. Module I consist of (G1−G2−G4), where the target gene is G2, the inhibitor

gene is G1 and the activator gene is G4. Then, from (4.15) we can find ḡ2 on function of

g1, g4 and cf . We obtain:

ḡ2 = F2(g1, g4, cf ) =
−b2 +

√
b22 − 4a2c2

2a2
, (4.29)
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where

a2 = αγr̄4,

b2 = αβr̄1c̄f − αγgtot2 r̄4 + γθr̄2
4,

c2 = −γθgtot2 r̄2
4.

From (4.11) we obtain:

r̄4(g1, g4, cf ) =
−b1 +

√
b21 − 4a1c1

2a1
, (4.30)

where,

a1 = φρ,

b1 = φ2 + κρ(ḡ1 − g4) + βφc̄f ,

c1 = βκ(ḡ1 − g4)c̄f − φκg4.

From (4.12) we obtain:

r̄1(g1, g4, cf ) =
κ(ḡ1 − g4) + φr̄4

φ
, (4.31)

and from (4.13) we obtain:

c̄r1 =
γr̄4ḡ

∗
2

αḡ2
. (4.32)

Similarly, Module II consist of (G2 − G1 − G3), where the target gene is G1, the inhibitor

gene is G2 and the activator gene is G3. Then, from (4.15) we can find ḡ1 as a function of

g2, g3 and cf , and we get:

ḡ1 = F1(g2, g3, cf ) =
−b4 +

√
b24 − 4a4c4

2a4
, (4.33)
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where

a4 = αγr̄3,

b4 = αβr̄2c̄f − αγgtot1 r̄3 + γθr̄2
3,

c4 = −γθgtot1 r̄2
3.

From (4.11) we obtain:

r̄3(g2, g3, cf ) =
−b3 +

√
b23 − 4a3c3

2a3
, (4.34)

where

a3 = φρ,

b3 = φ2 + κρ(ḡ2 − g3) + βφc̄f ,

c3 = βκ(ḡ2 − g3)c̄f − κφg3.

From (4.12) we derive:

r̄2(g2, g3, cf ) =
κ(ḡ2 − g3) + φr̄3

φ
, (4.35)

and from (4.13) we obtain:

c̄r2 =
γr̄3ḡ

∗
1

αḡ1
. (4.36)

Then, we derive expressions for cf as a function of g1, g2, g3 and g4. An expression

for cr1 can be obtained form ṙ4 = 0 and ġ2 = 0, where we get:

cr1 =
κg4 − γr4g

∗
2 − φr4 − ρr1r4

θr4
=
γr4g

∗
2

αg2
. (4.37)

By combining (4.31) and (4.37), we obtain the polynomial:

P (r4) = a5r
2
4 + b5r4 + c5 = 0, (4.38)
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where

a5 = φ(αρg2 + γθg∗2),

b5 = αg2(γφg∗2 + φ2 + κρ(g1 − g4)),

c5 = −αφκg4g2.

The sign of c5 is negative for any parameter set, therefore there is a unique solution:

r4 = F4(g1, g2) =
−b5 +

√
b25 − 4a5c5

2a5
. (4.39)

Similarly, we find expression for cr2 from ṙ3 = 0 and ġ1 = 0, we get:

cr2 =
κg3 − γr3g

∗
1 − φr3 − ρr2r3

θr3
=
γr3g

∗
1

αg1
. (4.40)

By combing (4.35) and (4.40), we obtain a polynomial:

P (r3) = a6r
2
3 + b6r3 + c6 = 0, (4.41)

where

a6 = φ(αρg1 + γθg∗1),

b6 = αg1(γφg∗1 + φ2 + κρ(g2 − g3)),

c6 = −αφκg1g3.

The sign of c6 is negative for arbitrary values of the parameters, therefore the

unique solution is:

r3 = F3(g1, g2) =
−b6 +

√
b26 − 4a6c6

2a6t
. (4.42)
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Finally, we can express cf as a function of g1 and g2 only:

cf = F5(g1, g2) = ctot − cr1 − cr2 − g∗1 − g∗2. (4.43)

Substituting expression (4.43) into expressions (4.29) and (4.33), we can find g2 =

F2(g1, g2) and g1 = F1(g1, g2), where g3 and g4 are the inputs of the system. Because it is

difficult to express in a close form the equilibrium conditions g1 = f2(g2) and g2 = f2(g1),

we solve them numerically. Fig 4.4 shows example equilibrium conditions obtained with the

parameters in Table 4.1.

Monotonicity

Lemma 19 System (4.18)–(4.25) is the positive feedback interconnection of two monotone

subsystems.

Proof The Jacobian matrix J of the system is shown at equation (4.45). All

the elements of J are sign definite. We can apply a state transformation T to J as follow

J∗ = TJT−1.

T = diag(1,−1,−1, 1, 1,−1,−1, 1) (4.44)

Two block diagonal matrices in matrix (4.46) are Metzler matrices, and the only off di-

agonal elements are negative. Overall, the interconnected system is the positive feedback

interconnection of two monotone subsystems (two negative interconnections result in an

overall positive interconnection). �
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J =



j1,1 −ρr̄1 0 0 0 0 κ 0

−ρr̄4 j2,2 γr̄4 −θr̄4 0 0 0

0 γḡ∗2 −αc̄r1 − γr̄4 −αḡ2 0 0 0 0

βc̄f −θc̄r1 −αc̄r1 −αḡ2 − θr̄4 0 0 0 0

0 0 κ 0 j5,5 −ρr̄2 0 0

0 0 0 0 −ρr̄3 j6,6 γr̄3 −θr̄3

0 0 0 0 0 γḡ∗1 −αc̄r2 − γr̄3 −αḡ1

0 0 0 0 βc̄f −θc̄r2 −αc̄r2 −αḡ1 − θr̄3



(4.45)

Where j1,1 = −βcf − φ− ρr̄4, j2,2 = −γḡ∗2 − φ− ρr̄1 − θc̄r1, j5,5 = −βc̄f − φ− θr̄3

and j6,6 = −γḡ∗1 − φ− ρr̄2 − θc̄r2

J
∗

=



j∗1,1 ρr̄1 0 0 0 0 −κ 0

ρr̄4 j∗2,2 γr̄4 θr̄4 0 0 0

0 γḡ∗2 −αc̄r1 − γr̄4 αḡ2 0 0 0 0

βc̄f θc̄r1 αc̄r1 −αḡ2 − θr̄4 0 0 0 0

0 0 −κ 0 j∗5,5 ρr̄2 0 0

0 0 0 0 ρr̄3 j∗6,6 γr̄3 θr̄3

0 0 0 0 0 γḡ∗1 −αc̄r2 − γr̄3 αḡ1

0 0 0 0 βc̄f θc̄r2 αc̄r2 −αḡ1 − θr̄3



(4.46)

Where j∗1,1 = −βcf − φ− ρr̄4, j∗2,2 = −γḡ∗2 − φ− ρr̄1 − θc̄r1, j∗5,5 = −βc̄f − φ− θr̄3

and j∗6,6 = −γḡ∗1 − φ− ρr̄2 − θc̄r2

4.3.2 Admissible transitions to instability

We show that the system can only undergo real transitions to instability, thus any

simple bifurcation yields a multistationary behavior. We begin recalling some definitions

from [49] and [13].

Definition 20 (Dissipative system) A system ẋ = f(x), x ∈ Rn is dissipative if its solu-
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tions are eventually uniformly bounded, i.e., there exists a constant k > 0 such that:

lim
t→+∞

supxj(t) ≤ k, j = 1, ..., n.

Lemma 21 System (4.18)–(4.25) is dissipative.

