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Abstract

Computational models are increasingly used to investigate and predict the complex

dynamics of biological and biochemical systems. Nevertheless, governing equations

of a biochemical system may not be (fully) known, which would necessitate learning

the system dynamics directly from, often limited and noisy, observed data. On the

other hand, when expensive models are available, systematic and efficient

quantification of the effects of model uncertainties on quantities of interest can

be an arduous task. This paper leverages the notion of flow‐map (de)compositions to

present a framework that can address both of these challenges via learning data‐

driven models useful for capturing the dynamical behavior of biochemical systems.

Data‐driven flow‐map models seek to directly learn the integration operators of the

governing differential equations in a black‐box manner, irrespective of structure of

the underlying equations. As such, they can serve as a flexible approach for deriving

fast‐to‐evaluate surrogates for expensive computational models of system dynam-

ics, or, alternatively, for reconstructing the long‐term system dynamics via

experimental observations. We present a data‐efficient approach to data‐driven

flow‐map modeling based on polynomial chaos Kriging. The approach is demon-

strated for discovery of the dynamics of various benchmark systems and a coculture

bioreactor subject to external forcing, as well as for uncertainty quantification of a

microbial electrosynthesis reactor. Such data‐driven models and analyses of

dynamical systems can be paramount in the design and optimization of bioprocesses

and integrated biomanufacturing systems.

K E YWORD S

discovery of nonlinear dynamics, flow‐map decomposition, polynomial chaos Kriging,
probabilistic surrogate modeling, uncertainty quantification

1 | INTRODUCTION

Computational models have become indispensable tools for under-

standing the complex behavior of biological and biochemical systems

toward design and optimization of bioprocesses and integrated

biomanufacturing systems (Banga et al., 2005). Recently, there has

been a growing interest in data‐driven methods for modeling the

uncertain and nonlinear dynamics of biochemical systems, as these

models constitute the cornerstone of various model‐based analyses

and decision‐making tasks such as experiment design, hypothesis
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testing and parameter inference (Franceschini & Macchietto, 2008;

Golightly & Wilkinson, 2011; Iooss & Lemaître, 2015). Data‐driven

modeling is especially useful when it is formidable to derive first‐

principles descriptions for systems whose complex behavior can span

over multiple length‐ and time‐scales. Data‐driven models have

shown promise for inferring the dynamics of cellular systems and

metabolic networks (e.g., Daniels & Nemenman, 2015; Schmidt et al.,

2011). Hybrid models (aka gray‐box models) that combine physics‐

based models with data‐driven descriptions of unknown or hard‐to‐

model phenomena have also proven useful for describing the

complex behavior of biochemical systems (De Azevedo et al., 1997;

Schubert et al., 1994; VonStosch et al., 2014; Zhang et al., 2019). In

this work, we focus on data‐driven discovery of dynamical systems,

whereby the goal is to learn directly the governing equations from

system observations. A class of data‐driven discovery methods for

unknown systems relies on basic assumptions about the structure of

the underlying equations (Bongard & Lipson, 2007). To this end, a

popular technique is based on sparse identification from dictionaries

of possible governing terms (Brunton et al., 2016; Champion et al.,

2019), which has been shown to be particularly useful when limited

system observations are available. On the other hand, non‐

parametric modeling approaches relax the necessity of using a library

of candidate terms (Heinonen et al., 2018). Another class of methods

for data‐driven reconstruction of dynamics is based on dynamic

mode decomposition (Kutz et al., 2016; Schmid, 2010), which

approximates the eigenvalues and eigenvectors of the Koopman

operator (Williams et al., 2015) that describes the dynamics of

nonlinear systems.

Although inception of the field of nonlinear system identification

dates back to few decades ago (Schoukens & Ljung, 2019), the advent

of machine learning, in particular deep learning, for characterizing

complex input–output relationships has reinvigorated the interest in

this area. Most notably, physics‐informed neural networks (Raissi

et al., 2019) and dynamics reconstruction via neural networks under

noisy data (Rudy et al., 2019) have shown promise for data‐driven

modeling of nonlinear dynamical systems. Recently, Qin et al. (2020,

2019) proposed a deep learning‐based approach for data‐driven

approximation of the integration operator of differential equations

from observations of state variables. The usefulness of this approach

for discovery of dynamics of biological systems has been demon-

strated on several benchmark problems in Su et al. (2021), mainly

since it removes the necessity of assumptions about the dynamic

model structure.

Data‐driven discovery methods can also be used for model‐

based uncertainty quantification (UQ) applications that rely on

expensive‐to‐evaluate computational models. Predictions of the

behavior of biochemical systems are generally subject to various

sources of uncertainty due to unknown model structure, parameters,

and/or initial and boundary conditions. Systematic and accurate

quantification of the effects of these uncertainties on predictions of

quantities of interest is crucial when using models for decision‐

support tasks. This has spurred development of a plethora of set‐

based (Streif et al., 2016) and probabilistic (Najm, 2009; Smith, 2013)

methods for forward and inverse UQ problems (e.g., Komorowski

et al., 2009; Mesbah & Streif, 2015; Paulson et al., 2019a;

Rumschinski et al., 2010; Vanlier et al., 2013). However, the most

commonly used UQ methods rely on Monte Carlo sampling (Caflisch,

1998), which can be intractable for expensive computational models

of biochemical systems, especially when models consist of a large

number of differential equations and/or have a large number of

uncertain inputs.

Surrogate modeling is increasingly used to facilitate complex UQ

analyses that would otherwise be computationally prohibitive. The

key notion in surrogate modeling is to construct a data‐driven

mapping between inputs to a system and the quantities of interest in

a nonintrusive manner, in which the “data‐generating process,” for

example, a high‐fidelity model, is treated as a black‐box to generate

as few training samples as possible (Sudret et al., 2017). Such a data‐

driven representation can be used as a computationally efficient

surrogate for expensive computational models to predict the output

quantities as a function of inputs. A variety of surrogate modeling

techniques such a generalized and sparse polynomial chaos (Blatman

& Sudret, 2011; Xiu & Karniadakis, 2003), Kriging (Cressie, 1990), and

deep learning (Tripathy & Bilionis, 2018) have been successfully

applied to various biological and biochemical systems (e.g., delRio‐

Chanona et al., 2019; Paulson et al., 2019a; Pereira et al., 2021;

Schillings et al., 2015; Streif et al., 2014). Nonetheless, a critical

challenge in the majority of these techniques arises from capturing

the time‐evolution of the states in an efficient manner. The most

common approach, known as time‐frozen surrogate modeling

(Makrygiorgos et al., 2020; Pettit & Beran, 2006), for predicting the

time‐evolution of states relies on constructing separate surrogate

models for all time points at which the states must be predicted. As

such, the “time‐frozen” approach can be an inflexible and inefficient

way of surrogate modeling for dynamical systems, especially in

dynamic UQ and decision‐making problems that hinge on making

predictions over an adaptive sequence of time instants.

In this paper, we leverage the notion of flow‐map (de)composi-

tion, as also investigated in Qin et al. (2020, 2019), for data‐efficient

discovery of system dynamics from experimental observations or

high‐fidelity simulation data. Conceptually, a flow‐map is an analytical

operator that maps the current state and input of a system to a future

state based on exact integration of model equations over some

specified time step. Numerical integration schemes for ordinary

differential equations in fact seek to numerically approximate flow‐

maps to compute the time‐evolution of state variables as a function

of input variables. Here, we propose to approximate flow‐maps in a

data‐driven manner via nonintrusive surrogate modeling, such that

the resulting data‐driven flow‐map is a surrogate for integration

operators of the differential equations governing a dynamical system.

Hence, data‐driven flow‐map models are able to discover system

dynamics irrespective of the unknown structure of model equations.

In addition, data‐driven flow‐map models can address the above‐

described challenge of “time‐frozen” approaches to surrogate

modeling via circumventing the need for construction of separate

surrogate models at different time instants. This can be especially
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useful for fast UQ and optimization‐based analyses of dynamical

systems that hinge on repeated runs of expensive computational

models over a sequence of time instants.

We demonstrate the usefulness of data‐driven flow‐maps for

discovery of system dynamics from data, as well as for fast UQ

applications based on expensive computational models. In this work,

sparse polynomial chaos Kriging (PCK; Schöbi & Sudret, 2014) is used

for data‐driven approximation of flow‐maps owing to its data

efficiency, ability to approximate complex mappings and ability to

quantify the uncertainty of model predictions. The versatility of data‐

driven flow‐maps is first demonstrated via the discovery of the

transient behavior of benchmark problems and a coculture bioreactor

using noisy data. Subsequently, we show how data‐driven flow‐maps

can speed up forward and inverse UQ analyses of a dynamic

microbial electrosynthesis reactor, achieving up to a 100‐fold gain in

computational speed.

2 | METHODS

In this section, we present the idea of flow‐map (de)composition for

dynamical nonlinear systems. We first introduce the notion of flow‐

map functions, which we seek to approximate in a data‐driven

manner based on time‐evolution of system states. This is followed by

a discussion on the data generation strategy and the PCK method

used in this work to approximate flow‐map functions for the variables

of interest.

2.1 | Flow‐map compositions

Consider a dynamical, time‐invariant, nonlinear system described by

s
f s x s s

d

dt
t= ( , ), ( = 0) = ,0 (1)

where ∈s ns is the vector of state variables with initial conditions s0,

∈x nx is the vector of input variables, and   f s x( , ) : × →n n ns x s is

the vector of (possibly unknown) system equations;  denotes the

set of real numbers. Equation (1) describes the time‐evolution of the

states s of a nonlinear system as a function of the inputs x . Notice

that in this work the inputs x can represent either model parameters,

or manipulated input variables to a biochemical system, as will be

discussed later.

A flow‐map function is a mapping that predicts the transition of a

dynamical system from the current to future state (Qin et al., 2019).

