UC Irvine UC Irvine Previously Published Works

Title

Strong electronic correlations in a new class of Yb-based compounds: YbXCu4 (X=Ag,Au,Pd)

Permalink

https://escholarship.org/uc/item/7c07h3r5

Journal

Physical Review B, 35(4)

ISSN

2469-9950

Authors

Rossel, C Yang, KN Maple, MB <u>et al.</u>

Publication Date

1987-02-01

DOI

10.1103/physrevb.35.1914

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Strong electronic correlations in a new class of Yb-based compounds: $YbXCu_4$ (X = Ag,Au,Pd)

C. Rossel, K. N. Yang, and M. B. Maple

Department of Physics and Institute for Pure and Applied Physical Sciences, University of California, San Diego, La Jolla, California 92093

Z. Fisk, E. Zirngiebl, and J. D. Thompson Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (Received 4 August 1986)

A new series of heavy-electron Yb compounds YbXCu₄ with X = Ag, Au, or Pd are reported which have electron effective masses as high as $\sim 60m_e$, where m_e is the mass of the free electron. Whereas the compounds with X = Au and Pd order magnetically below 1 K, the compound with X = Ag is nonmagnetic. The magnetic susceptibility and specific heat of YbAgCu₄ can be accounted for by the Bethe-ansatz solution of the Coqblin-Schrieffer impurity model without any adjustable parameters.

The remarkable physical properties of compounds of rare earth and actinide elements which are associated with the hybridization between conduction-electron and localized *f*-electron states continue to attract the attention of experimentalists and theoreticians alike. A significant amount of effort has been expended in characterizing exemplary *f*-electron materials and developing theoretical models with which their extraordinary properties can be compared.^{1,2} Compounds of the rare-earth elements Ce and Yb are especially well suited for this purpose, since the 4*f* shell of Ce and Yb can accommodate at most one electron or hole, respectively, which considerably simplifies relevant theoretical models.

In this paper we report transport, thermal, and magnetic measurements on a new series of Yb compounds with the formula YbXCu₄, where X = Ag, Au, or Pd. These compounds appear to be nearly ideal materials for testing theoretical models since their crystal structure has cubic symmetry, the Yb 4f shell contains approximately one hole, and interactions between the Yb magnetic moments are relatively weak. Our results reveal that the compounds with X = Au and Pd order magnetically below 1 K, whereas YbAgCu₄ has a nonmagnetic ground state. Moreover, the magnetic ground state in YbAuCu₄ and the nonmagnetic groundstate in YbAgCu₄ both develop out of a heavy Fermi liquid characterized by an effective mass of $\sim 50 m_e$, where m_e is the mass of the free electron. We have found that the magnetic susceptibility χ as a function of temperature T and the value of the coefficient γ of the specific heat $C = \gamma T$ of the nonmagnetic compound YbAgCu₄ can be described by the Bethe-ansatz solution of the Coqblin-Schrieffer Hamiltonian³ for angular momentum $J = \frac{7}{2}$, which is appropriate for the Hund's rule groundstate multiplet of trivalent Yb, without any adjustable parameters.

The polycrystalline YbXCu₄ samples were prepared in three ways: by melting the pure elements in (1) an argon arc furnace on a Cu hearth, (2) a BeO crucible, or (3) a

sealed Ta tube, in order to minimize losses of the volatile Yb. The physical properties of the samples were not influenced by the different cooling rates involved in these three techniques. X-ray powder diffraction and metallographic analyses yielded no evidence of impurity phases. In contrast to YbCu₅, which has the hexagonal CaCu₅type crystal structure and in which Yb is divalent,⁴ the three YbXCu₄ compounds with X = Ag, Au, and Pd have the cubic AuBe₅ structure (space group C15b or F-43m) and Yb appears to be trivalent, or nearly so. The values of the lattice parameters are 7.0696, 7.0519, and 7.0396 Å for X = Ag, Au, and Pd, respectively. The Yb-Yb distance in these materials is of the order of 5 Å, a relatively large value which seems to favor a magnetic and/or heavy-electron ground state as proposed for the actinides by Hill.⁵ Electrical resistivity ρ measurements were made with a self-balancing four-wire impedance bridge operating at a frequency of 16 Hz between 80 mK and 295 K. The data below 1.2 K were taken in a conventional ³He-⁴He dilution refrigerator. The magnetic susceptibility χ was measured with an SHE superconducting quantuminterference device (SQUID) magnetometer in a magnetic field of 1 T between ~ 2 and 300 K. Heat-capacity C measurements were carried out in a semiadiabatic ³He calorimeter between 0.45 and 16 K.