Proof Variables gi and cri, i = 1, 2 are globally bounded because the total concentrations

gtoti (genes) and ctotf (dCas9) are constant. We show that variables ri,i = 1 : 4, which

represent the concentration of RNA species, are asymptotically bounded using the com-

parison principle. The dynamics of ri can be upper-bounded by a linear time invariant,

asymptotically stable ODE.

ṙi ≤ κgtoti − φixi, i = 1 : 4,

thus as t→∞, ri(t) ≤ (κ/φ)ytot = r+
i . (At all times, ri(t) ≤ r+

i + (ri(0)− r+
i )e−φt.) �

We recall that a simple transition to instability occurs when at most a single real

eigenvalue or a single pair of complex conjugate eigenvalues crosses the imaginary axis.

Definition 22 (Real transition to instability [13]) A system ẋ = f(x, µ) that is continu-

ously differentiable with equilibrium x̄µ, undergoes a real transition to instability at µ = µ∗

if and only if its Jacobian matrix J(x̄µ∗) has a single zero eigenvalue, while all the other

eigenvalues have negative real part:

σ (J(x̄µ∗)) = {λ1, . . . , λn}, where λ1 = 0,

with Re(λk) < 0 for k > 1 and Re(λ1) > 0 in a right neighborhood of µ∗.
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Definition 23 (Strong candidate multistationary system [13]) A continuosly differentiable,

dissipative system ẋ = f(x, µ), presenting sign definite derivatives, is a candidate multista-

tionary system in the strong sense iff, for any alteration of parameter µ, every simple

transition to instability is a real transition to instability.

Lemma 24 System (4.18)–(4.25) admits exclusively real transitions to instability. Thus, it

is a strong candidate multistationary system.

Proof System (4.18)–(4.25) is dissipative (Lemma 21).The system is also the positive feed-

back interconnection of two input-output monotone systems with respect to the orthant

Σ = (+,−,−,+,+,−,−,+) (Lemma 19). Because all the cycles in the Jacobian ma-

trix (4.46) are positive, the linearized system is monotone overall. Thus, the Jacobian (4.46)

presents a real dominant eigenvalue. We conclude that any simple transition to instability

must be a real transition to instability and the system is a strong candidate multistationary

system. �

Lemma 25 If a simple transition to instability occurs at an equilibrim point x̄ of sys-

tem (4.18)–(4.25), then at least two additional equilibria appear. If exactly two equilibria

appear, then they are asymptotically stable.

The proof of Lemma 25 is analogous to the proof of Corollary 2 in [13] and is thus

omitted. The proof uses index theory and relies on monotonicity and boundedness of the

system, and the fact that it is a strong candidate multistationary system.

Lemma 25 indicates that if a transition to instability is characterized by the emer-

gence of exactly two additional equilibria, then the system near the transition is bistable.
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Table 4.1: Nominal parameters used in numerical integration of equations (4.18)-(4.25)

Rate Description Value Other studies

κ (/s) Production 1.3 · 10−3 RNA: 10−3 − 1 Refs. [91, 22]
Proteins: 3 · 10−3 − 1 Ref. [19]

β (/M/s) dCas9 activation 1 · 104 NA
θ (/M/s) dCas9 inhibition 1 · 104 NA
γ (/M/s) Gene activation 1 · 104 NA
α (/M/s) Gene inhibition 1 · 104 Cas9/dCas9 3 · 104 − 3 · 105 Ref. [84].
φ (/s) Degradation 1 · 10−4 Proteins: 10−4 − 10−3 Ref.[19]
ρ (/M/s) RNA hybridization 1 · 104 102 − 106 Ref. [41]

Thus, the system we designed has the appropriate structure to be a bistable switch.

In the next section we numerically explore the parameter range in which bistability can be

achieved.

4.4 Numerical analysis

MATLAB scripts were used to identify the bistability regions, by varying the

parameters around their nominal values reported in Table 4.1. For simplicity we assumed

that the nominal parameters of the two subsystems are identical, and are realistic for nucleic

acid hybridization and transcription [42]. Kinetic binding rates of gRNA and Cas9, together

with the gRNA displacement rates, have not been experimentally measured to the authors’

knowledge; we assumed that these rates are comparable to nucleic acid hybridization rates.

Figs. 4.5 and 4.6 shows a logarithmic plot of the result of our simulations. Parame-

ters were varied one order of magnitude around their nominal values. The system is bistable

(i.e. has 3 equilibrium points, one of which is unstable and the other two are stable) in the
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Figure 4.5: Bifurcation analysis of experimentally tunable parameters. Bistability
regions were computed evaluating the Jacobian at each of three equilibria, which were
calculated using the expressions at Section 4.3.1. Nominal parameters are in Table 4.1.
White regions indicate when our algorithm fails to find the intersection due to a numerical
discontinuity of the nullcline expression (example shown in the white box). The grey dots
shows a single intersection. However, the algorithm fails to detect the other two equilibrium,
an example of it is shown in the second figure with a grey background.

orange regions; the system is monostable in the cyan regions.

4.5 Conclusion

We have described an approach to design CRISPR-based ultrasensitive regulatory

modules, and we demonstrated how these modules can be interconnected to build a bistable

network. The regulatory building block can behave either as an activator or an inhibitor

depending on the relative concentration of certain components. This module may be used

as in more complex systems, since one can target virtually any gene using an appropriate
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Figure 4.6: Bifurcation analysis of rate constants of the reactions. Bistability regions
were computed evaluating the Jacobian at each of three equilibria, which were calculated
using the expressions at Section 4.3.1. Nominal parameters are in Table 4.1. The grey dots
shows a single intersection. However, the algorithm fails to detect the other two equilibrium,
an example of it is shown in the figure with a grey background

gRNA. Our numerical results suggest that the regulatory module exhibits a robust and

tunable ultrasensitive response. We find that ultrasensitivity is maintained in the presence

of a downstream load and in a regime where resources (Cas9) are shared.

The proposed network is bistable in a wide range of parameters, which suggests

this architecture is robust. For the circuit to work, it is required that the concentration of

the input genes (g3 and g4) be less than the concentration of genes that mutually inhibit (g1

and g2). Given the robust nature of CRISPR-based gene regulation inside cells, the circuit

we described has a potential to be implemented in vivo.
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Chapter 5

An ultrasensitive biomolecular

network for robust feedback

control

5.1 Introduction

Fulfilling the promises of synthetic biology to be employed for energy, agriculture

and health application will require a precise control of regulation of many molecular pro-

cesses such as transcription, translation and post-translational modification. Biological cells

have evolved feedback pathways so that the concentration of proteins and small molecules

remains within a desirable range; negative autoregulation, for instance, has been found in

more than half of genes in E coli ([87]). Although there has been a great deal of progress

in understanding how to harness feedback to build various biomolecular circuits, including
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toggle switches, oscillators, and a variety of logic gates, it is still unclear how to design con-

troller circuits in a rational manner that is comparable to feedback controllers in electrical

or mechanical systems.

Biomolecular

   Controller

Biomolecular

     System

r u

y

p

A

+p

-p

u

yr

B

y u

Figure 5.1: Closed loop molecular network with an ultrasensitive controller A)
Schematic of the interconnection of a biomolecular controller and a biomolecular system; p
represents a given parameter perturbation in the system. B) shows an illustration of input-
output equilibrium conditions of the controller (in grey) and the system (in orange). The
controller ultrasensitive response threshold is tunable by setting the reference signal r, shown
in red. Ultrasensitivity of the controller implies that, in a certain regime, perturbations in
the input/output curve of the systems have minor influence on the equilibrium point.

In this paper we describe and analyze a molecular controller network that relies on

non-cooperative interactions between components. The controller network is used to steer

the output of a target system to be controlled in closed loop, as shown in Fig. 5.1 A.