We define a flow‐map function Φδ as

s st δ x x( + ; ) = Φ ( , ),δ t (2)

∫s x s x f s x xt δ t t dt( + ; ) = ( ; ) + ( ( ′; ), ) ′,
t

t δ+

(3)

where δ is a time‐lag (i.e., integration time step). Equation (3)

describes the one‐step transition between the states of a system in

some interval t t δ( , + ). The integral term that appears in Equation (3)

can be considered as a flow‐map residual since it represents the

discrepancy between the current and future states. Although

Equation (1) provides a continuous‐time description of a dynamical

system, the notion of transitioning among states, as implied by

Equation (3), hinges on discretizing the time domain over which the

system evolves. Accordingly, the idea of flow‐map compositions can

be applied to compose a sequence of one‐step transitions to define

state trajectories over time (Qin et al., 2019). Once a sequence of

flow‐maps {Φ ,Φ , …,Φ }δ δ δK1 2 is established, the flow‐maps can be

used to predict the states s at any discrete time instant using the

K‐fold composition

∘⋯∘Φ = Φ Φ ,δ δΔ K 1 (4)

where ∘ denotes the function composition operator and Δ is the sum

of the time‐lags over the K discrete time steps (i.e., δΔ = ∑ j
K

j=1 ).

Equation (4) indicates that, starting from some initial states, the

K‐fold flow‐map function ΦΔ governs the state transitions over the

time‐lags δ δ, …, K1 wherein at each discrete time step the states are a

function of the previous states as given by Φδj. Note that, in general,

the time lags δj in Equation (4) need not be the same.

In practice, the set of differential equations in Equation (1)

describing the system dynamics may not be known, or, when known,

their numerical solution may be expensive. In this paper, we aim to

learn an approximate surrogate for the flow‐map function Φδ in

Equation (2) from high‐fidelity simulation or experimental data. Data‐

driven flow‐map models can be established from simulation data to

provide an efficient surrogate for expensive computational models of

the form in Equation (1) that, for example, rely on numerical

integration of a large number of highly nonlinear and stiff differential

equations, as is commonly the case for complex biochemical systems.

Notice that in this case data‐driven flow‐map models essentially

approximate a numerical integrator of the differential equations in

Equation (1). Alternatively, in the absence of any knowledge about

the governing equations (i.e., functions f in Equation 1), flow‐map

models can be directly learned from experimental observations to

discover the unknown system dynamics.

2.2 | Data generation

The data generation and model training strategy adopted in this work

is summarized in Figure 1. Consider that we have access to one or

more, in totalNT , trajectories of state variables sk over a discrete‐time

horizon k T= 0, 1, …, − 1, where k is the discrete‐time index and T is

the length of the time horizon of the training trajectories. Note that

k = 0 corresponds to t0 (i.e., the initial time), k = 1 to t t δ= +1 0 1, k = 2

to t t δ δ= + +2 0 1 2, and so forth. The state trajectories can be

generated either from simulations or experiments. For some time

interval indexed by k and corresponding time tk where the states

are known, we observe a transition in states s s→k k+1. Hence, given

the current states (at time tk), we obtain the future states (at time

MAKRYGIORGOS ET AL. | 805
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t δ+k k), while the interval length represents the time lag δk .

Moreover, within each interval, inputs xk , such as manipulated inputs

to the system, may be varying and thus should be accounted for in

the data collection procedure. In summary, each time interval in a

trajectory contains the information for a one‐step transition and,

therefore, yields a single sample for the data set.

Accordingly, at each time instant k , the current states sk , the

system input variables of interest xk , and the lag time δk constitute

the input variables in the data set, while the corresponding label is

the set of states that the system arrives at, that is, sk+1. Thus, the data

set (or experimental design) takes the following form: the input data

are s x s x s xδ δ δ{( , , ), ( , , ), …, ( , , )}T T T0 0 0 1 1 1 −1 −1 −1 and the corresponding

outputs are s s s{ , , …, }T1 2 . Note that there is usually some degree of

freedom in choosing the lag time δ in simulations, whereas the choice

of δ is often limited by how fast measurements can be acquired in

experiments. For trajectory generation, it is crucial to vary the initial

conditions s0 and inputs xk within some allowable range, as well as

the time lag δ whenever applicable. The training data must cover a

wide range of state, input and time lag values, as relevant to the

application of the trained models. We note that an effective strategy

for generating simulation data is via one‐step transitions, that is,

trajectories of length equal to 1. This implies that, instead of

generating an entire trajectory given some initial conditions s0, we

can randomly sample the state‐space, along with the input parame-

ters and time lag, to compute the corresponding future states. The

sampling step (Step 1) is summarized in Figure 1a. We remark that,

although random sampling is used here to generate the training data,

probabilistic models such as PCK used in this work provide

confidence estimates on their predictions that can be used towards

active learning‐based sampling (e.g., see Tsymbalov et al., 2018).

2.3 | Data‐driven flow‐maps using polynomial
chaos kriging

In this work, we use sparse PCK (Makrygiorgos et al., 2020; Schöbi &

Sudret, 2014) to discover a data‐driven flow‐map model
∼

wΦ( )k for the

dynamical system in Equation (1), i.e., Step 2 in Figure 1a. Note that

since the time‐lag is part of the inputs, we drop the subscript δ from

the flow‐map function for notational convenience. The PCK training

is summarized in Figure 1b. Let us denote the vector of current

states, input variables, and lag time by ∈⊤ ⊤ ⊤
w s x δ= [ ]k k k k

M, where

M n n= + + 1s x . Thus, we denote the data‐driven approximation of

the flow‐map in Equation (2) by    ∼
s x δΦ( , , ) : × × →k k k

n n ns x s.

The main benefits of using PCK for constructing data‐driven flow‐

map models include: (i) being more data efficient, especially as

compared to data intensive feedforward neural networks (Su et al.,

2021), when used for discovery of biological system dynamics from

system observations; (ii) offering significant improvements in the

computational efficiency of data generation for surrogate modeling

for dynamical systems as compared to time‐frozen polynomial chaos

approaches (Mai & Sudret, 2017; Makrygiorgos et al., 2020); and

(iii) characterizing the uncertainty of model predictions. To this end,

PCK combines the global approximation capability of polynomial

F IGURE 1 (a) Algorithm for data generation and training of data‐driven flow‐map models. Validation trajectories are first generated. Then,
one/multi‐step ahead simulations or experiments are performed to observe successor states given the initial states, inputs, and time‐lag.
Subsequently, the data‐driven flow‐map model is trained. Finally, the prediction accuracy of the trained model is assessed against the long‐time
validation trajectories. If the prediction accuracy ϵ̂ is larger than some prespecified threshold ϵ̂0, the model training and validation process must
be repeated. The training procedure for PCK is depicted in (b). Several parameters must be selected during the model training, including the
polynomial order, hyperbolic truncation parameter, covariance function, and the regression method used for estimating the expansion
coefficients.
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chaos expansions, extensively used for surrogate modeling of (bio)

chemical systems (e.g., Deman et al., 2016; Oladyshkin & Nowak,

2012; Paulson et al., 2019b), with the local interpolation scheme of

Kriging (i.e., Gaussian processes [GP], Williams & Rasmussen, 2006).

The polynomial structure of PCK makes its training data efficient,

whereas Kriging offers the ability to quantify the uncertainties of

model predictions.

In the context of PCK, wk is a realization of the multivariate

random variable W with a (known) joint probability distribution fW ,

that is,W f~ W . The PCK approximation of the flow‐map is defined as



∼

∈ ⊂

∑w W wy P σ Z= Φ( ) = ( ) + ( ),
a

a a
2

M
(5)

where ∈ ns denotes the predicted variables of interest at step

k + 1, which are typically a subset of the states s. The first term in

Equation (5) describes the trend (or mean) of the GP using a

polynomial chaos expansion (PCE), while the second term wZ( )

describes the variance of the predicted variable. WP ( )a represents the

multivariate polynomial basis functions that are orthogonal with

respect to the probability distribution fW over the support W of the

distribution, that is, the range over which random numbers are

defined and can be drawn from. Based on the distribution of the

inputs w , there is an optimal (or almost optimal) choice for the family

of polynomials that are used to guarantee the expansion conver-

gence, either for well‐known (Cameron & Martin, 1947; Xiu &

Karniadakis, 2002) or for arbitrary (Paulson et al., 2017) distributions;

more details about this procedure can be found in the Supporting

Information. ya are the coefficients of the basis functions, with the

multi‐index a being a vector in the set , which is a subset of natural

numbers M. The latter notation represents a vector consisting of M

elements that are all natural numbers. Therefore, the multi‐index here

is essentially an extended index that represents the order of each

monomial that participates in each polynomial term in the PCE.

Note that originally the multi‐index represents any combination

of polynomials of any arbitrary order if = M. Nevertheless, to

keep the expansion of the trend term in Equation (5) finite and

tractable, it must be truncated up to a finite order p. Furthermore,

sparsity in the expansion can be introduced by employing the

hyperbolic truncation scheme (Blatman & Sudret, 2011), also known

as the q‐norm scheme, which removes terms from the expansion that

involve the interaction of high order monomials based on some

parameter q. Therefore, the allowed values of the multi‐index are

determined by the tuple p q( , ); more details are given in the

Supporting Information. In addition, for the GP‐related term, wZ( ) is

a standard normal random distribution with variance σ2.

As described, the multivariate random variableW consists of the

states s, input variables x , and time lag δ. When x corresponds to

uncertainties of a computational model (e.g., uncertainties in model

parameters and/or boundary conditions), their probability distribution

is typically available a priori from parameter inference. As such, their

respective polynomial basis functions can be chosen according to the

Wiener–Askey scheme (e.g., Hermite basis for Gaussian distributions,

Legendre for uniform distributions). On the other hand, when x

corresponds to manipulated variables of a system, as is the case in

the discovery of system dynamics, the input variables can typically be

modeled as uniform distributions within a known range. The time lag

δ can also be modeled as a uniform distribution within some range of

interest for the application at hand. However, the distribution of

states sk is dependent on the realized state trajectories when the

training data are generated and, thus, cannot be established a priori.

Here, we assume states follow a multivariate Gaussian distribution

with a mean and covariance computed from the training samples.

