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Abstract

Learning, Control and Optimization for Electricity Distribution Networks

by

Keith Moffat

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Claire Tomlin, Co-chair

Alexandra von Meier, Co-chair

Traditionally, utility distribution companies have treated electricity distribution networks as
passive loads, assuming that the possibility of network constraint violations cannot be man-
aged by controlling distributed energy resources (DERs) such as electric vehicle charging
stations. The emergence of edge computing has made it possible for DER management sys-
tems (DERMS) to control the power injected/extracted by DERs in real time. By actively
managing DERs when necessary, DERMS both increase interconnection availability and re-
duce the need for infrastructure upgrades. This dissertation presents several tools that can
either make power-injection decisions for a DERMS or that support the system’s decision-
making. These tools include Unsupervised Impedance and Topology Estimation, Multiple
Model Adaptive Power System State Estimation, Voltage Phasor Control, Linearized Out-
put Projected Gradient Descent Feedback Optimization, and Nullspace-Based Power Flow
Linearization. The focus of the work is to develop theory which can explain when and how to
use these tools on real distribution networks. A large portion of this dissertation develops the
theory behind Nullspace-Based Power Flow Linearization, a novel interpretation of power
flow linearization that explicitly considers constant-voltage buses, phasor angle-reference am-
biguity, and power balance. This dissertation also includes a comment that was submitted
in August 2022 on CPUC Proceeding R2207005. With Proceeding R2207005, the California
Public Utilities Commission is investigating new rules and price structures for utilities which
will change the future of DER management in California.
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Chapter 1

Introduction

Note to reader:
Readers who would appreciate an explanation of the work in this dissertation that does not
assume familiarity with power systems research should start with the introduction in Ap-
pendix A.

Climate change, among other considerations, is motivating the electrification of sectors
of the economy that have historically been powered by petroleum and natural gas. In
particular, large portions of the transportation and heating sectors will be electrified in the
coming decades. This electrification will significantly increase—perhaps doubling—the load
on the electric grid [1], presenting novel challenges for grid operators.

Traditionally, utility distribution companies (UDCs) have treated distribution networks
as passive loads, assuming that the possibility of network constraint violations cannot be
managed by controlling distributed energy resources (DERs) such as electric vehicle (EV)
charging stations, electric home and water heaters, and rooftop solar panels. Rather than
controlling DERs, UDCs have instead avoided network constraint violations by limiting inter-
connections onto the distribution network. According to this approach, network constraint
violations can only be overcome by upgrading the infrastructure to support the largest co-
incident load, even though the largest coincident load occurs only once a year. This passive,
interconnection capacity-based approach is impeding transportation and heating electrifica-
tion and will incur unnecessary infrastructure expenses.

The emergence of edge computing has made it possible for DER management systems
(DERMS) to control the power injected/extracted by DERs in real time. Using DERMS
to avoid network constraint violations offers an alternative to the standard UDC practice
of using interconnection capacity limits to avoid potential constraint violations. By actively
managing DERs when necessary, DERMS both increase interconnection availability and
reduce the need for infrastructure upgrades.

This dissertation presents a few tools that can either make power-injection decisions for a
DERMS platform or support the decision-making portion of such a platform. “Power injec-
tion decisions” are the decisions made for DER steady state load/generation such as limiting
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the power of an EV charging station. Tools that support power-injection decisions include
power-flow linearization, network parameter estimation, network topology estimation, and
state estimation.

Chapter 4 and Chapter 9 of this dissertation present two different methods for avoid-
ing steady state voltage and current-flow constraint violations — “Voltage Phasor Control”
(VPC) and “Feedback Optimization” (FO). VPC and FO are different ways of making
power-injection decisions that optimize an objective function and avoid network constraint
violations. VPC and FO have different capabilities and goals, and different hardware, com-
munication, and measurement requirements. Either (or both) may therefore be appropriate
for a given DERMS application.

VPC, presented in Chapter 4, uses voltage phasor measurements to make quasi-local DER
power-injection decisions to avoid network constraint violations. The quasi-local nature
of VPC offers a way for DERs to make power-injection decisions in immediate response
to disturbances on the network before receiving an updated command from a centralized
DERMS calculation. Chapter 4 provides a framework for understanding the impact that
VPC has on network constraints and theory that can be used to apply VPC to any DERMS
application.

FO is an alternative method for optimizing DER power injections that makes decisions
in closed loop with the grid. By only taking one gradient step at each point in time and
using the grid to “solve” power flow, FO provides a way to make centralized power-injection
decisions quickly and account for mismatches between the model used for the calculations
and the true grid model. FO requires the network’s power-voltage sensitivity—the sensitivity
between the power injections and the network voltages.

Chapter 7 presents “Nullspace-based Power Flow Linearization” (NPFL), a new method
for determining the power-voltage sensitivity (and other sensitivities) from the network’s
admittance matrix. NPFL is a general linearization formulation that takes into account
that some buses have constant voltage, the angle-reference ambiguity of AC power systems,
and that the power injections must obey power balance. Chapter 7 provides the theory for
NPFL and uses a simple two-bus DC network to develop intuition. Section 7.1 motivates
NPFL and Section 7.2 focuses on the common circumstance in which a distribution network
has a single slack bus/substation. Section 7.3 presents a general form of NPFL that can
apply to any network. The sensitivities provided Sections 7.2 and 7.3 can be applied to AC
networks of arbitrary size and used to produce other sensitivities such as power injection-loss
sensitivity, as done in Section 7.5. Section 7.4 compares NPFL with other prevalent power
flow linearizations.

Before presenting NPFL in Chapter 7, Chapter 5 provides the necessary background
on power flow linearization, and Chapter 6 presents theory on power flow linearization for
networks with a slack/constant-voltage bus. After presenting NPFL, Chapters 8 and 9 pro-
vide sample applications of NPFL. Chapter 8 presents “Single bus Injection Power-voltage
Sensitivity” (SIPS), the linearization of the local power-voltage sensitivity for a given bus.
Chapter 8 derives SIPS from NPFL and highlights nuances that arise when learning SIPS
from sensor measurements. SIPS can be used to derive the Voltage Feedback Controllers re-
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quired for VPC. Chapter 9 demonstrates how NPFL can be used to improve the performance
of FO implemented with the Linearized Output Projected Gradient (LOPG) algorithm.

Many DERMS tools, such as VPC and FO, require distribution network models. For
example, NPFL requires the network’s bus admittance matrix. However, accurate network
models are often not available. Chapter 2 presents an “unsupervised” method for learning a
grid model from sensor measurements when there is no information about the grid available.
Chapter 2 also discusses the practical challenges that arise with noisy sensor measurements.
Chapter 3 presents a method for determining the topology of a network when the line
admittances are known but the configuration of the network switches is not. The method
introduced in Chapter 3 also provides a state estimate for the network.

The final contribution of this dissertation may be found in Appendix B. In Proceeding
R2207005, the California Public Utility Commission (CPUC) is investigating new rates that
will incentivize DERs to align their electricity consumption with distribution grid infras-
tructure [2]. I have contributed a public comment that presents my view on how real-time
pricing and flexible interconnections facilitate electrification. The tools presented in this
dissertation can be used to support real-time pricing and flexible interconnections at scale.
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Chapter 2

Unsupervised Network Estimation

Over the last twenty years phasor measurement units (PMUs) have been widely adopted on
transmission networks, but remain scarce in distribution systems. The paucity of distribu-
tion PMUs (D-PMUs) coincides with the low quality of distribution network information.
Distribution network models are often erroneous or nonexistent. Traditionally, such lim-
ited information has been adequate as distribution networks behaved as predictable, passive
loads. The proliferation of distributed energy resources (DERs), and natural and human
threats to the grid, may make this black-box approach inadmissible.

D-PMUs promise to increase system visibility with measurements of current and voltage
magnitudes and phase angles, encoded as complex numbers. However, translating D-PMU
measurements into actionable information is nontrivial. In this chapter, we address the
specific problem of learning the two basic components of a distribution model: the complex-
valued impedance, and the topology (network connectivity), jointly parametrized by network
admittance Y , from D-PMU measurements alone. This is a challenging task because every
nodal voltage is coupled to all nodal currents through Y . Thus estimation must address the
network as a whole. Sensor noise, commonly ignored in the power system literature, also
affects estimation performance. Noise in PMU measurements comes from multiple sources,
including the inevitable error of approximating a time domain signal by its fundamental
frequency [3] and the error from imperfect voltage and current transformers connecting the
PMUs to distribution lines [4], [5].

Many methods have been proposed for impedance and/or topology identification. A large
number are heavily supervised, requiring extensive prior information such as precise network
models and knowledge of all possible topologies. [6] and [7] compare real PMU measurements
to simulated measurements from multiple possible topologies to identify the current network
configuration. Similar approaches using non-PMU measurements also exist [8], [9]. Several
approaches combine switch status identification with traditional state estimation [10]–[13].
While these methods have the advantage of requiring fewer measurements, they suffer from
high prior information requirements and do not estimate impedance.

Existing unsupervised techniques are either intrusive or make restrictive assumptions.
[14] proposes injecting harmonic voltage perturbations to measure the network impedance
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from the perspective of the perturbation point. [15] uses measurement correlations to es-
timate topology using a sparse Markov random field, but requires assumptions on line pa-
rameters and load statistics. [16] presents two approaches to topology reconstruction from
estimates of the network’s Kron reduced admittance matrix. The first recovers topology us-
ing a semidefinite program by exploiting the problem’s sparse-plus-low-rank structure. The
second recovers radial topologies using clique rules, however it is not successully demon-
strated. However neither [16] does not establish fundamental limitations on Kron estimation
or consider noise sensitivity. Similarly, [17] acknowledges the low rank structure but does
not provide fundamental limits for PMU measurement data sets. [17] introduces an adap-
tive Lasso optimization approach, as well as a regularization technique for low rank matrix
estimation. These estimation techniques can be applied to the quantities we introduce here.

Radial (or tree-shaped) topology reconstruction is of special interest in the distribution
context, as most networks are radial. It is also the core challenge of phylogenetics, with
genetic distances replacing impedances. The baseline genetic distance-based method for
phylogenetic tree reconstruction is the neighbor-joining method [18], [19]. However the
neighbor-joining method only deals with tree-endpoints and not internal nodes. Radial tree
reconstruction is also of interest in machine learning for creating latent variable models that
describe large data sets and predict behavior [20], [21]. Applications include data clustering
and Hidden Markov Model estimation. Various techniques have been proposed for creating
latent tree models, including hierarchical latent class models [22], [23], the BIN model [24],
and expectation maximization methods [25], [26]. However these methods also deal only
with tree endpoints.

In [27], Choi et al. introduce the Recursive Grouping (RG) algorithm for learning latent
tree graphical models from data. They use information distance, calculated as the loga-
rithmic correlation between random variables, as the distance metric. The RG algorithm is
applied to radial electric grids in [28], using effective resistance and reactance as the distance
metrics in independent, real-valued tree reconstructions. Impressively, this estimation tech-
nique requires only time-stamped measurements of voltage and current magnitude, without
phasor angles. However the accuracy of the estimates depend on loads being uncorrelated.
The analysis does not consider measurement noise sensitivity, and all the demonstrations
use perfect measurements.

We propose a method for joint topology and impedance estimation solely from D-PMU
measurements. Our method is unsupervised—requiring no apriori information about the
network structure or user guidance—making it easier to use, widely applicable, and resilient
to human error. It makes no assumptions on load behaviour or network parameters. It
addresses the network as a whole and specifically addresses noise robustness by formulating
the problem to be better conditioned than existing work. Impedances are estimated via
regression but the method is agnostic to the optimization method used for regression.

Our method uses nodal voltage and current injection D-PMU measurements at all active
network nodes to estimate a Kron reduced network impedance or admittance model. Next,
effective impedances between active nodes are extracted from the Kron reduced model.
For radial networks, we introduce Complex Recursive Grouping (CRG) to recover network
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topology from the complex-valued effective impedance estimates. Fig. 2.1 shows a schematic
representation of the proposed method. For the toy network in Fig. 2.2 the proposed
method proceeds as follows: 1) The unsupervised regression estimates the admittance or
impedance matrix for the Kron reduced network on the right of Fig. 2.2 using ordinary least
squares

(
e.g. Eq. (2.8)

)
, or another optimization formulation. 2) The effective impedance

estimates between the active nodes ζ̂A are calculated using Eq. (2.1). 3) The full network is
reconstructed using the CRG algorithm, as illustrated by Fig. 2.4.

The four primary contributions of this chapter are:

1. Fundamental information limits for (D-PMU) measurements made on electrical net-
works.

2. Establishment of the Kron reduced admittance matrix as the best achievable outcome
of unsupervised learning on electrical network measurements.

3. Proposal of the reduced Laplacian (subKron) matrix network representation to improve
impedance estimation noise-robustness.

4. Generalization of the Recursive Grouping algorithm to complex-valued distances to
recover radial topologies from effective impedances.

The chapter is organized as follows: Section 3.1 provides necessary background informa-
tion. Section 2.2 establishes the challenges of network estimation. Section 2.3 introduces the
subKron network model and section 2.4 explains its physical meaning. Section 2.5 discusses
noise-robust unsupervised impedance estimation. Section 2.6 presents the CRG algorithm.
Finally, section 2.7 evaluates the proposed methods in simulation.

2.1 Background

Notation and Definitions

M ∈ Cp×q is a complex-valued p-by-q matrix with ith row MT
i and element M(l,m) in row

l, column m. MT and MH are its transpose and conjugate transpose respectively. −1 and †

denote the matrix inverse and pseudoinverse rspectively. Q is a set with cardinality Q = |Q|.
I denotes current measurements—not the identity matrix. 1 is the 1’s vector and ei is the i

th

standard basis vector. Operators Re(•) and Im(•) respectively return the real and imaginary
parts of their arguments. ker(M) is the span of vectors {v} such that Mv = 0. 1j =

√
−1.

Matrices A and B are informationally equivalent if we can exactly compute A from B and
vice versa.

A graph G has nodes N and edges E . If ϵij ∈ E , nodes i and j are connected by an edge
with weight wij. The degree of node i in G is the number of nodes to which it is directly
connected. A node with degree = 1 is a leaf. A connected graph has a path (a sequences
of edges) between every pair of nodes. In an acyclic graph, this path is unique. A tree is a
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Measurements : V, I

Unsupervised
Regression

ŶKẐK ŶsK ẐsK

ζ̂A

CRG

Ŷ Ẑ

(•)† (•)−1

(•)†

Figure 2.1: Impedance and topology estimation algorithm schematic. Measurements V and
I are fed into estimation algorithms to recover various network representations.

connected and acyclic graph. Trees are termed radial in power systems. To orient a tree,
one node is chosen as the root. Node i and j are respectively parent and child if eij ∈ E and
i is closer to the root. Nodes k and k′ are siblings if they share a parent.

We consider an electrical network with N = A + P nodes and E edges, where N , A, P
and E are respectively the cardinality of the set of network nodes N , the set of active nodes,
A, the set of passive nodes, P , and the set of edges E . Active nodes are the subset of network
nodes where current enters or exits the network. In distribution networks, the substation is
an active node that is also a convenient choice for the root. Passive nodes are the subset of
network nodes where three or more lines come together and current is rerouted, but does
not enter or exit the network. We assume voltage and current phasor measurements are
available at at least all active nodes. These definitions are visualized in Fig. 2.2.

Complex-valued, synchronized voltage and current phasor measurements from all N
nodes at T time points can be collected into matrices V ∈ CN×T and I ∈ CN×T . Every
row of V and I is a measurement time series at one node. Ohm’s law defines a linear
relationship between V and I: [Admittance] I = Y V ↔ V = ZI [Impedance]. The two
forms are parametrized by either the network admittance matrix, Y ∈ CN×N , or the net-
work impedance matrix, Z ∈ CN×N . In graph theory terms, Y is the weighted Laplacian of
the graph describing the electrical network, with edges corresponding to physical lines and
weights corresponding to line admittances. For a network with no shunt admittances, Y is
a loopless weighted Laplacian [29]. Physically, Z is the inverse of Y , however it cannot be
computed as Y −1 due to the following well-known lemma [30]:

Lemma 2.1.1. Loopless Laplacian Y of a connected graph is rank (N − 1) with 1 ∈ ker(Y )
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However, we can calculate Z from Y with the matrix psuedoinverse: Z = Y †. We neglect
shunt admittances in this work. At active nodes, shunt admittances are irrelevant as both
voltage and current measurements are available.

Effective Impedance

In [29] the effective resistance Rij of a resistive network is defined as the voltage drop between
nodes i and j when 1 amp of current is injected at i and extracted at j. This is a funda-
mental quantity for parametrizing network behaviour. We define effective impedance ζij as
the complex-valued voltage phasor difference between nodes i and j of a resistive+reactive
network when (1 + 0j) amp of fundamental frequency current is injected at i and extracted
at j. ζij is computed from Z as:

ζij = (ei − ej)
TZ(ei − ej) (2.1)

Effective impedance is symmetric: ζij = ζji. All pairwise effective impedances can be
collected into ζ ∈ CN×N such that ζ(i, j) = ζij. ζA ∈ CA×A is the collection of effective
impedances between active nodes. We use subscripts rather than parentheses with ζ to
emphasize that ζ, unlike Z, isn’t structured in a useful manner. The entries of Z can be
written in terms of ζ using:

Z(i, j) = −1

2

(
ζij −

1

N

N∑
k=1

(ζik + ζkj) +
1

N2

N∑
k=1

N∑
l=1

ζkl

)
(2.2)

Kron Reduction

While I = Y V relates voltages and currents at all nodes, the Kron reduction reduces this
equation to relate voltages and currents at active nodes only [29], [31]. (In general, the
Kron reduction can eliminate any subset of nodes U ⊆ P . We assume U = P .) The Kron
reduction is derived from Ohm’s law using ITi = 0, ∀i ∈ P . Without loss of generality,
we partition the complete V and I matrices into active and passive nodal measurements,
plugging in IP = 0:

[
IA
0

]
=

[
YAA Y T

PA
YPA YPP

] [
VA
VP

]
↔

[
VA
VP

]
=

[
ZAA ZT

PA
ZPA ZPP

] [
IA
0

]
IA = (YAA − YPAY

−1
PPY

T
PA)VA ↔ VA = ZAAIA

YK ≜ YAA − YPAY
−1
PPY

T
PA ↔ ZK ≜ ZAA

The Kron reduced admittance matrix, YK ∈ CA×A, is the Schur complement of Y ∈
CN×N , with respect to the passive node set P . For Laplacian matrices, the Schur complement
is the cumulative result of Gaussian eliminations of the passive nodes. The Kron reduced
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Figure 2.2: Kron reduction of a toy network with 5 active nodes (blue), including the sub-
station, and 1 passive node (red) which does not have any current injection.

impedance matrix, ZK ∈ CA×A, is the ZAA block of Z ∈ CN×N . YK , like Y , is an admittance
matrix and is therefore rank deficient. ZK = Y †

K is an impedance matrix.
Physically, Kron reduction eliminates passive nodes, replacing the original network con-

nections with a set of fictitious connections that preserve effective impedances between active
nodes: ∀i, j ∈ A : ζij = (ei − ej)

TZK(ei − ej). The set of pairwise effective impedances
between active nodes are denoted ζA. Therefore, the Kron reduction preserves the “input-
output” behavior—the relationship between voltages and currents at active nodes—of the
complete network.

2.2 Fundamental limitations of Electrical Network

Data Sets

Y is not generally recoverable from V and I measurements without knowledge of the network
topology, even with full measurement coverage [32]. This is due to fundamental limits, estab-
lished in Thm. 2.2.1, on the rank of I ∈ CM×T and V ∈ CM×T from network node subset M.
Intuitively, a data matrix’s rank upper-bounds the information it contains: informationally
equivalent matrices must have equal ranks.

