Title
Kinetic Pathways Templated by Low-Temperature Intermediates during Solid-State Synthesis of Layered Oxides

Permalink
https://escholarship.org/uc/item/7c09p0hr

Journal
Chemistry of Materials, 32(23)

ISSN
0897-4756

Authors
Bai, Jianming
Sun, Wenhao
Zhao, Jianqing
et al.

Publication Date
2020-12-08

DOI
10.1021/acs.chemmater.0c02568

Peer reviewed
Kinetic Pathways Templated by Low-Temperature Intermediates during Solid-State Synthesis of Layered Oxides

Jianming Bai, Wenhao Sun, Jianqing Zhao, Dawei Wang, Penghao Xiao, Jun Young Peter Ko, Ashfia Huq, Gerbrand Ceder,* and Feng Wang*

ABSTRACT: Layered oxides have been the dominant cathodes in lithium-ion batteries, and among them, high-nickel (Ni) systems are attractive because of their high capacity. For practical use, synthetic control of stoichiometry and structural ordering is crucial but has been nontrivial due to the complexity inherent to synthesis reactions, which often proceed via nonequilibrium pathways. We report here a combined in situ synchrotron X-ray diffraction and ab initio study of solid-state synthesis of layered oxides starting from acetate precursors for LiCoO2 and LiNiO2 and their solid solution Li(Ni0.8Co0.2)O2. While all three systems ultimately evolve into the same thermodynamically stable layered phase (R3m), each chemistry involves distinct metastable intermediates. We explain the phase progressions using a structural template model, demonstrating that during the synthesis of LiCoO2, the formed metastable spinel polymorph (Li(Co1−xMx)O2; Fd3m) is a kinetically facile lithium product of spinel Co3O4—the low-temperature (LT) intermediate from the decomposed Co-acetate. Similarly, in the Ni-based systems, the acetate decomposition products, rocksalts (Ni,Co)O, topotactically template the kinetic pathways of forming disordered rocksalts (Li(Ni0.8Co0.2)O2; Fm3m), consequently leading to off-stoichiometric Li(Ni0.8Co0.2)O2 with undesired high Li/Ni mixing. These findings highlight new opportunities for engineering precursors to form LT intermediates that template the synthesis of target phases and structural properties.

1. INTRODUCTION

Transition-metal layered oxides with a hexagonal structure (space group R3m) have been the dominant cathodes for lithium-ion batteries (LIBs) over the past three decades.1,2 Such layered oxides are typified by LiCoO2 (LCO) and LiNiO2 (LNO) as well as their solid-solutions with other metal species including Mn and Al.3,4 In particular, high-Ni compositions such as LiNiMx−1O2 (M = Co, Mn, x > 0.7) exhibit high energy density and have emerged as the most promising cathodes for LIBs.5 However, the electrode performance of these layered oxides is often compromised by poor stoichiometry control and interlayer Li/metal mixing during the solid-state synthesis of these materials.6 Understanding the thermodynamics and kinetics of phase evolution during synthesis is crucial toward optimizing the performance of these important cathode materials.

For LCO, LNO, and LiNi1−xMxO2, the layered R3m phase is the thermodynamically stable polymorph.7 However, nonequilibrium structural intermediates are often observed during the solid-state synthesis of these compounds. For example, synthesis of LCO at low temperatures (LTs) often results in the formation of a spinel-type Li2Co2O4 polymorph with Fd3m symmetry, which offers less capacity compared to the layered phase.8–10 Because this spinel Li2Co2O4 phase is observed to form predominantly at LTs, it is usually referred to as LT-LCO.11,12

