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Semantic Compression for Edge-Assisted Systems
Igor Burago, Marco Levorato, and Sameer Singh

Department of Computer Science
University of California, Irvine

Email: {iburago, levorato, sameer}@uci.edu

Abstract—A novel semantic approach to data selection and
compression is presented for the dynamic adaptation of IoT data
processing and transmission within “wireless islands”, where a set
of sensing devices (sensors) are interconnected through one-hop
wireless links to a computational resource via a local access point.
The core of the proposed technique is a cooperative framework
where local classifiers at the mobile nodes are dynamically crafted
and updated based on the current state of the observed system,
the global processing objective and the characteristics of the
sensors and data streams. The edge processor plays a key role
by establishing a link between content and operations within
the distributed system. The local classifiers are designed to
filter the data streams and provide only the needed information
to the global classifier at the edge processor, thus minimizing
bandwidth usage. However, the better the accuracy of these local
classifiers, the larger the energy necessary to run them at the
individual sensors. A formulation of the optimization problem for
the dynamic construction of the classifiers under bandwidth and
energy constraints is proposed and demonstrated on a synthetic
example.

I. INTRODUCTION

The Internet of Things (IoT) paradigm [1] envisions a
scenario where machines remotely interact to provide services
and perform monitoring and control tasks. To this aim, the
IoT realizes a network of data sources, mobile devices, and
processing centers interconnected through wireless and wireline
links, where local and global algorithms cooperate in a
distributed fashion.

Sophisticated large-scale application scenarios such as Smart
City systems [2] and intelligent (or autonomous) vehicular
networks [3], [4] push the limits of IoT systems in sensing,
communication and processing capabilities. To address the need
for tight control loops, timely coordination and computation-
intense processing, Fog and Edge Computing architectures [5],
[6] place computation resources at the edge of the wireless
access infrastructure. In these architectures, mobile devices
can offload computational tasks to edge data processors
through one-hop low-latency links. The co-location of sensing
and processing within a star topology allows reliable local
coordination of remote devices informed by global resources,
such as databases and data centers in the cloud. However,
the limited and time-varying bandwidth available in wireless
environments makes the design of edge-based architectures
challenging. This especially applies in those scenarios where
IoT data streams coexist with other services on the same
channel and network resource.

In this paper, we propose a framework for the dynamic
adaptation of IoT data processing and transmission within
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Figure 1. Edge-assisted local network scenario: A set of sensing devices
acquire observations on the physical environment to support a global
computational task performed at the edge processor.

“wireless islands”, where a set of sensing devices (sensors) are
interconnected with one-hop wireless links to a computational
resource through a local access point (e.g., a cellular base
station or a Wi-Fi access point). We specifically address
an application scenario where the sensors and the edge
processor cooperatively perform a real-time data acquisition
and processing task, such as classification or detection based
on environmental observations (see Fig. 1). The challenge, then,
is to accomplish such task with the bandwidth, computational
power and energy constraints imposed by the limited resources
available at the device and network levels.

The core of the framework is a novel “semantic” approach
to data selection and compression, where local classifiers at
the mobile nodes are dynamically crafted and updated based
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on the current state of the observed system and its processing
objective, together forming a continuously evolving context.
The edge processor plays a key role by establishing a link
between content and operations within the distributed system.
The local classifiers are designed to filter the data streams and
provide only the needed information to the global classifier at
the edge processor, thus minimizing bandwidth usage. However,
the better the accuracy of these local classifiers, the larger the
energy necessary to run them at the individual sensors. Our
framework builds on recent results [7], [8], where classifier
simplifications are applied to the problem of explaining the
outcome of black box machine learning algorithms.

An interesting connection can be made to the traditional
multimedia compression techniques, where the components
imperceivable by humans are removed. Thus, distortion of the
original signal is accepted in those regions that are not needed
by the final application. This research extends this principle to
data consumed by machines for general computational purposes.
Additionally, we expand the traditional focus on bandwidth
compression by itself with the notion of energy-awareness.

The rest of the paper is organized as follows. Section II
introduces the general scenario and describes the problem
addressed herein. In Section III, we present the semantic
compression framework, and illustrate its key components
on an examplary problem in Section IV. Section V concludes
the paper.