Theorem 2.2.1. (A) For any V ∈ CM×T matrix constructed from time series measurements
of voltage phasors at all nodes in the set M such that M ⊆ N : rank(V ) ≤ A
(B) For any V ∈ CM×T matrix with T ≥ A constructed from time series measurements at
a subset of nodes M such that A ⊆ M ⊆ N : rank(V ) = A

Proof. By Ohm’s Law I = Ȳ V and by Kirchoff’s current law, rank(I) ≤ A− 1.
If M = N , Ȳ is the complete network admittance.
If M < N , Ȳ is the Kron reduction of Y with respect to M.
From lemma 2.1.1, rank(Ȳ ) =M − 1.



CHAPTER 2. UNSUPERVISED NETWORK ESTIMATION 10

By Sylvester’s rank inequality,

rank(I) ≥ rank(V ) + rank(Y )−M =⇒ rank(V ) ≤ A,

proving Part A.
Now consider A ⊆ M ⊆ N .
By the definition of a graph Laplacian, dim(ker(Ȳ )) = 1, with ker(Ȳ ) = 1.
However, assuming positive voltage measurements, 1 is not in the span of ker(V ).
Therefore the kernel dimensions of the matrix product I = Y V are additive:

dim(ker(I)) = dim(ker(Y )) + dim(ker(V )),

and Sylvester’s inequality holds with equality:

rank(I) + 1 = rank(V ).

Assuming some load variation, the bound on the rank of I holds with equality:

rank(I) = A− 1.

Thus, rank(V ) = A.

Thm. 2.2.1 implies that Y cannot be estimated from V and I without prior knowledge.
That is, the information to uniquely specify Y does not exist in V and I alone. Consider when
V is not full rank (when the network contains at least one passive node), ∃y ∈ ker(V T ) such
that: I = Y V = (Y + 1yT )V . Similarly, ∃z ∈ ker(IT ) such that: V = ZI = (Z + 1zT )I.
Thus Y and Z are not uniquely recoverable, as there are multiple possibilities for these
matrices that are consistent with the measurements. Therefore, unsupervised Y estimation,
with zero prior information, for a network that contains any passive nodes is not generally
possible.

Yet, Y contains two distinct pieces of information: network connectivity and effective
impedances. While Thm. 2.2.1(A) says it is generally impossible to estimate the network
connectivity solely from V and I, Thm. 2.2.1(B) implies it is always possible to estimate
effective impedances between active nodes. That is, the network’s input-output behavior is
fully contained in active node measurements VA and IA. Indeed, the matrix relating VA and
IA is the Kron reduced admittance YK , and can be uniquely recovered from VA and IA. This
is established (as a particular case of a broader result), by Thm. 2.2.2:

Theorem 2.2.2. Given measurements V ∈ CM×T and I ∈ CM×T , at node set M such that
A ⊆ M ⊆ N , there is a unique matrix Y relating I to V according to I = Y V iff V has full
row-rank, and a unique matrix Z relating V to I according to V = ZI iff I has full row-rank.
When unique, Y and Z are respectively the network impedance and admittance matrices or
an appropriate reduction.
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Proof. Suppose ker(V T ) ̸= ∅ (not full row rank).
Then, ∃y ∈ C1×M such that yV = 0.
Let Ŷ be a solution to I = Y V .
Then, I = Ŷ V =⇒ ∀α ∈ C : I = (Ŷ + αy)V .
Therefore, there are an infinite number of possible solutions.
Now suppose ker(V T ) = ∅ (V does have full row rank).
Let Ŷ1 and Ŷ2 two possible solutions to I = Y V .
Then, I = Ŷ1V = Ŷ2V =⇒ (Ŷ1 − Ŷ2)V = 0.
This contradicts ker(V T ) = ∅, so there can not be two solutions.
A symmetric proof applies for the uniqueness of Z when I has full row rank.

While Thm. 2.2.1 indicates it isn’t generally possible to recover Y from YK , in the special
case of radial networks it is possible.

Radial Networks

It is a property of the Schur complement that Y cannot always be recovered from YK . The
mapping from a matrix A to its Schur complement, AU , with respect to an arbitrary row and
column subset U isn’t generally injective, so recovery of A from AU isn’t guaranteed, even
when A is restricted to the set of weighted Laplacians of fully-connected graphs. However
when A is further restricted to the set of Laplacians of tree graphs, denoted T , with U ⊆ P ,
the following holds:

Theorem 2.2.3. The Schur complement mapping from A ∈ T to AP is injective. That is,
no Schur complement of A′ ∈ T \A with respect to any set of passive nodes can produce AP .

Thm. 2.2.3 holds for trees with real or complex edge weights, and is stated here without
proof. The proof is based on the CRG, which demonstrates that a radial tree is exactly
recoverable from exact distances. For radial electrical networks, effective impedances are a
valid distance metric. Together, Thm. 2.2.1-2.2.3 imply Corollary 2.2.3.1:

Corollary 2.2.3.1. For any radial electric network, Y is fully recoverable from perfect volt-
age and current PMU measurements at every active node.

Estimating ζA is a necessary intermediary step in recovering the full network admittance
model from active node measurements. In the next section we present a novel network
representation which improves effective impedance estimation accuracy from noisy active
node PMU measurements.

2.3 subKron Reduction

We introduce the subKron reduction, a further reduction of electric networks that extends
the Kron reduction. The Kron relationships are: IA = YKVA ↔ VA = ZKIA. Since relative,
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not absolute voltages, drive power flows, we can subtract the substation voltage from all the
voltages (Lemma 2.1.1).− ITA1 −

...
− ITAA −

 =

[
Y11 Y T

1K

YK1 YsK

]− 0 −
...

− (V T
AA − V T

A1) −

 (2.3)

We define VsA ∈ C(A−1)×T and IsA ∈ C(A−1)×T as the data matrices in (2.3) with the first
row in each removed. The subKron admittance matrix, YsK ∈ C(A−1)×(A−1), relates VsA to
IsA. YsK is equivalent to YK with the first row and column removed.

IsA = YsKVsA (2.4)

We can equivalently derive an expression for the subKron impedance matrix which relates
IsA to VsA:

VsA = ZsKIsA (2.5)

The elements of ZsK are:

ZsK(i, j) = ZK(i+ 1, j + 1)− ZK(1, j + 1)− ZK(1, i+ 1) + ZK(1, 1) (2.6)

Complete derivations of Eq. (2.4)-(2.6) can be found in Appendix D.1. The subKron repre-
sentation has lower dimensionality than the Kron representation (by one dimension), but is
informationally equivalent:

Lemma 2.3.1. YK is always recoverable from YsK for a network without shunt admittances.

Proof. YK is a loopless Laplacian.
YK1 = 0 and Y T

K = YK .
YsK corresponds to YK with the first row and column removed.
We can recover the first row and column of YK from the elements of YsK as follows:
i ∈ {2, ..., A} : YK(i, 1) = YK(1, i) = −

∑A−1
j=1 YsK(i, j) and YK(1, 1) = −

∑A
i=2 YK(i, 1).

An important feature of the subKron representation is its rank:

Lemma 2.3.2. Unlike Y or YK, YsK is always full rank.

Proof. This follows from Kirchhoff’s matrix tree theorem, which states that the total weight
of trees in a graph is equal to any cofactor of the graph’s weighted Laplacian.

T (YK) ≜
∑

T∈T (YK)

w(T )

T (YK) denotes the total weight of spanning trees in the graph described by Kron impedance
matrix YK , T is one particular spanning tree of YK in the set of all spanning trees T (YK)
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and w(T ) is the weight of tree T (the sum of the weights of the edges in T ).
One cofactor of YK is YK(1, 1)det(YsK).
Therefore: YK(1, 1)det(YsK) = T (YK).
Since |T (YK)| ≥ 1, we have T (YK) > 0.
Therefore, det(YsK) > 0, proving YsK is full rank.

We can convert between the subKron impedance and admittance representations by
taking the true matrix inverse: ZsK = Y −1

sK . In graph theory terms, the subKron matrix YsK
is the reduced Laplacian of YK . In the following section, we delve deeper into the physical
meaning of the Kron and subKron network matrices, by returning to effective impedances.

2.4 Effective Impedances Between Active Nodes

Effective impedances are useful to concretely establish what is lost and preserved in the Kron
and subKron reductions. An electrical network admittance matrix contains two fundamen-
tal pieces of information: network connectivity and effective impedances between network
node pairs. Kron reduction discards the connectivity information, but preserves the effec-
tive impedances between the active nodes, which characterize the network’s input-output
properties. By Lemma 2.3.1, subKron reduction also preserves inter-active node effective
impedances. Therefore, though different in dimensionality and definition, all the network
representations introduced in Sections 3.1-2.3 may be used to calculate effective impedances
between active nodes.

Lemma 2.4.1 establishes useful relationships between the elements of subKron matrix
ZsK and the effective impedances of the original network, ζ.

Lemma 2.4.1. The (i, j)th element of ZsK is the effective impedance of the shared path
between nodes i, j ∈ A and the substation.

Proof. Combining equations (2.2) and (2.6):

ZsK(i, j) =
1

2

[
ζ1(j+1) + ζ1(i+1) − ζ(i+1)(j+1) − ζ11

]

Corollary 2.4.1.1. The diagonal elements of ZsK are the effective impedances to the sub-
station.

Proof. The diagonal elements of ZsK are related to the elements of ZK by Eq. (2.6):
ZsK(i, i) = ZK(i+ 1, i+ 1) + ZK(1, 1)− 2ZK(1, i+ 1) = ζ1(i+1).

The relationships between the different network models and the effective impedances are
summarized in Fig. 2.3. Note that ζA ⊆ ζ.
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Y YK YsK

Z ZK ZsK

ζ ζA

Kron reduction

(•)†
Kron reduction

subKron reduction

(•)†
subKron reduction

(•)−1

Figure 2.3: Relationships between the different network models. Bidirectional arrows indi-
cate informational equivalence of representations.

2.5 Impedance Estimation

The Kron and subKron representations are informationally equivalent, but estimating them
from real-world measurements are not identical challenges. Noise in real world measurements
makes network impedance estimation—i.e. “inverting” Ohm’s Law to infer Y or Z from V
and I—nontrivial. Here, impedance estimation refers to estimation of either the complete (Y
or Z), Kron (YK or ZK) or subKron (YsK or ZsK) network representations. As we establish
in the following, the major advantage of the subKron reduction is that it can be estimated
with better accuracy than the Kron reduction in the presence of noise.

Ordinary Least Squares

A simple regression method is ordinary least squares (OLS). Given data matrices R ∈ Cn×T ,
P ∈ Cn×T which are known to obey an underlying linear relationship parametrized by matrix
M ∈ Cn×n, we can write: R ≈ MP where we use ≈ rather than = to reflect that R and P
contain noise. OLS estimates M from R and P as M̂ = argminM ||R −MP ||2. The best
linear unbiased estimate of M has a closed form solution: M̂ = (PHP )−1PHR. There are
no constraints on the structure of M̂ in the above formulation.

Many alternatives to OLS exist including those which regularize the objective, account
for noise in both P and R or enforce special structure on M . We focus on OLS estimation
because of it’s intuitive objective, lack of tuning parameters, and computational efficiency,
which makes it suited to online applications of impedance estimation such as fault detection.
We also find OLS performs comparably to alternative techniques in practice. OLS can be
replaced by any regression technique in our proposed method.

For real-world applicability, we must understand the sensitivity of M̂ to noise in the
measurements. Depending on the structure of the PHP matrix, (PHP )−1 can contain very
large values that magnify noise in PHR and produce a poor solution M̂ . The condition
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number of PHP is a metric for understanding the noise magnification of (PHP )−1 and is

defined as the ratio of its largest and smallest eigenvalues: cond(Q) ≜ σmax(Q)
σmin(Q)

. A larger

cond(PHP ) means (PHP )−1 will magnify noise, and M̂ will be more noise sensitive. At
extremes, cond(Q) = 1 means Q is very well-conditioned, while cond(Q) = ∞ means it is
rank deficient and not invertible. cond(PHP ) is related to the correlation level of the rows
of P . If the rows of P are highly correlated, cond(PHP ) is large, and the estimate is more
noise sensitive.

Conditioning of Impedance Models

The OLS network impedance estimation formulation is:

Ŷ = argmin
Y

||I − Y V ||F = (V HV )−1V HI (2.7)

|| ◦ ||F indicates the Frobenius norm. Expressions for ŶK , ŶsK , ẐK and ẐsK are determined
by active node measurements alone (Thm. 2.2.2), e.g. ŶK = (V H

A VA)
−1V H

A IA and ŶsK =
(V H

sAVsA)
−1V H

sAIsA. The equation for the subKron impedance estimate is:

ẐsK = argmin
ZsK

||VsA − ZsKIsA||F = (IHsAIsA)
−1IHsAVsA (2.8)

Each formulation will have different noise sensitivity since each inverts a different data
matrix. The rank constraints of Thm. 2.2.1 immediately indicate an issue with estimating
Y or Z from measurements at every network node: V, I ∈ CN×T . Thm. 2.2.1 establishes I
is rank deficient, making computation of (IHI)−1 impossible. When N ≥ P + 1 (network
contains more than one passive node), V will also be rank deficient, making computation of
(V HV )−1 impossible. Note Thm. 2.2.1 is for noiseless measurement matrices. With noisy V
and I, the rank constraints won’t hold exactly, but will nonetheless manifest in the matrix
conditioning. Therefore, though it may be possible to compute (IHI)−1 and (V HV )−1 for
real measurements, these matrices will be highly ill-conditioned, and the resulting impedance
estimates will be noise sensitive to the point of impracticality. Similarly, ZK cannot be
estimated directly as IA is rank deficient.

While Y , Z, and ZK cannot be estimated uniquely, Thm. 2.2.2 establishes YK , YsK
and ZsK can, since VA, VsA and IsA are full rank. This is another perspective from which
to see the Kron reduction as the best possible estimate of the network impedance given
no prior information. Though YK , ZsK and YsK are informationally equivalent, estimating
them from real data will have differing accuracies as each entails the inversion of a different
data matrix with its own condition number. The following conditioning trend holds for
the measurement data: cond(IHsAIsA) < cond(V H

sAVsA) < cond(V H
A VA). The conditioning

improvement from VA to VsA is intuitive, as taking voltage differences is akin to common
mode removal [33]. While nodal currents are predominantly driven by individual loads
which often behave independently, nodal voltages are correlated by the network structure
itself. Therefore, voltage measurements VsA tend to be more correlated than currents IsA,
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Figure 2.4: CRG on the toy network of Fig. 2.2. The nodes in O are highlighted in green in
each step.

causing VsA to be more poorly conditioned. Thus, ŶsK is more noise robust than ŶK , and
ẐsK estimation is the most noise robust. The improved data conditioning provides better
ζA estimates and, in turn, more accurate network reconstruction via the Recursive Grouping
algorithm.

2.6 Recursive Grouping Algorithm

The Recursive Grouping (RG) algorithm, presented and described in [27], reconstructs a
radial network from real-valued information distances d between the “observed” nodes O,
defined here as the set of nodes for which the information distances are known but the
parent node is unknown. By comparing the pairwise quantities dij to the triplet quantities
Φijk ≜ dik − djk,∀(i, j, k) ∈ O, O is recursively shrunk until the tree is reconstructed,
as demonstrated on the toy network in Fig. 2.4. Using resistance and reactance as the
information distances in two separate, real-valued reconstructions, [28] applied RG to radial
distribution networks. With noisy data, this separation into real-valued reconstructions is a
source of unnecessary reconstruction error.

We introduce Complex Recursive Grouping (CRG), a modification of relaxed RG (Ap-
pendix D.2), which feeds complex effective impedances directly into the reconstruction. That
is, dij = ζij. For complex-valued distances, Lemma D.2.1 becomes:
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Lemma 2.6.1. (i) ζij = Φijk,∀k ∈ O\(i, j) iff i is a leaf node in O, and j is the parent of
i.
(ii) Φijk = Φijk′ ̸= ζij,∀k, k′ ∈ O\(i, j) iff i and j are leaf nodes in O, and siblings.

While CRG uses complex impedances, the inequality tests of CRG must be done on the
real number field R, which is ordered (unlike C). Formulating real-valued inequality tests
for complex-valued impedances takes care. A natural suggestion is to use the lexicographic
ordering (i.e. to compare magnitudes). However, with noise and imperfect ζ̂, this may lead
to reconstruction errors. Instead, we use the ϵ-neighborhood of Φ̂ijk in the complex plane

for some parameter ϵ. z ∈ C is in the ϵ-neighborhood of Φ̂ijk if |z − Φ̂ijk| ≤ ϵ. Additionally,
we define Kij as the set of nodes close to nodes i and j, according to the parameter τ :

Kij ≜ {k ∈ O\(i, j)|max(d̂ik, d̂jk) ≤ τ}. The CRG parent/child test is:

β̂ij ≜
1

|Kij|
∑
k∈Kij

(|d̂ij − Φ̂ijk|) ≤ ϵ (2.9)

and the sibling test is:

Γ̂ij ≜
1

|Kij|(|Kij| − 1)

∑
k∈Kij

∑
k′∈Kij/k

(|Φ̂ijk − Φ̂ijk′ |) ≤ ϵ, (2.10)

where β̂ij is the average distance between the complex quantities d̂ij and Φ̂ijk for k ∈ Kij,

and Γ̂ij is the average distance between Φ̂ijk and Φ̂ijk′ for k, k
′ ∈ Kij. (2.10) may incorrectly

include parent nodes pairs in the set of siblings. This is resolved by removing the parent
node from the set of siblings, once/if the parent is identified by (2.9). Finally, the equations
that determine the effective impedances for the new parent nodes (eqns. (27)− (28) in [27])
are linear, and do not need to be modified for complex quantities.

2.7 Simulation and Results

We test our methods on synthetic data generated by simulating seven different radial test
feeders with the power flow tool matpower [34]. To emulate realistic conditions, we use
minute-resolution real power consumption data of nearby homes from the Pecan Street
project, thereby preserving load correlations that exist in the real world. These correla-
tions manifest in voltage and current measurements and can affect estimation performance.
The seven cases have 4, 9, 12, 13, 13, 18, and 29 load nodes. The two 13 load cases differ
in their topologies. All test cases have 3 passive nodes, except the 12 load case which has 4.
Five of the seven test cases are visualized in Fig. 2.5. For each case, we collect time series
phasor measurements at the active (load and substation) nodes only. To model real D-PMU
measurements, we add complex additive white Gaussian noise (AWGN) to the voltage and
current measurements generated by matpower. This a reasonable noise model choice based
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4 load node test case
5 active nodes, 3 passive nodes

9 load node test case
10 active nodes, 3 passive nodes

13 load node test case
14 active nodes, 3 passive nodes

13 load node test case
14 active nodes, 3 passive nodes

12 load node test case
14 active nodes, 4 passive nodes

(4) (9)

(12)

(13b)

(13)

Figure 2.5: Visualization of five of the total seven test networks. Passive nodes are red,
active nodes are blue. The set of active nodes is the set of load nodes plus the substation.
The measured nodes are all active nodes.
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Figure 2.6: Log of the condition number of noiseless measurements for each test case. Larger
values lead to greater noise sensitivity.

on empirical PMU noise studies [35]. The noise level is specified as a signal-to-noise ratio
(SNR): the mean squared magnitude of the true measurement time series divided by the
noise variance. Note that the noise sensitivity of OLS is determined by the condition num-
ber. By definition, the condition number reflects estimate sensitivity to the norm of the
noise, not its distribution. Therefore, though we use AWGN in our simulations, the relative
performance of the methods will be the same for other noise distributions [36]. Generating
voltage measurements with MATPOWER takes on average 0.98 ms per load per time point.
That is, simulating a 10 node network over 1000 time points takes 9.8 seconds. OLS network
estimation takes 0.7 s. per node per trial.