However, first-principles investigations of LCO phase stability show that the spinel LT-LCO is actually metastable with respect to the layered phase at all temperatures,12,13 prompting questions about the mechanistic origin of its formation. In LNO and LiNi1−xMxO2, a metastable disordered layered compound with Li/Ni mixing can arise.14 This cation disordering is considered a crucial issue, leading to low capacity and poor cycling stability in Ni-based cathodes.15,16 The disordering may have been introduced upon formation of the layered phase,17 therefore making the synthesis of structurally ordered layered oxides difficult, especially when multiple transition metals are involved.18 Additional challenge comes from the fact that transition-metal ordering is highly...
sensitive to synthetic conditions, such as heating temperature,
time, and environment.19,20 The formation and persistence of these nonequilibrium
phases are likely correlated with the structural defects
associated with suboptimal battery performance. However, it
is difficult to ascertain the origin of these nonequilibrium
phases, as synthesis in the lab is typically operated in a sealed
“black-box” reactor, where interpretation of cause-and-effect
during synthesis optimization is informed by post-mortem
analysis \textit{via ex situ} characterization. High-energy synchrotron
X-ray diffraction (XRD) is becoming a powerful tool to
monitor the structural changes and phase evolution of battery
materials during chemical and electrochemical reactions 14,21,22 and has also been recently applied to \textit{in situ} studies of the synthesis of solid-state materials.23−26 The high X-ray flux of
the synchrotron light source allows high-quality full-range
XRD patterns to be taken on a time scale of seconds, and
therefore, the fast and subtle changes in the structure and
composition can be followed. Herein, \textit{in situ} synchrotron XRD
is applied to study the solid-state synthesis of layered oxides,
LCO and LNO, and the high-Ni solid-solution, LiNi\textsubscript{0.8}Co\textsubscript{0.2}O\textsubscript{2} (LNCO) being chosen because of its technological relevance
to the battery application. We investigate a common solid-state
synthesis route, whereby metal salt precursors are initially
mixed into an aqueous slurry, which is then dried and calcined
to high temperatures. We find that the disordered and nonequilibrium
phases that are observed in the early stages of high-temperature calcination
are structurally related to stable binary oxides resulting from
the decomposition of the metal-salt precursors. Structural
evolution is thereby topotactically templated by LT inter-
mediates which form during the early stages of crystallization.
While this is of direct interest toward the synthetic control of
structural ordering in battery materials, these insights also
provide general principles toward understanding structure-
selection mechanisms and controlling the formation of solid-
state inorganic materials \textit{via} precursor manipulation. For
example, it is becoming increasingly possible to computationally
predict which nonequilibrium intermediates form during
aqueous precipitation.27,28 Our work here provides a valuable
conceptual framework to approach synthesis-by-design,29
whereby manipulating precursors to produce initial phases

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{\textit{In situ} tracking of intermediates during the solid-state synthesis of Co- and Ni-based layered oxides. (a) Schematic illustration of the two-step synthesis procedure, involving sol–gel processing of metal-acetate precursors (top) and then solid-state synthesis being characterized by \textit{in situ} synchrotron XRD using a gas flow reactor (bottom). (b) Contour plots showing the evolution of XRD patterns during the synthesis of three different systems (Li–Co–O, Li–Ni–O, and Li–Ni–Co–O) as temperature ramps from room temperature to the holding temperatures of 775 °C for LNO and 825 °C for LCO and LNCO. Bragg peaks representing the major phases are marked with symbols: # layered oxides, @ Co\textsubscript{3}O\textsubscript{4}, @ rocksalt (Ni/Co)O, and * Ni, % Li\textsubscript{2}Co\textsubscript{2}O\textsubscript{4}-spinel. The full diffraction patterns in wide-angle ranges are provided in the Supporting Information (Figure S1). (c) Heating profile (top) and stack plots (bottom) for phase fractions of the detected crystalline phases, which are obtained from Rietveld refinements of \textit{in situ} XRD data (see Figures S3 and S4 in the Supporting Information). In the heating profile, the heating time is set as 0 at the beginning of constant-temperature holding.}
\end{figure}
with desirable structural motifs, one can direct structural evolution down specific crystallization pathways toward the synthesis of target phases and structural properties.