The most important feature of the controller we present is its steady state ultra-

sensitive response which has a tunable threshold. The threshold is designed to “track” the

controller reference input, so that the closed loop equilibrium tracks the reference robustly.

Ultrasensitivity is achieved by combining two mechanisms: molecular titration ([20, 28]),

rather than cooperativity, and an activation/deactivation cycle of the controller variable,

similar to a phosphorylation/dephosphorylation monocycle ([40]). Each of these mecha-

nisms, taken in isolation and modeled with mass action kinetics, are not sufficient to provide

highly ultrasensitivity. Titration reactions facilitate the tunability of the response threshold,
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and titration together with the activation/deactivation cycle mechanism creates a highly

ultrasensitive input/output curve. This ultrasensitive behavior is very similar to zero-order

ultrasensitivity when enzymes are saturable and their activities are given by Michaelis-

Menten equations ([40]. The controller reaction network is directly implementable using in

vitro synthetic transcriptional systems, such as negative feedback systems ([43]) to balance

production rates. The module, taken as a subsystem in a larger network, can also be used to

build oscillatory systems ([26]). We exploit the controller ultrasensitivity to tune the closed

loop equilibrium point, and to achieve robustness relative to parameter perturbations, as

sketched in Fig. 5.1 B.

Titration reactions in vivo without degradation were used recently by [17] to pro-

pose an antithetic integral feedback controller, whose reactions are analogous to the first

stage of our controller. Our network differs from the anthitetic controller for two reasons:

first, it includes an additional activation/deactivation cycle for the controller molecule; sec-

ond, we take into account degradation (or dilution) reactions that are known to be present

in most biochemical and cellular processes. As shown in our manuscript, these processes

can disrupt the tracking and adaption properties of the controller ([33]). [66] found that an

ultrasensitive network can model osmoregulation behaviors better than proportional and/or

integral networks; this suggests that natural circuits may have evolved ultrasensitivity to

robustify equilibria as shown in this paper.

In Section 5.2 we describe the controller network in isolation, and we characterize

its ultrasensitive behavior. In Section 6.27 we describe the target system to be controlled.

Finally, in Section 5.4 we consider the closed loop system and examine the capacity of the
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system output to track a reference, as well as its sensitivity with respect to perturbations

in the reaction rates and concentration of components. We discuss the reactions chosen

to design the controller in relation to a potential in vitro implementation with synthetic

transcriptional networks [53].

Throughout the paper we consider biomolecular systems that are described by

chemical reactions. Species indicated as uppercase letters, concentrations as lowercase let-

ters (e.g. species X has concentration x). Given a set of chemical reactions, we use the

law of mass action to derive ordinary differential equation (ODE) models that describe the

kinetics of the ensemble of reactions.

5.2 Design of an ultrasensitive molecular controller

The controller network (Fig. 5.2A) consists of a single output species U and two

input species, an activator A and an inhibitor I. The output species can be in active form

U , or inactive form U∗, and its total concentration is conserved (utot = u+u∗). Active U is

assumed to have a regulatory function in downstream reactions, which cannot be performed

by U∗. The inputs A and I respectively produce species RA and RI , which regulate the

active fraction of output U . RI binds to and deactivates U , forming an inert species U∗.

In contrast, species RA binds to and reactivates U∗ by displacing RI from U∗, yielding a

waste complex RA · RI . In addition, free RA and RI bind and mutually titrate forming

waste complex RA ·RI . The biomolecular reactions constituting our controller network are:
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Figure 5.2: Ultrasensitive network. A) Schematic summary of the reactions defining the
controller network. B) Controller network within a feedback loop, where signal A is kept
constant and represents a reference signal, shown in red. C) Controller in a feedback loop
where signal A is kept constant and acts as a reference, shown in red. The thresholds ar
and is are functions of the reference a and i (in red) and of the parameters of the system.

A
κc−−⇀ A+RA Production

I
θc−−⇀ I +RI Production

RA +RI
γc−−⇀ RA ·RI Titration

RA
φc−−⇀ 0 Degradation

RI
φc−−⇀ 0 Degradation

RA + U∗
αc−−⇀ U +RA ·RI Reactivation

RI + U
βc−−⇀ U∗ Inhibition

Using the law of mass action, we derive the following ODEs that describe the

dynamics of the system:

u̇ = αcrAu
∗ − βcrIu (5.1)

ṙA = κcA− αcrAu∗ − γcrArI − φcrA (5.2)

ṙI = θcI − βcrIu− γcrArI − φcrI (5.3)

Fig. 5.2 B and C illustrate the desired interactions of species U , RA, and RI , and
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how they result in an ultrasensitive response. First, consider the case where the system

receives a step input in i. Then, active species u is expected to be quickly converted to its

inactive form u∗. However, the presence of a (which produces rA) has a “buffering” effect:

free rA binds to rI and titrates it before it can inhibit u (this of course requires that γc is

fast). Due to this buffering effect, we can think of i as the input to the controller, and of

the titrating species a as a “reference” signal: the controller responds only if i exceeds a.

A similar reasoning can be followed to explain the behavior of the system when the system

receives a step input a: in this case, free rI acts like a buffer for rA. We can think of a as the

input to the controller, and of the titrating species i as the reference; only when a exceeds

i the controller responds. In both cases, the transition point (at which the concentration of

u switches from low to high and vice-versa) depends on the concentration of the titrating

species.

This reaction network could be experimentally realized using nuceic acids and pro-

teins. Species U could be an RNA polymerase whose activity can repressed using an RNA

aptamers (RI) as those proposed by [67, 69] (species RI). RNA polymerase activity could

be restored via another RNA species (RA) displacing the aptamer as suggested in [26].

Synthetic templates (A, I) could be used to produce the RNA regulators. Numerical inte-

gration of equations (5.1)–(5.3) is done assuming nominal values of parameters (Table 5.1)

that are realistic in the implementation context just described.

In the next sections we examine the behavior of the controller network. We de-

rive its steady state input/output response analytically, and then we test numerically the

sensitivity of the controller response to parameter perturbations.
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Boundedness and monotonicity

The solutions of the biomolecular controller model are bounded. After a state

transformation, the Jacobian of ths system is a Metlzer matrix, which is Hurwitz stable, and

we can conclude that the input-output equilibrium maps of u(A) and u(I) are monotonically

increasing and decreasing. These claims can be demonstrated following the analysis in [26],

which are not reported here.

Input-output characterization

We begin by finding an expression for the concentration of input A as a function

of the concentrations of input I and output U . (These expressions are more convenient to

find relative to deriving the concentration of U as a function of A and I).

a(u, i) =
θc
κc
i+

φc
κc

(
1− αcu

∗

βcu

)
r̄A(u, i), (5.4)

where

r̄A(u, i) =
−bA +

√
b2A − 4aAcA

2aA
,

aA = αcγcu
∗, bA = αcu

∗(βcu+ φc) and cA = −uβcθcI.

Similarly, we find an expression relating the equilibrium concentration of I as a

function of U and A.

i(u, a) =
κc
θc
a− φc

θc

(
αcu

∗

βcu
− 1

)
r̄I(u, a), (5.5)

where

r̄I(u, a) =
−bI +

√
b2I − 4aIcI

2aI
,
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aI = βcγcu, bI = βcu(αcu
∗ + φc) and cI = −αcu∗κcA.

Ultrasensitivity characterization
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Figure 5.3: Controller ultrasensistive response. Input-output equilibrium conditions
from equation (5.4) as parameters are varied. Nominal simulation parameters are listed in
Table 5.1.