Effective Impedance Estimation Results

From the noisy measurements of each test case, we estimate ζA via three different approaches.
We estimate ŶK , ŶsK , and ẐsK and then compute ζA from each using the equations of Section
2.4. We determine the error between the three different estimates—ζ̂A from ŶK , from ŶsK
and from ẐsK—and the true ζA. These are all matrix quantities, so we report the normalized
Total Vector Error :

nTVE(M, M̂) ≜
||M − M̂ ||2

||M ||2
ζA estimation accuracy versus SNR is shown in Fig. 2.7. We see errors are larger and decay
more slowly with increasing SNR for test cases with more loads. The conditioning trend for
the test cases is recorded in Fig. 2.6. As the number of loads (and consequently measurement
points) grows, the nodes are more electrically proximate and therefore the voltage measure-
ments more correlated. This leads to poorer conditioning resulting in increased estimation
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error and noise sensitivity. This is a compelling and perhaps counter-intuitive result—more
PMU measurements do not necessarily improve impedance estimation accuracy if there is
noise in the measurements.

Fig. 2.7 also conveys the advantage of the subKron representation over the Kron rep-
resentation. ζA estimation via ŶK , ŶsK and ẐsK is affected by the conditioning of VA, VsA
and IsA respectively. Since VA is the worst conditioned, ζ̂A extracted from Kron admittance
YK has high error at low SNRs and consistently high estimate variance. This represents the
performance of existing methods (Assuming that the existing methods use OLS to estimate
YK). ζ̂A extracted from ZsK is clearly the most noise-robust with orders of magnitude lower
error at low SNRs and dramatically lower estimate variance across the entire SNR test range.
Estimation error drops more rapidly with increasing SNR for ζ̂A extracted from ZsK than
from YK . The improvement is especially pronounced for the larger test cases, as YK and
YsK estimation require inversion of the increasingly correlated and ill-conditioned voltage
measurements, while ZsK estimation inverts (mostly) uncorrelated current measurements.

While low mean error is obviously critical, low error variance is also important. The high
variance of noise sensitive estimation methods has operational consequences. For example,
a dramatic change in the network impedance estimate may be due simply to measurement
noise, as opposed to real topological changes or faults, leading to frequent false alarms that
waste time and reduce operator trust in both the sensors and algorithms. The low error
variance is an important advantage of the subKron representation over prior work.

Fig. 2.8 plots ζA estimation error for increasing number of measurement data points
(T ). The SNR is fixed. The ZsK method provides orders of magnitude better performance
at small values of T indicating that it is more suitable than existing methods for real time
applications. The ZsK method also provides better performance at large values of T , and
unlike the YK method, increasing T results in a significant reduction of ẐsK error across all
of the test networks.

Tree Reconstruction Results

To evaluate CRG reconstruction performance, we compute the Robinson-Foulds metric (RF)
used in computational biology on phylogenetic trees [37]. RF quantifies the difference be-
tween two trees that share an active node set. It assesses the validity of each reconstructed
edge independent of reconstruction performance upstream or downstream of that edge. We
introduce the Normalized Robinson-Foulds metric (nRF), defined as the RF metric divided
by the number of active nodes: nRF = RF

A
. Normalization enables rough performance com-

parison across networks of different sizes. To evaluate the reconstructions, we use nRF to
compare the reconstruction with the true network. Thus, the nRF serves as an error metric;
the lower scores are better.

CRG performance is evaluated on two input sets. The “baseline” set uses effective
impedances ζ̂A calculated from the estimate ŶK—the estimate hypothetically provided by
existing methods that do not consider measurement data conditioning. The second set uses
ζ̂A calculated from ẐsK . Fig. 2.9 shows CRG consistently performs better with the more
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accurate effective impedances calculated from ẐsK , than ŶK , as expected. Performance is
significantly better across a range of feeder sizes for SNRs 10− 1000.

CRG execution time scales nonlinearly with network size. CRG on ζ̂A from ŶK runs
in .06, .39 and 107 s on 4, 9, and 29 load networks respectively. CRG on ζ̂A from ẐsK is
faster—.06, .34 and 65 s, respectively. CRG is faster on more accurate effective impedances
because the ϵ tolerance is not expanded as often and in each iteration it is more likely that
multiple observed nodes are connected.

2.8 Conclusion

This chapter presents tools for drawing visualizable and actionable information—effective
impedances and radial reconstruction—solely from D-PMU data, without prior information.
Our primary insights are that:

• It is generally impossible to uniquely recover the complete network even from com-
prehensive V and I phasor measurements. However, it is always possible to recover
pairwise active node effective impedances, ζA, from V and I measurements at all active
nodes. In radial networks, the complete network can in fact be uniquely recovered from
ζA.

• The subKron representation, though informationally equivalent to the Kron reduced
representation, provides a more noise robust approach for ζA estimation.

• The complex recursive grouping (CRG) algorithm recovers the full network from ζA
for radial topologies, and performs well on noisy ζ̂A.

• Simulations demonstrate the efficacy and practical challenges of the subKron and CRG
methods. SubKron-based ζA estimation outperforms Kron-based estimation. All of the
impedance estimation techniques become increasingly noise sensitive as network size
grows. Also, CRG execution time increases nonlinearly with reconstruction dimension.
These practical limitations create SNR-dependent limits on the size of networks that
can be estimated.

This chapter also establishes a foundation for future research directions. These research
directions include extending the techniques to deal with missing measurement points, 3-phase
unbalanced networks, improving the execution time of the CRG algorithm, and applying
optimization techniques designed specifically for the impedance estimation problem.
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Figure 2.7: OLS ζA estimation error with three approaches for five test cases with varying
noise in I and V . Light bands indicate error across 100 trials per SNR value with different
noise instances. Dark lines show average error.
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Figure 2.8: OLS ζA estimation error for five test cases with varying number of measurement
time points T used for estimation. The noise level in I and V is constant SNR = 100. Light
bands indicate error across 100 trials per T choice with different noise instances. Dark lines
show average error.
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Figure 2.9: nRF of radial network reconstructions from YK (top) and ZsK (bottom). The
subKron method leads to lower reconstruction error than the Kron method across test case
sizes for SNRs 10−1000. Performance is comparable for SNR = 1. nRF values are averaged
over 5 trials.
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Chapter 3

Power System Hybrid State
Estimation

Both human and automated grid operators require an estimate of the power system state
to make decisions. The power system state consists of the AC voltage phasors (voltage
magnitudes and angles) at all of the nodes in the system. The voltage phasor state vector
and the network model fully define all of the power flows on the network.

Power system state estimation (PSSE), originally proposed in 1968 [38], uses the power
flow equations and a network model to aggregate noisy voltage magnitude, voltage phasor,
bus injection and line flow measurements into a single state estimate. Thus, PSSE requires
an accurate network model in order to produce an accurate state estimate. Network models
consist of the network topology and the line impedance values. The network topology can
change with time as the network is reconfigured by opening/closing the network switches
[39].

In conventional state estimation, the network topology and the state estimate are treated
separately. The topology is computed offline by a Network Topology Processor (NTP) that
receives status updates from the switches throughout the network [39]. However, in real-
world operation, these switch signals can be unreliable or unavailable. An alternative to
the conventional PSSE + NTP combination is generalized state estimation, which estimates
both the topology and the voltage phasor states [40]–[44].

Generalized state estimation methods that do use a grid model [40]–[42] [45]–[47]. [45]
Does topology detection using the normalized lagrangian multipliers for the constraints cor-
responding to the switch configuration. The normalized lagrangian multipliers are used to
create a set of suspect switch configurations, with the help of a geometric interpretation of
the lagrange multiplier vector. [46] Like above, but can detect both topology errors and
bad data [47] Observes the normalized residual of pseudo-measurements correponding to the
switch status, Treats the switching status as an additional continuous state variable

In this chapter, we propose modelling the generalized PSSE problem as a hybrid system
state estimation problem, treating the network configuration and network voltages as discrete
and continuous states, respectively. We note that there are multiple uses of the word “hybrid”
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Figure 3.1: Modified 33 node distribution grid to include four switches

to describe PSSE formulations in the power systems literature [48]–[51]. The most common
use of “hybrid” in the power systems literature refers to PSSE formulations which include
hybrid data from both traditional SCADA measurements and Phasor Measurement Units
(PMU) [50], [51]. To avoid ambiguity, we introduce two names—“Hybrid Data Power System
State Estimation” to refer to PSSE formulations that use both PMU and SCADA data, and
“Power System Hybrid State Estimation” (PSHSE) to refer to the generalized power system
state estimation problem formulated using a hybrid state. In this chapter, we focus on the
PSHSE problem, with the understanding that the formulation is agnostic to the type of data
(PMU, SCADA, or both) that it receives.

In addition to the generalized/non-generalized designation, PSSEs can also be classified as
static or dynamic. Conventional PSSEs are static, with Weighted Least Squares (WLS) being
the industry standard regression tool [39]. In WLS, the voltage phasor state is estimated by
evaluating the WLS normal equations using the measurements at the given timestep [52]. In
order to use the WLS normal equations, the nonlinear measurement equations are linearized.
Because the standard WLS only uses measurements at the given timestep, the state estimate
can be susceptible to errors from the measurement noise in the sensors.

In contrast to static state estimation, dynamic state estimation explicitly models the
power system as a dynamic system with a state that evolves over time. The Kalman Filter
is an appealing option for dynamic PSSE due to its closed form solution and intuitive tuning
parameters—the noise covariances in the dynamics and measurement equations. However,
the canonical Kalman Filter is defined for linear systems. The most common approach to
applying the Kalman Filter to the nonlinear measurement equations of the PSSE is the
Extended Kalman Filter (EKF) [53]. The Unscented Kalman Filter (UKF) is an alternative
to the EKF [54]. The UKF has been applied to the PSSE problem in [55] and [56], which
demonstrate superior performance when compared with the EKF.

This chapter presents the Multiple model Adaptive Power system State Estimator (MAPSE),
a novel approach to the dynamic, generalized PSSE problem that explicitly models an electric
grid as a hybrid system. The MAPSE estimates the power system’s hybrid state by imple-
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Figure 3.2: MMAE for a linear system with J modes

menting a Multiple Model Adaptive Estimation (MMAE) [57]–[59] with a bank of dynamic
state estimators. In this chapter, we use a bank of UKFs as the dynamic state estimators.

3.1 Background

Multiple Model Adaptive Estimation for Linear Systems

The standard, linear system MMAE can be used for linear system, hybrid state estimation
applications by creating one continuous state estimator for each of the discrete states/modes
[57], [58]. For a linear system with J discrete states, there will be J different modes Mj,
j ∈ 1, . . . , J . M is the set of discrete states Mj with cardinality J . Each of the modes
has its own linear system and corresponding Kalman Filter, constituting one of the filters in
the J-long filter bank. For mode j at timestep k, the dynamics matrix Φj(k), measurement
matrix Hj(k), continuous state xj(k) ∈ Rn, dynamics noise vj(k) with covariance matrix
Qj(k), and measurement noise wj(k) with covariance matrix Rj(k), define the linear system

xj(k) = Φj(k − 1)x(k − 1) + vj(k − 1),

z(k) = Hj(k)xj(k) + wj(k)).
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All of the filters are presented the measurement z(k) ∈ Rm.
Fig. 3.2 demonstrates how the standard, linear system MMAE is implemented with a

bank of Kalman Filters. Each of the Kalman Filters in the bank sends the residual it records
at each timestep to the Discrete Mode Probability Computation (DMPC) block. The DMPC
block updates the discrete mode probabilities pj (p1+ · · ·+pJ = 1) using Bayesian recursion.
The Bayesian recursion equation (3.12) is given in 3.2.

The Bayesian recursion requires the conditional measurement likelihood fz(z(k)|Mj, Z(k−
1)), where Z(k− 1) is the set of all measurements prior to timestep k. The MMAE approxi-
mates the conditional measurement probability density function fz(·|Mj, Z(k− 1)) for mode
j with a multivariate Gaussian with measurement covariance Pzz,j(k), centered at the pre-
dicted measurement ẑj(k) = Hj(k)x̂j(k), where x̂j(k) is the jth model’s state estimate at
time k. For linear systems, the Pzz,j(k) for each Mj ∈ M at time k can be calculated offline
from the given filter’s state covariance Pj(k) using

Pzz,j(k) = Hj(k)Pj(k)H
T
j (k) +Rj(k).

Power System Continuous State and Measurements

For a power system network with n/2+1 nodes, x ∈ Rn is a vector of voltage magnitudes and
angles that constitute the continuous voltage phasor state at all of the non-substation nodes.
(We assume that the substation voltage magnitude is known, and that the substation serves
as the phasor angle reference node.) x̂j(k) is the jth mode’s voltage phasor state estimate
at time k, with voltage magnitude and angle estimates for each of the non-substation nodes.
z(k) ∈ Rm is the vector of noisy measurements provided to the PSHSE, which could include
noisy voltage magnitude, voltage angle, real and/or reactive power injection, real and/or
reactive line flow, and current injection/flow measurements.

3.2 Multiple Model Adaptive Power System

Estimation

The contribution of this chapter is the Multiple model Adaptive Power system State Estima-
tor (MAPSE) for the PSHSE problem. The MAPSE implements an MMAE on a nonlinear
system with one voltage phasor vector (continuous state) estimator for each of the possible
network topologies (discrete states/modes). The voltage phasor vectors are estimated with
UKFs—each candidate network topology has its own UKF [54]. Fig. 3.3 demonstrates the
MAPSE design proposed in this chapter. We describe the signal flow of fig. 3.3 in 3.2, after
first describing the UKF bank and the DMPC block.
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Unscented Kalman Filter Bank

The UKF bank implements a bank of J UKFs, each with a different system model. To
reduce the computational burden of implementing the UKF, we implement the version of
the UKF that assumes an additive noise dynamic system [60]:

xj(k) = gj
(
xj(k − 1)

)
+ vj(k − 1),

z(k) = hj
(
xj(k)

)
+ wj(k),

where gj and hj are the nonlinear dynamics and nonlinear measurement equations, respec-
tively, for mode j. Furthermore, in dynamic power system state estimation, it is common to
make the martingale assumption, E[x(k)] = x(k− 1) [61]. With the martingale assumption,
gj
(
xj(k − 1)

)
= xj(k − 1).

At each timestep, each UKF in the filter bank calculates the (2n+1) sigma points using
the standard selection method for the Unscented Transform (step 1 in algorithm 1). In algo-
rithm 1 the subscript p corresponds to prediction (or prior) quantities, while u corresponds to
update (or posterior) quantities. Each UKF passes the sigma points si,xu,j(k−1), i = 0, . . . , 2n,
through the state dynamics equations to get the dynamics-transformed sigma points si,xp,j(k),
then passes the dynamics-transformed sigma points through the measurement equations to
produce the measurement-transformed sigma points si,zj(k). The si,xp,j(k) and si,zj(k) points
are combined using the equations in Step 4 of Algorithm 1 to determine the posterior state
estimate for the jth filter at time k, x̂u,j(k), and the posterior covariance estimate for the

jth filter at time k, P̂u,j(k). x̂u,j(k) and P̂u,j(k) are used to produce the sigma points for the
next timestep.
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Algorithm 1: The MAPSE Unscented Kalman Filter

Step 1: Select sigma points: For Γ =
√
(n+ 1/2)P̂u,j(k − 1),

and defining (·)i as the ith row of (·),

s0,xu,j(k−1) = x̂u,j(k − 1)

si,xu,j(k−1) = x̂u,j(k − 1) + (Γ)i for i = 1, . . . , n

si,xu,j(k−1) = x̂u,j(k − 1)− (Γ)i for i = n+ 1, . . . , 2n

Step 2: Pass the sigma points through the dynamics equations:

si,xp,j(k) = gk−1

(
si,xu,j(k−1)

)
∀i = 1, . . . , 2n+ 1 (3.1)

Step 3: Pass the sigma points through the measurement equations:

si,zj(k) = hk
(
si,xp,j(k)

)
∀i = 1, . . . , 2n+ 1 (3.2)

Step 4: Calculate x̂u,j(k) and P̂u,j(k):

x̂p,j(k) =
1

2n+ 1

2n∑
i=0

si,xp,j(k) (3.3)

P̂p,j(k) =
1

2n+ 1

2n∑
i=0

[(
si,xp,j(k) − x̂p,j(k)

)
(
si,xp,j(k) − x̂p,j(k)

)T ]
+Qj(k − 1) (3.4)

ẑj(k) =
1

2n+ 1

2n∑
i=0

si,zj(k) (3.5)

P̂zz,j(k) =
1

2n+ 1

2n∑
i=0

[(
si,zj(k) − ẑj(k)

)
(
si,zj(k) − ẑj(k)

)T ]
+Rj(k) (3.6)

P̂xz,j(k) =
1

2n+ 1

2n∑
i=0

[(
si,xp,j(k) − x̂p,j(k)

)
(
si,zj(k) − ẑj(k)

)T ]
(3.7)

Kj(k) = P̂xz,j(k)P̂zz,j(k)
−1 (3.8)

rj(k) = z(k)− ẑj(k) (3.9)

x̂u,j(k) = x̂p,j(k) +Kj(k)rj(k) (3.10)

P̂u,j(k) = P̂p,j(k)−Kj(k)P̂zz,j(k)Kj(k)
T . (3.11)
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Discrete Mode Probability Computation Block

The DMPC block determines the discrete mode probabilities pj(k) using an MMAE, which
implements the Bayesian recursion

pj(k) = fM
(
Mj|z(k), Z(k − 1)

)
=
fz
(
z(k)|Mj, Z(k − 1)

)
fM

(
Mj|Z(k − 1)

)
fz
(
z(k)|Z(k − 1)

)
=

fz
(
z(k)|Mj, Z(k − 1)

)
pj(k − 1)∑J

i=1 fz
(
z(k)|Mi, Z(k − 1)

)
pi(k − 1)

(3.12)

for each Mj ∈ M. fM(·|z(k), Z(k− 1)) is the probability mass function for all of the modes,
conditioned on z(k) and Z(k − 1).fz(·|Mj, Z(k − 1)) is the probability density function for
measurement z(k), conditioned onMj and Z(k−1). The prior probabilities for eachMj ∈ M
in the Bayesian recursion are taken to be the posterior state probabilities at the previous
timestep, pj(k − 1).

The mode probability recursion (3.12) requires the conditional measurement likelihoods
fz(z(k)|Mj, Z(k−1)) for each of the modes. As in 3.1, the measurement distribution for each
of the modes is approximated by a Gaussian. Thus, fz(z(k)|Mj, Z(k − 1)) is approximated
by evaluating each mode’s Gaussian at time k,

fz
(
z(k)|Mj, Z(k − 1)

)
≈ N

(
rj; 0, P̂zz,j

)
=

1

(2π)m/2|P̂zz,j|1/2
exp

(
− 1

2
rTj (k)P̂

−1
zz,j(k)rj(k)

)
(3.13)

for each mode’s residual at time k,

rj(k) = z(k)− ẑj(k).

(3.13) requires the measurement covariance Pzz,j. Unlike the linear system MMAE, for
nonlinear systems, Pzz,j cannot be computed offline. Fortunately, the jth UKF estimates

P̂zz,j using equation (3.6) in order to produce the gain matrix from the sigma points. Thus,

each of the UKF blocks can pass P̂zz,j to the DMPC, along with rj.