The coefficients ya of the polynomial chaos expansion can be

determined in a nonintrusive manner via solving a least‐squares

problem (Bishop, 2006). Here, we induce further sparsity by

modifying the coefficient estimation problem to a L1‐regularized

regression problem (Hastie et al., 2015). The regularized coefficient

estimation problem can be efficiently solved using the least‐angle‐

regression (LAR) algorithm (Efron et al., 2004), which estimates the

coefficients of the most relevant terms of the expansion, setting the

rest of the coefficients to zero. Moreover, wZ( ) in Equation (5) is

defined in terms of a kernel function  w wR θ( − ′ , ), that is, a function

that provides some measure of similarity between different realiza-

tions of the random variable W . Here, we use the Matérn kernel

function (Williams & Rasmussen, 2006). Overall, the parameters of

the PCK that must be determined using the training data include

the coefficients ya of the trend, the variance term σ2, and

the hyperparameters θ of the kernel function. The variance and the

hyperparameters can be efficiently estimated via maximum‐likelihood

estimation (Schöbi & Sudret, 2014).

In this work, the following procedure is used for deriving the PCK

flow‐maps using the data generation scheme of Section 2.2. We use

the sequential PCK approach proposed in Schöbi and Sudret (2014),

where a PCE is first trained based on the available data and is then

embedded as the trend of PCK. This procedure is shown in Figure 1b.

For training the PCE, we allow the PCE's maximum order to vary from

1 to 5; higher order polynomials are avoided to retain a smaller

expansion (i.e., less degrees of freedom) and mitigate overfitting. The

truncation factor q is varied from 0.7 to 0.85 since the resulting

maximum order of the polynomials will ensure that we do not have

highly nonlinear interaction terms while allowing for elimination of

few of interaction terms. The optimal value of q is chosen based on

cross‐validation. The hyperparameters of PCK are selected using a

data‐driven optimization algorithm, namely the covariance matrix

adaptation‐evolution strategy (Hansen & Ostermeier, 2001). Finally,

it should be noted that using PCK as the surrogate model places some

limitation on the number of input variables w that can be handled.

Typically, GP‐based models are utilized for lower dimensional spaces

due to the “curse‐of‐dimensionality” (Tripathy et al., 2016).1 On the

other hand, sparse PCEs can effectively deal with high input

dimensions thanks not only to the truncation schemes that are

employed, but also the sparse regression schemes, for example, LAR,

that include only the most informative terms in the expansion, thus

minimizing the number of unknown coefficients. To quantify the

quality of the PCK predictions during the training, we use the leave‐

one‐out cross‐validation (LOOCV) error that is estimated from the
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training data (during LAR in Figure 1). When one‐step ahead test

samples are available, validation errors can readily be evaluated and

are used for cross‐validation.

Above, we described the flow‐map modeling procedure by

utilizing one‐step transition data, which implies that the PCK model is

able to predict one step ahead states. Nevertheless, we are interested

in long‐term integration of the dynamical system. To this end,

Figure 2 shows how a data‐driven flow‐map model can be used

sequentially to predict the time‐evolution of the states of a dynamical

system. As stated, at each time instant k , the PCK flow‐map model

essentially “integrates” the states forward in time by δk until the final

time is reached. As such, we can also assess the ability of the data‐

driven flow‐map models in approximating the integration operator

and, hence, their predictive accuracy over a multistep integration

horizon. Given i N= 1, …, V validation state trajectories, each of which

of length Ti, we define the normalized, time‐averaged prediction error

of the state variables, ϵi, as

∑
T

ϵ =
1 −

,i
k

T

i

k i k i

k i=0

, ,
true

2

,
true

2

i

(6a)

∑
N

ϵ̂ =
1

ϵ ,
V i

N

i
=1

V

(6b)

where ⋅ 2 is the 2‐norm of a vector; k i,
true and k i, are, respectively,

the vector of state variables in the validation data set and those

predicted by the data‐driven flow‐map models at time instant k for

each validation run i. In the remainder, we refer to ϵi as the mean

trajectory error (MTE), whereas ϵ̂ is the average MTE over all

validation trajectories.

3 | DATA‐DRIVEN DISCOVERY OF
DYNAMICAL SYSTEMS

In this section, we apply the PCK‐based flow‐map modeling

approach to learn the dynamics of several benchmark systems

using limited data. The first case study, based on the Morris‐Lecar

system, compares the performance of the PCK model with neural

network modeling results of Su et al. (2021). The second case

study, based on the Lorenz system, focuses on reconstructing the

dynamics of a chaotic system in which variations in parameters

significantly change the solution landscape. Lastly, we show how

the flow‐map modeling approach can be used for discovering the

dynamics of a coculture bioreactor under noisy observations and

how the variance term of PCK provides a measure of uncertainty

of model predictions.

3.1 | Morris–Lecar system

The first benchmark problem is the Morris–Lecar system proposed

by Morris and Lecar (1981), which describes neuronal excitability. This

system was used in Su et al. (2021) to examine neural network‐based

flow‐map models for the discovery of nonlinear dynamics. In particular,

a residual neural network was used to represent the data‐driven flow‐

map model, in which only the flow‐map residual is learned by skipping

the input connection to the neural network and adding it to the output

of the latter. Here, we aim to recreate the results of the aforementioned

work, demonstrating the data efficiency of the proposed PCK approach

for data‐driven reconstruction of dynamics. The dynamics of the

Morris–Lecar system are described by

C
dV

dt
g V V g V V M g V V N I= − ( − ) − ( − ) − ( − ) +M L L Ca Ca k K∞ app

(7a)

dN

dt
λ N N= ( − ),N ∞ (7b)

where V (mV) is the voltage difference between the sides of the

membrane and N represents the probability for the potassium channel

being open. The parameters M N,∞ ∞, and λN depend on the voltage, as

defined in the Supporting Information. We focus on the so‐called Type I

model with parameters taken from Su et al. (2021) and given in the

Supporting Information. Here, it is assumed that the model parameters

are fixed since we aim to reconstruct the system dynamics as a function

of injected current x I=k app that can vary within the range [0, 300] A.

Specifically, we aim to predict the long‐term system dynamics, starting

from given initial conditions, under a fixed Iapp. To compare our results

with those in Su et al. (2021), δk was chosen to be 0.2ms; we did not

consider the time‐lag as part of the PCK model. In other words, the

input data consisted of samples in the form V N x V N( , , ) → ( , )k k k k k+1 +1 ,

where xk is constant for every ∈k T[0, ] for a given trajectory. This

system exhibits a saddle node bifurcation, which leads to an oscillatory

behavior depending on the value of input Iapp. Thus, the data‐driven

flow‐map model must capture the oscillatory behavior of the

Morris–Lecar system for different values of Iapp.

To train the PCK‐based flow‐map model, we generated one‐step

ahead samples of the states Vk and Nk by randomly drawing the initial

F IGURE 2 Data‐driven flow‐map models for
predicting the state variables of a dynamical
system over time. The flow‐map model

∼
Φ takes

the current states sk , inputs xk , and lag time δk at a
discrete‐time instant k as inputs to predict the
states sk+1 at the subsequent time instant k + 1.
By sequentially repeating this procedure, the
time‐evolution of the states in relation to the
inputs can be established.
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states from [−75, 75] × [0, 1]. Here, we first examine the conver-

gence error of the flow‐map model to characterize how many

samples of states would be necessary for data‐driven reconstruction

of the system dynamics. We quantify the convergence error in terms

of the average MTE in Equation (6a) based on three validation

trajectories generated for I = {0, 60, 150}app . Figure 3 shows the

average MTE estimated over 1000 time steps in relation to the

number of training samples, where the vertical bar around each error

represents one standard deviation based on five repetitions of the

analysis. It is evident that the error converges after about 160

samples, suggesting that a limited number of training samples is

needed.

Figure 4 shows the reconstructed dynamics by the PCK‐based

flow‐map model trained using 240 samples in comparison with the

true dynamics. As can be seen, there is no visible discrepancy

between the true time‐evolution of the system and the reconstructed

dynamics. The system exhibits a bifurcation behavior, as evident from

F IGURE 3 The average mean trajectory error, ϵ̂, of the
PCK‐based flow‐map model for the Morris–Lecar system in
relation to the number of training samples, Ns. The error is
estimated based on three validation trajectories generated for the
input Iapp values {0, 60, 150} . The vertical bars represent the
standard deviation of the error estimated based on five repeats of
the training.

F IGURE 4 Reconstructed dynamics of the Morris–Lecar system by the PCK‐based flow‐map model in comparison with the true system
dynamics for the input Iapp values {0, 60, 150} . The PCK‐based flow‐map model is trained using 240 samples. The left column shows the
time‐evolution of voltage difference, V ; the middle column shows the time‐evolution of the channel opening probability, N; and the right
column shows the corresponding phase plots.
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the phase plots shown in Figure 4c,f,i. Yet, the PCK‐based flow‐map

model is able to capture this complex behavior and accurately predict

the system dynamics over a long‐time horizon. We note that a

500‐fold saving in the number of training samples is observed as

compared to Su et al. (2021) in which a residual neural network

representation was used for the flow‐map model. This is while the

PCK model also yields slightly more accurate predictions.

3.2 | Lorenz system

We now consider a chaotic dynamical system based on the well‐

known Lorenz benchmark problem presented in Sparrow (2012). The

Lorenz system has been widely used in the data‐driven modeling

literature (e.g., Dubois et al., 2020; Raissi et al., 2018). The Lorenz

system is described by the following set of nonlinear ordinary

differential equations

da

dt
σ b a= ( − ), (8a)

db

dt
a ρ c b= ( − ) − , (8b)

dc

dt
ab βc= − , (8c)

where ⊤s a b c= [ , , ] are the system states and ⊤x σ ρ β= [ , , ] are the

uncertain model parameters. Chaotic behaviors can be encountered

in various chemical and biological systems, including in the growth of

biological populations with nonoverlapping generations (May, 1974)

and the peroxidase‐oxidase oscillator (Olsen & Lunding, 2021). Here,

we consider a constant time‐lag δ = 0.01 that captures the intrinsic

time‐scale of the system (Brunton & Kutz, 2019).