To assess the ultrasensitivity of the input/output curves with respect to parameter

variations, we vary individual parameters of the network. We focus on plotting expres-

sion (5.4): we fix the concentration of i, and then evaluate r̄A(u, i) when u varies between

0 and utot; this allows us to evaluate the map a(u, i) (x axis) versus u (y axis) as shown in

Fig. 5.3. We note that if the concentration of i is fixed, we can think of term ir = κc
θc
i as

the threshold of the ultrasensitive response.

The plots in Fig. 5.3 were obtained using normalized concentrations of species

an = a(u, i)/ir, and un = u/utot. The behavior of the input-output expression (5.4) is

evaluated as parameters are individually varied.
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Table 5.1: Nominal simulation parameters of the controller

Parameter Description Value Other studies

θc (/s) Production 7.5 · 10−4

κc (/s) Production 5 · 10−4 Transcription: 10−3 − 1 [91, 22]
βc (/M/s) Inhibition 6 · 104 104 − 106 [53, 99]
αc (/M/s) Reactivation 6 · 104 104 − 106 [53, 99]
γc (/M/s) Titration 3 · 104 104 − 106 [53, 99]
φc (/s) Degradation 3.85 · 10−4 10−4 − 10−3 [52].
utot(nM) Concentration 500

We note that curves are very sensitive to the inhibition rate (βc), the activation rate

(αc), the degradation rate (φc) and total amount of input (utot). The input/output curve

steepness increases when these parameters are large, with exception for the degradation

rate (φc), which largely reduces the ultrasensitivity.

The last panel of Fig. 5.3 shows the influence of variations of i on the input-output

response. Because of how the variables are normalized, the curve transition always occurs

at an = 1: this indicates that the output equilibrium always perfectly tracks the desired

threshold, which can be seen as a “reference” in the closed loop system, as we further explain

in the next sections. (A non-normalized plot of the input-output response is in Fig. 5.6 B,

C, D.)

It is possible to plot (6.13) by defining similar threshold parameters and normalized

variables, and we obtain similar results (not shown for brevity).

5.3 Controlled system

We consider an example transcription process as a target system to be controlled.

Specifically, we focus on a class of synthetic in vitro genetic switches which have been
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used to build a variety of autonomous circuits including bistable and oscillatory networks

[53, 51, 42].
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Figure 5.4: Biomolecular system or process A) Schematic of a simplify model of a syn-
thetic gene switch with input u and output y. B) An illustration of input/output response
with input z and output y.

The target system receives a single input species U and produces an output species

Y . As in [53], Y is a synthetic template (genelet) that is activated by a DNA activator

molecule W , and deactivated by an RNA inhibitor molecule Z. The input U could be

an RNA polymerase transcribing inhibitor Z from a constitutively active template; Z is

designed to bind to Y and convert it to inactive Y ∗ (this occurs by displacement of the

activator W ). In addition, Z directly binds to and titrates W converting it to inactive

species W ∗. We assume that inhibited activator W ∗ spontaneously reverts to its active

form W . The total concentrations of Y and W are assumed to be constant, ytot = y + y∗

and wtot = w + y + w∗. These regulatory interactions are illustrated in Fig. 5.4A, and the
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corresponding set of chemical reactions is:

U
κs−−⇀ U + Z Production

Z +W
γs−−⇀W ∗ Titration

Z
φs−−⇀ 0 Degradation

W ∗
θs−−⇀W Recovery

W + Y ∗
αs−−⇀ y +W ∗ Activation

Y + Z
βs−−⇀ Y ∗ Inhibition

Using the law of mass action we derive the following ODEs:

ẏ = αswy
∗ − βsyz (5.6)

ẇ = θsw
∗ − αswy∗ − γszw (5.7)

ż = κsu− βsyz − γszw − φsz (5.8)

In earlier work ([28]) we demonstrated analytically that the solutions of ODEs (5.6)–

(5.8) are bounded, that the system is structurally stable and monotone, and the input-

output map is monotonically decreasing. We find the equilibrium values of u and y are

related according to the following expression:

u(y) =
θsw

∗ + φsz

κs
, (5.9)

where z =
αs
βs

y∗

y
w, w =

−bs +
√
b2s − 4ascs

2as

as = αsγs
βs

y∗

y , bs = αsy
∗ + θs and cs = −θs(wtot − y).

In the next sections, we numerically integrate the system ODEs using the nominal

parameters listed in Table 6.1, which are realistic values relative to the proposed circuit
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Table 5.2: Nominal simulation parameters of the controlled system

Rate Description Value Other studies

κs (/s) Production 5 · 10−4 Transcription: 10−3 − 1 [91, 22]
θs (/s) Recovery 3 · 10−4 10−5 − 10−2 [22, 8]
βs (/M/s) Inhibition 6 · 104 104 − 106 [53, 99]
αs (/M/s) Reactivation 6 · 104 104 − 106 [53, 99]
γs (/M/s) Titration 3 · 104 104 − 106 [53, 99]
φs (/s) Degradation 3.85 · 10−4 10−4 − 10−3 [52]
ytot(nM) Concentration 800
wtot(nM) Concentration 800

implementation using transcriptional circuits ([53]).

5.4 Closed loop system

We now analyze the performance of the closed loop system where controller and

system are interconnected. The goal is to control the concentration of active template Y

as shown in Fig.5.5, following a reference signal R. Because the input/output behavior

of this particular system is monotone decreasing (Fig. 5.4), we operate our controller so

that the feedback loop counter acts the system response. So we connect variable Y in

the feedback loop to serve as input A (activator) for the controller. The controller input

I is now considered the reference signal R. We note that if the system to be controlled

had a monotonically increasing input-output map, we would have operated the controller

in the opposite way, so that input A would be the reference. This suggests that this

controller architecture can be adapted to work with systems having very different input-

output behaviors; a theoretical characterization of this property is left for future work.

We combine equations (5.1)–(5.3) (controller) and equations (5.6)–(5.8) (controlled
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system) and obtain the closed loop system equations:

C



u̇ = αcryu
∗ − βcrru controller output

ṙy = κcy

controller input

−αcryu∗ − γcryrr − φcry

ṙr = θcr

external input

−βcrru− γcryrr − φcrr

S



ẏ = αswy
∗ − βsyz system output

ẇ = θsw
∗ − αswy∗ − γszw

ż = κsu

system input

−βsyz − γszw − φsz

The system output is y, as annotated in the equations above, and its external input or

reference input is r. We assume utot = u+ u∗, ytot = y + y∗ and wtot = w + y + w∗.

The experimental implementation of these two reaction systems in isolation was

discussed earlier. Their interconnection would be immediately feasible: transcriptional

circuits and aptamer systems have been characterized in compatible in vitro conditions; the

RNA polymerase U can be easily used to transcribe RNA species Z from a constitutively

active template.
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Figure 5.6: Tracking and adaptation A) The output y of the closed loop system (purple)
tracks three different references (r̄ = 0.15, 0.3 and 0.45µM , dark gray). B,C and D) show
equilibrium conditions as they change as a function of reference changes, where grey corre-
sponds to the controller (5.4), and orange corresponds to the system (5.9). E) Adaptation
of the system output in the presence of a step perturbation of the production rate (κs)
applied at 15 and 30h, where the final values are two and four times its nominal value listed
on Table 6.1.

Integral behavior

We now define a rescaled reference signal as r̄ = θc
κc
r; then, we define the error

signal e = r̄ − y and variable er = rr − ry. Differentiating, we find that ėr = ṙr − ṙy =

θcr − κcy − φcer + u̇. Then, we obtain

u(t) = er + φc

∫
erdt− κc

∫
edt. (5.10)

The expression above includes terms that depend on er and on e, which respectively

measure the difference between controller internal variables rr and ry, and the difference

between the output y and the reference r̄. If the controller response is ultrasensitive, and

the controller is operating in its ultrasensitive regime, then at equilibrium y ≈ r (based on

the input-output responses we examined earlier). Then, by subtracting the dynamics of ṙy

and ṙr we find that:

φcer = κce.
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This implies that, if the controller operates in the ultrasensitive regime, then er ≈ 0, which

implies that also e ≈ 0. These approximations become exact if φc = 0. In addition, Fig. 5.3

shows that reducing φc increases the ultrasensitive response. The closed loop performance

of the ultrasensitive controller is examined next.