II. PROBLEM FORMULATION

Recent advances in machine learning resulted in sophisticated
models, which provide incredibly capable detectors of interest
to IoT applications, particularly for image and video processing.
Instead of working only for niche or synthetic settings, these
classifiers are able to handle real-world input from a large vari-
ety of environments. As a consequence, the resulting classifiers
often tend to be too complex in structure, and can only reside
on devices capable of handling computationally-intense tasks.
However, mobile sensors collecting the data for processing have
only limited observational power, computational capabilities,
and energy availability. Hence, due to constraints in these
resources, they often cannot support such complex classifiers.
Fog and Edge architectures offer a solution to this issue by
introducing computational resources within the local wireless
island. However, bandwidth constraints, often imposed by other
competing services, limit the data that can be transferred
from the sensors to the computational resources. In these
circumstances, pre-filtering the data at the sensors becomes
necessary to avoid delay, data loss, or undesirable disruption
of other wireless services.

A sketch of the architecture at the center of our studies is in
Fig. 1, where a set of sensors acquire observations in some dy-
namic environment. The sensors are wirelessly interconnected
through a local access point (e.g., base station) to an edge
processor. The edge processor is assigned a computational task
(possibly changing in time), such as the identification of human
activities in public parks or traffic dangers in autonomous
vehicles’ networks. This task corresponds to one or more

classifiers taking the data streams from the sensing devices as
their inputs. The goal of the global classifiers is to achieve an
average accuracy α, measured in terms of classification errors.

For the sake of explanation ease, we introduce the notion of
temporal period, where time is discretized and indexed with t.
The K sensors are connected to the edge processor through
wireless links of capacity bk,t, k = 1, . . . ,K, in the period t.
A constraint bt on the overall capacity available to the sensors,
where

∑K
k=1 bk,t ≤ bt, can be introduced to capture channel

sharing. The signal acquired by a sensor k in the time period t
is Xk,t. Each sensor has an energy storage for processing
and transmission, where the amount of energy available at
sensor k in period t is equal to ek,t. The energy storage can be
refilled through charging or energy harvesting, modeled as a
random arrival process. The goal of the system is to guarantee
the wanted accuracy at the edge processor using the available
bandwidth and energy. Fig. 2 illustrates the components of the
system for an individual sensor k.

The sensors implement local classifiers which serve the
purpose of filtering out unusable data, defined as the data
that are not needed for maintaining the target accuracy at the
edge processor. While the amount of data transferred from the
sensors to the edge is bounded by the time-varying capacity of
the channel, the efficacy in locally removing unnecessary data
is bounded by the processing power and energy availability at
the sensors. On the one hand, the transmission of unfiltered
data may violate the bandwidth constraint, thus causing data
loss and disruption of existing wireless services. On the other
hand, running a complex local classifier may require excessive
computational effort and energy expense to the mobile devices.

We formulate an optimization problem capturing the tension
between these two extremes for the purposes of dynamic
adaptation of filters deployed at the sensors. Based on the input
from the sensors, the edge processor periodically produces a
new filter with controlled complexity for each sensor, based
on bandwidth and energy usage constraints following from
high-level operational objectives. Herein, we focus on building
customized classifiers possessing the following characteristics:
• Locality. The sensor-specific classifiers will be trained to

achieve a certain accuracy level for the kinds of inputs
the sensor is likely to receive. For instance, the local
classifiers will be built to provide low-error predictions
for indoor images if the sensor is placed inside.

• Bandwidth-Awareness. The local classifiers are designed
to be used as bandwidth-preserving filters, thus optimizing
for the false-negative rate to meet the bandwidth con-
straints imposed by the link to the global edge processor.

• Complexity and Energy-Awareness. The design of
the local classifiers will satisfy complexity and energy
requirements of the sensor as determined by a stochastic
energy-arrival process.

Given the complex, accurate classifier at the edge, our
objective is to build a sensor-specific classifier tailored to
the distribution of samples in the current period, and satisfying
the bounded complexity and bandwidth usage. More formally,
we are provided with a pre-trained binary classifier, e.g., one
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Figure 2. Illustration of the problem: Dynamic energy- and bandwidth-aware adaptation of local data filtering serving the purpose of global estimation. The
figure illustrates the components of the acquisition, communication, processing and control for one sensor.

detecting whether a person is visible by the sensor, denoted by
f : X → {0, 1}, where X is the space of possible inputs. We
treat this classifier as a black-box function in order to support
as wide of a variety of machine learning algorithms as possible.