Normalized electrical resistivity $\rho(T)/\rho(295 \text{ K})$ versus T data between 80 mK and 295 K for the three YbXCu₄ compounds, displayed in Fig. 1, exhibit different types of behavior for each of the three substituent X elements. Little temperature dependence is observed for all three samples down to ~80 K. However, below ~60 K, the resistivity of YbAgCu₄ falls rapidly and follows a T^2 power-law dependence between ~1 and 28 K which is characteristic of Fermi-liquid behavior or spin fluctuations. In contrast, the resistivity of YbAuCu₄ increases with decreasing temperature below ~100 K and displays two maxima, one at ~20 K and a second one at ~1.1 K (see inset of Fig. 1). The drop in $\rho(T)$ below this second

FIG. 1. Normalized electrical resistivity $\rho(T)/\rho(295 \text{ K})$ vs temperature T for YbXCu₄ compounds with X=Ag, Au, and Pd. Shown in the inset are the curves below 6 K. The presence of a maximum at 1.1 K for X=Au and at 0.7 K for X=Pd is associated with freezing out of magnetic scattering due to the onset of magnetic order.

peak is due to the onset of magnetic ordering (probably antiferromagnetic) as verified by specific-heat measurements which are discussed below. The drop in $\rho(T)$ below ~0.7 K for the compound YbPdCu₄ is also associated with magnetic order. In these latter two compounds $\rho(T)$ seems to exhibit Kondo-like behavior with a typical minimum located around 85 K for the Au-based sample and ~60 K for the Pd-based material. At room temperature, the electrical resistivity of these compounds ranged between 30 and 100 $\mu\Omega$ cm.

The types of ρ versus *T* curves displayed by the YbXCu₄ compounds could be associated with a temporal admixture of divalent and trivalent Yb (valence fluctuations) which are thought to be appropriate for compounds like YbAl₃, YbCu₂Si₂, YbInAu₂, and YbCuAl,⁶ or to the transition from a single-impurity Kondo regime at high temperature into a coherent Kondo lattice at low temperature. It is interesting to note that the presence of a Kondo-like resistivity maximum in Yb systems such as YbAuCu₄, discussed here, or in YbCuAl, which passes from a high-temperature localized to a low-temperature Fermi-liquid regime in the vicinity of 30 K [with $\gamma(0) \sim 255$ mJ/mol K²], is less common than in Ce systems. The origin of this asymmetry of behavior at the two ends of the lanthanide series is not understood.⁶

The inverse magnetic susceptibility χ^{-1} versus T for the YbXCu₄ compounds is shown in Fig. 2. For YbAu-Cu₄ and YbPdCu₄, the χ^{-1} versus T plots are linear between room temperature and about 30 K [i.e., $\chi(T)$ follows a Curie-Weiss law $\chi(T) = N\mu_{eff}^2/3k_B(T-\Theta)$, where N is the number of ions which carry magnetic moments] and show a slight deviation from linearity below ~30 K. The values of the respective Curie-Weiss temperatures Θ and effective magnetic moments μ_{eff} , which are close to the 4.54 μ_B value expected for a free Yb³⁺ ($J = \frac{7}{2}$) ion, are summarized in Table I together with the extrapolated values of $\chi(T)$ at 0 K.

FIG. 2. Inverse magnetic susceptibility χ^{-1} vs T for YbXCu₄ compounds with X=Ag, Au, and Pd, measured in a magnetic field $\mu_0H = 1$ T.