Combining the UKF bank and the DMPC Block

Each UKF in the filter bank (fig. 3.3) maintains an internal state estimate x̂u,j using Algo-
rithm 1. Each UKF of the bank sends its measurement residual rj, as well as its measurement
covariance estimate Pzz,j, to the DMPC block at each timestep. The DMPC block uses the
Bayesian recursion (3.12) to maintain a probability mass function for each of the discrete
operating states Mj ∈ M. Regarding the final continuous state estimate at time k—the
discrete probabilities can be used to combine the x̂j estimates from each of the Kalman
Filters into a single estimate of x̂, as done in Fig. 3.3. Alternatively, the continuous state
estimate from the discrete mode with the highest probability can be used.
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Figure 3.3: Multiple model Adaptive Power system State Estimation implemented with Unscented
Kalman Filters

3.3 Results

Test Set Up

This section reports preliminary results demonstrating the efficacy of the MAPSE on a
modified version of the single phase, 33 node Baran and Wu test network [62]. We modified
the 33 node network to include two of the additional lines listed in the “REDS” (REpository
of Distribution Systems) [63] between nodes 18 and 33, and 12 and 22, and put switches
between nodes 18 and 33, 12 and 22, 7 and 8, and 14 and 15, as demonstrated in fig. 3.1.
We considered four radial candidate topologies, or discrete modes, A, B, C, and D, as shown
in fig. 3.4. The MAPSE had access to two sets of measurements:

1. high Signal to Noise Ratio (SNR) PMU measurements on nodes 18, 22, and 33, and

2. low SNR power injection/load pseudo-measurements on all of the load nodes (nodes
2-33).

To create the time series simulation, we assigned load profiles to each node using the first
32 real power injection/load profiles in the Pecan Street data set [64]. We created reactive
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(a) Network Configuration A (b) Network Configuration B

(c) Network Configuration C (d) Network Configuration D

Figure 3.4: Four candidate 33 node reconfigurations with PMUs on nodes 18, 22, and 33

power injection/load data by multiplying the real power data by a constant multiple of .15.
We multiplied the Pecan Street load profiles (given in kW) by 20 in order to get a significant
voltage drop along the network (multiplying the loads by 20 resulted in the lowest voltage
on the network being .95 p.u.). The base quantities for the per unit (p.u.) normalization
were chosen according to the REDS model—the base voltage was 12.66 kV, the base power
was 5.68 MVA, and the base impedance was 28.2 Ω. We stepped through the Pecan Street
load profiles, selecting a load value for each timestep for each node on the network, and
holding the voltage at the substation (node 1) equal to 1. At each timestep, we solved
power flow using the MATPOWER power flow solver [65] to get the true network state. We
then added noise to the measurements. For all three PMU, we added 10−6 p.u. Gaussian
noise to both the real and imaginary portions of the true voltage phasors, then calculated
the magnitudes and the angles to create the noisy phasor measurements. The 10−6 p.u.
noise quantity is based on the empirical observations of real PMU data in [66]. For the load
pseudo-measurements we added white guassian noise to each node’s true injection so that
the SNR for each power injection/load pseudo-measurement was 0.5. The “signal” for these
pseudo-measurements was the variance of the Pecan Street power injection profiles.

Remark 3.3.1. We recognize that the network, load profile, and pseudo-measurement noise
model do not represent a true distribution network. In particular, distribution networks are
generally larger than 33 nodes and unbalanced three-phase, the aggregation of loads decreases
the variance of the power injections, and pseudo-measurement noise is highly correlated be-
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tween timesteps and non-Gaussian. The preliminary results reported in this chapter indicate
that evaluating the MAPSE on a more realistic test case is warranted.

MAPSE Settings

We ran the MAPSE hybrid state estimator with four UKF blocks—one for each of the A,
B, C and D grid configurations. For the dynamic PSSE problem, both the dynamics g()
and the (additive) dynamics noise covariance Q can be treated as design choices. We used
the martingale assumption for the dynamics model: gj(x) = x. We used 10−6I for the
dynamics noise covariance matrix Q (I is the identity matrix), after observing the behavior
of the MAPSE for Q matrices with different orders of magnitude. We chose R according to
the noise in each measurement signal, as described in 3.3. For each of the UKF blocks, we
initialized the state covariance P to 10−5I, the estimates of the voltage magnitudes for all
of the nodes to 1, and the estimates of the voltage angles for all of the nodes to 0.

The noise-sensitivity of the likelihood calculation (3.13) used in the DMPC’s Bayesian
recursion (3.12) increases with the dimension of the measurement residuals rj. To avoid
prohibitive noise-sensitivity, we used only the high SNR PMU measurements (not the load
pseudo-measurements) at nodes 18, 22, and 33 in the DMPC, which reduced the dimension
of the residuals used by the DMPC from 70 to 6. In addition, we asserted a lower bound
of .001 for each discrete mode, pj ≥ .001 ∀Mj ∈ M, so that the discrete mode probabilities
could recover in a reasonable amount of time if the configuration switched.

MAPSE Voltage Phasor State Estimation

To evaluate the efficacy of the MAPSE voltage phasor state estimation, we ran a number
of simulations on the modified 33 node feeder. We include the results from two indicative
simulations here. In the first simulation, we simulated 100 timesteps in configuration A,
then 100 timesteps in configuration C. Fig. 3.5 displays the node 14 voltage magnitude
estimate produced by the dynamic UKF and static WLS state estimation methods for grid
configurations A and C. In configuration A, The PMU at node 18 is close to node 14. In
configuration C, there is no PMU close to node 14. Fig. 3.5a demonstrates that both the
UKF and the WLS perform well when there is a low-SNR PMUmeasurement nearby, whereas
fig. 3.5b demonstrates that the UKF outperforms the WLS estimation method when the
only relevant measurements are the high-SNR load pseudo-measurements.

In the second simulation, we simulated 100 timesteps and switched the grid configuration
from A to B at timestep 25, B to C at timestep 50, and C to D at timestep 75. Fig. 3.6
demonstrates the mean Total Vector Error (TVE) for each model’s voltage phasor state
estimate at each step of the 100 timestep simulation. For model j at timestep k, we define

mean TVE =
1

n/2

n/2∑
l

( |V est
j,l,k − V tru

l,k |
|V tru

l,k |
)
,
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(a) Configuration A

(b) Configuration C

Figure 3.5: A comparison of the node 14 voltage magnitude estimates produced by the dynamic
UKF and static WLS state estimation methods. No grid topology changes.
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Figure 3.6: The total vector error produced by each UKF in the MAPSE bank in the simulation
in which the grid topology was switched from A to B to C to D at timesteps 25, 50, and 75,
respectively.

where V tru
l,k ∈ C is the true complex voltage phasor (state) of node l at time k, and V est

j,l,k ∈ C
is the complex voltage phasor (state) of node l at time k, determined from x̂j(k). Fig.
3.6 demonstrates that, for the simulation described in 3.3, the UKFs described in 3.3 do a
reasonable job of estimating the voltage phasor state. Furthermore, the UKF that is using
the correct model eventually produces the smallest mean TVE. Note, the UKF dynamics can
take a while to settle, as is evident in the transition from configuration B to C at timestep
50.

MAPSE Topology Detection

Fig. 3.7 demonstrates that the MAPSE accurately detects the network topologies A, B, C,
and D, and the MAPSE is able to adjust its discrete mode hypothesis when the network
topology is changed. The transition between configurations B and C is of particular interest
because the DMPC is able to detect the network change from the measurement residuals r
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Figure 3.7: The discrete mode probabilities produced by the MAPSE in the simulation in which
the grid topology was switched from A to B to C to D at timesteps 25, 50, and 75, respectively.

before the mean TVE for mode C’s UKF block decreases to become the smallest of the four
configurations.

3.4 Conclusion

This chapter describes the PSHSE problem, presents the MAPSE technique for address-
ing the PSHSE problem, and provides preliminary results demonstrating the efficacy of the
MAPSE. The PSHSE problem provides a number of directions for future work. These direc-
tions include rigorous evaluation of the MAPSE’s performance on realistic distribution and
transmission networks, improving the dynamics equation used by the UKFs, and expand-
ing the PSHSE functionality to include additional network settings and parameters such
as transformer tap settings, capacitor bank settings, and other network settings/operation
modes that can be modeled as discrete states.
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Chapter 4

Voltage Phasor Control for
Distribution Networks

The proliferation of distributed solar generation and the electrification of transportation and
heating end uses present a novel set of challenges for electricity distribution networks. For
many distribution networks/grids/circuits, these challenges include voltage magnitude and
line flow constraint violations.

As an alternative to upgrading distribution network infrastructure to accommodate peak
power demand/distributed generation, constraint violations can be mitigated by actively
managing Distributed Energy Resources (DERs) such as batteries or controllable loads [67],
[68]. Both “Distributed Energy Resource Management Systems” (DERMS) and “Active
Distribution Networks” (ADNs) [69]–[71] actively manage DERs.

Fig. 4.1 illustrates a simple example using the IEEE 13 Node Feeder. Suppose that large
electric vehicle charging loads at nodes 652, 680, and 675 create a line flow/thermal constraint
violation between nodes 632 and 671, and an undervoltage constraint violation at node 675.
With a sufficiently large DER (e.g. a battery) at node 692, some combination of real and
reactive power injections would be able to alleviate both the line flow and undervoltage
constraint violations.

In the transmission context, Optimal Power Flow (OPF) is used for economic dispatch,
determining how much power each generator should produce subject to physical network
constraints. OPF could also be used to actively manage DERs to enhance reliability and
economic operation of distribution networks [72]. However, the communication requirements
of applying a power flow optimization [73] may be problematic for distribution system appli-
cations. Because distribution networks benefit from less statistical aggregation of load than
transmission networks, the “disturbances,” or unanticipated changes in the real/reactive
power injections on the network, occur at a faster rate. Thus, real and reactive power com-
mands determined by an online distribution network OPF calculation may be outdated by
the time they are implemented (e.g., if the cloud cover changes, affecting distributed solar
generation).

On transmission networks, rather than implementing the centralized OPF solutions in
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Figure 4.1: The IEEE 13 Node Feeder with a line flow constraint violation on the line between
nodes 632 and 671, and a voltage magnitude constraint violation at node 675. (The normally closed
switch between nodes 671 and 692 is not relevant to this example.)

open loop, the power generation decisions are adjusted in real time using distributed feed-
back loops including droop control, automatic voltage regulation, and Automatic Generation
Control (AGC) based on the tie line flows [74]–[76]. There are distributed feedback control
methods for distribution networks as well, including Volt-Watt and Volt-VAR control [68],
[77]–[82], which define real or reactive power injections, respectively, as functions of voltage
magnitude. Volt-Watt control can be combined with Volt-VAR control to avoid voltage
violations, however the appropriate tradeoff between Volt-Watt and Volt-VAR responsibili-
ties is situational [83]–[85]. [86] provides an optimization-based approach to specifying the
Volt-Watt and Volt-VAR curves that minimize voltage deviations and provide bounded-
input-bounded-state stability. [68], [79] show that, in some circumstances, Volt-VAR control
can alleviate over-voltages on networks with high PV penetration, but can also increase line
flow magnitudes. Similarly, Fig. 9 in [87] demonstrates that Volt-VAR control can reduce
dynamic photovoltaic hosting capacity, if the line flow thermal constraints are binding.

Voltage Phasor Control (VPC), also called Phasor Based Control [88], is a novel paradigm
for implementing OPF which incorporates distributed feedback controllers, but in a different
manner than AGC or Volt-Watt/Volt-VAR control. With VPC, the optimization broadcasts
voltage phasor (magnitude and angle) setpoints, rather than real and reactive power set-
points, to participating nodes equipped with Phasor Measurement Units (PMUs). VPC has
been successfully demonstrated in Hardware-In-the-Loop simulations at Lawrence Berkeley
Lab’s FLEXLAB test facility [89], [90].

In this chapter, we compare the performance of VPC with Voltage Magnitude Control
(VMC) [91], [92], where the power flow optimization assigns voltage magnitudes and injection
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(a) Centralized OPF implemented with direct
power commands

(b) Voltage Phasor Control

Figure 4.2: Two different control methods for node 692 of the IEEE 13 Node Feeder

power factors to the distributed feedback controllers. When the injection power factor is
1, VMC corresponds to “stiff” Volt-Watt control, where the real power injection at each
participating node is modulated to keep the local voltage magnitude equal to the assigned
target. When the injection power factor is 0, VMC corresponds to stiff Volt-VAR control.

Specifically, we analyze how effectively the real and reactive power injections under VPC’s
distributed feedback mitigate the adverse effects of disturbance power injections on the
network voltages and upstream line flows. By reducing the impact of disturbance injections,
VPC feedback control allows the power flow optimization to be less overcautious than it
would be with open loop power commands, and thus attain a more efficient/cost-effective
operating point.

Remark 4.0.1. VPC is agnostic to the OPF implementation. It can be used with centralized
OPF, as we assume in this chapter, or with decentralized OPF.

4.1 Voltage Phasor Control

An OPF solution contains both the optimal power injections and the corresponding voltage
phasors. In standard OPF implementation, as demonstrated on the IEEE 13 Node Feeder in
Fig. 4.2a, the OPF broadcasts power setpoints to the DER at node 692. In the Introduction,
we describe this method as “open loop” because the DERs adhere to the power setpoints
regardless of evolving grid conditions.
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Control Type P Q V θ

PQ Control x x
PV Control x x
VPC x x

Table 4.1: How different bus types relate to the power flow manifold

VPC is an alternative, “closed loop” method that broadcasts the OPF’s voltage phasors
to the participating Phasor Controlled Nodes (PCN). Note, the OPF is only able to broadcast
two set points because the power flow manifold permits two degrees of freedom for the state
vector consisting of voltage magnitude V , voltage angle θ, real power injection P , and reactive
power injection Q [93], [94]. Table 4.1 displays how VPC and the standard PQ and PV
control schemes relate to the power flow manifold.

Algorithm 2 describes how VPC is implemented. At each VPC node, a Phasor Feedback
Controller (PFC) [95], [96] adjusts the power injections in order to maintain its voltage
phasor assignment despite evolving network disturbances. Fig. 4.2b demonstrates VPC
with a single PCN at node 692.

Algorithm 2: Voltage Phasor Control

Optimization
At a slower cadence:

1. Run OPF using load/generation predictions.

2. Broadcast phasor targets to the PFCs.

3. Gather measurements, adjust load predictions,
repeat.

Distributed Phasor Feedback Controllers (PFCs)
Each PFC, at a faster cadence:

1. Measure the local voltage phasor, receive the phasor reference angle from the
substation.

2. If a new phasor target has been received from the optimization, update phasor
target.

3. Adjust the P and Q of subordinate DERs so that the local voltage phasor is
closer to the phasor target,
repeat.
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Figure 4.3: Four node circuit

VPC requires synchronized phasor measurements from PMUs, rather than standard volt-
age magnitude measurements. Furthermore, the phasor measurements require a reference
node that defines the “0” angle. For distribution networks, the substation is the natural
choice for the phasor reference node as it behaves approximately like a slack bus, supplying
the net power imbalance incurred by the load and generation at all of the other nodes on
the network.

VPC is well-suited for distribution networks with volatile disturbances because the PFCs
make power adjustment decisions in a distributed manner. Each PFC requires only the
local phasor measurement and the reference phasor angle measurement, which is constantly
broadcast to all of the PFCs, and therefore is able to immediately adjust the power injections
of its subordinate DERs without waiting to hear from the OPF computation.

Remark 4.1.1. While we consider power injection disturbances in this chapter, VPC is
applicable to other applications including switch closing, phase balancing, and responding to
line outages on mesh networks.

4.2 VPC and Voltage Disturbance Sensitivity

To clearly demonstrate the effect that disturbance injections have on the voltages on the
network, we use the simplest possible circuit—the four node circuit in Fig. 4.3. Node 0 is
the substation, which we model as an infinite/slack bus with voltage 1 per unit (p.u.). We
consider scenarios in which the circuit has one PCN, one disturbance injection node which
is perturbed by idist, and one “Node of Concern” (NC)—the node at which we are concerned
about voltage magnitude constraint violations. We consider the four PCN/NC/disturbance
configurations in Table 4.2,1 and make the assumption that both the pre-disturbance injec-
tions and the disturbance injections are constant-current to simplify the circuit analysis.2

Columns 3 and 4 display the sensitivities of the NC voltage to the disturbance current in-
jection when the system is run in open loop and when VPC is applied, respectively. The

1We do not include the scenarios which correspond to the circuits in rows 3 and 4 with the NC and
disturbance nodes switched because these scenarios are similar to the circuits in rows 3 and 4.

2We choose to describe the disturbance as a current injection (rather than a power injection) because
it makes the NC voltage linear with respect to the disturbance current injection, even when VPC holds the
PCN constant. Note, this linearity is a convenient property of VPC only. It does not apply to circuits with
VMC nodes. Linear equations simplify the sensitivity analysis because they are analytic and therefore the
complex derivative is defined.
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Row Configuration Open Loop Sensitivity Sensitivity With VPC

1 ∂v1
∂i3

= z01
∂v1
∂i3

= 0

2 ∂v3
∂i1

= z01
∂v3
∂i1

= 0

3 ∂v1
∂i2

= z01
∂v1
∂i2

= z01
z23+z12+z23

z01

4 ∂v3
∂i2

= z01 + z12
∂v3
∂i2

= z12

Table 4.2: Voltage disturbance sensitivities. The phasor controlled node (PCN) is blue and the
node of concern (NC) is red.

circuit equations and derivations of the first two sensitivities for Table 4.2 are in Appendix
C.1.

For the configurations in rows 1 and 2,3 for which the disturbance is on the other side of
the PCN than the NC, the disturbance has no effect on the voltage at the NC. That is, the
PCN injection fully cancels the effect of the disturbance injection on the NC voltage. In the
bottom two configurations the NC is on the same side of the VPC node as the disturbance.
In these circumstances, for most z01 and z12 values, the PCN injection reduces the effect of
the disturbance on the voltage, but does not eliminate it.

Implementation Insight 1. When concerned with voltage magnitude(s) of a node or set of
nodes, a PCN should be placed close to the node(s) of concern, preferably between the node(s)
of concern and the disturbance node(s).

4.3 VPC and Upstream Line Flow Disturbance

Sensitivity

To clearly demonstrate the effect that disturbance injections have on upstream line flows for
radial circuits, we use the same four node circuit in Fig. 4.3 and again make the assumption
that the injections are constant-current. With this assumption, VPC only affects upstream
line flows. In practice, VPC affects downstream line flows as well, due to the voltage depen-
dencies of the downstream loads and generators. However these effects are second order and
may not be significant.

3The circuits in Table 4.2 can be thought of as an equivalent circuit models for larger circuits. For
example, the configuration in row 2 corresponds to the IEEE 13 Node Feeder circumstance in which node
675 is the NC, there is a PCN at node 692 and there is a disturbance injection at node 611.



CHAPTER 4. VOLTAGE PHASOR CONTROL FOR DISTRIBUTION NETWORKS 44

Row Configuration Open Loop Sensitivity Sensitivity With VPC

1 ∂i01
∂i3

= −1 ∂i01
∂i3

= 0

2 ∂i12
∂i1

= 0 ∂i12
∂i1

= z01
z01+z12

3 ∂i01
∂i1

= −1 ∂i01
∂i1

= − z12
z01+z12

Table 4.3: Line flow disturbance sensitivities. The phasor controlled node (PCN) is blue and the
line flow of concern (LC) is red.

Similar to the voltage sensitivities, we define the “Line of Concern” (LC) for a given
configuration as the line at which we are concerned about line flow constraint violations. We
consider the three PCN/LC/disturbance configurations in Table 4.3.4 The circuit equations
and derivations for Table 4.3 are in Appendix C.2.

In the circuit in row 1 of Table 4.3, in which the disturbance is downstream of the PCN,
the PCN completely shields the upstream line flows from downstream disturbance injections.
In the circuit in row 2, in which the disturbance is upstream of the PCN and the LC, the
VPC can either increase or decrease |i12| depending on the circumstance. In the circuit in
row 3, in which the disturbance is upstream of the PCN but downstream of the LC, the
disturbance affects i01 but VPC reduces the likelihood of idist producing a |i01| constraint
violation.