2. EXPERIMENTS AND CALCULATIONS

2.1. In Situ Characterization of Solid-State Synthesis. In situ XRD measurements were conducted at beamline F2 at the Cornell High Energy Synchrotron Source (CHESS). The X-ray wavelength was 0.29526 Å. The XRD patterns were collected using a GE area detector (pixel size: 200 x 200 μm²). For the in situ XRD measurements, the samples were prepared through a sol–gel like aqueous treatment by dissolving acetic acid-based precursors \(\text{Ni} \left(\text{CH}_3\text{COO} \right)_2 \cdot 4\text{H}_2\text{O}, \text{Co} \left(\text{CH}_3\text{COO} \right)_2 \cdot 4\text{H}_2\text{O}, \text{CH}_3\text{COOLi} \cdot 2\text{H}_2\text{O} \) at a certain molar ratio into distilled water under magnetic stirring at 80 °C. An extra 3% of lithium source \(\left(\text{CH}_3\text{COOLi} \cdot 2\text{H}_2\text{O} \right) \) was used in order to compensate for the volatility of lithium at high heating temperatures. The resulting solution was then continuously stirred to evaporate the solvent and subsequently dried in air in vacuum at 120 °C for 12 h. For the synthesis of LCO, LNO, and LNCO, the molar ratios between Ni and Co sources in the precursors were 0.1:1, 1:0, and 0.8:0.2, respectively. Prior to the in situ measurements, the precursors were preheated in a tube furnace with continuous oxygen analysis.14 The compositions of the crystalline phases after synthesis of LCO and LNCO, the molar ratios between Ni and Co sources in the furnace with continuous oxygen analysis.14 The compositions of the crystalline phases after synthesis of LCO and LNCO, the molar ratios between Ni and Co sources in the furnace with continuous oxygen analysis.14 The compositions of the crystalline phases after synthesis of LCO and LNCO, the molar ratios between Ni and Co sources in the furnace with continuous oxygen analysis.14 The compositions of the crystalline phases after synthesis of LCO and LNCO, the molar ratios between Ni and Co sources in the furnace with continuous oxygen analysis.14 The compositions of the crystalline phases after synthesis of LCO and LNCO, the molar ratios between Ni and Co sources in the furnace with continuous oxygen analysis.14 The compositions of the crystalline phases after synthesis of LCO and LNCO, the molar ratios between Ni and Co sources in the furnace with continuous oxygen analysis.14

A gas flow reactor, as illustrated in Figure 1a, was used for the in situ XRD measurements. The powder samples (after preheat treatment) were loosely filled in a thin-walled sapphire tube attached to a stainless fixture with Swagelok fittings and graphite ferrules. Quartz wool was inserted in the tube from both ends to prevent the powders from moving under gas flow. A Kanthal (FeCrAl) alloy coil was mounted beneath the graphite ferrule to heat the sample with electricity provided by a DC power supply. A k-type thermocouple was inserted from one end of the tube into the quartz wool to monitor the temperature and to feed back to the temperature controller. A temperature calibration curve was established by using ceria \(\left(\text{CeO}_2 \right) \) powder as the thermal expansion standard. The temperature of the reactor was raised in a three-step ramping profile: first, quickly ramped up to about 300 °C, followed by a slow ramp to the desired reaction temperatures, and then maintained at the temperature for a period of time. The XRD patterns were taken at a time interval of about 4 min during the slow ramping and the constant temperature period, with 10 s counting time for each pattern. Industrial grade (99.5%) oxygen was continuously flowing through the reactor during the in situ XRD measurements.

Quantitative analysis with Rietveld refinement was conducted using TOPAS-5 (Bruker AXS). Details on the refinements are provided in the Supporting Information Note S1, Table S2, and Figure S5, with the examples for the preheated precursors. Same procedures were taken in refining the individual patterns from in situ XRD measurements.