For a sensor k during period t, the goal is to identify a
local classifier gk,t : X → {0, 1}, gk,t ∈ G, that meets the
specifications of the sensor, where G is the family of machine
learning classifiers we want the sensor to use (for instance,
linear classifiers). In particular, we are provided with the
following requirements corresponding to the aforementioned
characteristics:
• Locality Dk,t: The expected distribution of the sensor

inputs for period t is denoted by Dk,t. We want gk,t
to be as accurate as f as possible on inputs from this
distribution.

• Bandwidth bk,t: The average amount of data allowed to
be transmitted by gk,t for the period t should be less than
bk,t. (It is also possible to consider a generalization where
only the total capacity bt for all sensors is provided.)

• Energy ek,t: Average energy used by gk,t for the period
t should be less than ek,t.

In this work we assume that the customized classifier gk,t will
be built on the edge, not the sensor, and thus the computational
efficiency of estimating gk,t is not restricted.

III. SEMANTIC COMPRESSION

In this section, we outline our proposed approach to con-
structing a classifier gk,t that meets the sensor’s requirements
on energy, bandwidth, and locality for the period t, while still
being faithful to the complex, global classifier f .
Energy Efficiency. The primary obstacle with using f at the
sensor level is its computational complexity. For insance, each
prediction by a neural network can often take hundreds to
thousands of floating-point computations, resulting in a heavy
power consumption. Instead, we are concerned with learning
an energy-efficient classifier gk,t ∈ G, for G being limited
to a simpler model family, such as SVMs, decision trees,
linear classifiers, etc. We define the energy consumed by gk,t
for an input as Egk,t

: X → R≥0; the average energy used
by the sensor k for period t will be Ex∼Dk,t

[Egk,t
(x)]. We

also define a penalty on the classifier for violating an energy
constraint ek,t as RE , such that RE(Egk,t

(x), ek,t) = 0 if gk,t

meets the energy requirement ek,t, and RE(Egk,t
(x), ek,t) > 0

otherwise. Since directly estimating the energy consumption
Egk,t

of a classifier gk,t is challenging, we use the number of
computational operations as a proxy, and thus RE penalizes
gk,t the more operations it requires for a prediction.
Locality. Obviously, an energy-efficient classifier gk,t, by
using a simpler structure, cannot have the same general
representation capabilities as the global classifier f for the
complete range of inputs. However, in any given time period,
most sensors do not receive the full variety of inputs that the
global classifier is designed to support, and thus it is possible
to have gk,t focus its representation on the inputs expected
at the sensor. In order to identify such a gk,t, we use the
expected distribution of inputs, Dk,t, to compute how similar
gk,t is to f . In particular, given a loss function L(f(x), gk,t(x))
between gk,t’s and f ’s predictions on an instance x, e.g., the
squared loss Lsq(a, b)= (a−b)2 or the logistic loss Lll(a, b) =
−a log b−(1−a) log(1−b), we evaluate the similarity between
gk,t and f as Ex∼Dk,t

[
L(f(x), gk,t(x))

]
. Fig. 3 illustrates the

intuition, where a complex, power-consuming global classifier f
(solid gray curve) can be approximated quite well locally by a
simple, and thus energy-efficient, classifier gk,t (dashed bold
line).
Bandwidth Awareness. Every automated detector is accom-
panied by a certain level of expected error, often measured
as the rate of false positives and false negatives. Due to the
energy constraints on the desired classifier gk,t, it may not
be able to maintain the same low error levels as the global
classifier f , even on the local distribution of inputs. In such
situations, we can treat gk,t as the sensor-level filtering of
the inputs, with f running at the edge level to achieve the
same low error levels. Thus there is a trade-off between how
much the bandwidth is used to transmit false positives versus
missing out a relevant input in order to conserve the bandwidth.
We define the amount of data gk,t will use for an input x as
Bgk,t

: X → R≥0; the average data transmitted by the sensor
for period t will be Ex∼Dk,t

[Bgk,t
(x)]. We further define the

penalty on the classifier gk,t for violating the bandwidth bk,t
as RB , such that RB(Bgk,t