Bounds on changes in the upstream current magnitude

Regarding line flow constraint violations, we are interested in the disturbance-sensitivity of
current magnitudes. Unfortunately, generally

|∂i01
∂i1

| ≠ ∂|i01|
∂i1

.

Furthermore, the magnitude operator is not analytic, and therefore we cannot use a standard
derivative.

Thus, we are left with conservative bounds on the changes of |i01|. To articulate these
bounds, we define the following variables for i01 and corresponding quantities for i12:

• ∆i1: The disturbance injection current at node 1.

4The circuits in Table 4.3 can also be thought of as equivalent circuit models for larger circuits. For
example, the configuration in row 3 corresponds to the circumstance in which the line between nodes 671
and 632 is the LC, there is a PCN at 692, and there are disturbance injections at 652 and 680.
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• : The i01 current before ∆i1 is added to the injection at node 1.

• iol01: The i01 current after ∆i1 is added when the system is run open loop (ol).

• iVPC
01 : The i01 current after ∆i1 is added when VPC holds node 2’s voltage phasor
constant.

For clarity, Lemmas 4.3.1, 4.3.2, and 4.3.3 assume the pre-disturbance injections are constant-
current and the disturbance is defined as a current injection as well.

Lemma 4.3.1. |iVPC
01 | − |ibef01 | ≤ |∆i1|| z12

z01+z12
|.

Lemma 4.3.2. |iVPC
12 | − |ibef12 | ≤ |∆i1|| z01

z01+z12
|.

Lemmas 4.3.1 and 4.3.2, proved in Appendix C.3, bound the changes in the upstream current
magnitudes in terms of the disturbance magnitude |∆i1| and the line impedances.

While Lemmas 4.3.1 and 4.3.2 bound the changes in the upstream line flows, it does not
state whether VPC always helps or hurts when a disturbance increases the upstream line
flows. For the circuit in row 2 of Table 4.3, the effect of VPC depends on the directions of
ibef12 and ∆i1 in the complex plane, as well as the line impedances. For the circuit in row
3, however, we can bound the difference between |iVPC

01 |2 and |iol01|2 for all disturbances that
increase |iol01|.

Lemma 4.3.3. For the circuit in row 3 of Table 4.3, if z01 and z12 have the same X/R ratio,
and if ∆i1 increases |i01|, then

|iol01|2 − |iVPC
01 |2 > (1− a)|∆i1|2 > 0,

where a =
z12

z01 + z12
∈ [0, 1] ⊂ R.

Lemma 4.3.3, proved in Appendix C.4, states that if the lines between nodes 0 and 1 and
nodes 1 and 2 have the same X/R ratio, then the VPC at node 2 reduces the risk that
∆i1 will create an |i01| constraint violation, regardless of the pre-disturbance i01, i1, and v̂2
values. Furthermore, the intuition derived from the proof of Lemma 4.3.3 is that if the X/R
ratios for z01 and z12 are not pathologically different, then VPC reduces the risk that ∆i1
will create an |i01| constraint violation.

Assessing the conservativeness of the upstream line flow bounds

The bounds in Lemmas 4.3.1, 4.3.2, and 4.3.3 are conservative. To assess the conservativeness
of the bounds, we ran a test on the circuit in row 3 of Table 4.3 which compared the Lemma
bounds with the observed change in |i01| for a range of disturbance injections at node 1. We
set the line impedances z01 = z12 = 0.5 + 0.5j. The current magnitudes were normalized so
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Figure 4.4: Comparison of the bounds in Lemmas 4.3.1 and 4.3.3 for the circuit in row 3 of Table
4.3 for disturbances with a range of power factors. (Lemma 4.3.1 is “Lemma 1” and Lemma 4.3.3
is “Lemma 2.”)

that the pre-disturbance |i01| = 1. The pre-disturbance voltage magnitudes at nodes 1 and 2
were 0.97 and 0.95 respectively. Disturbance injections with a range of power factors, from 0
to 1 lagging (extracting reactive power), and from 1 to 0.7 leading (injecting reactive power),
were injected at node 1. The VPC at node 2 adjusted its injection in order to maintain its
assigned voltage phasor.

Fig. 4.4 plots |i01| vs. the power factor of the disturbance at node 1 and demonstrates that
the Lemma 4.3.1 bound ranges between conservative and tight. For this example, the Lemma
4.3.1 bound does not assert that VPC reduces the increase in |i01| when the disturbance has
a leading power factor of 0.7 or less. Fig. 4.4 also demonstrates that, while the Lemma 4.3.3
bound is generally quite conservative, the Lemma 4.3.3 bound does accurately assert that
VPC reduces the increase in the upstream line flow current magnitudes for all disturbance
power factors.

Implementation Insight 2. When concerned with a line flow or set of line flows, a PCN
should be placed downstream, but as close as possible, to the line flow(s) of concern.
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4.4 Voltage Magnitude Control

As stated in Section 4.1, the power flow manifold permits two degrees of freedom. Thus, a
voltage magnitude command for a given node must be accompanied by an additional state
command. We choose the Adjustment Power Factor (APF) of the feedback control as the
second state command, which includes stiff Volt-Watt and Volt-VAR control as the APF =
1 and APF = 0 special cases, respectively, and implement VMC with Algorithm 3.

Algorithm 3: Voltage Magnitude Control

Optimization
At a slower cadence,

1. Run OPF using load/generation predictions.

2. Broadcast magnitude targets and APFs to the MFCs.

3. Gather measurements, adjust load predictions,
repeat.

Distributed Magnitude Feedback Controllers (MFCs)
Each MFC, at a faster cadence,

1. Measure the local voltage magnitude.

2. If a new magnitude target and/or APF has been received, update the magnitude
target and/or APF.

3. Adjust the P and Q of subordinate DERs in way that maintains the APF and
brings the local voltage magnitude closer to the magnitude target,
repeat.

While there always exist real and reactive power adjustments at a given node that pro-
duce any voltage phasor assignment, there does not always exist real and reactive power
adjustments with a given APF that produce any voltage magnitude assignment. That is,
a function can be defined from an arbitrary domain of voltage phasors to the appropriate
codomain of power adjustment using Ohm’s Law. However not all APF/voltage magnitude
target combinations can be mapped to power injections on the power flow manifold [94]. For
example, consider a predominantly reactive network in which an MCN is assigned APF = 1
(stiff Volt-Watt control). Adjusting the real power injection will have limited effect on the
voltage magnitude, thus many voltage magnitude assignments are infeasible.

Implementation Insight 3. Care must be taken when selecting APFs for VMC. Assigning
an infeasible voltage magnitude target/APF will produce voltage instabilities.
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We observed in simulations that VMC is effective in reducing the impact of disturbances
on voltage magnitudes in the neighborhood of a given MCN node, as expected. As we high-
light in the next section, while VMC usually helps upstream line flow constraint violations,
it generally does so less effectively than VPC and, in some cases, exacerbates the increase in
upstream line flow caused by the disturbance.

4.5 Comparing VPC and VMC for Upstream line

flow Constraint Violations

To demonstrate how VPC and VMC reject the effect of disturbances on upstream line flows,
we ran two sets of simulations similar to the set that created Fig. 4.4. We used the circuit
in row 3 of Table 4.3 and again set z01 = z12 = 0.5 + 0.5j.

Simulation set I: non-nominal baseline

The first set of simulations use a pre-disturbance baseline with excess distributed generation,
similar to the scenarios considered in [68], [79], and [87]. Both nodes 1 and 2 injected .06 W
and extracted .02 VAR giving a .95 lagging power factor5 and pre-disturbance v2 = 1.05∠1◦.
The current magnitudes were normalized so that the pre-disturbance |i01| = 1. Disturbance
injections with a range of power factors from 0.7 to 1 lagging, and from 1 to 0.7 leading
were injected at node 1. The PFC or MFC at node 2 adjusted its injection in order to
maintain v̂2 = 1.05∠1◦ or |v2| = 1.05, respectively. Fig. 4.5 plots |i01| vs. the power factor
of the disturbance. The black line is |ibef01 |, the magenta line with squares is |iol01|, and the
blue line with x markers is |iVPC

01 |. The red, orange, and yellow lines with circles represent
the post-disturbance |i01| with VMC applied to node 2 with lagging power factors of 0, 0.5,
and 1, respectively. Fig. 4.6 plots the real and reactive power injection adjustments (control
effort) at node 2 that the PFC and MFCs used to maintain the assigned voltage targets.

Fig. 4.5 demonstrates that VPC reduces the effect of the disturbance on |i01|, regardless
of the disturbance power factor. With APF = 0, VMC slightly increases the effect of the
disturbance on |i01| for all but the most lagging power factor disturbance. This scenario
is similar to the scenarios in [79] and [87] in which Volt-VAR control exacerbated the line
flow/thermal constraint violations because the Volt-VAR controllers’ VAR extractions re-
duced the power factor of the line flows. With APF = 0.5, VMC slightly reduces the effect
of the disturbance on |i01| for leading power factor disturbances. With APF = 1, VMC re-
duces the effect of the disturbance on |i01| significantly for leading power factor disturbances.
VMC’s overreaction for leading power factor disturbances is explained by Fig. 4.6—the APF
= 1 VMC brings the voltage at node 2 back down by extracting a lot of real power, which

5We use the convention that a “lagging” power factor extracts VARs, regardless of whether real power
is being injected or extracted.



CHAPTER 4. VOLTAGE PHASOR CONTROL FOR DISTRIBUTION NETWORKS 49

Figure 4.5: Line flows for the circuit in row 3 of Table 4.3 with a |v2| = 1.05 non-nominal pre-
disturbance baseline.

Figure 4.6: The changes in node 2’s power injections corresponding to Fig. 4.5.
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Figure 4.7: Line flows for the circuit in Row 3 of Table 4.3 with the nominal pre-disturbance
baseline.

is expensive. This real power extraction cancels some of the pre-disturbance baseline real
power flow from node 0 to 1.

Simulation set II: nominal baseline

In the second set of simulations, the pre-disturbance baseline for the test was i1 = i2 = 0,
which results in v1 = v2 = 1 and |i01| = 0 (the “nominal” baseline). Disturbance loads with
a range of power factors from 0 to 1 lagging and from 1 to 0.7 leading were extracted from
node 1, lowering node 2’s voltage below 1. The PFC or MFC at node 2 adjusted its injection
in order to maintain v2 = 1. In addition to the standard power factors, we also included
the “APF = 0.9 leading” power factor VMC. Unlike the standard power factor VMCs, when
the voltage magnitude is higher than the target, the APF = 0.9 leading VMC extracts real
power and counter-intuitively injects reactive power. When the voltage is lower than the
target, it does the opposite. Fig. 4.7 plots |i01| vs. the power factor of the disturbance and
provides a number of insights.

First, the 0.7 leading power factor disturbance injection does not result in any change
in the voltage magnitude at node 2. Thus, none of the VMCs adjust the power injection at
node 2, and therefore do not reduce the increase in the upstream line flow. The VPC, on
the other hand, recognizes the change in the voltage phasor angle at node 2, and adjusts
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its real and reactive power injections so that the increase in the line flow is one half of the
no-control case.

Second, the VMC can exacerbate the effect of the disturbance on |i01|. This is demon-
strated by the 0.9 leading APF for disturbances with lagging power factors, and by the APF
= 1 Volt-Watt controller when the disturbance power factor is close to zero.

Third, Fig. 4.7 demonstrates that the VMC that reduces the effect of the disturbance
on the upstream line flow the most is the VMC for which the APF is matched to the power
factor of the disturbance.

Fourth, the VPC injection is very similar to the VMC injection when the VMC’s APF
matches the disturbance injection’s power factor. This is true even when the disturbance
power factor is leading—when the disturbance power factor is leading and the voltage is low,
the VPC extracts reactive power and injects real power. Extracting reactive power when
the voltage is low is non-intuitive, but is the correct response for reducing the impact of
a leading power factor disturbance. This VPC–VMC matching characteristic is not a hard
rule for all pre-disturbance baselines and line impedances, however it does provide intuition
for how VPC responds to disturbances: VPC injections tend to have power factors similar
to the power factors of the disturbance injections that prompted the VPC injections.

Implementation Insight 4. VPC usually outperforms VMC in reducing the effect of dis-
turbances on line flows that are upstream of both the disturbance and the controlled node in
two circumstances:

1. when the power factor of VMC does not match the power factor of the disturbance;

2. when the disturbance has a leading power factor.

4.6 Conclusion

In this chapter we introduced Voltage Phasor Control as a novel approach for implementing
OPF which incorporates distributed feedback controllers. We described how VPC feedback
rejects the effects of disturbance injections on the network’s voltage magnitudes and up-
stream line flows. Through simulations, we compared the performance of VPC and VMC.
These results establish VPC as a tool that can help distribution networks operate safely and
reliably within their constraints. Ongoing research directions include alternative distributed
feedback laws that incorporate the voltage angle measurement, as well as the VPC power
flow optimization formulation.
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Chapter 5

Power Flow Linearization

In power systems analysis, we are often interested in how changes in the real and reactive
power injections will affect the voltages on the network.1 Unfortunately, power flow equations
that explicitly give the network voltages as functions of the power injections do not exist [94].2

However, at a given operating point, it is possible to provide the power-voltage sensitivity—a
linear approximation of how changes in power injections change the voltages on the system.
This is the goal of power flow linearization and this chapter. An overview of the prevalent
power flow linearizations is given in Section 7.4.

5.1 Useful Operations for Power Flow Linearization

We find that the following operations, defined in [93], are useful for determining the power
flow linearization.

Complex-to-real Operator

The ⟨·⟩ operator converts from n-dimensional complex space to equivalent 2n-dimensional
real space.

⟨·⟩ :=



[
Re(·) − Im(·)
Im(·) Re(·)

]
, if · is a matrix,[

Re(·)
Im(·)

]
, if · is a vector.

(5.1)

Appendix E.1 gives some intuition for how ⟨·⟩ maintains the relationship between complex
numbers in real space.

1Given the voltage changes, it is easy to derive the changes in the current flows on the network using
Ohm’s Law.

2Solving for the network voltages given the power injections is referred to as the “power flow,” or “load
flow” problem.
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Operators for Differentiating Complex Vectors in Real Space

The following matrices/operations are helpful for calculating the partial derivatives of ⟨·⟩:

diag(·) := A diagonal matrix with the entries of the vector · on the diagonal,

N :=

[
In 0n
0n −In

]
,

R(·) :=
[
diag

(
cos(∠·)

)
−diag(| · |)diag

(
sin(∠·)

)
diag

(
sin(∠·)

)
diag(| · |)diag

(
cos(∠·)

) ]
.

N is the derivative of the complex conjugate of a given variable,

N =
∂⟨̄·⟩
∂⟨·⟩

=

〈
∂ ·̄
∂·

〉
.

R(·) is the derivative of a vector in rectangular coordinates with respect to its polar coordi-
nates,

R(·) = ∂⟨·⟩
∂
[ |·|
∠·

] .
Using the chain rule, both N and R(·) can be used to give the derivative of composite
functions that contain complex conjugates and rectangular/polar coordinates, respectively.

5.2 The AC Power Flow Manifold

Given the network voltages, it is easy to solve for the network power injections using (5.2).
However, given the network power injections, it is not easy to determine the network voltages.
This is, in part, due to the fact that the map from the network voltages to the power injections
is not a one-to-one function. As stated in the introduction of this chapter, in place of finding
equations that give the voltages as functions of the power injections, we are interested in
finding the power-voltage sensitivity at a given point. We achieve this by finding the tangent
plane to the implicitly-defined power flow manifold [93], [94], [97].

AC power flow describes the nonlinear relationship between the complex voltages u and
powers ξ. From Kirchhoff’s Current Law, Ohm’s Law, and the complex power equation, we
get the equation that defines the AC power flow manifold,

ξ = diag(u)Y u, (5.2)

where Y is the complex admittance matrix, u is the complex representation of (v, θ), and ξ
is the complex representation of (p, q):

u = v cos(θ) + jv sin(θ),

ξ = p+ jq.
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As demonstrated in [93], defining x as the grid state for an n-node network3,

x = (v, θ, p, q) ∈ R4n,

we can rewrite the power flow manifold in implicit form using

F (x) = ⟨diag(u)Y u− ξ⟩ = 02n, (5.3)

where F : R4n → R2n constrains the manifold in R4n such that the power flow manifold is
in R2n/there are 2n free variables. The manifold is defined as

M := {x
∣∣ F (x) = 02n}. (5.4)

5.3 The AC Power Flow Manifold Tangent Plane

The tangent plane at x∗ is the best local linear approximation of M at x∗, and is defined
by the normal vector space to M at x∗. Since M is a 2n-dimensional submanifold of 4n,
the normal vector space will be 2n-dimensional and the tangent plane will be the orthogonal
2n-dimensional vector space. Lemma 1 in [93] states that M is a 2n-dimensional regular
submanifold of R4n, thus the 2n-dimensional tangent plane can be determined at every point
of M.

The normal vector space is given by the row space of the Jacobian of F at x∗. The
tangent plane is the vector space that is orthogonal to the normal vector space,

T |x∗ :=

{
x
∣∣ ∂F (x)

∂x

∣∣∣∣
x∗
δx = 02n

}
.

Appendix E.2 gives a two-dimensional example of a tangent plane to provide some intuition
for implicit functions and tangent planes.

We need the Jacobian of F with respect to x to find T |x∗ for the power flow manifold.
(5.3), however, is defined in terms of the complex representations of the variables in x.
One option for differentiating F is to write (5.3) in real coordinates using the ⟨·⟩ complex
transformation,

0 = ⟨diag(u)Y u− ξ⟩

0 =

[
diag(Reu) −diag(Imu)
diag(Imu) diag(Reu)

]
N

[
ReY − ImY
ImY ReY )

] [
Reu
Imu

]
−
[
p
q

]
. (5.5)

3We use the term “node” rather than “bus” because the power flow manifold equations work for three-
phase networks as well as single-phase networks. “node” is intentionally ambiguous—for single-phase net-
works (or single-phase equivalent networks), each bus on the network is a node. For multiple-phase networks
that are not analyzed using a single-phase equivalent network, each phase at each bus is a node. That is, if
an unbalanced three-phase network has k buses and three phases at every bus, there will be n = 3k nodes.
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Rather than differentiating (5.5), we find that there is a set of equations that is easier to
differentiate. Adding the real and imaginary portions of the bus current injection variable i
to the state vector x ∈ R4n we get the new real-valued state variable z,

z = (v, θ,Re i, Im i, p, q) ∈ R6n.

With z, the power flow manifold is determined by the Ohm’s Law equations and the power
injection equations:

04n = F (z) =

[
FOhm’s(z)
F power(z)

]
=

[
⟨Y u− i⟩

⟨diag(u)i− ξ⟩

]
.

The same power flow manifold manifold M can be defined by

M :=
{
z
∣∣ F (z) = 04n

}
,

which is now a submanifold of R6n. In the 6n-dimensional z space, the normal vector space
at z∗ defined by the rows of the Jacobian of F (z) is 4n-dimensional. Thus, the tangent plane
defined as the space orthogonal to the normal vector space,

T |z∗ :=
{
z
∣∣ ∂F (z)

∂z

∣∣∣∣
z∗
δz = 04n

}
,

is still a 2n-dimensional plane. Once T |z∗ is calculated for z ∈ R6n, we eliminate the bus
current injections to project T |z∗ onto x ∈ R4n, providing T |x∗ .

The AC Power Flow Manifold Tangent Plane Equation

Lemma 5.3.1. The power flow manifold tangent plane at x∗ ∈ R4n is

T |x∗ :=
{
x
∣∣ A|x∗ δx = 02n

}
, (5.6)

where A|x∗, the power flow manifold Jacobian with respect to x ∈ R4n at x∗, and Γ|x∗, the
voltage-power sensitivity matrix at x∗, are given by

A|x∗ =
[
Γ|x∗ −I

]
∈ R2n×4n, (5.7)

Γ|x∗ =
((
⟨diag(Y u∗)⟩+ ⟨diag(u∗)⟩N⟨Y ⟩

)
R(u∗)

)
∈ R2n×2n, (5.8)

where u∗ is the complex representation of the (v∗, θ∗) portion of x∗.