Shown in Fig. 3 are $\chi(T)$ data for YbAgCu₄ which follow a Curie-Weiss law between room temperature and ~ 100 K (see Fig. 2) and then pass through a maximum at \sim 35 K before reaching a constant value at low temperature. This behavior of $\chi(T)$ is rather interesting and similar to that reported for YbCuAl.⁷ Rajan⁸ has calculated $\chi(T)$ and the specific heat C(T) in zero magnetic field for angular momentum values from $J = \frac{1}{2}$ to $\frac{7}{2}$ by solving the exact thermodynamic equations of the Cogblin-Schrieffer impurity model with the Bethe-ansatz. Calculations based on the Coqblin-Schrieffer model^{8,9} have been applied successfully by Hewson et al.¹⁰ to YbCuAl which suggests that this compound is a good example of a Kondo lattice. Kondo-lattice behavior is expected for compounds containing rare-earth ions with integral valence such as Ce^{3+} (e.g., $CeAl_3$), Sm^{3+} (e.g., SmB_6), or Yb^{3+} which have a ground-state multiplet and tendency towards mixed valence, and where the antiferromagnetic exchange coupling between the rare-earth ion and the conduction electron spins dominates over the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. Such compounds are usually paramagnetic at T = 0 K or have very low ordering temperatures which appears to be the case for the new YbXCu₄ compounds discussed herein.

As shown in Fig. 3 the numerical results of Ref. 8 (solid line in the figure) provide an excellent description of the $\chi(T)$ data for YbAgCu₄. The theoretical curve is based on only one parameter, the characteristic temperature T_0 which is given by $T_0 = \nu(\nu^2 - 1)g_J^2 \mu_B^2/24\pi k_B \chi(0)$, where ν is the degeneracy of the ground state, g_J is the Landé g factor of the Hund's-rule ground-state multiplet with angular momentum J, and $\chi(0)$ is the experimental value of the susceptibility at zero temperature. The value $T_0 = 167.5$ K used to generate the theoretical curve in Fig. 3 was calculated from this relation using $\chi(0) = 1.96 \times 10^{-2}$ cm³/mol for YbAgCu₄ and $\nu = 2J + 1 = 8$ for Yb³⁺.

Specific heat C versus T data are displayed in Fig. 4 for the three compounds with X=Ag, Au, and Pd. The large peak in C(T) at the respective temperatures of ~ 0.8 K

	$\chi(T)$				<i>C</i> (<i>T</i>)				
Material	$\mu_{ m eff}$ (μ_B)	Θ (K)	$\chi(0)$ (cm ³ /mol)	T_{\max} (K)	$\gamma(0)$ (mJ/mol K ²)	Θ_D (K)	T_N (K)	m* (m _e)	$T (S = R \ln 2)$ (K)
YbAgCu ₄	4.28	-31	1.96×10^{-2}	34	245 ± 6	129 ± 1		60	17.2
YbAuCu₄	4.39	-8.8	2.75×10^{-1}				0.6		5.6
YbPdCu ₄	4.33	-13.5	1.74×10^{-1}		200	138	0.8	48	8.9

TABLE I. Summary of magnetic susceptibility and specific-heat data for YbXCu₄ (X=Ag,Au,Pd).

and ~ 0.6 K for the specimens with X = Au and Pd is presumably associated with the anticipated long-range antiferromagnetic order. The absence of an anomaly in C(T) for YbAgCu₄ confirms that this compound does not exhibit any magnetic order, at least down to 0.45 K. The plots of C/T versus T^2 presented in Fig. 5 reveal large $\gamma(0)$ values of ~245 mJ/mol K² for YbAgCu₄ and ~200 mJ/mol K^2 for YbPdCu₄. For this latter compound, a linear extrapolation of the C/T versus T^2 data to T=0to estimate $\gamma(0)$ seems reasonable in spite of the magnetic contribution at low T. In the case of YbAuCu₄, there does not seem to be a reliable way of determining $\gamma(0)$ even if a fairly large value were to be expected. The values of $\gamma(0)$, the Debye temperature Θ_D , the Néel temperature T_N , the effective mass m^* and the temperature at which the entropy S reaches $R \ln 2$ are summarized in Table I. The effective mass was estimated from the relation $m^* = \hbar^2 k_F^2 \gamma(0) / \pi k_B (Z/\Omega)$ where $k_F = (3\pi^2 Z/\Omega)^{1/3}$, with Z = 4 the number of 4f holes per unit cell (assuming Yb to have a valence 3+) and Ω the volume of the cubic unit cell.