Reference tracking and disturbance rejection

We recall the definition of the rescaled reference signal r̄ = θc
κc
r, and that y is

the output of the closed loop system. We test the ability of y to track changes in r̄ using

numerical simulations. Fig. 5.6A shows the response of the output to step-increases in

rescaled reference signal r̄ = 0.15, 0.3 and 0.45µM . The rescaled reference and the reference

input are related as: r̄ = θc
κc
r = 1.5 r, given the nominal parameters in Tables 5.1 and 6.1.

The system’s output y, shown in purple, closely tracks each reference input (dark

gray line). Fig.5.6 B, C and D show the input-output equilibrium conditions of the con-

troller and system at the corresponding reference value: the threshold of the ultrasensitive

input/output controller map tracks the reference r̄. Fig. 5.6 E shows the behavior of the

output in the presence of a step-perturbation of transcription rate κs, given a constant ref-

erence r̄ = 0.15µM . The system converges to the reference input rejecting the disturbance;

Fig.5.6 F, G and H show input-output equilibrium conditions of the controller and system

for different disturbance values on κs. The system is able to reject those disturbance in the

ultra sensitivity region. Gillespie simulations (light purple color) suggest that the tracking

and disturbance rejection of the closed loop system hold also in a stochastic setting.
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Sensitivity analysis

1. Sensitivity to variations of system parameters: When the equilibrium of the

closed loop system is in the ultrasensitive regime of the controller response, the system

transient and stationary responses are robust with respect to parameter variations of the

system to be controlled. Numerical sensitivity analysis is shown in Fig. 5.7. The closed

loop system transient (Fig. 5.7 A) and equilibria (Fig. 5.7 B) are robust to most parameter

variations spanning 0.5 to 2 times the nominal values listed on Table 6.1.

We note that the controller can “saturate” in a certain range of the production

rate of Z (κs), the recovery rate of W (θs), the total concentration of template (ytot) and

total concentration of activator (wtot).
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Figure 5.7: Rejection of system parametric disturbances A) Output y is shown as
parameter values vary from 0.5 to 2 times their nominal values listed on Table 5.1 (yellow
to red). B) Input-output equilibrium conditions of the controller (grey) and system (color
scale), as the same parameters are varied.

Large θs or wtot increase free w, which can bind faster to y∗. To balance this
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process, the system increases the demand of controller species u in order to inhibit w. This

can cause the controller to reach a saturation point and fail. If ytot is much lower than the

reference value, the controller may fail to supply the system’s demand of u because there is

not enough free y available. (Note that Y is not depleted by the controller reactions.)

2. Sensitivity to variations of controller parameters: We test how changes in the

parameters of the biomolecular controller affect the closed loop system behavior. Fig. 5.3

and Fig. 5.8 show that the system is generally very robust to changes in controller param-

eters. An exception is parameter utot, which defines the upper bound of the controller’s

output. By increasing this parameter we improve the robustness of the ultrasensitive re-

sponse of the controller. In contrast, if utot is reduced, the controller may saturate and fail

to supply enough input U to the system.
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Bottom shows input-output equilibrium condition of the controller (grey scale) and system
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5.5 Discussion

We presented a biomolecular controller that operates via titration reactions, and

showed its closed loop performance when the system to be controlled is an RNA transcrip-

tion process.

We combine two mechanism, titration and activation/inhibition cycle, to create

a highly ultrasensitive behavior. Titration is important for tuning the threshold of the

ultrasensitive response and both mechanism are important to raise the highly ultrasensitive

response.

This ultasensitive controller overcomes the challenge of designing an integral con-

troller that takes into account degradation and dilution processes [17]. We believe that

our studies could be useful to guide experimental implementation of a variety of molecular

controllers, beyond the in vitro implementation that we suggest here. Ultrasensitivity may

be obtained using mechanisms other than molecular sequestration; for instance, [48] showed

that phosphorylation cycles have an ultra sensitive response. Many post-translational mod-

ification pathway such as phosphorylation, glycosylation, acetylation and ubiquitination

could be used to design an ultrasensitive feedback controller for tracking and disturbance

rejection.
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Chapter 6

An ultrasensitive motif for robust

closed loop control of biomolecular

systems

6.1 Introduction

The next engineering challenge of our time is to design molecular feedback control

networks for complex molecular systems. These controllers will enable us to engineer pre-

cise and reliable synthetic circuits for a variety of applications in therapeutics, biological

smart materials, metabolic engineering, food industry and agriculture. Feedback promises

to mitigate many roadblocks preventing the systematic use of components developed in

synthetic biology, which include their nonlinearity, stochasticity, variability and lack of

modularity [33].
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We recently proposed a biomolecular network that can be used for closed loop feed-

back control [25]. The main feature of this network is its ultrasensitive response, which is

achieved by combining molecular titration [20, 28] (comparator) with a downstream activa-

tion/deactivation cycle (on/off switch), which is similar to phosphorylation/dephosphorylation

reactions ([40]). One of the limitations of this controller is its “unidirectional” action, in

other words the controller can be used to activate or inhibit the target process, but can’t

generate both regulatory actions in parallel. This limitation, qualitatively illustrated in

Fig. 6.1, is common to virtually all molecular feedback controllers proposed in the past. In

this paper, we a) characterize the ultrasensitive regime of the controller motif, which we

name “Brink Controller” motif, which is enabled by fast titration and switching rates, as

well as slow degradation rate, and b) propose to operate two Brink Controllers in parallel to

achieve a robust control loop system that can simultaneously manage positive and negative

regulation.

An anthitetic feedback controller was recently proposed in [17], which relies on

titration reactions but neglects the effects of degradation of components. Relative to the an-

tithetic controller, our Brink Controller motif includes an additional activation/deactivation

cycle for the controller molecule, and takes into account degradation (or dilution) reactions

that are known to be present in most biochemical and cellular processes. We show that a

large degradation rate can in fact reduce the ultrasensitive behavior of the controller.

The paper is organized as follows. In Section 6.2 we formulate our general problem

and describe an architecture for a closed loop molecular controller that can manage positive

and negative action on the system. In Section 6.3 we introduce the Brink controller motif
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w: disturbances

robust fragileB C

controller
u y

w

controller
u y

A positive action

robust

Figure 6.1: A: Tradtional biomolecular control systems have can either upregulate or down-
regulate the production of a target molecule. This “unidirectional” control action may fail
to control the system as desired, as illustrated in panel B: The controller u in blue can act
exclusively positively on the target system, failing to maintain the position of the sphere
for arbitrary disturbances w. However, the red controller u can act both positively and
negatively, the sphere position can be controlled.

and derive conditions guaranteeing its ultrasensitivity. Numerical simulations showing the

effectiveness of the closed loop Brink Controllers are in Section 6.4 even in the presence of

downstream loads, and we briefly discuss potential biological realizations of the circuit in

Section 6.5.

6.2 Architecture of a synthetic molecular controller for home-

ostasis

In this paper we indicate chemical species with capital letters (e.g. U) and their

concentration with the corresponding lowercase letters (e.g. u). Let us consider a biological

process where a protein Y is produced at an unknown rate θ and degraded at an unknown

rate δ. Our goal is to control its concentration y so that it maintains (at steady state)

the same concentration of a reference species R. For this purpose, we can engineer a
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biomolecular “controller” U(R, Y ) as follows:

ẏ = θs − δsy
process

+

controller

u(y, r) . (6.1)

This goal could be achieved by the controller architecture in Fig. 6.2, which op-

erates as the combination of two components as shown equation (6.2). The first controller

component u1 should have a positive action on the process by producing y, while the second

controller u2 should have a negative action by removing y.