Proof. Keeping in mind that diag(a)b = diag(b)a, the partial derivatives of the manifold are

∂FOhm’s

∂υ
= ⟨Y ⟩R(u∗) ∂FOhm’s

∂ι
= −I ∂FOhm’s

∂s
= 0
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∂F power

∂υ
= ⟨diag(i∗)⟩R(u∗) ∂F power

∂ι
= ⟨diag(u∗)⟩N ∂F power

∂s
= −I,

and the Jacobian is [
∂FOhm’s

∂x
∂Fpower

∂x

]
=

[
⟨Y ⟩R(u∗) −I 0

⟨diag(i∗)⟩R(u∗) ⟨diag(u∗)⟩N −I

]
.

The tangent plane is given by the right-nullspace, or kernel, of the Jacobian,[
∂FOhm’s

∂x
∂Fpower

∂x

]∣∣∣∣
z∗

δz = 04n, where δz = (z − z∗).

Eliminating the bus current injections using[
δRe i
δ Im i

]∣∣∣∣
z∗

= ⟨Y ⟩R(u∗)
[
δv
δθ

]∣∣∣∣
z∗

from the first 2n rows of the Jabobian and substituting Y u∗ for i∗ gives the equations for
A|x∗ and Γ|x∗ :

A|x∗ =
[
Γ|x∗ −I

]
∈ R2n×4n,

Γ|x∗ =
((
⟨diag(Y u∗)⟩+ ⟨diag(u∗)⟩N⟨Y ⟩

)
R(u∗)

)
∈ R2n×2n.

T |x∗ is the right-nullspace, or kernel, of A|x∗ . Lemma 5.3.2 states that the right-nullspace
of A is orthogonal to the vector space of the rows of A.

Lemma 5.3.2. image(AT ) ⊥ ker(A)

Proof. Assume AT c ̸⊥ x for some vector c and some x ∈ ker(A).

0 ̸= (AT c)Tx

0 ̸= cTAx

0 ̸= 0

Thus we have derived a contradiction and the assumption must be wrong.

Two-Bus DC Demonstration of the Power Flow Manifold

In this section we derive and plot the power flow manifold for a two-bus DC network. While
almost all power systems are AC not DC, two-bus DC networks are useful for developing
intuition because they have only four dimensions. Thus, this two-bus DC demonstration,
as well as the two-bus DC demonstrations in Sections 6.1 and 7.2, are intended to help
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develop understanding. AC, not DC, networks are the primary application of NPFL for
power systems analysis.

The DC voltages, currents, and powers are

v ∈ Rn, ℓ ∈ Rn, and p ∈ Rn.

We define the following DC states

x = (v, p) ∈ R2n, and z = (v, ℓ, p) ∈ R3n

The DC power flow manifold is defined as

M =
{
x
∣∣ F(x) = 0n

}
, or

M =

{
z
∣∣ [FOhm’s

Fpower

]
=

[
Yv− ℓ

diag(v)ℓ− p

]
= 02n

}
.

The partial derivatives give the linearization of the power flow manifold:[
∂FOhm’s

∂z
∂Fpower

∂z

]∣∣∣∣
z∗

=

[
Y −I 0

diag(ℓ∗) diag(v∗) −I

]
,

where Y is the real-valued admittance matrix. Eliminating the current injection equations
and ℓ and using δℓ∗ = Yδv∗ gives the expression for the tangent plane to the power flow
manifold in x-space (R2n for DC circuits),

T |x∗ :=
{
x
∣∣ A|x∗ δx = 0n

}
, (5.9)

where

A|x∗ =
[
Γ|x∗ −I

]
∈ Rn×2n,

Γ|x∗ = (diag(Yv∗) + diag(v∗)Y) ∈ Rn×n.

Fig. 5.1 plots the power flow manifold and the tangent plane for a two-bus DC network
in (δv1, δp1, δp2) space. The origin corresponds to the point at which δv1 = δp1 = δp2 = 0.
The power flow manifold M is a curved surface that touches tangent plane at the origin.
The tangent plane is a flat surface that touches the tangent plane only at the origin, and
corresponds to the right-nullspace of A. The vector/space AT is orthogonal to both the power
flow manifold and the tangent plane at the origin, That is, the row space of A is perpendicular
to the right-nullspace of A, as stated in Lemma 5.3.2. Figure 5.1 demonstrates that T |x∗ is
a good approximation of M in the vicinity of x∗.

The points x that are on the AC power flow manifold tangent plane defined in (5.6)
satisfy the equation

A|x∗ δx = 02n.
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(a) −0.5 ≤ δp ≤ 0.5 (b) −0.1 ≤ δp ≤ 0.1

(c) −0.01 ≤ δp ≤ 0.01

Figure 5.1: The power flow manifold and the tangent plane for a two-bus DC system. δv2 is
not plotted because it would require four dimensions.
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Rearranging this equation and dropping |x∗ for notation clarity gives the voltage-power
sensitivity equation [

δp
δq

]
= Γ

[
δv
δθ

]
, (5.10)[

δs
]
= Γ

[
δυ

]
. (5.11)

5.4 The Power-Voltage Sensitivity Matrix

In power systems analysis, we are often interested in how changes in the real and reactive
power injections will affect the voltages on the network. We define this relationship as the
“power-voltage” sensitivity and use the matrix Ψ,[

δv
δθ

]
= Ψ

[
δp
δq

]
, (5.12)[

δυ
]
= Ψ

[
δs
]
.

(7.14) gives the inverse of the power-voltage sensitivity. Due to the structure and non-
injectivity of the power flow equations (5.4), in order to get the power-voltage sensitivity,
we must invert (7.14). Unfortunately, Γ is not full rank and is therefore not invertible.
Γ will always be rank deficient becuase of the ambiguity in the voltage angle reference.
Furthermore, if there are not shunt admittances on the network the bus admittance matrix
Y will have a zero eigenvalue and Γ will have two zero eigenvalues—one corresponding to the
common mode voltage magnitude [98], and one corresponding the angle-reference ambiguity.

The rank deficiency of Γ can be addressed by using the Moore-Penrose pseudoinverse of
Γ, Γ†, rather than the inverse. However the following two issues arise when Γ† is used as the
power-voltage sensitivity in real power system applications.

1. Γ† does not hold the voltage at any buses constant. In power systems analysis there
is almost always at least one (approximately) constant voltage bus. For distribution
network modeling, the substation acts like a constant voltage bus.

2. The power injections at all n nodes δs do not necessarily obey power balance. In power
systems at steady state, power injected into the network must be equal to the power
extracted from the network. Furthermore, the (change in) power injections at all n
nodes are often not known a priori. For example, on a distribution network with one
substation, the change in the substation power injection that accompanies the change
in the power injections elsewhere on the network is not known ahead of time.

Chapter 6 introduces a power flow linearization that addresses Issue 1. Chapter 7 builds on
the power flow linearization introduced in Chapter 6 to produce a power flow linearization
that addresses both Issue 1 and Issue 2.
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Chapter 6

Power Flow Linearization for
Networks with a Slack Bus

Often, in power systems, the voltage magnitude at (at least) one of the nodes on the network
is held constant. For transmission networks, the excitation of some generators are controlled
to maintain a constant voltage.1 For distribution networks with a single substation that is
attached to the transmission network, the substation acts like a constant voltage bus.2

In addition to the constant voltage magnitude, it is necessary to establish an angle
reference for the network. While any node can technically be chosen as the angle reference,
choosing a/the node with constant voltage is the logical choice. The angle of the bus that is
used as the angle reference is set to zero at all times, and is therefore also constant.

In the load flow problem the voltage phasors are solved for as a function of the power
injections on the network. The power injections are not given for every bus on the network—
load flow requires that one bus is a “slack bus,” for which the power injection is not specified.3

The slack bus has two attributes in load flow—first, the slack bus is constant voltage regard-
less of what the generation/load profile of the system is, and second, the slack bus adjusts its
power injection so that power balance (power in = power out) is maintained for the network.4

Using a slack bus to solve load flow is particularly appropriate for distribution networks
with a single substation because the substation provides both the functionalities of the slack

1In load flow, these generators are the “PV ” buses.
2The substation can be approximated as a voltage source or “infinite bus” because the impedance of

the transmission network seen from the distribution network is very small compared with the distribution
network impedances. The impedance of the transmission network is small because the transmission lines
have less impedance than the distribution lines and because of the substation transformer—the per unit base
impedance on the transmission side of the transformer will be greater by a factor of the transformer’s turns
ratio squared.

3The term “slack bus” goes back to the 1950s [99].
4It is possible to separate the slack bus’s constant-voltage and power-balance attributes, and it is possible

to divide the power-balance responsibility among multiple nodes on the network [100]–[102]. Section 7.3
provides a formulation that can support multiple buses participating in power-balance, rather than just a
single constant-voltage bus.
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bus—the substation acts like a constant voltage bus and injects enough power to match the
net power demand of the rest of the distribution network. Thus, a power flow linearization
that takes into account both the constant-voltage and power-balance attributes of a slack
bus is useful for distribution network modeling. Most power flow linearizations, such as DC
Power Flow [101], [103], implicitly assume that the network has a slack bus [104].

6.1 The Power Flow Manifold Tangent Plane with a

Slack Bus

Without loss of generality, let us assume that bus 1 is the slack bus. Constant slack bus
voltages correspond to setting the change in the voltage at that bus equal to zero δv1 = 0
and δθ1 = 0. We define the column-elimination matrix for a network with a slack bus χ1 as

χ1 =


0 0

In−1 0
0 0
0 In−1

 ∈ R2n×(2n−2),

We name the δυ vector with the slack bus entries removed

χT
1
δυ = χT

1 δυ,

and the state vector x with the slack bus voltage entries removed

χT
1
x =

[
χ1 0
0 I2n

]T
x.

We define the “power flow equations with a slack bus” Fχ1 : R4n−2 → R2n−2 to be the
same as F in (5.3) but with the first and (n+ 1)’th entries of x, corresponding to the slack
bus voltage magnitude and angle, removed from x and set to 1 and 0 in (5.3), respectively.5

With a slack bus, the power flow manifold is a (2n− 2)-dimensional subspace of R4n−2 that
satisfies Fχ1 ,

6

Mχ1 :=
{

χT
1
x
∣∣ Fχ1(χT

1
x) = 02n

}
. (6.1)

The dimension of a manifold corresponds to the degrees of freedom for the function that the
manifold implicitly defines.

5We assume that the slack bus voltage is 1 per unit (p.u.).
6We have dropped the |x∗ notation, which indicates the point at which the tangent plane is calculated

and touches the power flow manifold, for notational clarity.
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Lemma 6.1.1. The power flow manifold Mχ1 is given by the intersection of M and the

x
∣∣ [1 0n−1 0 03n−1

0 0n−1 1 03n−1

]
x =

[
1
0

]
(6.2)

plane in R4n when the slack bus voltage magnitude is 1.

Proof. By definition, Mχ1 is M with the first and (n + 1)’th entries of x set to 1 and 0,
respectively. Thus, Mχ1 is given by the intersection of M and the aforementioned plane in
R4n.

Next we define the tangent plane for a power system with a constant voltage node.
This tangent plane is useful because it provides intuition for what the voltage-power and
power-voltage sensitivity mean when there is a constant-voltage node on the network.

Theorem 6.1.2. The power flow manifold tangent plane at x∗χ1
∈ R4n−2 is

Tχ1 :=
{

χT
1
x
∣∣ Aχ1 χT

1
δx = 02n

}
, (6.3)

where Aχ1, the Jacobian for the power flow manifold for a network with a constant-voltage
node, is

Aχ1 =
[
Γχ1 −I

]
, (6.4)

and Γχ1, the voltage-power sensitivity for a network with a constant voltage node, is

Γχ1 = Γχ1. (6.5)

Proof. Lemma 5.3.1 defines the power flow manifold for x ∈ R4n with (5.6). The power flow
manifold tangent plane Tχ1 at x∗χ1

∈ R4n−2 is given by the intersection of T and the plane
defined in (6.2). Thus, Tχ1 is the projection onto R4n−2 of the set of vectors in R4n that are
orthogonal to both the rows of A and the rows of the matrix that define the plane in (6.2),

Tχ1 =

{[
χ1 0
0 I2n

]T
x
∣∣ Aδx = 02n and

[
1 0n−1 0 03n−1

0 0n−1 1 03n−1

]
δx = 02

}
. (6.6)

The set of vectors in R4n that are orthogonal to the rows of the matrix in (6.2) is

image

([
χ1 0
0 I2n

])
.

Thus the second constraint in (6.6) constrains the permissible vectors δx to be the set of
vectors with 0s in the 1st and (n+ 1)th entries.
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The intersection of the set of vectors δx that are in image

([
χ1 0
0 I2n

])
and satisfy

Aδx = 0 is the set of vectors with 0s in the 1st and (n + 1)th entries that satisfy satisfy
Aδx = 0.

Projecting this set onto R4n−2 gives the set of vectors that satisfy Aχ1 χT
1
δx = 0, where

Aχ1 = A

[
χ1 0
0 I2n

]
.

The row space of Aχ1 , or image(AT
χ1
), is the 2n-dimensional vector space that is normal

to Mχ1 and Tχ1 at
χT
1
x∗. The right-nullspace of Aχ1 is the power flow manifold tangent

plane when there is a constant voltage bus (Lemma 5.3.2). image(Γχ1) ∈ R2n is the vector
space of permissible power flow injections according to the power flow manifold tangent plane
approximation. The right-nullspace of Aχ1 and image(Γχ1) are related, but exist in different
dimensional spaces—ker(Aχ1) ∈ R4n−2 and image(Γχ1) ∈ R2n. If the right-nullspace of Aχ1

is projected onto δs ∈ R2n space, it is equivalent to image(Γχ1).

Two-Bus DC Demonstration of the Power Flow Manifold Tangent
Plane with a Slack Bus

In this section we demonstrate the power flow manifold tangent plane for a two-bus DC
network in order to provide intuition. As stated for the two-bus DC demonstration in Section
5.3, two-bus DC networks are useful for developing intuition because x is four-dimensional.
Thus, by removing one dimension of x, the manifolds and tangent planes can be plotted in
three dimensions.

The two-bus DC demonstration in Section 5.3 introduced the tangent plane of the power
flow manifold for a two-bus DC network (5.9) without a slack bus. For a two-bus DC network
with a slack bus at bus 1, the tangent plane of the power flow manifold is given by

Tχ1
:=

{
χT
1
x
∣∣ Aχ1 χT

1
δx = 0n

}
, where

Aχ1
=

[
Γχ1

−I
]
∈ Rn×(2n−1)

and Γχ1
is Γ with the first column removed.

Fig. 6.1 demonstrates both the tangent planes for the DC power flow manifold in (δp1,
δp2, δv1) space. The standard tangent plane (no slack bus) is a plane in (δp1, δp2, δv1) space
corresponding to the right-nullspace of A. The tangent plane to the DC power flow manifold
with bus 1 as a slack bus is the line that is the right-nullspace of Aχ1

. This line is given by
the intersection of the standard power flow linearization and the δv1 = 0 plane.
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Figure 6.1: The intersection of the two-bus DC power flow manifold tangent plane and the
δv1 = 0 plane. The intersection is ker(Aχ), the power flow manifold tangent plane when bus
1 is the slack bus.

Figure 6.2: The power flow manifold and the manifold tangent plane in two-dimensional
(δp1, δp2) space for the two-bus DC network with a slack bus.
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Figure 6.3: The two-bus DC power flow manifold and its tangent plane when bus 1 is a slack
bus. δv2 is plotted on the vertical axis.

Fig. 6.2 plots the tangent plane for the slack-bus network in Fig. 6.1 in (δp1, δp2) space.
The power flow manifold tangent plane of a network with a slack bus is given by the right-
nullspace or kernel of Aχ1 . In (δp1, δp2) space, the right-nullspace of Aχ1

is equivalent to
image(Γχ1).

Fig. 6.3 plots the two-bus DC power flow manifold when bus 1 is a slack bus in (δp1, δp2,
δv2) space. Since δv1 = 0, this is the full power flow manifold for the two-bus DC system.
Note, ATχ1

is a plane and both the power flow manifold and the tangent plane are lines in
(δp1, δp2, δv2) space. Thus, setting δp1, δp2, or δv2 determines the remaining two variables.

6.2 Naive Power-Voltage Sensitivity with a Slack Bus

We would like a power-voltage sensitivity expression/linearization for χT
1
δυ in terms of δs.

However, Γχ1 is not a square matrix and therefore it is not invertible. One way to get an
expression for χT

1
δυ in terms of δs is by taking the Moore-Penrose pseudoinverse of Γχ1 ,
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giving7

χT
1
δυ = Γ†

χ1
ds. (6.7)

The problem with using (6.7) as a power-voltage sensitivity is that it requires δs ∈ R2n as an
input. That is, (6.7) requires the power injections at all n buses as the input. For networks
with a slack bus, the power injection at the slack bus is not known a priori. (6.7) cannot be
used without a guess for the slack bus power injection. Chapter 7 introduces Nullspace-based
Power Flow, which does not require a guess for the slack bus power injection.

7We define Γ†
χ1

as the pseudoinverse of Γχ1 . That is, the pseudoinverse is taken after Γ is right-multiplied
by χ1.
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Chapter 7

Nullspace-based Power Flow
Linearization

Traditionally, the goal of power flow linearization has been to produce a matrix that approx-
imates the relationship between changes in the power injections (inputs) and changes in the
voltages on the system (outputs).1 In this chapter we introduce a modified goal for power
flow linearization—produce a matrix that takes a vector of changes in power injections as
the input and produces both the changes in the voltages on the system and an adjusted
vector of power injections that satisfies an approximation of power balance for the system.2

This chapter introduces Nullspace-based Power Flow Linearization (NPFL), a new power
flow linearization that addresses the modified power flow linearization goal above and incor-
porates the knowledge that the voltage at at least one node is held constant. For a network
with a single slack bus, NPFL incorporates the additional knowledge that the slack bus will
adjust its power injection so that the total power into the network is equal to the total power
out. For a network with a single slack bus, NPFL answers the following two questions.

1. How do the changes in the power injections at the non-slack buses change the slack
bus power injections, given that the slack bus is entirely responsible for maintaining
power balance?

2. How do changes in the power injections change the voltages at the non-slack bus nodes,
given that the slack bus is entirely responsible for maintaining power balance?

For distribution networks with a single substation, NPFL provides both an accurate
power-voltage sensitivity matrix and the sensitivities between each power injection (e.g.,
each distributed energy resource) and the substation power injection. The substation power

1Reminder: throughout this dissertation, “power injections” refer to both generators and loads. For a
load, the power injection is negative.

2“Power balance” is defined as asserting that the power injected into the network is equal to the power
that leaves the system, either as power to loads or as losses.
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injection sensitivity includes the voltage-dependencies of the shunt admittances and an ap-
proximation of the network power losses. The substation power injection sensitivity is useful
if, for example, the load on a given distribution network has overloaded the substation trans-
former and the power injections of the DERs on the network must be adjusted to avoid a
power outage. For distribution networks with a multiple substations, NPFL provides the
sensitivities between the power injections and each substation’s power injection. To the
author’s knowledge, an explicit equation for the substation/slack bus injection sensitivities
were not previously available.

While this dissertation focuses on distribution network applications of NPFL, NPFL
can be applied to transmission networks as well. Section 7.5 provides another application
of NPFL—improving locational marginal price (LMP) accuracy—that will be explored in
future research.