The Lorenz system exhibits a chaotic behavior based on the initial

conditions s0, while its long‐term behavior is highly affected by the

uncertain parameters x . The nominal initial conditions and parameters

of the system are, respectively, ⊤s = [1.9427, −1.4045, 0.9684]0 and
⊤x = [10, 28, 8∕3]0 , for which the system oscillates around two

attractors. Here, the training data consisted of 500 random samples

of the states s within the range [−10, 10] × [−10, 10] × [−10, 10] and

the parameters x within the range [8, 12] × [10, 30] × [1, 5.5]. We

used two validation trajectories to compare the true system

dynamics with those reconstructed by the PCK‐based flow‐map

model: one trajectory based on the nominal initial conditions

and parameters and the other based on ⊤x = [10, 15, 8∕3] and
⊤s = [1.6655, −0.1178, 0.1748]0 .

Figure 5 shows phase plots of the reconstructed oscillatory

dynamics of the Lorenz system in comparison with the true system

dynamics over a simulation horizon of 5000 time steps. We observe

that the qualitative behavior of the Lorenz system is different when

the parameter ρ is varied, while the PCK‐based flow‐map model is

able to reconstruct the dynamics in both cases. The MTE is 0.522 for

the nominal validation trajectory and 0.0013 for the second

validation trajectory. Although the error for the nominal validation

trajectory seems relatively high, the main characteristics of the true

dynamics are adequately captured, as evident from Figure 5a–c. That

is, the limit cycles, the amplitude of oscillation and period are

adequately captured. These predictions are consistent with those

reported in Raissi et al. (2018). However, we note that reconstruction

F IGURE 5 Phase plots of the reconstructed dynamics of the Lorenz system by the PCK‐based flow‐map model in comparison with the true
system dynamics for different values of model parameters. Subplots (a)–(c) correspond to the model parameters σ = 10, β = 8∕3, and ρ = 28.
Subplots (d)–(f) correspond to the model parameters σ = 10, β = 8∕3, and ρ = 15.

810 | MAKRYGIORGOS ET AL.

 10970290, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bit.28295 by U

niv of C
alifornia L

aw
rence B

erkeley N
ational L

ab, W
iley O

nline L
ibrary on [10/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



of the Lorenz dynamics using neural networks typically requires on

the order of a few thousands of training samples (Brunton & Kutz,

2019; Rudy et al., 2019), whereas the PCK model here was trained

using 500 samples.

3.3 | Transient coculture system

In this case study, we demonstrate the ability of PCK‐based flow‐map

models to learn the transient behavior of a coculture system with

variable inputs. In particular, we focus on the startup dynamics of a

continuous bioreactor driven by the competition of several auxo-

trophs (Pande et al., 2014). To emulate data collection from a real

system, we use a nonlinear dynamic model of the bioreactor (Treloar

et al., 2020) to generate observations of the system states, which are

then corrupted with independent and identically distributed state‐

dependent measurement noise e s~ (0, 2.5 × 10 )i k
i−2 , with i being an

index for the measured states and k the time index. The five state

variables sk of the bioreactor include: the population of the two

species N (Cells∕L)1 and N (Cells∕L)2 , the auxotrophic nutrients

concentrations C (g∕L)1 and C (g∕L)2 , and the common shared carbon

source concentration C (g∕L)0 . The bioreactor has three process

inputs xk that can be varied in time. The process inputs are the

dilution rateD (h−1) that varies within the range [0.75, 1.5] (h−1), as well

as the feed substrate concentration of auxotrophs C1,in (g/l) and C2,in,

both varying in the range [1.5, 2] (g/l). To generate data for training

the PCK‐based flow map models, short simulation “experiments” with

a fixed length of T = 30 steps with ∈δ [0.15, 0.25]k h−1 were

performed. At each time step k during the multistep experiments,

inputs xk were varied over the time interval δk and noisy observations

of the states were collected.

Figure 6 shows the state trajectories for a validation set versus

those predicted by the PCK‐based flow map models. The validation

trajectories were generated by some random initial conditions at

k = 0 and applying an input x0 over the interval δ0. The model

predicts the mean of the states at k = 1, as well as their variance. The

integration proceeds by taking a next step based on the mean value

of the states at k = 1, predicting the states at k = 2, and so forth.

Using only the mean value to compute trajectories is the simplest

way when Gaussian process regression models are utilized, however,

there are more sophisticated ways for the trajectory generation

(Hewing et al., 2020), which are beyond the scope of the paper. Note

that the predicted uncertainty information can also be incorporated

into multistep ahead predictions, as discussed in Girard et al., 2003

and Polymenakos et al., 2017. Here, it suffices to use a deterministic

function, for example, the mean value of the data‐driven flow‐map

model, to integrate in time since this way we avoid the major issue of

using noisy inputs into the PCK model. In Figure 6, the validation

trajectories have a length of N = 40k steps, extending slightly beyond

the training range. Moreover, we can characterize the confidence in

F IGURE 6 Predictions of the state variables of the transient coculture system via the PCK‐based flow‐map models in comparison with the
observed state trajectories. The colored lines/points correspond to the predicted trajectories by the mean of the PCK models, starting from
some initial states at t = 0 hr. Black symbols represent the observed trajectories at specific snapshots during a validation run. Vertical error bars
represent the uncertainty in the predictions of the PCK models, estimated as plus/minus three standard deviations from the mean value. The
shaded areas correspond to a time interval that was not accounted for when training the PCK models.
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the predictions of the dynamics. To this end, at each step k , we plot

the plus/minus three standard deviation error bars around the

predicted mean of each state variable. As can be seen, the true state

trajectories are within the confidence intervals of the PCK

predictions.

4 | UNCERTAINTY QUANTIFICATION OF
EXPENSIVE COMPUTATIONAL MODELS

In this section, we demonstrate the utility of data‐driven flow‐maps

for the UQ of a microbial electrosynthesis (MES) bioreactor using a

high‐fidelity computational model that is subject to uncertainty in

model parameters and initial conditions. In particular, we show how

flow‐maps can be used as surrogate models for efficient sample‐

based approximation of distribution of state variables, global

sensitivity analysis, and Bayesian parameter inference when the

original model is prohibitively expensive for a sample‐based analysis.

We consider the batch MES bioreactor shown in Figure 7 for

CO2 fixation (Abel & Clark, 2021), with potential applications in space

biomanufacturing (Berliner et al., 2021). The bioreactor consists of a

well‐mixed liquid bulk phase that contains dissolved CO2, that is,

substrate. A microbial community forming a biofilm grows on the

cathode of the bioreactor. The dissolved substrate diffuses into the

biofilm through a linear boundary layer and is then consumed by

bacteria toward the growth of the biofilm. This leads to spatial

distribution of the substrate concentration within the biofilm. Voltage

is applied to the cathode while the biofilm acts as a conductive matrix

through which electron transport takes place. Both the substrateCO2

in the biofilm and the local overpotential due to the current flux

contribute to the biofilm growth kinetics described by the dual

Monod–Nerst model (Torres et al., 2008).

A computational model of the dynamics of the MES bioreactor is

adopted from Kazemi et al. (2015) and Marcus et al. (2007), with

some modifications. Within the biofilm, the cell growth leads to the

production of acetate as a metabolic product. A primary modeling

approach in the aforementioned papers assumes the total biomass

has a constant concentration and exists in two forms, active and

inactive, each of which occupies some volume fraction. We assume

that biomass exists only in active form, thus the equations describing

the volume‐fraction change within the film effectively become a

single equation for the rate of change of film thickness, Lf , which is a

differential state in our system. Moreover, the film growth is affected

by a constant detachment rate. It is also assumed that the reaction

occurs only within the biofilm, so the only source of acetate in the

bulk phase comes from exchange with the biofilm through the

boundary layer. We further assume the transport‐reaction phe-

nomena in the biofilm are much faster than the transport that occurs

across the boundary layer and in the bulk phase. Accordingly, the

conservation laws inside the biofilm are considered to be in pseudo

steady‐state (Kazemi et al., 2015). Hence, the computational model

consists of a set of nonlinear second‐order ordinary differential

equations that describe the spatial distribution of substrate, acetate

and overpotential within the biofilm, coupled with a set of first‐order

ordinary differential equations that describe the concentration of

CO2 in the bulk phase Sb, the acetate concentration in the bulk phase

Pb, and the biofilm thickness Lf . As such, the three state variables of

the system are described by

dL

dt
Yq r L= ( ˆ − ) ,

f
d f (9a)

dS

dt

A

V
j= ,

b f

r
S

(9b)

dP

dt

A

V
j= ,

b f

r
P (9c)

where ( )Y
mgX

mmolS
is the biomass yield coefficient, ( )q̂

mmolS

mgXdays
represents

an average substrate consumption specific rate within the biofilm,

( )rd
1

days
is a detachment rate, A (cm )f

2 is the cross‐sectional area of

the biofilm, and V (cm )r
3 is the bioreactor volume. The mass balances

for the substrate and product are a function of the flux of each

species across the linear boundary layer as described by

j
D

L
m z L m m S P= ( ( = ) − ), = , ,m

b

b
f f b (10)

where m denotes the species (i.e., substrate and product), ( )Db
cm

days

2

is

the diffusivity coefficient in the boundary layer and L (cm)b is the

thickness of the boundary layer. The subscript f denotes the species

concentration in the film at position z L= f . The equations that describe

the diffusion phenomena within the film are given in the Supporting

Information. To determine the concentrations at Lf , a boundary value

problem (diffusion within the film) must be solved at each time step, as

F IGURE 7 Schematic of the microbial electrosynthesis
bioreactor. The bioreactor consists of three regions: the bulk phase,
the biofilm, and a boundary layer (BL) in between. The black line
represents a typical concentration profile of some species as
predicted by the computational model used in this work. The
concentration is assumed to be constant in the bulk phase, changing
linearly across the boundary layer, and exhibiting a more complicated
shape in the biofilm.
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the concentrations in the biofilm are a function of the bulk

concentrations. The computational model is fairly expensive for UQ

analyses that rely on Monte Carlo sampling; each model run takes on

average 4 min. The model is also subject to time‐invariant uncertainty in

its parameters and initial conditions. Specifically, the model uncertainty

comprises of the conductivity of the biofilm kbio, the maximum growth

rate μmax of the Nerst–Monod model, the yield Y , the Monod

affinity constant Ks, as well as the acetate production‐related

parameters α and β. These six uncertain parameters are assumed to

follow a uniform probability distribution. Their nominal values are
⊤ ⊤k μ Y K α β[ , , , , , ] = [1 × 10 , 4.5, 0.25, 3.0, 0.1, 2 × 10 ]sbio max

−3 −5 , while

they vary uniformly ±10% about their nominal values.