2.2. Ab Initio Calculations. Crystal structures for intermediates \(\text{Li}_{1-x}\text{Ni}_x\text{O}_2 \) were obtained from cluster expansion calculations in the \(\text{Li}–\text{Ni}–\text{Vac}–\text{O} \) space, calculated previously in ref 37 using the methods described therein. Simulated XRD patterns for \(\text{Li}_{1-x}\text{Ni}_x\text{O}_2 \) were computed using the Pymatgen package.30

3. RESULTS

3.1. Kinetic Pathways toward Forming Layered Oxides. Precursors for synthesizing LCO, LNO, and LNCO were made by sol–gel processing of metal-acetate precursors (Figure 1a, top) followed by preheat treatment (as described in the Experiments and Calculations). Following previous studies on the early stage preheat process,14 solid-state synthesis, starting with preheated powders, was conducted in situ under synchrotron XRD characterization using a flow cell (Figure 1a; bottom), following the heating profile given in Figure 1 (top). Figures S1 and 1b show the representative in situ XRD patterns taken during calcination in the wide-angle and selected ranges, respectively, allowing identification of all major phases (with corresponding Bragg peaks marked by symbols). Through quantitative Rietveld refinement, the phase evolution in the \(\text{Li}–\text{Co}–\text{O}, \text{Li}–\text{Ni}–\text{O}, \) and \(\text{Li}–\text{Ni}–\text{Co}–\text{O} \) systems as a function of time and temperature was extracted, as shown in Figure 1c. In situ XRD patterns taken at selected temperatures during the synthesis are presented in Figures S2–S4, showing the contributions of individual phases to the subtle XRD features, such as asymmetric shoulders.

3.1.1. \(\text{Li}–\text{Co}–\text{O} \). As shown in Table S1, the phase fractions following the aqueous slurry and preheat treatment of Li-acetate and Co-acetate is 43.4% layered LCO, 34.9% spinel \(\text{Co}_x\text{O}_y \). 17.1% \(\text{Li}_x\text{Co}_y\text{O}_z \), and 4.6% rocksalt CoO \((\text{FM}3\text{m}) \). As shown in Figure 1c, immediately upon heating, a new phase is formed, which was resolved to correspond to spinel-type \(\text{Li}_x\text{Co}_y\text{O}_z \)–often referred to in the literature as LT-LCO.31 The LT-LCO phase grows at the expense of CoO, \(\text{Co}_x\text{O}_y, \) and \(\text{Li}_x\text{Co}_y\text{O}_z \), and reaches a maximum phase fraction at 725 °C. At this point, CoO, \(\text{Co}_x\text{O}_y, \) and \(\text{Li}_x\text{Co}_y\text{O}_z \) are completely consumed. The LT-LCO phase fraction then declines with further temperature ramping, and concurrently, the layered LCO phase grows. The LT-LCO phase fully disappears after 36 min of isothermal sintering at 825 °C, after which no further structural changes were observed.

3.1.2. \(\text{Li}–\text{Ni}–\text{O} \). The aqueous slurry and preheat treatment of Li-acetate and Ni-acetate resulted in 32.9% \(\text{Li}_x\text{Co}_y\text{O}_z \), 47.1% rocksalt NiO, and 19.9% Ni metal (Table S1). No layered \((\text{R}3\text{m}) \) LNO formed in the initial precursor treatment. During the in situ high-temperature calcining, the \(\text{Li}–\text{Ni}–\text{O} \) precursors were heated to 775 °C in 1.75 h and then held for approximately 2.5 h (Figure 1b). As shown in Figure 1c, the phase fraction of NiO initially grows, while the Ni metal fraction decreases, indicating oxidation of the Ni metal. The phase fraction NiO grows up to 56% until 565 °C, after which LNO appears at about 624 °C and grows at the expense of NiO and \(\text{Li}_x\text{Co}_y\text{O}_z \). At 750 °C, \(\text{Li}_x\text{Co}_y\text{O}_z \) is fully consumed, and the growth of LNO stops. A minority fraction of rocksalt NiO coexists with LNO even at the end of the sintering process.