ẏ = θs − δsy
process

+

controller

u1(y, r)

positive action

− u2(y, r)

negative action

. (6.2)

To track the reference r, we require that u1 is active (non-zero) only when y < r,

and that u2 is active only when y > r:

u1(y, r) ≈


αs if y < r,

0 if y ≥ r,
u2(y, r) ≈


βs if y > r,

0 if y ≤ r.
(6.3)

The desired “shape” of the response of each controller element is shown in Fig. 6.3

A. If the requirements (6.3) are satisfied, then we claim that y converges to r at steady

state and that this is true in a broad parameter range. This claim can be qualitatively

supported by sketching equilibrium conditions: Fig 6.3 B shows the combined response of

the controllers (orange), overlapped with the equilibrium condition of the process (gray);

these equilibrium conditions intersect for y ≈ r for a variety of slopes (δs, degradation rate)

and intercepts (θs, production rate) characterizing the process.

A candidate class of controllers that can satisfy the requirements (6.3) is given

by Hill-type functions shown in equation (6.4): these functions have a sigmoidal shape, a

threshold that depends on r, and a steepness that depends on n.
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C2
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Figure 6.2: The homeostatic Brink Controller consists of two Brink controllers in
parallel, where controller C1 has a positive action and C2 has a negative action on the
biomolecular process.

0

00
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0

A B

controller
process

Figure 6.3: Ultrasensitive controller A) Shows the input-output equilibrium conditions
of u1 and u2. B) Illustrate the input-output equilibrium conditions for u in orange, while
the grey line represent the input-output equilibrium mapping of the process.

u1 = αs
rn

yn + rn
, u2 = βs

yn

yn + rn
. (6.4)

We can achieve requirements (6.3) as long as these controllers are ultrasensitive (very large

n) as shown in Fig. 6.3 A (and there is no basal expression of control signal). The combined

candidate Hill-type controller is:

u = u1 − u2 = (αs + βs)
rn

yn + rn
− βs, (6.5)

The combined controller u preserves the ultrasensitive behavior of the individual

controllers, has positive and negative effects on the process as desired (Fig. 6.3B), and

operates in the range −βs to αs. In the next section, we suggest a chemical reaction

network that achieves a fast, ultrasensitive response with a tunable threshold to approximate

controllers (6.4).
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6.3 Brink Controller: A tunable, ultrasensitive molecular

motif

6.3.1 The Brink Controller motif

In this section we describe the Brink Controller motif, shown in detail in Fig. 6.4A,

that will be used as a regulatory element to build the homeostatic architecture presented in

the previous section. The Brink Controller consists of three species: two inputs, an inhibitor

species I and an activator species A, and one output, species U (Fig. 6.4B). Either input I

or A can be kept constant (acting as the “reference” signal) while the other is varied (signal

to be controlled).

A

I

RA

RI

U* U I
A

U
CONTROLLER

A BCOMPARATOR SWITCH

Figure 6.4: Brink Controller motif A) Summary of the reactions defining the Brink
Controller motif. A stands for activator, I stands for inhibitor and U stands for output. B)
Block diagram summarizing the inputs and the output of the controller.

The inhibitor I produce species RI , which can bind and inhibit U by forming a

complex U∗. This new species U∗ is to be considered inactive. The activator A produces

species RA, which can reactivate U∗ by removing RI from the complex Y ∗, thereby con-

verting U∗ back to U . Species RA and RI bind to each other to produce a waste complex

which does not interfere with the rest of the circuit. In addition, RA and RI degrade at a
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constant rate.

A
κc−−⇀ A+RA Production

I
θc−−⇀ I +RI

RA +RI
γc−−⇀ RA ·RI Titration

RA
φc−−⇀ 0 Degradation

RI
φc−−⇀ 0

RA + U∗
αc−−⇀ U +RA ·RI Reactivation (switch on)

RI + U
βc−−⇀ U∗ Inhibition (switch off)

We assume the total concentration of species U is constant:

utot = u+ u∗ (6.6)

(As a reminder, in this paper we indicate chemical species with capital letters (e.g.

U) and their concentration with the corresponding lowercase letters (e.g. u).)

Using the law of mass action (and the mass conservation equality), we obtain the

following model for the Brink Controller module:

ṙA = κca− αcrAu∗ − γcrArI − φcrA, (6.7)

ṙI = θci− βcrIu− γcrArI − φcrI , (6.8)

u̇ = αcrAu
∗ − βcrIu. (6.9)

Within the Brink Controller module we can identify two subsystems: a comparator

and a switch (Fig. 6.4 A). The comparator reactions rely on molecular titration, whose

purpose is to ensure that only the most abundant species beween I and A is propagated
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to the downstream reactions. The switch reactions shift the balance betwen U and U∗,

depending on the output of the comparator subsystem.

6.3.2 Ultrasensitivity and tunability conditions

We seek to design a Brink Controller module with an ultrasensitive input-output

steady state response. In this section, we will derive analytical conditions to achieve such

behavior in the system.

First, we consider the case where I is kept constant and acts as a reference input

to the module, while A can vary. We derive equilibrium conditions by setting equations

(6.7)-(6.9) equal to zero. Finding the controller output u as a function of a and i is a long

and tedious procedure. However, we can easily express a as a function of i and u in closed

form:

ā(ū, i) =
θc
κc
i+

φc
κc

(
1− αcū

∗

βcū

)
r̄A(ū, i), (6.10)

where

r̄A(ū, i) =
−bA +

√
b2A − 4aAcA

2aA
,

and aA = αcγcu
∗, bA = αcū

∗(βcū + φc) and cA = −ūβcθci. Equation (6.10) describes the

input-output steady state mapping of the model (6.7)-(6.9) and can be rewritten as:

ā(ū, i) = ka(i) + ∆(ū, i), (6.11)

with ka(i) = θc
κc
i and ∆(ū, i) = φc

κc

(
1− αcū∗

βcū

)
r̄A(ū, i). Expression (6.11) is useful because it

allows us to clearly break down a(ū, i) as the sum of a threshold ka(i) depending on input

i, and of an additional term ∆(ū, i).
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If the input/output relationship between a and u is ultrasensitive, then we should

observe a regime for a ≈ ka(i) where small changes in a correspond to large changes in

u. Therefore we focus on term ∆(ū, i), and we ask if there are conditions that guarantee

∆(ū, i) to be small, for arbitrary values of u ∈ [0, utot]. Within term ∆(ū, i), the factor r̄A

(defined earlier) is small if b2A � −4aAcA, i.e. if:

βc
γc
ū� 4

θc
αc

i

ū∗
. (6.12)

Because titration rates γc are usually fast (large magnitude), condition (6.12) is satisfied if

also the switching rates αc and βc are fast.

In addition, term ∆(ū, i) is small if φc/κc is small. This fraction is the ratio

between degradation and production rates of ra: if the degradation rate is very small, it

promotes ultrasensitive behavior.

To summarize, to obtain ultrasensitivity we require fast titration and fast switching

rates. In addition, the threshold of the ultrasensitive response κa = θc
κc
i can be tuned linearly

with the input i. A slow degradation rate φc also contributes to promote utrasensitivity.