In this case study, we construct data‐driven flow‐map models of

the PCK form in Equation (5) for the output variables ⊤L S P= [ ]f b b ,

such that the six sources of uncertainty constitute the vector of input

variables x in Equation (5). The three flow‐map models, one for each

state variable, were trained using simulation data generated via the

computational model for lag times in the range of δ = [0.05, 0.1] days

to allow us to adequately capture the bioreactor dynamics. Notice

that clearly the lag time δ must always be larger than the integration

time step of the computational model.

The training data set consists of full state trajectories, as well as

one‐step ahead samples of the states. We initially generate N = 30T

trajectories, with fixed uncertain parameters in time, over a process

time span from 0 to 3.5 days that corresponds to approximately

T = 50 samples per trajectory. Then, using the states sk correspond-

ing to each sample wk , we randomize the uncertain parameters and

perform one‐step ahead simulations. In this way, approximately 1400

training samples were generated, while 800 samples are used for

training the PCK models. The rationale behind not randomizing the

states is that the validation trajectories (Step 0 of Figure 1a) indicate

that there is a high correlation among state values. For instance, as Lf

grows in time (under insignificant detachment), Sb decreases due to

consumption. Thus, for a given set of uncertain parameters and initial

states, a few full state trajectories will help generate more

informative training samples. Figure 8 shows the predicted

trajectories using the data‐driven flow‐map PCK model for a

given realization of uncertainty and initial conditions, while the true

trajectory is juxtaposed. The trajectories correspond to a

time‐march of 50 steps ahead. We observe a perfect agreement

between the predicted and validation trajectories, with the average

MTE for the three states being approximately ϵ̂ = 2.5 × 10−4.

An important remark should be made here regarding the benefits of

the presented flow‐map approach to surrogate modeling of dynamical

systems in comparison with the so‐called time‐frozen approaches

discussed in Section 1. First, the flow‐map models provide the flexibility

to approximate the distribution of states at any time instant of interest

without the need for constructing a separate surrogate model for each

time instant, as in time‐frozen surrogate modeling. For example, if we

were to use a time‐frozen approach, 50 separate PCK models would

need to be constructed to predict the time‐evolution of the distribution

of the state variables over the 50 time instants considered in this

problem. Thus, not only a flow‐map modeling approach significantly

reduces the number of surrogate models that must be constructed to

only one model for each state variable, it also provides flexibility via

alleviating the need to build the models at prespecified time points.

Furthermore, the flow‐map modeling approach enables more efficient

data generation. To clarify this point, let us assume that Np realizations

of uncertainties are sufficient for generating a rich training data set that

yields surrogate models with low approximation error. In the case of the

time‐frozen approach, we would require to generate Np full state

trajectories since the states must be observed at all time instants for all

uncertainty realizations. This approach to data generation can become

prohibitively expensive, in particular when data generation relies on

expensive simulations. On the other hand, training the flow‐map models

in principle requires simulation of a limited number of full state

trajectories (in this study, 25 trajectories), whereas Np training samples

can be straightforwardly generated via one‐step ahead integration of

the computational model. In the following, the use of PCK‐based flow‐

map models is demonstrated for expensive UQ analyses.

4.1 | Forward uncertainty propagation and global
sensitivity analysis

Here, we use the data‐driven flow‐map models for efficient

uncertainty propagation via sample‐based approximation of the

distribution of the three state variables. Figure 9a–c shows the

F IGURE 8 Predicted state trajectories of the the microbial electrosynthesis bioreactor: (a) biofilm thickness, Lf , (b) CO2 concentration in the
bulk phase, Sb, and (c) acetate concentration in the bulk phase, Pb. Hollow points represent the validation trajectories, while the solid lines
represent the trajectories predicted by the PCK‐based flow‐map models.
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distribution of the states at t = 3.5 days. To approximate their

distribution, the flow‐map models were evaluated using 20,000

realizations of the model uncertainty x . Each run of the data‐driven

flow‐map model takes on average less than 3 s,2 as opposed to the

average run time of 4min of the computational model. This implies

that the flow‐map models significantly accelerate the uncertainty

propagation, enabling an approximately 100‐fold increase in the

computational speed. This is especially beneficial when the distribu-

tions are skewed (or bi‐modal), as in Figure 9a‐c. In this case, a large

number of samples, on the order of 10 –104 5 samples, would be

typically required for accurate sampled‐based approximation of the

distribution, or statistical moments of the quantities of interest.

Although not shown here, we can efficiently approximate the

distribution of states at any time instant using trajectories generated

by the surrogate models.

Moreover, we use the data‐driven flow‐map models to perform a

global sensitivity analysis to asses the importance of the six uncertain

model parameters, x , on the state variables . This is done via

evaluation of the Borgonovo indices (Borgonovo, 2007), denoted by

, which are based on the full distribution of the state variables, as

opposed to their statistical moments. The results of global sensitivity

analysis for the states at t = 3.5 days are shown in Figure 9d–f, where

each bar corresponds to a different uncertain model parameter. The

Borgonovo indices are approximated using the same 20,000 samples

used in the forward UQ analysis. We observe that the probabilistic

uncertainty of yield Y and maximum growth rate μmax have the most

dominant effects on the variability of the three states, while the

product concentration Pb is also significantly affected by the

uncertainty in the parameter α, which is the metabolism‐related

productivity constant.

4.2 | Bayesian inference of unknown model
parameters

We now use the data‐driven flow‐map models to solve a Bayesian

inference problem to infer the uncertain model parameters x .

Bayesian inference relies on Bayes theorem to estimate the posterior

probability distribution of the unknown model parameters from

available data. Here, noisy observations of Lf , Sb, and Pb at time

instants {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5} days constitute the data set

used for parameter inference; measurement noise is modeled as a

Gaussian distribution with zero mean and state‐dependent variance.

Once a vector of system measurements d at a time instant is

observed, the change in our knowledge about the unknown

parameters is described by Bayes' rule (Kennedy & O'hagan, 2001)

 



x d

d x x

d
f

f f

f
( ) =

( ) ( )

( )
,x

x x
(11)

where fx denotes the posterior distribution of the uncertain

parameters after observing the data; f x is the likelihood function

that describes the probability of observing data given the parameter

F IGURE 9 Fast uncertainty propagation and global sensitivity analysis of the the microbial electrosynthesis bioreactor using data‐driven
flow‐map models of quantities of interest. Subplots (a)–(c) show the kernel density estimates of the distribution of the biofilm thickness (Lf ),
concentration of CO2 in the bulk phase (Sb), and acetate concentration in the bulk phase (Pb) predicted by the PCK models at time t = 3.5 days.
The distributions of Lf , Sb, and Pb are approximated via Monte Carlo sampling using 20,000 realizations of uncertain model parameters, where a
100‐fold computational speedup in sample‐based approximation of the distributions is attained. Subplots (d)–(f) show the Borgonovo indices,
denoted by , that quantify the global sensitivity of Lf , Sb, and Pb at t = 3.5 days with respect to the six uncertain model parameters. The
Borgonovo indices are approximated based on 20,000 uncertainty realizations.
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estimates; fx is the prior distribution of parameters; and f is the so‐

called evidence or marginal likelihood that ensures the posterior

distribution integrates to 1.

As Equation (11) implies, Bayesian inference provides an explicit

representation of the uncertainty in the parameter estimates via

characterizing the full posterior distribution of unknown parameters

x . The prior distribution of parameters and the likelihood function

must be specified to solve Equation (11). Here, we used the same

uniform distributions as those used to construct the PCK surrogate

models to represent the prior distributions, although these can be

different. The likelihood function is specified by the observation

noise model, which is assumed to be zero‐mean Gaussian with state‐

dependent variance in this work. We use a particle filtering method,

namely sequential Monte Carlo (SMC) (Liu & Chen, 1998), to

approximately solve the Bayesian inference problem by iteratively

updating the posterior fx at every time instant that system

observations become available; see Makrygiorgos et al. (2020) for

further details. Notice that parameter estimation via Bayesian

inference methods such as SMC relies on accurate construction of

the probability distributions in Equation (11). As described in

Section 4.1, the data‐driven flow‐map models enable efficient

sample‐based approximation of the distributions using a very large

number of samples, which otherwise could be impractical using an

expensive computational model.

Figure 10 shows the posterior distribution of the parameters x at

t = 3.5 days estimated via SMC using the data set , as specified

above. The posterior distributions are approximated using 20,000

particles. Note that ranges of the posterior distributions are larger

than the prior distributions in some cases, which is an artifact of the

kernel density estimation (i.e., the selection of the bandwidth

parameter; Davis et al., 2011). Figure 10 suggests that only the

posterior distributions of parameters Y and μmax have changed

significantly with respect to their priors. It is also evident that the

mean of the posterior distributions (blue vertical lines) for parameters

Y and μmax provides a fairly accurate estimate for the true, but

unknown, parameter values (red vertical lines). In particular, the true

value and the posterior mean are indistinguishable, while the

posteriors are much more narrow compared to priors as stated

before. Nonetheless, the posterior distributions for the other

parameters remain similar to their priors with little to no change,

suggesting these parameters cannot be estimated using the available

data set . This can be attributed to the lack of information content

of system observations for inferring the unknown parameters; a

deficiency that can be addressed via optimal experiment design

(Paulson et al., 2019b; Rodrigues et al., 2020). We again note the

flexibility of the flow‐map models that would allow us to seamlessly

add new observation points, should that become necessary for better

parameter inference, without the need to construct new surrogate

models for the states observed at new time points.