3.1.3. \(\text{Li}–\text{Ni}–\text{Co}–\text{O} \). In preparing for the synthesis of LNCO, Li-acetate, Co-acetate, and Ni-acetate precursors were mixed aqueously at a 1.0:0.8:0.2 ratio, resulting in a preheat treatment with 7.3 layered LNCO, 34.1% \(\text{Li}_x\text{Co}_y\text{O}_z \), 33.3% rocksalt \(\text{Ni}(\text{Co})_x\text{O}_y \), and 25.3% Ni metal (Table S1). The composition of the rock salt NiO–CoO solid solution was determined from its lattice parameter \(a \), which was refined to be 4.1876(1) Å, corresponding to a \(\text{Ni}(\text{Co})_{0.8} \) solid-solution with \(x = 0.85 \). As shown in Figure 1c, there is about 8%
layered Li(Co,Ni)O present in the sample following the preheat treatment. The rock salt (Ni,Co)O component grows to a maximum phase fraction of 43% at 650 °C, before transformation into the layered NiO2Co2O4. Below 700 °C, the LNCO layered phase has a lower c/a ratio than is expected for an R3m layered structure. We will show that this corresponds to a disordered Li-deficient nonstoichiometric phase Li1−x(Ni,Co)O2 with interlayer Li/Ni mixing, which eventually transforms to near-stoichiometric layered LiNi0.5Co0.5O2 at temperatures above 700 °C.

3.2. Formation of Metastable Spinel Li2Co2O4 Prior to Layered LCO. Spinel Li2Co2O4 is usually obtained when LCO is synthesized under 400 °C,8,10,11 resulting in its description as the “LT” polymorph of LCO in contrast to the “high-temperature” layered LCO phase. From thermodynamics, an LT phase has lower entropy and lower entropy than the higher-temperature (HT) polymorph. From the LT/HT-LCO nomenclature, one could reasonably assume that there is a high-temperature (HT) polymorph. From the LT/HT-LCO nomenclature, one could reasonably assume that there is a first-order thermodynamic phase transition between spinel Li2Co2O4 and layered LCO with a transition temperature around 400 °C. Our in situ experiments appear to contradict this nomenclature for two reasons. First, spinel Li2Co2O4 is not present at the beginning of the in situ synthesis experiment, even though all samples were prepared at temperatures below 400 °C. Second, during high-temperature calcination, the phase fraction of Li2Co2O4 continues to grow up until 725 °C, which is much higher than the anticipated crossover temperature (400 °C, as reported in literature).9 These results suggest that the nomenclature implied by “high-temperature” and “LT” LCO may be misleading. This conclusion is supported by previous first-principles density functional theory (DFT) calculations of relative LCO polymorph phase stability. This is supported by previous first-principles density functional theory (DFT) calculations of relative LCO polymorph phase stability, which show that the layered LCO phase has a lower entropy than spinel Li2Co2O4. Additional phonon calculations revealing that layered LCO also has higher entropy than spinel Li2Co2O4. These free-energy calculations indicate that spinel Li2Co2O4 is metastable with respect to layered LCO at all temperatures, although it is only metastable by 8 to 20 meV/formula, which is small compared to other metastable inorganic compounds.33

Our in situ synchrotron study reveals that the growth of spinel Li2Co2O4 occurs primarily at the expense of Co3O4. This implies that the formation of the metastable Li2Co2O4 is kinetically driven by topotactic conversion from spinel Co3O4 in the presence of the lithium source. Both Li2Co2O4 and Co3O4 form in a spinel structure with space group Fd3m and possess frameworks of Co3+ octahedra compatible with each other. At 616 °C, the lattice parameters a of Li2Co2O4 and Co3O4 are 8.0561 and 8.1104 Å, respectively, indicating that the unit cells can be coherent between these two phases. As illustrated in Figure 2, one-third of Co ions in Co3O4 are Co2+, occupying a tetrahedral site in between the Co3+ layers. Octahedral Co3+ is immobile because of its high ligand field stabilization, but transformation of Co3O4 spinel to Li2Co2O4 spinel can occur by out-diffusion of Co2+ and in-diffusion of Li+. These observations highlight the subtle competing effects between thermodynamics and kinetics in solid-state synthesis. Co3O4 is the equilibrium reaction product at LTs and templates the kinetically facile topotactic ion-exchange to metastable Li2Co2O4. On the other hand, the high-temperature calcination provides the transformation kinetics required to drive the irreversible transformation of metastable spinel Li2Co2O4 to the equilibrium layered LCO phase. As both polymorphs have the same composition, this transformation can proceed either by nucleation and growth or potentially by a cross-layer intermigration of Co and Li ions without any need for long-range diffusion.34