(x), bk,t) = 0 if gk,t uses less than
bk,t bandwidth, and RB(Bgk,t

(x), bk,t) > 0 otherwise. Fig. 3
shows an example where a classifier that is not aware of its
use as a filter (the leftmost example) may transmit less but



have a high error rate, while a bandwidth-aware classifier (in
the middle) will obtain lower false negative rate.
Semantic Compression. From the sensor specifications,
namely local distribution Dk,t, energy consumption constraint
ek,t and penalty function RE , bandwidth constraint bk,t and
penalty function RB , and the global classifier f , we can frame
the search for the sensor-specific classifier gk,t as the following
optimization problem to be solved periodically over time:

g∗k,t = argmin
gk,t∈G

Ex∼Dk,t

[
L(f(x), gk,t(x))

]
, (1)

s.t. Ex∼Dk,t

[
RE
(
Egk,t

(x), ek,t
)]
≤ εk,t, (2)

Ex∼Dk,t

[
RB
(
Bk,t(x), bk,t

)]
≤ βk,t. (3)

Here εk,t and βk,t have the meaning of the tolerances on
the expected penalties RE and RB for random observations
following a given locality distribution Dk,t.

The distribution Dk,t serves a proxy role conveying to the
edge processor a local description of expected observations at
the sensor, without wasting the bandwidth for transmitting the
observations themselves. The edge processor, in turn, replies to
the sensor with a classifier g∗k,t, locally tuned to Dk,t according
to the problem in Eq. (1)–(3). For each particular sensor and
time period, the distribution Dk,t is fixed, so the efficacy of
this semantic compression scheme is determined by whether
the family of local classifiers G is flexible enough for the
distribution of positive and negative samples in Dk,t. However,
at a larger scope, the locality Dk,t may vary and is subject to
negotiation between the sensor and the edge processor.

With the shape of the locality Dk,t controllable, the quality
of corresponding classifiers gk,t may be improved additionally
through locality tuning. This brings the option to view the
optimization in Eq. (1)–(3) as a subproblem for a higher-level
control task, maintaining a desired aptitude of classifiers gk,t
on a sequence of observations generated by the sensor. This
way, the problem of finding optimal local gk,t may be extended
to the broader adaptive-control problem of maintaining a
desired accuracy of filtration by adjusting the locality-capturing
procedure delivering distributions Dk,t, such that

Ex∼Sk,t

[
Qgk,t

(x,Dk,t)
]
≤ qk,t. (4)

The penalty function Qgk,t
stands for the losses we bear

from any inadequacies of the local classifier g∗k,t to the
particular choice of locality Dk,t, which we would like to keep
bounded by a tolerance qk,t. Here, the quality is monitored for
inputs from some control distribution Sk,t chosen by the edge
processor using the empirical data arriving from the sensor
and the a priori strategic objectives for the ultimate outcomes
of the sensor-edge system as a whole. In practice, Sk,t may
coincide with the global observatory distribution X , the locality
distribution Dk,t, or can be derived from the sequence of
empirical observations obtained by the sensor k. In Eq. (4),
the locality Dk,t is made an argument of the penalty Qgk,t

to highlight its potential role as the control “variable”. One
simple example giving an idea of how localities Dk,t may be
parametrized and controlled will be given in the following
section.

False negatives False positives

Less traffic More traffic
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Figure 3. Localized semantic classifier compression: The gray area depicts
the subspace of positive detections of a global black-box classifier f in the
space of all inputs X . The dashed bold line represents a simplified linear
classifier gk,t chosen to fit f only in the locality Dk,t of recent inputs from
a sensor k (yellow circle), and so does not need to bear the full complexity
of f . Our approach draws instances from Dk,t, classifies them with f , and
uses the resulting sample for optimizing gk,t. Due to energy and bandwidth
constraints, different boundaries gk,t may be obtained as illustrated under the
plot: Aggressive ones save traffic by capturing less but risk frequent misses
(left example); conservative ones avoid misses by capturing more but generate
more traffic (right example).

IV. SIMULATION RESULTS

In order to illustrate the feasibility of the proposed approach,
let us consider a motivating example of a binary classification
problem, in the context of a single sensor-edge pair (for this
reason we omit the index k below, for the sake of brevity).