Our derivations are supported by the numerical simulation of expression (6.12) in

Fig. 6.5, which was done using the parameters reported in Table 6.1. The x axis of this plot

uses a threshold-normalized input an = a(u,i)
κa

. The nominal values of titration rate γc and

switch rates αc and βc are chosen to be in a realistic range for nucleic acid networks, and

are in the same order of magnitude. Ultrasensitivity is not drastically affected if we change

γc within one order of magnitude of the nominal value; however, variations of αc and βc in

the same range make the transition less sharp. A small degradation rate φc helps improve
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Figure 6.5: Ultrasensitive characterization Input-output equilibrium conditions behav-
ior of our controller module from equation (6.10) as parameters are changed. Nominal
parameters are in Table 6.1.

ultrasensitivity. Changes in θc and κc primarily affect the threshold κa, however because

our plot uses a threshold-normalized input these effects are not visible.

We follow the same steps to find the input-output mapping when the inhibitor i is

varied while the activator a is constant, and determines the threshold for the input/output

mapping. In this case we obtain:

ī(ū, a) =
κc
θc
a− φc

θc

(
βcū

αcū∗
− 1

)
r̄I(ū, a), (6.13)

where

r̄I(u, a) =
−bI +

√
b2I − 4aIcI

2aI
, (6.14)

with aI = βcγcū, bI = βcū(αcū
∗ + φc) and cI = −αcū∗κca. As before, it is convenient to

write equation (6.14) as:

r̄I(u, a) = ki(a) + ∆(ū, a).

To identify the ultrasensitive regime, we examine term ∆(ū, a) and in particular from factor
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rI we derive conditions:

αc
γc
ū∗ � 4

κc
βc

a

ū
. (6.15)

As earlier, we require values of γc, βc and αc for ultrasensitive response. The threshold ki

can be tuned linearly by the concentration of a, similarly to the case considered earlier.

Numerical analysis (not reported for brevity) shows a dependence of ultrasensitivity on

parameters that is analogous to what shown in Fig. 6.5.

6.3.3 Approximated input-output mapping

In this section, we approximate the input-output ultrasensitive response of the

Brink Controller motif with an equivalent Hill function; specifically we find expressions for

equivalent threshold and Hill coefficient as a function of the Brink Controller reaction rates.

This approximation is convenient because it shows that our motif can operate within a

homeostatic controller as outlined in Section 6.2 (in the limit for very large Hill coefficient).

For the Brink Controller motif where the inhibitor I is kept constant, while the activator

concentration is varied, we approximate the input-output steady state as:

ū ≈ utot an

an + κna
, (6.16)

where the threshold κa = θc
κc
i was defined in expression (6.11).

The ultrasensitive region can be approximated linearly as the maximum slope S

of the Hill function as shown in Fig. 6.6. The maximum slope of equation (6.16) is the

derivative of u with respect to a evaluated at κa. We obtain that

Smax,H =
dū

da |a=ka

= utot
n

4κa
. (6.17)
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Figure 6.6: A Hill function can be linearly approximated in the transition region with its
maximum slope.

The slope of equation (6.10) can be approximated as the change of input a that

induces a change from L% (low) to H% (high) fraction of the output utot. The maximum

slope occurs when at the half-max value of utot, thus L = H = 0.5. We can write:

Smax,BC = lim
L,H→0.5

Hutot − Lutot
a(Hutot)− a(Lutot)

≈ 1

4

(utot)2

(1 + αc
βc

)

αc
φcκa

. (6.18)

First, from equation (6.10) we find that rA is the solution of a second order poly-

nomial, aAr
2
A + bAra + cA = 0. We normalized the coefficients by aA and we obtain

an = 1, bn =
βcu+ φc

γc
, cn = − βcθcu

αcγcu∗
i (6.19)

To obtain an ultrasensitive response, we found that αc, βc and γc must be large with respect

to the other parameters. Then, bn is larger than cn.

We recall that:

rA =
−bn +

√
b2n − 4cn

2
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We now expand with Taylor series the function:

√
x2 + a− x =

a

2x
− a2

8x3
+

a3

16x5
− 5a4

128x7
+O(x−9).

When x is very large we can neglect infinitesimal terms:

√
x2 + a− x ≈ a

2x
.

Because we assume bn is much larger than cn, and φc is smaller than βcu, we approximate:

rA ≈
−4cn
4bn

=
βcuθci

αcu∗(βcu+ φc)
i ≈ θci

αcu∗

Next, we approximate the change in steady state input a corresponding to changes

in the output u between two values H (high) and L (low) as follows:

a(H)− a(L) ≈ φc
κc

(
1

L
− αc
βcH

− 1

H
+

αc
βcL

)
θci

αcutot

≈ φc
αc

H − L
HL

(
1 +

αc
βc

)
κa
utot

Then the slope of the transition can be approximated as:

S =
Hutot − Lutot

a(Hutot)− a(Lutot)
≈ HL (utot)2

(1 + αc
βc

)

αc
φcκa

.

Then, by equating the maximum slope expressions (6.17) and (6.18), we find an

approximated relationship between the equivalent Hill coefficient n and the reaction rates

of the Brink Controller motif:

n =
1

(1 + αc
βc

)

αc
φc
utot. (6.20)

Similar steps can be followed for equation (6.13), taking into account a Hill function

of the form:

ū = utot
κmi

im + κmi
, (6.21)
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whose threshold is now defined as κi = κc
θc
a. Then, the slope of the equation (6.21) is

Smax,H =
du

di |i=ki
= −utot m

4κi
(6.22)

Likewise, the approximated slope of equation (6.13) is computed as

Smax,BC ≈
(utot)2

(1 + βc
αc

)

βc
φcκi

. (6.23)

We find the Hill exponent m,

m =
1

(1 + βc
αc

)

βc
φc
utot. (6.24)

To summarize, we derived a Hill-type approximation of the input-output mapping

of the Brink Controller motif, and related the Hill function parameters to the controller

reaction rates. Consistently with the conditions found in the earlier section, large values

of αc and βc, and small values of φc improve ultrasensitivity (a large value of γc is also

required for the slope approximation justified in Appendix ??).

6.4 Results: The homeostatic Brink Controller

We now describe the full implementation of the Homeostatic Brink Controller,

shown in Fig. 6.2, where two Brink Controllers operate in parallel. Controller 1 has a

positive action on the system, and is active when the reference r is larger than y; Controller

2 has a negative action on the system, and is active when the reference r is smaller than y.

The ODEs describing the closed loop system are:
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C1



ṙr = κcr − αcrru∗1 − γcrrry − φcrr,

ṙy = θcy − βcryu1 − γcrrry − φcry,

u̇1 = αcrru
∗
1 − βcryu1,

(6.25)

C2



ṙy = θcy − αcryu∗2 − γcryrr − φcry,

ṙr = κcr − βcrru2 − γcryrr − φcrr,

u̇2 = αcryu
∗
2 − βcrru2,

(6.26)

S

ẏ = θs
production

− δsy

degradation

+ αsu1

C1 action

− βsu2

C2 action

. (6.27)

We rewrite the last equation as ẏ = θs − δsy + u. Where u = αsu1 − βsu2. The

equilibrium condition of biomolecular process is:

u = g(y) = δsy − θs. (6.28)

Now, we assume that a) each brink controller converges to steady state much faster than

the process, and b) we approximate the input-output mapping of each brink controller with

an equivalent Hill function. We obtain the following expressions:

u1 = utot1

r̄n

yn + r̄n
and u2 = utot2

yn

yn + r̄n
, (6.29)

where n and m can be approximated respectively using expressions (6.20) and (6.24). We

then define a scaled reference r̄ = κc
θc
r, and we find the overall equilibrium condition of the

controller:

u = f(y) = (αs + βs)
r̄n

yn + r̄n
− βs. (6.30)
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Using the parameters in Table 6.1, in Figs. 6.7 and (6.8) we numerically integrate

equations (6.25), (6.26), and (6.27) (purple), and we plot the approximated equilibrium

condition (6.30) (orange) as well as the system equilibrium condition (6.28) (gray). Fig. 6.7

shows that the controller rejects parametric disturbances, and therefore maintains the de-

sired reference (homeostasis); Fig. 6.8 shows that the system succssfully tracks changes

in the reference. Both simulations show that the ultrasensitive regime of the controller is

successfully approximated with steep Hill functions in the (realistic) parameters we picked

(which satisfy the fast titration/fast switching requirements described in the previous sec-

tions).