According to Ref. 8, the zero-temperature, zero-field limit of the specific heat is given by $C(T \rightarrow 0)/T = \gamma = (\nu - 1)\pi k_B/6T_0$. Using the value $T_0 = 167.5$ K determined above from the zerotemperature limit of the magnetic susceptibility $\chi(0)$, we obtain a value of 182 mJ/mol K² for γ which is in reason-

FIG. 3. Magnetic susceptibility χ vs temperature for YbAgCu₄. The solid line is the calculated susceptibility $\chi(T)$ scaled to the zero temperature value, using the results of Ref. 8 for the $J = \frac{7}{2}$ Coqblin-Schrieffer model.

able agreement with the experimental value of ~ 245 mJ/mol K².

The reason that the Coqblin-Schrieffer model for Yb³⁺ impurities provides such a good description of $\chi(T)$ and γ for YbAgCu₄ seems to be that the intersite Yb-Yb interaction is small, as evidenced by the small magnetic ordering (presumably Néel) temperatures of the YbXCu₄ compounds with X = Au and Pd. A general trend which seems to emerge is that the Néel temperatures T_N of Yb compounds are, on the average, smaller than those of Ce compounds, which, in turn, appear to be smaller than those of U materials [i.e., $T_N(Yb) < T_N(Ce) < T_N(U)$]. In fact, all of the Yb-based systems which are known to order antiferromagnetically have $T_N < 1$ K [e.g., YbIr₂,¹¹ YbPd,¹² YbX (X=N,P,As) (Ref. 13) and YbXCu₄ (X = Au, Pd)] with the exceptions of YbBe₁₃ $(T_N = 1.28 \text{ K})$ (Ref. 14) and Yb₃Pd₄ ($T_N = 3$ K).¹⁵ In the Ce and U compounds, T_N is usually closer to 10 K [e.g., CeAl₂ ($T_N = 3.5$ K), UCd₁₁ ($T_N = 5$ K) or U₂Zn₁₇ ($T_N = 9.7$ K)].

FIG. 4. Specific heat C vs temperature for $YbXCu_4$ compounds with X=Ag, Au, and Pd.

FIG. 5. Specific heat C divided by temperature T vs T^2 for YbXCu₄ compounds with X=Ag, Au, and Pd.

Another reason which makes the present family of Yb compounds interesting is the rather low entropy associated with the ground state which is expected to be a magnetic Γ_6 or Γ_7 doublet. It is apparent from Table I that for both YbAuCu₄ and YbPdCu₄ an entropy of $S = R \ln 2$ is not recovered until the temperature is raised from 0 K to about 10 times T_N , or in other words, only about 30-40% of R ln2 is released by the magnetic transition. Similar behavior has been reported for YbX compounds with X = N, P, and As (Ref. 13). It seems to be a general observation in magnetically ordered heavy-electron systems that the highly correlated electronic ground state removes a sizable amount of the entropy over a scale of the order of the Kondo temperature T_K . Since T_K is usually larger than T_N , only a small fraction of the expected magnetic entropy $R \ln 2$ is recovered at T_N . The competition between the magnetic ground state and the nonmagnetic heavy-electron ground state has been addressed by several authors,¹⁶ but the criteria for the occurrence of magnetic order in a heavy-electron system remains an unresolved problem for all Ce, U, and Yb materials.

In conclusion, we have shown that the hexagonal $YbCu_5$ compound, which is a nonmagnetic normal metal, can be transformed into a face-centered-cubic structure by

replacing one of the Cu atoms with an X atom of Ag, Au, or Pd, yielding dramatic changes in its electronic properties. In particular, the three YbXCu₄ compounds exhibit strong electronic correlations at low temperature with high γ values and large effective masses m^* . Whereas YbAuCu₄ and YbPdCu₄ order magnetically below 1 K, YbAgCu₄ does not display any cooperative phase transition. The excellent description of the temperature dependence of the magnetic susceptibility $\chi(T)$ and the electronic specific-heat coefficient γ of YbAgCu₄ by the Bethe-ansatz solution of the Coqblin-Schrieffer model seems to prove that the conduction electron-impurity spin-exchange interaction is much larger in this compound than the intersite interaction and any possible crystalline electric field terms in the effective Hamiltonian.