3.3. Formation of Nonstoichiometric, Disordered Rocksals Prior to LNO/LNCO. In the synthesis of LNO and LNCO, the initial products from the decomposition of acetates consist of Li2CO3, Ni metal, and rocksalts NiO/(Ni,Co)O solid-solution. However, at temperatures below 700 °C, the lattice parameters of the layered R3m phase (being resolved from refinement) exhibit a surprisingly low c/a ratio < 4.899, as shown in Figure 3a. Only when temperatures are higher than 700 °C, does the c/a ratio increase to 4.899 and above. The c/a ratio provides important clues about the structural ordering of the phases. In a perfect cubic rocksalt, such as NaCl, the cubic lattice can be expressed in a hexagonal lattice such that aH = aC/√3 and cH = 2√3 aC with a c/a ratio of 2√2/3 = 4.899. In R3m layered transition-metal oxides, the c/a ratio is >4.899 because of the weak interlayer force, which results in a slight separation of the transition-metal layers along the c-axis. Therefore, the resolved lattice parameters of c/a ratio < 4.899 suggest a nontraditional layered or rocksalt intermediate compound, which was also observed in the synthesis of LiNiO2 from NiO.36 Through a combined Rietveld refinement and DFT investigation, we found that this resolved c/a ratio < 4.899 best corresponds to a disordered
Li\(_x\)(Ni,Co)\(_{2-x}\)O\(_2\) rocksalt, where \(x \sim 0.33\) for LiNiO\(_2\) (Supporting Information, Note S2 and Figure S6). This Li-poor stoichiometry is supported by refinement of the Li-to-Ni occupancy ratio in the Li layer, as shown in Figure 3b. In contrast to the high stoichiometry (with 100% Li occupancy) in LiCoO\(_2\) throughout the whole process, the Li occupancy in Li\(_x\)(Ni,Co)\(_{2-x}\)O\(_2\) is low, only 0.3–0.5 below 650 °C and then increases gradually to \(\sim 0.9\) by 800 °C. The structure of the intermediate Li\(_x\)(Ni,Co)\(_{2-x}\)O\(_2\) can be qualitatively viewed as a layered \(R3m\) structure with Ni substituted into the Li layer, or equivalently, as a rocksalt structure with Li substitutions on the Ni(Co) sites. The insertion of Li\(^+\) into rocksalt is accompanied by Ni\(^{2+}\)(Co\(^{2+}\)) oxidation to Ni\(^{3+}\)(Co\(^{3+}\)). Subsequently, the smaller ion radius of 3+ cations shrinks the overall volume of this partially lithiated rocksalt phase, resulting in low \(c\) and high \(a\) lattice parameters and hence the small \(c/a\) ratio (<4.899), as shown in Figure 3c.

From Figure 1c, we see that the Li-poor disordered intermediate \(L_{\delta,33}Ni_{1.67}O_2\) forms at the expense of the NiO rocksalt precursor and transforms to the ordered \(R3m\) layered structure above 700 °C. In principle, the reaction of NiO with lithium could proceed through any intermediate composition in the Li–Ni–vacancy–O space. Why specifically does this Li-deficient \(L_{0.33}Ni_{1.67}O_2\) compound form, which is clearly a nonequilibrium intermediate in a reaction vessel when the precursor stoichiometry totals to LiNiO\(_2\)? One notable aspect of \(L_{0.33}Ni_{1.67}O_2\) is that it is actually the deepest part of the binary convex hull in the isopleth among Li-deficient Li\(_x\)Ni\(_{2-x}\)O\(_2\) as shown in Figure 3d,e, or to put it another way, this \(L_{0.33}Ni_{1.67}O_2\) composition is the most exothermically
forming compound when rocksalt NiO reacts with the lithium source, which is consistent with the earlier observations on the presence of Ni vacancies in Ni slabs that may create space for cation migration and layering.36