5 | CONCLUSIONS

This paper presented a flow‐map modeling approach based on

polynomial chaos Kriging for the discovery of system dynamics from

data. Data‐driven flow‐map models directly approximate the integra-

tion operator of differential equations that describe the state

transitions of a dynamical system as a function of system state and

F IGURE 10 Bayesian inference of unknown parameters of the computational model of the microbial electrosynthesis bioreactor. The
parameters are estimated via sequential Monte Carlo using 20,000 particles. Red and blue distributions represent the prior and posterior
distributions of the unknown model parameters at time 3.5 days, respectively. The red vertical lines correspond to the true parameters, while the
blue vertical lines are the estimated posterior mean value of parameters.
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input variables. We illustrated the usefulness of the proposed

approach for learning mathematical descriptions of nonlinear

dynamical systems and deriving dynamic surrogate models for fast

uncertainty quantification applications. Our analyses reveal that

polynomial chaos Kriging‐based flow‐maps offer significant benefits

in terms of data efficiency, as well as computational efficiency of data

generation, for the discovery of nonlinear system dynamics and

surrogate modeling.
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ENDNOTES
1 Not only the concept of Euclidian distance (which is the main feature of

kernels) becomes less meaningful in higher dimensions, but also higher‐
dimensional input spaces require more data to be efficiently dis-
covered, hence rendering the inference part of GP‐based models
harder. This challenge can be mitigated via sparse Gaussian process
regression (Snelson & Ghahramani, 2007; Titsias, 2009).

2 Notice that the evaluation time of a PCK model depends on a multitude

of factors, such as the degree of the polynomial basis functions, kernel
type, and, mainly, the amount of data used to train the model.
Additionally, a kernel‐based model such as PCK is more expensive to
evaluate than a polynomial chaos expansion.

REFERENCES

Abel, A. J., & Clark, D. S. (2021). A comprehensive modeling analysis of

formate‐mediated microbial electrosynthesis. ChemSusChem, 14,
344–355. https://doi.org/10.1002/cssc.202002079

Banga, J. R., Balsa‐Canto, E., Moles, C. G., & Alonso, A. A. (2005). Dynamic
optimization of bioprocesses: Efficient and robust numerical strate-
gies. Journal of Biotechnology, 117, 407–419. https://doi.org/10.

1016/j.jbiotec.2005.02.013
Berliner, A. J., Hilzinger, J. M., Abel, A. J., McNulty, M. J., Makrygiorgos, G.,

Averesch, N. J. H., Sen Gupta, S., Benvenuti, A., Caddell, D. F.,
Cestellos‐Blanco, S., Doloman, A., Friedline, S., Ho, D., Gu, W.,

Hill, A., Kusuma, P., Lipsky, I., Mirkovic, M., … Arkin, A. P. (2021).
Towards a biomanufactory on Mars. Frontiers in Astronomy and

Space Sciences, 8, 120. https://www.frontiersin.org/article/10.
3389/fspas.2021.711550. https://doi.org/10.3389/fspas.2021.
711550

Bishop, C. M. (2006). Pattern recognition and machine learning (Vol. 4, pp.

738). Springer.
Blatman, G., & Sudret, B. (2011). Adaptive sparse polynomial chaos

expansion based on least angle regression. Journal of Computational

Physics, 230, 2345–2367. https://doi.org/10.1016/j.jcp.2010.
12.021

Bongard, J., & Lipson, H. (2007). Automated reverse engineering of
nonlinear dynamical systems. Proceedings of the National Academy of

Sciences of the United States of America, 104, 9943–9948. https://
doi.org/10.1073/pnas.0609476104

Borgonovo, E. (2007). A new uncertainty importance measure. Reliability

Engineering & System Safety, 92, 771–784. http://www.
sciencedirect.com/science/article/pii/S0951832006000883.
https://doi.org/10.1016/j.ress.2006.04.015

Brunton, S. L., & Kutz, J. N. (2019). Data‐driven science and engineering:

Machine learning, dynamical systems, and control. Cambridge University

Press.
Brunton, S. L., Proctor, J. L., & Kutz, J. N. (2016). Discovering governing

equations from data by sparse identification of nonlinear dynamical
systems. Proceedings of the National Academy of Sciences of the

United States of America, 113, 3932–3937. https://doi.org/10.
1073/pnas.1517384113

Caflisch, R. E. (1998). Monte Carlo and quasi‐Monte Carlo methods. Acta
Numerica, 7, 1–49. https://doi.org/10.1017/S0962492900002804

Cameron, A. R. H., & Martin, W. T. (1947). The orthogonal development of

non‐linear functionals in series of Fourier‐Hermite functionals.
Annals of Mathematics, 48, 385–392.

Champion, K., Lusch, B., Kutz, J. N., & Brunton, S. L. (2019). Data‐driven
discovery of coordinates and governing equations. Proceedings of the
National Academy of Sciences of the United States of America, 116,

22445–22451. https://doi.org/10.1073/pnas.1906995116
Cressie, N. (1990). The origins of kriging. Mathematical Geology, 22,

239–252. https://doi.org/10.1007/BF00889887
Daniels, B. C., & Nemenman, I. (2015). Efficient inference of parsimonious

phenomenological models of cellular dynamics using s‐systems and

alternating regression. PloS ONE, 10, e0119821. https://doi.org/10.
1371/journal.pone.0119821

Davis, R. A., Lii, K.‐S., & Politis, D. N. (2011). Remarks on some
nonparametric estimates of a density function. In Selected works of

Murray Rosenblatt (pp. 95–100). Springer. https://doi.org/10.1007/
978-1-4419-8339-8_13

De Azevedo, S. F., Dahm, B., & Oliveira, F. (1997). Hybrid modelling of
biochemical processes: A comparison with the conventional
approach. Computers & Chemical Engineering, 21, S751–S756.
https://doi.org/10.1016/S0098-1354(97)87593-X

delRio‐Chanona, E. A., Wagner, J. L., Ali, H., Fiorelli, F., Zhang, D., &
Hellgardt, K. (2019). Deep learning‐based surrogate modeling and
optimization for microalgal biofuel production and photobioreactor
design. AIChE Journal, 65, 915–923. https://doi.org/10.1002/aic.

16473
Deman, G., Konakli, K., Sudret, B., Kerrou, J., Perrochet, P., &

Benabderrahmane, H. (2016). Using sparse polynomial chaos
expansions for the global sensitivity analysis of groundwater lifetime
expectancy in a multi‐layered hydrogeological model. Reliability

Engineering and System Safety, 147, 156–169. https://doi.org/10.
1016/j.ress.2015.11.005

Dubois, P., Gomez, T., Planckaert, L., & Perret, L. (2020). Data‐driven
predictions of the Lorenz system. Physica D: Nonlinear Phenomena,

408, 132495. https://doi.org/10.1016/j.physd.2020.132495
Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., Ishwaran, H., Knight, K.,

Loubes, J. M., Massart, P., Madigan, D., Ridgeway, G., Rosset, S.,
Zhu, J. I., Stine, R. A., Turloptiach, B. A., Weisberg, S., Johnstone, I., &

816 | MAKRYGIORGOS ET AL.

 10970290, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bit.28295 by U

niv of C
alifornia L

aw
rence B

erkeley N
ational L

ab, W
iley O

nline L
ibrary on [10/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/cubes-space/DataDriven-FlowMaps
https://github.com/cubes-space/DataDriven-FlowMaps
https://doi.org/10.1002/cssc.202002079
https://doi.org/10.1016/j.jbiotec.2005.02.013
https://doi.org/10.1016/j.jbiotec.2005.02.013
https://www.frontiersin.org/article/10.3389/fspas.2021.711550
https://www.frontiersin.org/article/10.3389/fspas.2021.711550
https://doi.org/10.3389/fspas.2021.711550
https://doi.org/10.3389/fspas.2021.711550
https://doi.org/10.1016/j.jcp.2010.12.021
https://doi.org/10.1016/j.jcp.2010.12.021
https://doi.org/10.1073/pnas.0609476104
https://doi.org/10.1073/pnas.0609476104
http://www.sciencedirect.com/science/article/pii/S0951832006000883
http://www.sciencedirect.com/science/article/pii/S0951832006000883
https://doi.org/10.1016/j.ress.2006.04.015
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1017/S0962492900002804
https://doi.org/10.1073/pnas.1906995116
https://doi.org/10.1007/BF00889887
https://doi.org/10.1371/journal.pone.0119821
https://doi.org/10.1371/journal.pone.0119821
https://doi.org/10.1007/978-1-4419-8339-8_13
https://doi.org/10.1007/978-1-4419-8339-8_13
https://doi.org/10.1016/S0098-1354(97)87593-X
https://doi.org/10.1002/aic.16473
https://doi.org/10.1002/aic.16473
https://doi.org/10.1016/j.ress.2015.11.005
https://doi.org/10.1016/j.ress.2015.11.005
https://doi.org/10.1016/j.physd.2020.132495


Tibshirani, R. (2004). Least angle regression. Annals of Statistics. 32,
407–499. https://doi.org/10.1214/009053604000000067

Franceschini, G., & Macchietto, S. (2008). Model‐based design of
experiments for parameter precision: State of the art. Chemical

Engineering Science, 63, 4846–4872. https://doi.org/10.1016/j.ces.
2007.11.034

Girard, A., Rasmussen, C., Candela, J. Q., & Murray‐Smith, R. (2002).
Gaussian process priors with uncertain inputs application to
multiple‐step ahead time series forecasting. Advances in neural

information processing systems, 15.
Golightly, A., & Wilkinson, D. J. (2011). Bayesian parameter inference for

stochastic biochemical network models using particle Markov chain
Monte Carlo. Interface Focus, 1, 807–820. https://doi.org/10.1098/
rsfs.2011.0047

Hansen, N., & Ostermeier, A. (2001). Completely derandomized self‐
adaptation in evolution strategies. Evolutionary Computation, 9,
159–195. https://doi.org/10.1162/106365601750190398

Hastie, T., Tibshirani, R., & Wainwright, M. (2015). Statistical learning with

sparsity: The lasso and generalizations. Chapman & Hall/CRC.