It is also important to state the limitations of NPFL. The accuracy of NPFL is en-
tirely based on the accuracy of the bus admittance matrix used to construct Γ. Thus, any
inaccuracies in the bus admittance matrix will manifest as inaccuracies in the NPFL for
a given network. Furthermore, any network properties that cannot be included in the bus
admittance matrix, such as loads with nonlinear voltage dependencies or transformer nonlin-
earities, cannot be captured by the NPFL network model. NPFL is also dependent upon the
accuracy of the state estimate at which the power flow manifold tangent plane is calculated.

Section 7.1 describes why NPFL is not obvious, by describing why simply pseudoinverting
Γχ1 does not answer Questions 1 and 2 above. Section 7.2 gives the NPFL for a network
with a single slack bus and Section 7.3 gives the NPFL for a general network. Section 7.4
gives an overview of the prevalent power flow linearizations, and their relationship to NPFL.
Section 7.5 gives a sample application of NPFL—determining the aggregate loss sensitivity
for a network at a given operating point.

7.1 Motivation for Nullspace-based Power Flow

Linearization

Chapter 6 concluded by giving the naive power-voltage sensitivity, Γ†
χ1

in (6.7). Γ†
χ1

takes δs,
the vector of the real and reactive power injections at all of the nodes on the network (the
input), and produces

χT
1
x, the vector of the voltage magnitudes and angles at the non-slack

bus nodes (the output).
We define

δs1 := the slack bus’s power injection.
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Let us also define the permutation matrix Ξ1 as

Ξ1 :=


1 0 0 0
0 0 1 0
0 In−1 0 0
0 0 0 In−1

 .
Ξ1 moves the (n + 1)th row to the second row and moves all of the other rows down. We
define Ξ1-permuted Γχ1 matrix and δs vector as

Ξ1
Γχ1 = Ξ1Γχ1 and

Ξ1
δs = Ξ1ds.

Ξ1
δs can be partitioned into δs1 and χT

1
δs, the power injections for the rest of the buses on

the network,

Ξ1
δs =

[
δs1

χT
1
δs

]
, where

χT
1
δs = χT

1 δs.

(6.7) requires δs1 as an input. This δs1 requirement is problematic because the slack
bus’s power injection in generally not known a priori. (6.7) can be used if δs̃1, a guess
for the slack bus’s injection, is provided by an external source. We define Ξ1

δs̃ as the Ξ1
δs

vector with δs̃1 inserted in the first two entries—the entries corresponding to the slack bus.[
Ξ1
Γχ1

]† ∈ R(2n−2)×2n converts a Ξ1
δs̃ ∈ R2n vector to a χT

1
δυ ∈ R(2n−2) vector,

χT
1
δυ =

[
Ξ1
Γχ1

]†
Ξ1
δs̃.

Because Ξ1
Γχ1 has two more rows than columns,

[
Ξ1
Γχ1

]†
will have a right-nullspace that is

at least two-dimensional.

Lemma 7.1.1. rank(Γχ1) = 2n− 2 almost surely.

Proof. From (5.8) and (6.5),

Γχ1 =
[(
⟨diag(Y u∗)⟩+ ⟨diag(u∗)⟩N⟨Y ⟩

)
R(u∗)

]
χ1 ∈ R2n×(2n−2)

=
[
⟨diag(Y u∗)⟩χ1 + ⟨diag(u∗)⟩N⟨Y ⟩χ1

] [
χT
1R(u

∗)χ1

]
rank

(
⟨diag(Y u∗)⟩

)
= 2n almost surely (a.s.).

Therefore rank
(
⟨diag(Y u∗)⟩

)
χ1 = 2n− 2 a.s.,

and ⟨diag(Y u∗)⟩χ1 + ⟨diag(u∗)⟩N⟨Y ⟩χ1 = 2n− 2 a.s..
Also, rank

(
χT
1R(u

∗)χ1

)
= 2n− 2.

Therefore rank
([
⟨diag(Y u∗)⟩χ1 + ⟨diag(u∗)⟩N⟨Y ⟩χ1

] [
χT
1R(u

∗)χ1

])
= 2n− 2 a.s..
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Lemma 7.1.1 states that the right-nullspace of Γ†
χ1

will be two-dimensional in practice.
This is important for NPFL because NPFL requires a two-dimensional right-nullsapce for
Γ†
χ1
. Since the right-nullspace of Γ†

χ1
is never more than two dimensions in practice, there is

no ambiguity in selecting the two-dimensional right-nullsapce for NPFL.

The right-nullspace of
[
Ξ1
Γχ1

]†
maps a portion of the Ξ1

δs̃ vector to zero. Taking the
singular value decomposition of Ξ1

Γχ1 gives

Ξ1
Γχ1 = Ξ1

UΣVT =
[
Ξ1
U+, Ξ1

U
0

]
ΣVT, (7.1)

where Ξ1
U

0
∈ R2n×2 is the matrix whose columns span the left-nullspace of Ξ1

Γχ1 and the

right-nullspace of
[
Ξ1
Γχ1

]†
.

Remark 7.1.2. [
Ξ1
Γχ1

]†
Ξ1
δs̃ =

[
Ξ1
Γχ1

]† [
I

[
−Ξ1

U
0

] [
Ξ1
U

0

]T]
Ξ1
δs̃.

Remark 7.1.2 states that Ξ1
δs̃ produces the same χT

1
δυ as Ξ1

δs̃ projected onto image(Ξ1
Γχ1)

in the direction Ξ1
U

0
. Ξ1

U
0
is orthogonal to image(Ξ1

Γχ1) and not parallel to the slack bus
injection axis. Therefore, the projection of Ξ1

δs̃ onto image(Ξ1
Γχ1) is dependent upon Ξ1

δs̃1,
the slack bus injection guess. This projection statement is demonstrated in two dimensions
by the difference between the projections in Fig. 7.1a and Fig. 7.1b.

Projecting Ξ1
δs̃ onto image(Ξ1

Γχ1) changes the non-slack bus entries of Ξ1
δs̃ as well as

the slack bus entries of Ξ1
δs̃. This is also demonstrated by Fig. 7.1. Changing both the

slack bus and non-slack bus power injections contradicts what we have asserted about the
system—that the slack bus is entirely responsible for maintaining power balance on the

system. Therefore,
[
Ξ1
Γχ1

]†
does not answer Questions 1 or 2.

7.2 Nullspace-based Power Flow Linearization for a

Network with a Slack Bus

The introduction of this chapter introduced Questions 1 and 2 for a network with a slack
bus. The Nullspace Power Balance in Section 7.2 answers Question 1 and the power-voltage
sensitivity in Section 7.2 answers Question 2.

Nullspace Power Balance for a Network with a Slack Bus

As stated at the beginning of this chapter, the modified goal of power flow linearization is
to produce both the changes in the voltages on the system and an adjusted vector of power
injections that satisfies an approximation of power balance. We define

δŝ := the adjusted vector of power injections that satisfies

an approximation of power balance, and

Ξ1
δŝ = Ξ1δŝ.
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(a) δp̃1 = 0 (b) δp̃1 = δp2

Figure 7.1: Two-dimensional demonstration of the orthogonal projection onto image(Γχ1)
(or Tχ1) for two different δp̃1 guesses. This plot includes only δp̃1 and δp̃2, however the
two-dimension intuition can be applied to higher dimension δs̃ vectors.

For a network with a slack bus, we know that power balance is maintained by adjusting
only the slack bus injection. Thus, for a network with a slack bus, Ξ1

δŝ can be partitioned
into δŝ1 and χT

1
δs,

Ξ1
δŝ =

[
δŝ1

χT
1
δs

]
.

Note, the non-slack bus portion of Ξ1
δŝ is χT

1
δs. That is, the non-slack injection in Ξ1

δŝ are
the given power injections and are not adjusted.

To answer Question 1 posed at the beginning of this chapter, “How do the changes in the
power injections at the non-slack buses change the slack bus power injections, given that the
slack bus is entirely responsible for maintaining power balance?,” we observe that in order
for Ξ1

δŝ to obey the power-balance rules that are approximated by Tχ1 , Ξ1
δŝ must obey the

equation

Ξ1
Γχ1 χT

1
δυ = Ξ1

δŝ. (7.2)

Lemma 7.2.1. For a network with a slack bus, Ξ1
δŝ =

[
δŝ1

χT
1
δs

]
is on Tχ1 when δŝ1 is set
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using

δŝ1 = −
[
Ξ1
U

0,1

]−T [
Ξ1
U

0,χ1

]T
χT
1
δs, (7.3)

where Ξ1
U

0
∈ R2n×2 is the matrix describing the left-nullspace of Ξ1

Γχ1, Ξ1
U

0,1
∈ R2×2 is the

matrix consisting of the first two rows of Ξ1
U

0
, and Ξ1

U
0,1

∈ R(2n−2)×2 is matrix consisting
of the other rows of Ξ1

U
0
. That is,

Ξ1
U

0
=

[
Ξ1
U

0,1

Ξ1
U

0,χ1

]
.

Proof. In order for Ξ1
δŝ to obey (7.2), Ξ1

δŝ must be orthogonal to the left-nullspace of Γχ1 ,

[
Ξ1
U

0

]T
Ξ1
δs =

[
Ξ1
U

0,1

Ξ1
U

0,χ1

]T [
δŝ1

χT
1
δs

]
= 0.

Solving for δŝ1 gives

δŝ1 = −
[
Ξ1
U

0,1

]−T [
Ξ1
U

0,χ1

]T
χT
1
δs.

Lemma 7.2.1 describes how to use the power flow manifold tangent plane to give an
estimate for how changes in the non-slack bus power injections change the slack bus power
injection. Fig. 7.2 demonstrates δŝ1 estimation in two dimensions. Since βslack points in the
direction of the δp1 axis, the guess provided for δp1, δp̂1, is irrelevant.

(7.3) uses Tχ1 to answer Question 1 that was posed at the beginning of this chapter.3

Tχ1 is the best local linear approximation of the combination of Ohm’s law, the complex
power equation, and current balance at the given operating point x∗. (7.3) approximates
the change in the slack bus power injection as a linear function of the changes in the power
injections at all of the other buses, including the effects of the shunt admittances and an
approximation of the network power losses.4

Power-Voltage Sensitivity for a Network with a Slack Bus

To answer Question 2 posed at the beginning of this chapter, “How do changes in the
power injections change the voltages at the non-slack bus nodes, given that the slack bus
is entirely responsible for maintaining power balance?,” we must find the power-voltage

3(7.3) determines δŝ1 from χT
1
δs by asserting that Ξ1

δŝ is in image(Ξ1
Γχ1). Since Ξ1

δŝ is in image(Ξ1
Γχ1),

Ξ1
δŝ is mapped to by some voltage vector

χT
1
δυ.

4Section 7.5.
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Figure 7.2: Two-dimensional demonstration of the projection onto image(Γχ) (or Tχ1) in the
βslack direction from two different δp̂ guesses.

sensitivity matrix which maps Ξ1
δs̃ to χT

1
δυ such that the slack bus is entirely responsible

for maintaining power balance.

Remark 7.1.2 demonstrates that
[
Ξ1
Γχ1

]†
provides a χT

1
δυ which shifts all of the entries

of Ξ1
δs̃, not just the slack bus entries.

[
Ξ1
Γχ1

]†
does not meet Question 2’s criteria.

Theorem 7.2.2. For a network with a single slack bus,

χT
1
δυ =

[
χT
1
ΨΞT

1

]
Ξ1
δs̃ (7.4)

gives the changes in the non-slack bus voltages given that the slack bus is entirely responsible
for maintaining power balance if the power-voltage sensitivity matrix[

χT
1
ΨΞT

1

]
=

[
Ξ1
Γχ1

]† [0 [
−Ξ1

U
0,1

]−T [
Ξ1
U

0,χ1

]T
0 I2n−2

]
∈ R(2n−2)×2n. (7.5)

Proof. Ξ1
δŝ =

[
0

[
−Ξ1

U
0,1

]−T [
Ξ1
U

0,χ1

]T
0 I2n−2

]
Ξ1
δs̃ is on the power flow manifold (Lemma

7.2.1) and

Ξ1
δŝ ⊥ ker

([
Ξ1
Γχ1

]†)
.

Thus, the kernel of
[
Ξ1
Γχ1

]†
does not change Ξ1

δŝ.

Ξ1
δŝ changes only the slack bus portion of Ξ1

δs̃ to maintain power balance.
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(7.5) gives the power-voltage sensitivity and (7.4) answers Question 2 for a network with
a slack bus.

Corollary 7.2.2.1. For a network with a single slack bus,

χT
1
δυ =

[
χT
1
Ψχ1

]
χT
1
δs (7.6)

gives the same changes in the non-slack bus voltages as (7.4) using the power-voltage sensi-
tivity matrix [

χT
1
Ψχ1

]
=

[
χT
1
Γχ1

]−1

∈ R(2n−2)×(2n−2). (7.7)

Proof. χT
1
UΣVT is the Singular Value Decomposition of

[
χT
1
Γχ1

]
.

Ξ1
U+ΣV

T is the thin Singular Value Decomposition of
[
Ξ1
Γχ1

]
.

χT
1
U = (Ξ1χ1)

T
Ξ1
U+ because Ξ1 is an orthogonal matrix.

Taking (7.4),

χT
1
δυ =

[
Ξ1
Γχ1

]† [0 [
−Ξ1

U
0,1

]−T [
Ξ1
U

0,χ1

]T
0 I2n−2

]
Ξ1
δs̃

= VΣ−1
Ξ1
U+

T

[[
−Ξ1

U
0,1

]−T [
Ξ1
U

0,χ1

]T
I2n−2

]
χT
1
δs̃

= VΣ−1
[
Ξ1
U+

TΞ1χ1

]
χT
1
δs̃ (7.8)

= VΣ−1
χT
1
UT

χT
1
δs̃

=
[
χT
1
Ψχ1

]
χT
1
δs

(7.8) is true because Ξ1
U

+
⊥ Ξ1

U
0
.[

χT
1
Γχ1

]
is Γ with the rows corresponding to the real and reactive power injections and

the columns corresponding to the slack bus voltage and angle removed. (7.7) requires fewer
calculations than (7.5) and no pseudoinverse. Thus, for a network with a slack bus, it is
more efficient to determine the power-voltage sensitivity using (7.6) than using (7.4).

Two-Bus DC Demonstration of Nullspace-based Power Flow
Linearization for a Network with a Slack Bus

The NPFL for a two-bus DC network with a slack bus at bus 1 corresponds to the power flow
manifold tangent plane in Fig. 6.3. In this section we work out the power-voltage sensitivity
and slack bus power injection sensitivity for specific values to check that the values agree
with intuition.
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For a two-bus DC network with line conductance g12 and bus two shunt conductance g20,

Y =

[
g12 −g12
−g12 g12 + g20

]
, δp =

[
δp1
δp2

]
, and δv =

[
δv1
δv2

]
,

where g12 and g20 are the line conductance and shunt conductance at bus 2, respectively. Γ
gives the voltage-power sensitivity

Γ

[
δv1
δv2

]
=

[
δp1
δp2

]
,

Γ =

[
2g12 − v∗2g12 −g12

−v∗2g12 −g12 + 2v∗2g12 + 2v∗2g20

]
.

Setting bus 1 to be the slack bus, v1 = 1,

χ1 =

[
0
1

]
.

χ1 is 2× 1 rather than 4× 2 because this example is for a DC network not an AC network.
The voltage-power sensitivity with a slack bus is

Γχ1
δv2 =

[
δp1
δp2

]
, (7.9)

Γχ1
=

[
−g12

−g12 + 2v∗2g12 + 2v∗2g20

]
.

The basis vector for the left-nullspace of Γχ1
is

U0 =

[
−g12 + 2v∗2g12 + 2v∗2g20

g12

]
.

We use (7.3) to answer Question 1,

δp̂1 =
−g12

−g12 + 2v∗2g12 + 2v∗2g20
δp2 (7.10)

There is one slack bus so we use (7.6) to answer Question 2,

δv2 =
[
χT
1
Ψχ1

]
δp2, (7.11)

χT
1
Ψχ1 = [−g12 + 2v∗2g12 + 2v∗2g20]

−1 δp2.

Consider the example admittance values g12 = 1 and g20 = 0.5. Calculating the NPFL at
v1 = 1, v2 = 1 we get the following slack bus power injection sensitivity and power-voltage
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sensitivity,5

δp̂1 = −1

2
δp2, and

δv2 =
1

2
δp2.

These sensitivities agree with intuition—the change in the power injection at bus 2 will flow
both into the line to bus 1 and into the shunt admittance at bus 2. Thus, the change in
the power injection at bus 1 will be −1

2
δp2. Since the voltage at bus 1 is held constant, the

voltage at bus 2 is determined by the drop in voltage that occurs on the line to bus 1. Since
only one half of the change in the power injection at bus 2 changes the power flow on the
line to bus 1, the change in bus 2’s voltage will be given by 1

2
δp2.

7.3 General Nullspace-based Power Flow

Linearization

The Nullspace Power Balance introduced in Section 7.2 applies to a network with a single
slack bus/constant voltage bus. In this section, we introduce a general form of Nullspace
Power Balance which can apply to networks with more than one slack bus/constant voltage
bus. The general form of Nullspace Power Balance applies to distribution networks with
more than one substation.

Recall the modified goal of power flow linearization that we stated at the beginning of
this chapter—“produce a matrix that takes a vector of changes in power injections as the
input and produces both the changes in the voltages on the system and an adjusted vector of
power injections that satisfies an approximation of power balance for the system.” Questions
1 and 2 introduced at the beginning of Chapter 7 incorporated the knowledge that, for a
network with a single slack bus, the slack bus will adjust its power injection so that the total
power into the network is equal to the total power out. In this section we replace this single
slack bus approximation with the knowledge of “the set of permissible power perturbation
directions.”6 The set of permissible power perturbation directions allows/requires the person
using the NPFL to specify which nodes adjust their power injections in order to maintain
power balance.

The general Nullspace Power Balance and the general form of NPFL (still) assume that
the voltage at at least one node is held constant. The general form of NPFL, which satisfies
the general form of Nullspace Power Balance, answers the following two questions.

5g12 = 1, g20 = 0.5, v1 = 1, and v2 = 1 were used to generate all of the two-bus DC network plots in
this dissertation.

6The set of permissible power perturbation directions is the mathematically rigorous term for “the ways
in which NPFL is allowed to adjust the given power injections so that the power injections satisfy power
flow.”
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1. What are the changes in the power injections that satisfy power balance that are ob-
tained by adjusting the given set of power injections according to the set of permissible
power perturbation directions?

2. How do the changes in the power injections that satisfy power balance given by Ques-
tion 1 change the voltages at the non-constant-voltage buses?

These new questions incorporate the “set of permissible power perturbation directions” con-
cept into the modified goal of power flow linearization that we stated at the beginning of
Chapter 7.

To develop intuition for the new Questions 1 and 2, consider the circumstance of a distri-
bution network with two substations and a set of permissible power perturbation directions
defined as “the two substations on the network will adjust their real power and reactive
power injections to maintaining power balance.”

General Nullspace Power Balance

To answer the new Question 1 given above, we start by defining M as the set of elements of
υ which are held constant and m as the cardinality of M. We express the set of permissible
power perturbation directions mathematically by stacking the vectors βk, k ∈

[
1 . . . m

]
,

for each permissible power perturbation direction together to make the matrix β,

β :=
[
β1 . . . βm

]
.

Remark 7.3.4, presented later in this section, describes why β must have m columns.

Remark 7.3.1. β’s vector space is the permissible projection directions.

We define χ ∈ R2n×(2n−m) as the concatenation of the indicator vectors for each voltage
magnitude or angle entry of υ that is not held constant.7 Mathematically, this definition
corresponds to

χ =
[
ek1 . . . ek2n−m

]
, ki ̸∈ M. (7.12)

For some i ∈ [1, . . . , 2n − m], i is the column count and ki is the index of the voltage
magnitude or angle in υ. This formulation allows the voltage magnitude and/or the voltage
angle at each node to be held constant.