Finally, it is interesting to note that the original motivation for this study was based on some previous work performed in the Ce-Cu and U-Cu phase diagrams. For example, the hexagonal compound CeCu₅ orders magnetically at low temperature and has a rather low electronic specific-heat coefficient,¹⁷ whereas, in contrast, the two neighboring compounds CeCu₄ (Ref. 17) and CeCu₆ exhibit heavy-electron behavior.¹⁸ Another interesting case consists of the magnetically ordered UCu₅ and UAgCu₄ systems in which the formation of a heavy-electron state has also been reported.¹⁹ The present study clearly demonstrates that new efforts should be made to include Yb-based compounds in the fascinating and rapidly growing family of heavy fermion systems.

This work was supported by the U.S. National Science Foundation, Low Temperature Physics, Grant DMR-8411839 (C.R., M.B.M.), the U.S. Department of Energy under Grant No. DE-FG03-86ER45230 at University of California, San Diego (UCSD) (K.N.Y.), and under the auspices of the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science, at Los Alamos (Z.F., E.Z., J.D.T.). The support of the Swiss National Science Foundation is gratefully acknowledged (C.R.). The authors would like to thank J. W. Chen for his assistance in making the low-temperature electricalresistivity measurements in the dilution refrigerator.

- ¹See, for example, Valence Fluctuations in Solids, edited by L. M. Falicov, W. Hanke and M. B. Maple (North-Holland, Amsterdam, 1981); Valence Instabilities, edited by P. Wachter and H. Boppart (North-Holland, Amsterdam, 1982); Valence Fluctuations, edited by E. Müller-Hartmann, B. Roden, and D. Wohlleben (North-Holland, Amsterdam, 1984).
- ²For example, D. L. Cox, N. E. Bickers, and J. W. Wilkins, J. Magn. Magn. Mater. 54-57, 333 (1986); P. Schlottmann, J. Magn. Magn. Mater. 47& 48, 367 (1985).
- ³B. Coqblin and J. R. Schrieffer, Phys. Rev. 185, 847 (1969).
- ⁴A. Iandelli and A. Palenzona, J. Less Common Met. 25, 333 (1971).
- ⁵H. H. Hill, in *Plutonium 1970 and Other Actinides*, edited by

W. H. Miner (AIME, New York, 1970), p. 2.

- ⁶D. Wohlleben and B. Wittershagen, Adv. Phys. 34, 403 (1985).
- ⁷W. C. M. Mattens, R. A. Elenbaas, and F. R. de Boer, Commun. Phys. 2, 147 (1977); W. C. M. Mattens, Ph.D. thesis, University of Amsterdam (1980).
- ⁸V. T. Rajan, Phys. Rev. Lett. 51, 308 (1983).
- ⁹A. C. Hewson, D. M. Newns, J. W. Rasul, and N. Read, J. Magn. Magn. Mater. **47&48**, 354 (1985).
- ¹⁰A. C. Hewson and J. W. Rasul, J. Phys. C 16, 6799 (1983).
- ¹¹J. O. Willis, Z. Fisk, and J. L. Smith, J. Magn. Magn. Mater. 47&48, 581 (1985).
- ¹²R. Pott et al., Phys. Rev. Lett. 54, 481 (1985).
- ¹³H. R. Ott, H. Rudigier, and F. Hulliger, Solid State Commun.

55, 113 (1985).

- ¹⁴U. Walter, Z. Fisk, and E. Holland-Moritz, J. Magn. Magn. Mater. 47& 48, 159 (1985).
- ¹⁵B. Politt, J. Röhler, and P. Weidner, J. Magn. Magn. Mater. 47& 48, 583 (1985).
- ¹⁶S. Doniach, Physica **91B**, 231 (1977); in Valence Instabilities and Related Narrow Band Phenomena, edited by R. D. Parks (Plenum, New York, 1977), p. 2977; R. Jullien, in Valence In-

stabilities, edited by P. Wachter and H. Boppart (North-Holland, Amsterdam, 1982), p. 11, and references cited therein.

- ¹⁷B. Batlogg, Z. Fisk, and J. O. Willis (unpublished).
- ¹⁸G. R. Stewart, Z. Fisk, and M. S. Wire, Phys. Rev. B 30, 482 (1984).
- ¹⁹H. R. Ott, H. Rudigier, E. Felder, Z. Fisk, and B. Batlogg, Phys. Rev. Lett. 55, 1595 (1985).