Heinonen, M., Yildiz, C., Mannerström, H., Intosalmi, J., & Lähdesmäki, H.
(2018). Learning unknown ODE models with Gaussian processes. In
International conference on machine learning (pp. 1959–1968). PMLR.
https://proceedings.mlr.press/v80/heinonen18a.html

Hewing, L., Arcari, E., Fröhlich, L. P., & Zeilinger, M. N. (2020). On
simulation and trajectory prediction with gaussian process dynamics.
In Learning for Dynamics and Control (pp. 424–434). PMLR. https://
proceedings.mlr.press/v120/hewing20a.html

Iooss, B., & Lemaître, P. (2015). A review on global sensitivity analysis

methods. In Uncertainty management in simulation‐optimization of

complex systems (pp. 101–122). Springer. https://doi.org/10.1007/
978-1-4899-7547-8_5

Kazemi, M., Biria, D., & Rismani‐Yazdi, H. (2015). Modelling bio‐
electrosynthesis in a reverse microbial fuel cell to produce acetate

from CO2 and H2O. Physical Chemistry Chemical Physics 17,
12561–12574. https://doi.org/10.1039/C5CP00904A

Kennedy, M. C., & O'hagan, A. (2001). Bayesian calibration of computer
models. Journal of Royal Statistical Society B, 63, 425–464. https://
doi.org/10.1111/1467-9868.00294

Komorowski, M., Finkenstädt, B., Harper, C. V., & Rand, D. A. (2009).
Bayesian inference of biochemical kinetic parameters using the
linear noise approximation. BMC Bioinformatics, 10, 1–10. https://
doi.org/10.1186/1471-2105-10-343

Kutz, J. N., Brunton, S. L., Brunton, B. W., & Proctor, J. L. (2016). Dynamic

mode decomposition: Data‐driven modeling of complex systems. SIAM.
Liu, J. S., & Chen, R. (1998). Sequential Monte Carlo methods for dynamic

systems. Journal of the American Statistical Association, 93,
1032–1044. https://doi.org/10.1080/01621459.1998.10473765

Mai, C. V., & Sudret, B. (2017). Surrogate models for oscillatory systems
using sparse polynomial chaos expansions and stochastic time
warping. SIAM/ASA Journal on Uncertainty Quantification, 5,
540–571.

Makrygiorgos, G., Gupta, S. S., Menezes, A. A., & Mesbah, A. (2020). Fast

probabilistic uncertainty quantification and sensitivity analysis of a
Mars life support system model. IFAC‐PapersOnLine, 53, 7268–7273.
https://doi.org/10.1016/j.ifacol.2020.12.563

Makrygiorgos, G., Maggioni, G. M., & Mesbah, A. (2020). Surrogate
modeling for fast uncertainty quantification: Application to 2D pop-

ulation balance models. Computers & Chemical Engineering, 138,
106814. https://doi.org/10.1016/j.compchemeng.2020.106814

Marcus, A. K., Torres, C., & Rittmann, B. (2007). Conduction‐based modeling of
the biofilm anode of a microbial fuel cell. Biotechnology and

Bioengineering, 98(6), 1171–1182. https://doi.org/10.1002/bit.21533
May, R. M. (1974). Biological populations with nonoverlapping genera-

tions: Stable points, stable cycles, and chaos. Science, 186, 645–647.
https://doi.org/10.1126/science.186.4164.645

Mesbah, A., & Streif, S. (2015). A probabilistic approach to robust optimal
experiment design with chance constraints. IFAC‐PapersOnLine, 48,
100–105. https://doi.org/10.1016/j.ifacol.2015.08.164

Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant

muscle fiber. Biophysical Journal, 35, 193–213. https://doi.org/10.
1016/S0006-3495(81)84782-0

Najm, H. N. (2009). Uncertainty quantification and polynomial chaos
techniques in computational fluid dynamics. Annual Review of Fluid

Mechanics, 41, 35–52. https://doi.org/10.1146/annurev.fluid.

010908.165248
Oladyshkin, S., & Nowak, W. (2012). Data‐driven uncertainty quantifica-

tion using the arbitrary polynomial chaos expansion. Reliabbility

Engineering and System Safety, 106, 179–190. https://doi.org/10.
1016/j.ress.2012.05.002

Olsen, L. F., & Lunding, A. (2021). Chaos in the peroxidase‐oxidase
oscillator. Chaos: An Interdisciplinary Journal of Nonlinear Science, 31,
013119. https://doi.org/10.1063/5.0022251

Pande, S., Merker, H., Bohl, K., Reichelt, M., Schuster, S.,
De Figueiredo, L. F., Kaleta, C., & Kost, C. (2014). Fitness and

stability of obligate cross‐feeding interactions that emerge upon
gene loss in bacteria. The ISME Journal, 8, 953–962. https://doi.org/
10.1038/ismej.2013.211

Paulson, J. A., Buehler, E. A., & Mesbah, A. (2017). Arbitrary polynomial

chaos for uncertainty propagation of correlated random variables in
dynamic systems. IFAC‐PapersOnLine, 50, 3548–3553. https://doi.
org/10.1016/j.ifacol.2017.08.954

Paulson, J. A., Martin‐Casas, M., & Mesbah, A. (2019a). Fast uncertainty
quantification for dynamic flux balance analysis using non‐smooth

polynomial chaos expansions. PLoS Computational Biology, 15,
e1007308. https://doi.org/10.1371/journal.pcbi.1007308

Paulson, J. A., Martin‐Casas, M., & Mesbah, A. (2019b). Optimal Bayesian
experiment design for nonlinear dynamic systems with chance
constraints. Journal of Process Control, 77, 155–171. https://doi.org/
10.1016/j.jprocont.2019.01.010

Pereira, F. H., Schimit, P. H., & Bezerra, F. E. (2021). A deep learning based
surrogate model for the parameter identification problem in
probabilistic cellular automaton epidemic models. Computer

Methods and Programs in Biomedicine, 205, 106078. https://doi.

org/10.1016/j.cmpb.2021.106078
Pettit, C., & Beran, P. (2006). Spectral and multiresolution wiener

expansions of oscillatory stochastic processes. Journal of Sound

and Vibration, 294, 752–779. https://doi.org/10.1016/j.jsv.2005.

12.043
Polymenakos, K., Abate, A., & Roberts, S. (2019). Safe policy search using

Gaussian process models. In Proceedings of the 18th international

conference on autonomous agents and multiagent systems (pp.
1565–1573).

Qin, T., Chen, Z., Jakeman, J., & Xiu, D. (2020). Deep learning of
parameterized equations with applications to uncertainty quantifi-
cation. https://doi.org/10.1615/Int.J.UncertaintyQuantification.202
0034123

Qin, T., Wu, K., & Xiu, D. (2019). Data driven governing equations

approximation using deep neural networks. Journal of Computational

Physics, 395, 620–635. https://doi.org/10.1016/j.jcp.2019.06.042
Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2018). Multistep neural

networks for data‐driven discovery of nonlinear dynamical systems.
arXiv:1801.01236. https://arxiv.org/abs/1801.01236

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2018). Multistep neural
networks for data-driven discovery of nonlinear dynamical systems.

Rodrigues, D., Makrygiorgos, G., & Mesbah, A. (2020). Tractable global
solutions to Bayesian optimal experiment design. In 2020 59th IEEE

Conference on Decision and Control (pp. 1614–1619). IEEE. https://
doi.org/10.1109/CDC42340.2020.9304226

Rudy, S. H., Kutz, J. N., & Brunton, S. L. (2019). Deep learning of dynamics
and signal‐noise decomposition with time‐stepping constraints.

MAKRYGIORGOS ET AL. | 817

 10970290, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bit.28295 by U

niv of C
alifornia L

aw
rence B

erkeley N
ational L

ab, W
iley O

nline L
ibrary on [10/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1214/009053604000000067
https://doi.org/10.1016/j.ces.2007.11.034
https://doi.org/10.1016/j.ces.2007.11.034
https://doi.org/10.1098/rsfs.2011.0047
https://doi.org/10.1098/rsfs.2011.0047
https://doi.org/10.1162/106365601750190398
https://proceedings.mlr.press/v80/heinonen18a.html
https://proceedings.mlr.press/v120/hewing20a.html
https://proceedings.mlr.press/v120/hewing20a.html
https://doi.org/10.1007/978-1-4899-7547-8_5
https://doi.org/10.1007/978-1-4899-7547-8_5
https://doi.org/10.1039/C5CP00904A
https://doi.org/10.1111/1467-9868.00294
https://doi.org/10.1111/1467-9868.00294
https://doi.org/10.1186/1471-2105-10-343
https://doi.org/10.1186/1471-2105-10-343
https://doi.org/10.1080/01621459.1998.10473765
https://doi.org/10.1016/j.ifacol.2020.12.563
https://doi.org/10.1016/j.compchemeng.2020.106814
https://doi.org/10.1002/bit.21533
https://doi.org/10.1126/science.186.4164.645
https://doi.org/10.1016/j.ifacol.2015.08.164
https://doi.org/10.1016/S0006-3495(81)84782-0
https://doi.org/10.1016/S0006-3495(81)84782-0
https://doi.org/10.1146/annurev.fluid.010908.165248
https://doi.org/10.1146/annurev.fluid.010908.165248
https://doi.org/10.1016/j.ress.2012.05.002
https://doi.org/10.1016/j.ress.2012.05.002
https://doi.org/10.1063/5.0022251
https://doi.org/10.1038/ismej.2013.211
https://doi.org/10.1038/ismej.2013.211
https://doi.org/10.1016/j.ifacol.2017.08.954
https://doi.org/10.1016/j.ifacol.2017.08.954
https://doi.org/10.1371/journal.pcbi.1007308
https://doi.org/10.1016/j.jprocont.2019.01.010
https://doi.org/10.1016/j.jprocont.2019.01.010
https://doi.org/10.1016/j.cmpb.2021.106078
https://doi.org/10.1016/j.cmpb.2021.106078
https://doi.org/10.1016/j.jsv.2005.12.043
https://doi.org/10.1016/j.jsv.2005.12.043
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2020034123
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2020034123
https://doi.org/10.1016/j.jcp.2019.06.042
https://arxiv.org/abs/1801.01236
https://doi.org/10.1109/CDC42340.2020.9304226
https://doi.org/10.1109/CDC42340.2020.9304226


Journal of Computational Physics, 396, 483–506. https://doi.org/10.
1016/j.jcp.2019.06.056

Rumschinski, P., Borchers, S., Bosio, S., Weismantel, R., & Findeisen, R.
(2010). Set‐base dynamical parameter estimation and model

invalidation for biochemical reaction networks. BMC Systems

Biology, 4, 1–14. https://doi.org/10.1186/1752-0509-4-69
Schillings, C., SunnÅker, M., Stelling, J., & Schwab, C. (2015). Efficient

characterization of parametric uncertainty of complex (bio) chemical
networks. PLoS Computational Biology, 11, e1004457. https://doi.