As customary, input observations subject to classification
come as feature vectors in a multidimensional vector space X .
The two classes correspond to the sets of observations that are
to be registered by the sensor-edge system (positives), versus
the rest (negatives). In this case, probability distributions of both
classes are set to be Gaussian mixtures (and so is, therefore,
the joint distribution X ). Both mixtures consist of the same
number of symmetric normally-distributed components centered
equidistantly on a number of lines parallel to the main diagonal
of the unit hypercube.

For simplicity, we assume that both f and g ∈ G belong to
the same class of Support Vector Machine classifiers (SVMs)
working in the space X . To satisfy the requirement of g having
a lower complexity than f , the class G is limited to SVMs with
linear kernels, while the reference global classifier f is trained
for the kernel of Gaussian radial basis functions (and can be
replaced with even more computationally-intense classifier).
Each locality distribution Dt guiding the selection of training
samples for the on-sensor classifiers gt is set to be a uniform
distribution in a sphere described by its center and radius rt. By



the nature of the distribution X , the local and global accuracy
of the classifier f is expected to not differ significantly, while
the accuracy of localized classifiers g shall be sensitive to the
localities Dt and their sizes rt.

In this circumstances, the applicability of the problem
statements given in Section II to this detection task requires
a study of two aspects of the system: (i) The accuracy of the
localized classifiers gt for different spheres Dt as a function of
radii rt and the update frequency 1/γ. (ii) Realization of actual
distributions of consecutive observations xt in the data for a
desired update frequency, and the procedure for adaptively
choosing the radii rt reacting to the accuracy-complexity
tradeoff.

To this end, both in this specific example and in general, we
need to be in possession of two samples. First, a labeled training
dataset of pairs (zi, yi) is necessary, where points zi ∈ X
are drawn from the joint distribution of observations X , and
yi ∈ {0, 1} signify the corresponding labels. We can assume
the availability of this sample Z without any loss of generality,
as the very problem setting given in Section II starts with a
classifier f that has to be trained on some sample, which we
can reuse here for Z. In the unsupervised case, for the purposes
of the following discussion, labels yi can be defined by the
outcomes f(zi) of the global classifier f .

Second, it is necessary to have a sample of one or more
trajectories S=(x1, . . . , xT ), xt ∈X representative of the
sequential process generating observations on the sensor. In
practice, this sample can be obtained from previous, nonadap-
tive runs of the sensor-edge system in question, where all
sensor observations eventually reach and get accumulated at
the edge processor. In this example problem, we assume that
the trajectory distribution S follows the general distribution X
(which would also likely be the case in general, as well, unless
the nature of observation process dictates otherwise). Adhering
to this assumption, we generate a sample S as a Markov chain
starting from a randomly chosen point x0 ∼ X and continuing
by applying the Metropolis-Hastings sampling algorithm to the
distribution X .

The two aforementioned aspects of the system, then, can
be studied through the following duplex sampling procedure
(schematically depicted in Fig. 4).

1) For each update frequency 1/γ (or, equivalently, the
length of the update period γ in the number of ob-
servations), draw a sample of subsequences St(γ) =
(xt−γ+1, . . . , xt) of γ consecutive observations along
the trajectory S.

2) For each subsequence St(γ):
a) Find the minimal sphere Dt containing all (or a

given percentage of) points xt−γ+1, . . . , xt.
b) Sample points Zt(γ) = {(zi, yi) ∈ Z | zi ∼ Dt}

from the general training sample Z uniformly inside
of the sphere Dt.

c) Using the points in Zt(γ) as a training sample, fit
a classifier gt ∈ G to a desired quality.

d) Apply the classifier gt to the points in the subse-
quence St(γ), comparing the verdicts of gt to the

(a)

(c)(d)

Training sampleTrajectory sample

(b)

. - :
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Figure 4. Trajectory sampling procedure: Schematic representation of the
stages (a)–(d), highlighting the key variables invloved.

corresponding verdicts of the reference classifier f
for those same points in St(γ).

e) Store the radius rt(γ) of the sphere Dt and the re-
sulting accuracy αt(γ) of the localized classifier gt
on the points in St(γ).

With the accumulated statistics of radii rt(γ) and accura-
cies αt(γ), it is then possible for us to compute the empirical
averages of both of these features over trajectory’s subsequences
as functions of update period γ.