The formation of Li0.33Ni1.67O2 as an intermediate may be understood by considering the local boundary conditions of solid-state reaction. A chemical reaction between two precursor powders occurs at their shared interface.38 Locally, the powders have no knowledge of the total stoichiometric composition of the system. Therefore, the composition that forms in this interfacial reaction does not necessarily need to be the compound corresponding to the ratios of the prepared precursors. Rather, the first compound to form at the interface should be the one whose reaction free-energy is the most exothermic.39 We note that while this "maximum reaction-energy" compound would be a nonequilibrium intermediate from the perspective of the total stoichiometry of the precursors, it is a stable intermediate in the interfacial reaction between powder precursors. This nonequilibrium compound would then react with excess precursors to eventually evolve to the equilibrium target composition. Such a phenomenon is not exclusive to the lithium compounds but has already been observed in the sodium ones (Na2CoO2 and Na2MnO2).38 We propose that this 'maximum pairwise reaction-energy' concept, originally proposed to explain reaction products in solid-state formation of sodium compounds and solid electrolyte/electrode interfaces,40 may be a general principle behind the formation of nonequilibrium intermediates during solid-state reactions.

When heated to temperatures above 700 °C, the ordered layered Li(Ni,Co)O2 phase appears prominently as Li ions are found to occupy >80% of 3b sites, and the c/a ratio increases from the cubic limit of 4.899. This process is synchronized with the depletion of Ni(Co)O and Li2CO3, as shown in Figure 1, suggesting the formation of layered phase. Our lattice parameter investigation suggests that LNO and LNCO both form via phase transition from a Li-poor, Ni-rich disordered rocksalt phase to a near-stoichiometric layered phase at temperatures above 700 °C. It is notable that the nonequilibrium intermediate is observable only in in situ measurements as ex situ data taken from samples heated at 500 °C for 10 h show a c/a ratio well above 2√3 (Figure 3a), demonstrating that Lix(Ni,Co)2−xO2 is truly a transient intermediate.

The measured c/a ratios of LNO and LNCO in Figure 3a match up closely. So, even though we have not resolved the phase diagram of the quinary Li−Ni−Co−vacancy−O space, it is reasonable to assume that the Li-poor intermediate in the LNCO system is similar to the one in the LNO system. One notable difference is that the Li-deficient intermediate appears in the LNO system only at temperatures above ~650 °C, but it appears in the LNCO system immediately after preheat treatment of acetates. As measured by calorimetry, LCO has a more exothermic formation enthalpy than LNO, while their mixing enthalpies are nearly ideal; this suggests that Co incorporation into LNO could play a stabilizing effect to the lower formation temperature of the disordered rocksalt, Li(Ni,Co)2−xO2, with plausibly a higher Li concentration (x ~ 0.5) as suggested by the refinement results (Figure 3b).

In summary, based on quantitative in situ characterization supported by DFT structure analysis, we propose a two-step reaction mechanism where layered LNO and LNCO are formed via a nonstoichiometric (Li-deficient nickel-rich) rocksalt Lix(Ni,Co)2−xO2 below 700 °C, which then transforms into an idealized layered phase above 700 °C. The lithium-deficient compound is the most exothermically forming compound in the interfacial reaction between Li2CO3 and NiO; this principle governs the structure selection of the nonequilibrium intermediate which forms in this reaction. At high temperatures, this phase reacts with the remaining lithium to evolve to the equilibrium LNO and LNCO composition over time.