It is worth noting that a more realistic actuation mechanism for the controllers is:

ẏ = θs
production

− δsy

degradation

+αs
u1

u1 + κ1

C1 action

−βs
u2

u2 + κ2

C2 action

.

In this case, the controller equilibrium conditions become:

u = f(y) = (ᾱs + β̄s)
r̄n

yn + r̄n
− β̄s,

where ᾱ = α
utot1

utot1 +κ1
and β̄ = β

utot2

utot2 +κ2
. The results of numerical analysis in this case, with

κ1 = κ2 = 500 nM do not significantly differ from the simulations in Figs. 6.7 and 6.8 (not

shown).

6.4.1 Loading effects on the controller

The Brink Controller outputs may be depleted by the downstream circuits (load)

which could cause retroactivity effects on the controller [32]; we have neglected this issue
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Figure 6.7: Homeostasis behavior Top: Time response of the closed loop system under
different disturbances (disturbances rejection). Bottom: Nullclines of the controller and the
process under different constant disturbances.

in the previous sections. If U drives a downstream process by binding and unbinding to a

target, this can be taken into account as:

Downstream process

U + E
κ+

−−⇀↽−−
κ−

C association/dissociation with the load E

Then, equation (6.9) becomes

u̇ = αcrAu
∗ − βcrIu+ κ−c− κ+ue

loading

(6.31)

If we assume that association/dissociation (κ+/κ−) are fast with respect to the time scale

of the module, at steady state we find that c = e
e+κM

u, where κM = κ+

κ− . We define the

effective load on the system as λ = e/κM . Then, we update equation (6.6).
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Figure 6.8: Precise tracking Top: Tracking of different reference of Homeostasis Brink
Controller. Bottom: Nullclines of the controller and process at different references, r = 0.1,
0.2 and 0.3µM (r̄ = 0.05, 0.1, 0.15 µM).

utot = u+ u∗ +
λ

1 + λ
u (6.32)

The analytical conditions for the Brink Controller under a load are similar to

equation (6.12) and (6.15). In other words, under fast binding/unbinding assumptions,

loading effects do not significantly affect the input-output ultrasensitive response of the

module characterized in isolation.

We plot the input/output response of the Brink Controller motif as a function of

the effective load λ in Fig. 6.9; the results show that the presence of a load does not affect

ultrasensitivity. This suggest that the proposed controller mechanism could be coupled to

more complex networks and maintain the ultrasensitivity observed when the circuit is in
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Table 6.1: Nominal simulation parameters of the controlled system

Parameter Description Value Other studies

θc (/s) Production 10−3 10−3 − 1 [91, 22]
κc (/s) Production 5 · 10−4 10−3 − 1 [91, 22]
βc (/M/s) Inhibition 6 · 104 104 − 106 [54, 99]
αc (/M/s) Reactivation 6 · 104 104 − 106 [54, 99]
γc (/M/s) Titration 3 · 104 104 − 106 [54, 99]
φc (/s) Degradation 3.85 · 10−4 10−4 − 10−3 [52].
utot1 (nM) Concentration 500
utot2 (nM) Concentration 500
θs (/s) Production 1.25 · 10−4 10−3 − 1 [91, 22]
δs (/s) Degradation 3.85 · 10−4 10−4 − 10−3 [52].
αs(/s) 5 · 10−4 10−3 − 1 [91, 22]
βs(/s) 5 · 10−4 10−3 − 1 [91, 22]

isolation.
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Figure 6.9: Loading analysis shows that the presence of a fast binding/unbindign load does
not significantly affect ultrasensitivity of the input-output mapping of the Brink Controller.

6.5 Biological implementation of the Brink Controller

We will describe how we can implement the Homeostasis Brink Controller using nu-

cleic acids nanotechnology and the CRISPR/Cas system. The predictability of nucleic acids

Watson-Crick base pair interactions of RNA and DNA enables the rational design of strand

interactions based on their well understood thermodynamic properties. Using principles of

strand displacement and toehold mediated branch migration, nucleic acid nanotechnology
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has enabled the rational design of sensors and many dynamic and logic networks [98] using

computational tools. RNA-based regulation in vivo has significant advantages over tradi-

tional protein-based regulation, including low metabolic burden (avoiding resource-intensive

translation), portability (RNA based regulators are found in different bacterial kingdom and

are often not host-specific), and reduced delays (RNA degradation is fast and offer short

time response).

CRISPR based systems are a powerful tool for gene editing and gene regulation

at will inside the cell. The system consists of a DNA endonuclease enzyme (Cas9 [84] and

Cfp1 [96]), which bind to DNA targets that depend on a Cas-binding guide RNA (gRNA).

The Cas9/gRNA complex recognizes precisely the target DNA and localizes the enzyme on

the target. A catalytically inactive form of Cas9 [72] is called dead Cas9 (dCas9) strongly

binds to the target DNA (without cleaving) and can be used to regulate promoter activity.

The combination of tools from nucleic acids nanotechnology and the CRISPR sys-

tem has the potential to provide a rapidly expandable array of orthogonal, programmable

regulators with sophistiated logic functions. We briefly speculate on two possible imple-

mentations of our Brink Controller motif using these tools.

One strategy is based on strand displacement of gRNA from Cas9, and is shown

in Fig. 6.10 A. Inactive species U∗ could be implemented as dCas9, which can be activated

by a guide RNA RA, forming an active complex U . Another RNA RI , complementary

to the RNA RA, could inactivate U by displacing RA from the complex U ; this may be

done, for example, using “displacement” domains, or toeholds. Inputs A and I could be

transcription factors or synthetic plasmids responsible for the production of RNA RA and
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RI . Displacement of the guide-RNA from dCas9 was experimentally tested in vivo in [57].

CRISPR RNA Scaffold Controller
rA

rI

rA

rI

TT
dCas9
target
effector

ONOFF

ONOFF

CRISPR Kleptamer ControllerA B

Figure 6.10: CRISPR-based feedback controllers. A) dCas9 directed regulation, con-
troller by guide-RNA (rA) and kleptamer (rI). B) dCas9-effector fusion proteins. The
guide-RNA is extended with additional domain to recruit RNA-binding protein.

An alternative implementation of the Brink Controller is shown in Fig.6.10 B and

relies on RNA scaffolds. A CRISPR RNA scaffold [95] recruits proteins independently from

the gene target and regulates the downstream gene by either activating or inhibiting it.

We suggest that the RNA scaffold could be engineered to include a toehold that enables

RNA removal to control the activity of the scaffold and therefore regulate gene expression.

CRISPR RNA scaffolds have been implemented in different hosts such as bacteria, yeast,

and mammalian cells.

6.6 Conclusion

We have presented a strategy to build a homeostatic biomolecular controller archi-

tecture that relies on the motif we name Brink Controller. We require that this controller

converges fast and has an ultrasensitive input/output response. We discuss derive condi-

tions to achieve ultrasensitivity, and in particular we require fast titration rates and fast
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switching of the controller reactions. We derive a simple Hill-type approximation of the

Brink Controller input/output mapping. Using numerical simulations we demonstrate that

by combining two Brink Controllers (respectively having a positive and a negative action

on the system) we can obtain a robust homeostatic system that tracks a desired reference.

Finally, we discussed potential implementations of the Brink Controller motif.
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