org/10.1371/journal.pcbi.1004457
Schmid, P. J. (2010). Dynamic mode decomposition of numerical and

experimental data. Journal of Fluid mechanics, 656, 5–28. https://doi.
org/10.1017/S0022112010001217

Schmidt, M. D., Vallabhajosyula, R. R., Jenkins, J. W., Hood, J. E., Soni, A. S.,

Wikswo, J. P., & Lipson, H. (2011). Automated refinement and inference
of analytical models for metabolic networks. Physical Biology, 8, 055011.
https://doi.org/10.1088/1478-3975/8/5/055011

Schöbi, R., & Sudret, B. (2014). PC‐Kriging: A new metamodelling method
combining polynomial chaos expansions and kriging. Proceedings of the

2nd International Symposium on Uncertainty Quantification and
Stochastic Modelling. https://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.722.6530&rep=rep1&type=pdf

Schoukens, J., & Ljung, L. (2019). Nonlinear system identification: A user‐
oriented road map. IEEE Control Systems Magazine, 39, 28–99.
https://doi.org/10.1109/MCS.2019.2938121

Schubert, J., Simutis, R., Dors, M., Havlik, I., & Lübbert, A. (1994).
Bioprocess optimization and control: Application of hybrid model-
ling. Journal of Biotechnology, 35, 51–68. https://doi.org/10.1016/
0168-1656(94)90189-9

Smith, R. C. (2013). Uncertainty quantification: Theory, implementation, and

applications (vol. 12). SIAM.
Snelson, E., & Ghahramani, Z. (2007). Local and global sparse Gaussian

process approximations. In Artificial Intelligence and Statistics (pp.

524–531). PMLR.
Sparrow, C. (2012). The Lorenz equations: Bifurcations, chaos, and strange

attractors (vol. 41). Springer Science & Business Media. https://doi.
org/10.1007/978-1-4612-5767-7

Streif, S., Kim, K. K. K., Rumschinski, P., Kishida, M., Shen, D. E.,

Findeisen, R., & Braatz, R. D. (2016). Robustness analysis, prediction,
and estimation for uncertain biochemical networks: An overview.
Journal of Process Control, 42, 14–34. https://doi.org/10.1016/j.
jprocont.2016.03.004

Streif, S., Petzke, F., Mesbah, A., Findeisen, R., & Braatz, R. D. (2014).
Optimal experimental design for probabilistic model discrimination
using polynomial chaos. IFAC Proceedings Volumes, 47, 4103–4109.
https://doi.org/10.3182/20140824-6-ZA-1003.01562

Su, W.‐H., Chou, C.‐S., & Xiu, D. (2021). Deep learning of biological models

from data: Applications to ODE models. Bulletin of Mathematical Biology,
83, 1–19. https://doi.org/10.1007/s11538-020-00851-7

Sudret, B., Marelli, S., & Wiart, J. (2017). Surrogate models for uncertainty
quantification: An overview. In 2017 11th European Conference on

Antennas and Propagation (pp. 793–797). https://doi.org/10.23919/
EuCAP.2017.7928679

Titsias, M. (2009). Variational learning of inducing variables in sparse
Gaussian processes. In Artificial intelligence and statistics (pp.
567–574). PMLR.

Torres, C. I., Marcus, A. K., Parameswaran, P., & Rittmann, B. E. (2008).

Kinetic experiments for evaluating the Nernst–Monod model for
anode‐respiring bacteria (ARB) in a biofilm anode. Environmental

Science & Technology, 42, 6593–6597. https://doi.org/10.1021/
es800970w

Treloar, N. J., Fedorec, A. J., Ingalls, B., & Barnes, C. P. (2020). Deep
reinforcement learning for the control of microbial co‐cultures in

bioreactors. PLoS Computational Biology, 16, e1007783. https://doi.
org/10.1371/journal.pcbi.1007783

Tripathy, R., Bilionis, I., & Gonzalez, M. (2016). Gaussian processes with
built‐in dimensionality reduction: Applications to high‐dimensional
uncertainty propagation. Journal of Computational Physics, 321,

191–223.
Tripathy, R. K., & Bilionis, I. (2018). Deep UQ: Learning deep neural

network surrogate models for high dimensional uncertainty quanti-
fication. Journal of Computational Physics, 375, 565–588. https://doi.
org/10.1016/j.jcp.2018.08.036

Tsymbalov, E., Panov, M., & Shapeev, A. (2018). Dropout‐based active
learning for regression. In International conference on analysis of

images, social networks and texts (pp. 247–258). Springer.
Vanlier, J., Tiemann, C. A., Hilbers, P. A. J., & Van Riel, N. A. W. (2013).

Parameter uncertainty in biochemical models described by ordinary

differential equations. Mathematical Biosciences, 246, 305–314.
https://doi.org/10.1016/j.mbs.2013.03.006

VonStosch, M., Oliveira, R., Peres, J., & de Azevedo, S. F. (2014). Hybrid
semi‐parametric modeling in process systems engineering: Past,

present and future. Computers & Chemical Engineering, 60, 86–101.
https://doi.org/10.1016/j.compchemeng.2013.08.008

Williams, K. I., & Rasmussen, C. (2006). Gaussian processes for machine

learning. MIT Press. https://doi.org/10.1142/S0129065704001899
Williams, M. O., Kevrekidis, I. G., & Rowley, C. W. (2015). A data‐driven

approximation of the Koopman operator: Extending dynamic mode
decomposition. Journal of Nonlinear Science, 25, 1307–1346. https://
doi.org/10.1007/s00332-015-9258-5

Xiu, D., & Karniadakis, G. E. (2002). The Wiener–Askey polynomial chaos
for stochastic differential equations. SIAM Journal of Science and

Computation, 24, 619–644. https://doi.org/10.1137/S1064827501
387826

Xiu, D., & Karniadakis, G. E. (2003). Modeling uncertainty in flow simulations
via generalized polynomial chaos. Journal of Computational Physics, 187,
137–167. https://doi.org/10.1016/S0021-9991(03)00092-5

Zhang, D., DelRio‐Chanona, E. A., Petsagkourakis, P., & Wagner, J. (2019).
Hybrid physics‐based and data‐driven modeling for bioprocess online
simulation and optimization. Biotechnology and Bioengineering, 116,
2919–2930. https://doi.org/10.1002/bit.27120

SUPPORTING INFORMATION

Additional supporting information can be found online in the

Supporting Information section at the end of this article.

How to cite this article: Makrygiorgos, G., Berliner, A. J.,

Shi, F., Clark, D. S., Arkin, A. P., & Mesbah, A. (2023).

Data‐driven flow‐map models for data‐efficient discovery of

dynamics and fast uncertainty quantification of biological and

biochemical systems. Biotechnology and Bioengineering, 120,

803–818. https://doi.org/10.1002/bit.28295

818 | MAKRYGIORGOS ET AL.

 10970290, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bit.28295 by U

niv of C
alifornia L

aw
rence B

erkeley N
ational L

ab, W
iley O

nline L
ibrary on [10/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1016/j.jcp.2019.06.056
https://doi.org/10.1016/j.jcp.2019.06.056
https://doi.org/10.1186/1752-0509-4-69
https://doi.org/10.1371/journal.pcbi.1004457
https://doi.org/10.1371/journal.pcbi.1004457
https://doi.org/10.1017/S0022112010001217
https://doi.org/10.1017/S0022112010001217
https://doi.org/10.1088/1478-3975/8/5/055011
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.722.6530%26rep=rep1%26type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.722.6530%26rep=rep1%26type=pdf
https://doi.org/10.1109/MCS.2019.2938121
https://doi.org/10.1016/0168-1656(94)90189-9
https://doi.org/10.1016/0168-1656(94)90189-9
https://doi.org/10.1007/978-1-4612-5767-7
https://doi.org/10.1007/978-1-4612-5767-7
https://doi.org/10.1016/j.jprocont.2016.03.004
https://doi.org/10.1016/j.jprocont.2016.03.004
https://doi.org/10.3182/20140824-6-ZA-1003.01562
https://doi.org/10.1007/s11538-020-00851-7
https://doi.org/10.23919/EuCAP.2017.7928679
https://doi.org/10.23919/EuCAP.2017.7928679
https://doi.org/10.1021/es800970w
https://doi.org/10.1021/es800970w
https://doi.org/10.1371/journal.pcbi.1007783
https://doi.org/10.1371/journal.pcbi.1007783
https://doi.org/10.1016/j.jcp.2018.08.036
https://doi.org/10.1016/j.jcp.2018.08.036
https://doi.org/10.1016/j.mbs.2013.03.006
https://doi.org/10.1016/j.compchemeng.2013.08.008
https://doi.org/10.1142/S0129065704001899
https://doi.org/10.1007/s00332-015-9258-5
https://doi.org/10.1007/s00332-015-9258-5
https://doi.org/10.1137/S1064827501387826
https://doi.org/10.1137/S1064827501387826
https://doi.org/10.1016/S0021-9991(03)00092-5
https://doi.org/10.1002/bit.27120
https://doi.org/10.1002/bit.28295

	Data-driven flow-map models for data-efficient discovery of dynamics and fast uncertainty quantification of biological and biochemical systems
	1 INTRODUCTION
	2 METHODS
	2.1 Flow-map compositions
	2.2 Data generation
	2.3 Data-driven flow-maps using polynomial chaos kriging

	3 DATA-DRIVEN DISCOVERY OF DYNAMICAL SYSTEMS
	3.1 Morris-Lecar system
	3.2 Lorenz system
	3.3 Transient coculture system

	4 UNCERTAINTY QUANTIFICATION OF EXPENSIVE COMPUTATIONAL MODELS
	4.1 Forward uncertainty propagation and global sensitivity analysis
	4.2 Bayesian inference of unknown model parameters

	5 CONCLUSIONS
	AUTHORS CONTRIBUTIONS
	ACKNOWLEDGEMENT
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT
	ENDNOTES
	REFERENCES
	SUPPORTING INFORMATION