4. DISCUSSION AND OUTLOOK

From this study we demonstrated that a combination of in situ quantitative analysis and ab initio calculations provides access to the kinetic pathways during solid-state synthesis, involving metastable intermediates prior to forming the final equilibrium phases. For the specific case in the synthesis of layered oxides, the kinetic pathways are summarized in Figure 4. Although both Ni- and Co-based layered oxides ultimately crystallize into the same thermodynamically stable R3m layered structure, they evolve through different metastable intermediates on the way to the final equilibrium products. LCO intermediate
phases are primarily dominated by a metastable spinel structural motif with the same stoichiometry, whereas the LNO and LNCO intermediates proceed through a disordered rocksalt structural motif, or to put it another way, the structural evolution during high-temperature solid-state synthesis is not necessarily governed by a slow formation and further structural transformation to the reaction end-product, as is commonly assumed. Rather, material formation proceeds through a series of well-defined phases, including phases that are thermodynamically stable in other parts of the composition space (e.g., Co3O4), combined with kinetically facile topotactic transformations, if such pathways are available. Because the metastable spinel Li1.5Co0.5O4 polymorph and disordered nonstoichiometric Li1−x(Ni,Co)xO2 phases are kinetic lithiation byproducts from these initial binary oxides, the formation and persistence of these intermediates to high temperatures may be the origin of the well-known structural defects that plague the electrochemical performance of layered oxide cathode materials. Therefore, the observations may explain the common observations of the preferential oxidation of primary materials.

By rationalizing the mechanisms driving the formation of nonequilibrium intermediates during solid-state synthesis, we can more rationally design the early-stage processing or manipulation of precursors toward targeted structural motifs. For example, in Co-based systems, synthesis of LCO via Co(OH)2, a layered cobalt hydroxide phase, can provide a lithiation structural template for LCO at much lower temperatures and shortened synthesis time than synthesis from binary oxide precursors. Likewise, coprecipitation through layered double hydroxides is now the industrially adopted route toward the synthesis of advanced Li(Ni0.5Mn0.5Co0.5)O2 battery cathode materials as these are isostructural to the target compound.

These general principles involving the structure selection and phase evolution through nonequilibrium intermediates apply beyond layered oxides, as was previously demonstrated in the synthesis of Li2V4(PO4)3 (LVP) through a hydrothermal-assisted approach. In that case, a hydrothermal processing step was added prior to solid-state synthesis to form an amorphous intermediate with local structural resemblance to that of the final product. The pathway through this intermediate was found to be crucial to form nanocrystalline LVP with excellent cycling stability and rate capability. By controlling the synthesis conditions to precipitate precursor phases with desired structural motifs, we can bias kinetically facile topotactic transformations from these initial intermediates. Being able to rationally navigate these nonequilibrium crystallization pathways will provide new opportunities to design predictive strategies for synthesizing advanced functional materials.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.chemmater.0c02568.

Composition of crystalline phase in the precursors for in situ XRD measurement, phase identification of the intermediates during synthesis of LCO, LNCO, structure of the LCO and LNCO disordered compound, and simulated XRD patterns of the DFT-computed Li1.54xO2 isopleth (PDF).
the National Institutes of Health/National Institute of General Medical Sciences under NSF award DMR-1332208.

REFERENCES

(2) Whittingham, M. S. Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev. 2014, 114, 11414.
(4) Yabuuchi, N.; Ohzuku, T. Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. J. Power Sources 2003, 119-121, 171.
(5) Liu, W.; et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem., Int. Ed. 2015, 54, 4440.
(17) Zhang, M.-J.; et al. Cationic ordering coupled to reconstruction of basic building units during synthesis of high-Ni layered oxides. J. Am. Chem. Soc. 2018, 140, 12484.
(20) Jouybari, Y. H.; Asgari, S. Synthesis and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 nanopowders for lithium ion battery applications. J. Power Sources 2011, 196, 337.
(44) Wang, L.; et al. Structure tracking aided design and synthesis of Li2/3V2(PO4)3 nanocrystals as high-power cathodes for lithium ion batteries. Chem. Mater. 2015, 27, 5712.