Fig. 5 and 6 demonstrate these functional relations in
the case of our motivating example for a multidimensional
Gaussian sample. The former figure depicts the average radius
of spheres containing 95% of the points in subsequences St(γ)
for different values of γ. As we can see, the average radius
quickly grows as the update period increases. The latter
figure highlights the opposite trend: the accuracy of locally-fit
classifiers gt almost monotonically decreases with increasing
period of updates. For comparison, the accuracy of the global
classifier f when it is implemented as an RBF-kernel SVM
fluctuates insignificantly around 98% independent of the update
frequency γ.

Here both f and gt were trained to treat both false positive
and false negatives equally; in cases where it is intolerable
to miss detections due to localized approximation, the same
trends will be present for respectively adjusted gt. The choice
of update frequency can be guided by the penalty taken by the
accuracy αt(γ) when the classifier gt trained for a locality Dt
is kept for a use in the subsequent localities Dt+1,Dt+2, . . .
without an update. For our example this relation is summarized
in Fig. 7 showing the change in mean accuracy of a local
classifier gt as a function of the delay between its training and
its usage. The x-axis measures the delay relative to the update
period length γ. The y-axis measures the ratio between the
mean accuracy for the trajectory subsequence corresponding to
the moment a local classifier gt is used and the mean accuracy
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in gray.
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Figure 6. Local accuracy: Average accuracy as a function of update period
for the example problem. The range between 0.25- and 0.75-quantiles is
highlighed in gray.

for the trajectory subseqence corresponding to the moment
locality Dt was captured.

All three of these relations confirm the feasibility of the
assumptions underlying the problem formulation, that, while
simpler local classifiers gt have poor accuracy globally, their
quality catches up for frequent locality updates to a satisfactory
level comparable to that of the global classifier f . The ultimate
quality of the resulting system will, of course, depend signifi-
cantly on the mutual compatibility of the data distribution X
(governing the complexity of the global classifier f ), the family
of local classifiers G, the form of locality distributions Dt, and
the constraints on the desired accuracy. For instance, when
sensor sampling trajectories do not exhibit enough compactness
as measured by the form Dt and gt, it might be problematic or
even impossible to achieve very high levels of accuracy with
the localized substitution classifiers gt. In each particular case,
the limits of the achievable results should be studied separately,
e.g., using the above trajectory-sampling procedure.
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Figure 7. Local classifier aging: Relative change in average accuracy of a
local classifier gt for different update periods γ as a function of update delay
normalized by the length of update period.

For problems where, like in our example here, the locality
of the space X can be exploited well for a given Dt and
gt, it opens the possibility for an efficient adaptation of the
locality Dt(τ) as a function of some control parameters τ .
For instance, here the update period γ can serve the role
of the parameter τ , with the control objective consisting in
keeping it smaller than some γ0 guaranteeing a desired accuracy
(according to Fig. 6).

V. CONCLUSIONS

Sophisticated IoT systems often involve combining sensing,
communication, and processing capabilities. Recent architec-
tures for such IoT systems often perform expensive computation
at the edge-level, in order for the mobile devices to utilize
their limited energy for sensing and transmission. However,
such architectures often cannot meet the tight constraints of a
time-varying or limited bandwidth availability, as is common
in real world applications, due to their need to communicate
all of the data from the sensor-level devices to the edge.

In this paper, we proposed an alternative architecture where
the edge and the devices perform the computation cooperatively.
The core of our proposed approach is to provide a “semantic”
strategy for carrying out this sharing of the computation: we
dynamically craft customized classifiers for each sensor that
define what the sensor device will communicate to the edge
processor, thus offloading majority of the computation to these
devices. This proposed design of sensor-specific classifiers
takes into account the various properties of the current context
such as the sensor-specific distribution of inputs that the device
is likely to observe, the energy resources and constraints on
the device, and the time-varying limitations on the shared
bandwidth to the edge.

We showed the feasibility of our semantic approach using
simulated experiments. We demonstrated that simple, energy-
efficient classifiers can be as accurate in classification as
complex classifiers if we utilize the distribution inputs that the
sensing device is likely to receive when constructing them. We



further showed that the approach is fairly robust to changes in
this distribution of inputs over time. Although the classifiers
need to be updated as the current context of the sensors and
the edge changes over time, we also demonstrated that the
sensor-specific classifiers still maintain accuracy even if they
are not updated very frequently. With these encouraging results,
we are interested in future to deploy such an architecture to
real-world IoT testbeds.
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