We define Mslack as a special case of M which corresponds to the circumstance in which
the voltage magnitude and angle at each slack bus are both held constant. The voltage
magnitude indices in the first half of Mslack match the voltage angle indices in the second
half of Mslack

Mslack = [k1, . . . , km] = [k1, . . . , km
2
, k1+n, . . . , km

2
+n]. (7.13)

7(7.12) assumes that υ is defined according to (5.11). That is, all of the voltage magnitudes then all of
the voltage angles.
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We define the change-in-voltage magnitude and change-in-angle vector with the constant
entries removed as

χT δυ := χT δυ,

and the voltage-power sensitivity matrix with the columns corresponding to the constant
entries removed

Γχ := Γχ.

The voltage-power sensitivity equation for a general network is

δs = Γχ χT δυ. (7.14)

We intentionally do not define a Ξ permutation matrix for the general NPFL because
the NPFL does not require that the set of permissible power perturbation directions is the
concatenation of the power injections from individual nodes. That is, NPFL does not require
that β is constructed from ei ∈ R2n vectors.8

We defineMχ as done in (6.3) but using the general χ instead of the specific χ1. Similarly,
we define Tχ and Γχ as done in (6.1) and (6.5) respectively using χ instead of χ1. Taking
the Singular Value Decomposition of Γχ we get

Γχ = UΣVT = [U+,U0]ΣV
T, (7.15)

where U0 ∈ R2n−m is the left-nullspace of Γχ.

Lemma 7.3.2. rank(Γχ) = 2n−m almost surely.

Proof. The proof follows the same steps as the proof for Lemma 7.1.1.

We define δs̃ as any vector in R2n. δs̃ may or may not satisfy power balance for a given
network.

Lemma 7.3.3. If rank(β) = m, δŝ is the projection of δs̃ onto Tχ in the direction specified
by β when δŝ is defined using

δŝ = Ωδs̃ (7.16)

Ω := I − β
(
UT

0 β
)−1

UT
0 (7.17)

where U0 ∈ R2n×m is the matrix describing the left-nullspace of Γχ.
9

8In the derivation of the single-slack NPFL, the Ξ1 permutation matrix helped keep the notation orga-
nized, but was not necessary.

9(7.16) and (7.17) can be derived as follows,

δŝ = δs̃− βa for some a.

0 = UT
0 (δs̃− βa) for δŝ to be on Tχ.

a = (UT
0 β)

−1UT
0 δs̃.

Therefore, δŝ =
(
I − β

(
UT
0 β

)−1
UT
0

)
δs̃.
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Figure 7.3: Two-dimensional demonstration of the projection onto image(Γχ) (or Tχ1) in the
β direction.

Proof. δŝ ∈ Tχ if δŝ ∈ image(Γχ).

UT
0 δŝ = UT

0

(
I − β(UT

0 β)
−1UT

0

)
δs̃

= 0.

Therefore δŝ ∈ image(Γχ).

δŝ− δs̃ = β
(
UT

0 β
)−1

UT
0 is the projection direction.

Therefore the projection onto Tχ is in the direction β.

Ω is the power injection projection matrix. It projects any power injection vector δs̃ onto
the power flow manifold according to the set of permissible power perturbation directions
specified by the person using NPFL. The projection δŝ satisfies Tχ’s approximation of power
balance, and (7.16) answers Question 1 given at the beginning of this section.

The projection onto Tχ1 in direction β is demonstrated in Fig. 7.3. In Fig. 7.3, β ̸= βslack
and δp̃1 affects δp̂. This is generally true—when β ̸= βslack then all of the entries of δs̃,
including the entries that correspond to the constant voltage bus, affect δŝ.

Remark 7.3.4. If rank(β) < m and δš is set using an alternate equation that uses the
pseudoinverse of

(
UT

0 β
)
,

δš =
(
I − β(UT

0 β)
†UT

0

)
δs̃,

δš is not necessarily on Tχ.
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Thus, NPFL should not be used unless the matrix β that codifies the set of permissible
power perturbation directions has rank equal tom, the number of entries in δυ held constant.

Comparing the Nullspace Power Balance in Section 7.2 with Ω1

Lemma 7.2.1 introduced (7.3), which gives δŝ1 for a network with a single slack bus. For a
network with a single slack bus,

β1 =


1 0
0n 0n
0 1

0n−2 0n−2

 ∈ R2n×2 (7.18)

and Ξ1β1 =
[
I2 0

]T ∈ R2n×2.

Remark 7.3.5. For a network with a single slack bus and Ω1 built with β1 using (7.17),

Ξ1Ω1Ξ
T
1 =

[
0

[
−Ξ1

U
0,1

]−T [
Ξ1
U

0,χ1

]T
0 I2n−2

]
. (7.19)

Proof.

Ξ1ΩΞ
T
1 = Ξ1

(
I − β

(
UT

0 β
)−1

UT
0

)
ΞT
1

= I − Ξ1β
(
UT

0 Ξ
−1
1 Ξ1β

)−1
UT

0 Ξ
T
1

= I − β1
(
Ξ1
UT

0
β1
)−1

Ξ1
UT

0

=

[
0

[
−Ξ1

U
0,1

]−T [
Ξ1
U

0,χ1

]T
0 I2n−2

]

Thus, (7.16) and (7.3) give the same estimate for δŝ for a network with a single slack
bus.

General Power-Voltage Sensitivity

To answer Question 2 posed at the beginning of this section for a general network, “How do
the changes in the power injections that satisfy power balance given by Question 1 change
the voltages at the non-constant-voltage buses?,” we must find the power-voltage sensitivity
matrix which maps δs̃ to χT δυ such that χT δυ is also mapped to by δŝ = Ωδs̃. That is,
the power-voltage sensitivity matrix gives the changes in the voltages at the non-constant-
voltage buses that correspond to the given power injections δs̃ adjusted to satisfy power
balance according to the allowable power injection adjustments β.
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Similar to Γ†
χ1
, we define

Γ†
χ := [Γχ]

† .

Theorem 7.3.6. If rank(β) = m,

χT
1
δυ = χTΨδs̃ (7.20)

gives the changes in the voltages at the non-constant-voltage buses that correspond to the
given changes in the power injections δs̃ adjusted to satisfy power balance according to β if
the power-voltage sensitivity matrix

χTΨ = Γ†
χΩ ∈ R(2n−m)×2n. (7.21)

Proof. δŝ = Ωδs̃ ∈ image (Γχ) is on the power flow manifold (Lemma 7.3.3) and

δŝ ⊥ ker
(
Γ†
χ

)
.

Thus, the kernel of Γ†
χ does not change δŝ.

δŝ adjusts δs̃ to satisfy power balance according to β (Lemma 7.3.3).

(7.21) gives the power-voltage sensitivity and (7.20) answers Question 2.

Remark 7.3.7. (7.4) is a special case of (7.20).

Proof. When there is a single slack bus and β = β1 from (7.18), (7.20) gives

χT
1
δυ = χT

1
Ψδs̃ = Γ†

χ1
Ω1δs̃

= Γ†
χ1
ΞT
1 Ξ1Ω1Ξ

T
1 Ξ1δs̃

=
[
Ξ1
Γχ1

]† [0 [
−Ξ1

U
0,1

]−T [
Ξ1
U

0,χ1

]T
0 I2n−2

]
Ξ1
δs̃.

[
Ξ1
Γχ1

]†
= Γ†

χ1
ΞT
1 because Ξ1 is an orthogonal matrix. The substition for Ξ1Ω1Ξ

T
1 is given

by Remark 7.3.5.

7.4 Relationship between NPFL and other Power

Flow Linearizations

Power flow linearizations are ubiquitous in power system analysis and the literature on power
flow linearizations is vast. This section contextualizes NPFL in relation to the other prevalent
power flow linearizations.
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In order to describe the linearizations, we define the conductance matrix G and suscep-
tance matrix B according to

Y =: G+Bj,

and the network impedance matrix Z and its constituent resistance matrix R and reactance
matrix X according to

Z := R +Xj := Y −1.

If Y does not include shunt admittances it is not full rank and the pseudoinverse Y † is use.
We also introduce the R subscript corresponding to the “reduced Laplacian” for networks
with a single slack bus. We also use R to indicate that the slack bus entry of a vector has
been removed:

[·]R :=


[
0 In−1

]
[·]

[
0

In−1

]
, if [·] is a matrix,[

0 In−1

]
[·], if [·] is a vector.

That is, matrices with the R subscript have their first row and column removed, and vectors
with the R subscript have their first entry removed. Once again, we assume without loss of
generality that the substation bus is the first bus in the power injection and voltage vectors.

Other Power Flow Linearizations

DC Power Flow (DCPF)10 [101], [103], [105]–[108] is derived with the following approxima-
tions:

Approximation 1. u ≈ 1, thus s ≈ ī.

Approximation 2. θ ≈ 0, thus sin(θ) ≈ θ and cos(θ) ≈ 1.

Approximation 3. The network conductances are all 0.

Given these assumptions, DCPF gives an expression for the real power injections at the
non-slack buses in terms of the voltage angles relative to the slack bus angle.

δpR = −BRδθR (7.22)

The reduced Laplacian BR is full rank even if there are no shunt admittances on the network.
Thus, (7.22) can be inverted to give the real power-voltage angle sensitivity

δθR = XRδpR.

10The term “DC Power Flow” is an artifact of the DC works-like grid models built in the control rooms
from DC circuit components for system operators in the mid-twentieth century.
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Decoupled Linearized Power Flow (DLPF) [109] uses the same approximations, but provides
an equation for the voltage magnitudes as well,

δpR = −BRδθR

δqR = −BRδvR. (7.23)

Inverting (7.23) gives the reactive power-voltage magnitude sensitivity

δvR = XRδqR.

Coupled Linearized Power Flow (CLPF) [86], [110]–[113] uses approximations 1 and 2 and
replaces Approximation 3 with

Approximation 4. The product of difference terms are small, thus (vi − vk)(θi − θk) ≈ 0.

The CLPF equations are [
δpR
δqR

]
=

[
GR −BR
−BR −GR

] [
δvR
δθR

]
, (7.24)

derived in the first portion of Appendix F.1. Inverting the CLPF matrix gives the power-
voltage sensitivity, [

δvR
δθR

]
=

[
RR XR
XR −RR

] [
δpR
δqR

]
, (7.25)

as demonstrated in the second portion of Appendix F.1.

Voltage Magnitude Squared Linearized Edge Flow (SLEF), first introduced for radial net-
works in [114], is an alternative power flow linearization formulation that relates the squared
voltage magnitudes to the power flows on each edge/line/branch [97], [115], [116]. [114]
introduced this linearization under the name “simplified DistFlow,” which has subsequently
been changed to “LinDistFlow,” because [114] focused on radial distribution network appli-
cations. While the LinDistFlow name has become a part of the power systems lexicon, we
use the term “Voltage Magnitude Squared Linearized Edge Flow”/SLEF to emphasize the
fact that it can apply to mesh networks as well as radial networks.11 SLEF is derived for
each individual edge using the following approximation.

Approximation 5. There are no power losses on the lines.

11We use “edge” rather than “branch” because “branch” implies a radial network.
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Defining the set of network edges/lines/branches as E , rik and xik as the resistance and
reactance of edge (i, k), and pik and qik as the real and reactive power flowing from node i
onto edge (i, k) respectively, SLEF is given by

v2i − v2k = 2rikpik + 2xikqik ∀(i, k) ∈ E , (7.26)∑
j

pij = pi,
∑
j

qij = qi, ∀i ∈ {1, . . . , n}. (7.27)

Standard Linearized Edge Flow (LEF) includes the additional approximation

Approximation 6. v2i − v2k ≈ 2(vi − vk).

This approximation gives the following LEF equations for voltage magnitudes

vi − vk = rikpik + xikqik ∀(i, k) ∈ E , (7.28)∑
j

pij = pi,
∑
j

qij = qi, ∀i ∈ {1, . . . , n}. (7.29)

[117], [118] added the voltage angle equation

θi − θk = xikpik − rikqik ∀(i, k) ∈ E (7.30)

to the LEF formulation, based on Approximations 1, 2 and 4.

Remark 7.4.1. LEF and CLPF are equivalent.

The proof is given in Appendix F.2. This statement is in conceptual agreement with the
statement in [119] that the convex relaxations of the bus-injection and branch-flow power
flow formulations are equivalent, however neither statement implies the other.

NPFL for a Single-Slack, No-Shunt Admittance Network at
Nominal Voltage

Lemma 7.4.2. For a network with a single slack bus and no shunt admittances, when
u∗ = 1n,

12 the voltage-power sensitivity is given by

χT
1
Γχ1 =

[
GR −BR
−BR −GR

]
, (7.31)

12When there are shunt admittances but no additional load on the network,

χT
1
Γχ1

= χT
1 ⟨diag(unoLoad)⟩N⟨Y ⟩R(unoLoad)χ1,

where unoLoad is the “No Load” voltage vector [104], [120] that produces no current injections
(unoLoad = ker(Y )) in addition to the current that flows into the shunt admittances.
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the power-voltage sensitivity is given by

χT
1
Ψχ1 =

[
RR XR
XR −RR

]
, (7.32)

and the slack bus power injection is given by

Ξ1Ω1Ξ
T
1 =

0 [
−1Tn−1 0

0 −1Tn−1

]
0 I2n−2

 . (7.33)

See Appendix F.3 for the proof of Lemma 7.4.2. Note, when the conditions for Lemma
7.4.2 apply, the slack bus real and reactive power injections are equal to the negative sum of
all of the other real and reactive power injections on the network, respectively, (7.33). When
the conditions for Lemma 7.4.2 do not hold, this is not generally the case.

NPFL and Other Power Flow Linearizations

Remark 7.4.3. DCPF, DLPF, CLPF, and LEF assume that the constant-voltage/slack bus
power injection maintains power balance, but do not provide the constant-voltage/slack bus
power injection sensitivity.

Remark 7.4.4. DCPF, DLPF, CLPF, and LEF are special cases of NPFL power-voltage
sensitivity. They are equivalent to χT

1
Ψχ1 when χT

1
Ψχ1 is calculated for a single-slack bus

network with u∗ = 1n (7.32).

The equivalence between χT
1
Ψχ1 in (7.32) and DCPF, DLPF, CLPF, and LEF is evident

from inspection and Remark 7.4.1, and leads to the following hypothesis.

Hypothesis 1. Defining the power flow manifold using the voltage magnitude squared, that
is v2 rather than v, provides a more accurate power flow linearization.

Hypothesis 1 is based on the fact that LEF is derived using Assumptions 5 and 6, while
LEF is derived using just Assumption 5.

(7.6) provides the power-voltage sensitivity for voltages in rectangular coordinates [104],
[121], [122] if the R(u∗) matrix is removed from the Γ definition in (5.8). It is worth noting
that voltages in rectangular coordinates are less useful than voltages in polar coordinates
because voltage constraints apply to voltage magnitudes.

There are power flow linearizations that are not special cases of NPFL power-voltage sen-
sitivity. Linearizations derived from fixed points [120], [123] and linearizations produced by
a scenario-specific optimization [124], [125] cannot be derived from the power flow manifold
tangent plane and are not special cases of NPFL. Linearizations that consider constant cur-
rent/ZIP load characteristics [104], [126], [127] cannot be derived from NPFL in its current
form. An NPFL formulation that allows for constant current loads/power injections that
depend linearly on voltage is the subject of current research.
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7.5 Nullspace-based Power Flow Linearization for

Loss Sensitivity

This section provides an example of how NPFL can be used to find sensitivities other than
power-voltage sensitivity and slack bus power-injection sensitivity that may also be of inter-
est. The sum of the power injections at all of the nodes on the grid is equal to the sum of the
losses on the network and the power that leaves the network through the shunt admittances.
If the network has no shunt conductances (the real part of the shunt admittances are all
zero), then the sum of the real power injections at all of the nodes on the grid is equal to the
sum of the real power losses on the network.13 The power injection–real power loss sensitivity
may be a useful tool for power system operators for applications such as determining the
loss component of locational marginal prices (LMPs).

The change in real power losses δL are given by the equation

δL =

∣∣∣∣∣
n∑

i=1

δpi

∣∣∣∣∣ = ∣∣1T δp∣∣ .
Remark 7.5.1 gives the loss sensitivity when a single slack bus is responsible for power

balance. We define Ω1,p as the rows of Ω1 that give δp̂1, the estimate of the real power
injection at the slack bus.

Remark 7.5.1.
(
Ω1,p +

[
1Tn−1 0Tn−1

])
is the loss sensitivity that corresponds to the power

flow manifold tangent plant at x∗ when a single slack bus is responsible for maintaining power
balance. That is,

δL =
∣∣(Ω1,p +

[
1Tn−1 0Tn−1

])
δsχ

∣∣ (7.34)

Proof.

δL =
∣∣1Tnδptrue∣∣

=
∣∣δp̂1 + [

1Tn−1 0Tn−1

]
δsχ

∣∣
=

∣∣(Ω1,p +
[
1Tn−1 0Tn−1

])
δsχ

∣∣
Remark 7.5.2 gives the loss sensitivity when power balance responsibility is determined

by a general β.

Remark 7.5.2.
[
1Tn 0Tn

]
Ω is the loss sensitivity that corresponds to the power flow manifold

tangent plant at x∗ and the power balance responsibility vector β. That is,

δL =
∣∣[1Tn 0Tn

]
Ωδs̃

∣∣ (7.35)
13In power system operation we are often interested in the real power losses rather than the reactive

power losses, as the real power losses are physically meaningful, describing the additional real power that
must be injected into the network.
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Proof.

δL =
∣∣1Tnδptrue∣∣

=
∣∣[1Tn 0Tn

]
δŝ
∣∣

=
∣∣[1Tn 0Tn

]
Ωδs̃

∣∣
When β =

[
I2 0

]
, (7.35) is equivalent to (7.34). It is also important to note that the loss

sensitivity expressions (7.34) and (7.35) do not distinguish between line-flow power losses
and shunt admittance “losses.” We use quotation marks for the shunt admittance losses
because the shunt admittances can also be used to model constant-impedance loads. If
shunt admittances are used to model constant impedance loads, care must be taken when
using (7.34) and (7.35) to model the network losses. One way to do this would be to subtract
the shunt admittance loads from the loss estimates given by (7.34) and (7.35).

Two-Bus DC Demonstration of Nullspace-based Power Flow
Linearization for Loss Sensitivity

For a two-bus DC network in which Bus 1 acts as a slack bus with v1 = 1, the loss sensitivity
is given by the two-bus DC equivalent of (7.34),

δL = |(Ω1,p + 1) δp2| ,

where Ω1,p is the fraction in (7.10),

Ω1,p =
−g12

−g12 + 2v∗2g12 + 2v∗2g20
.

Fig. 7.4 plots the marginal loss/loss sensitivity for changes in the power injection at Bus
2. We use the following expressions for the losses L when g12 = 1 and g20 = 014 to help
explain Fig. 7.4,

L = (v2 − 1)(v2 − 1)

= p2 −
√
p2 +

1

4
+

1

2
.

These equations are plotted in Fig. 7.5. The second equation was derived using p2 =
v2(v2 − 1).

When v∗2 = 1, the (marginal) loss sensitivity is 0. At v∗2 = 1, p∗2 = L = 0 and the slope of
the loss curve in Fig. 7.5b is 0. At this operating point, there are no losses on the network
and a marginal (infinitesimally small) increase in load does not increase the losses.

14Note, unlike the previous two-bus DC network demonstrations which used g20 = 1
2 , this example uses

g20 = 0.
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Figure 7.4: Two-bus DC network loss sensitivity for g12 = 1, g20 = 0, and v1 = 1

(a) Two-bus DC network total losses as a func-
tion of v2

(b) Two-bus DC network total losses as a func-
tion of p2

Figure 7.5: Total loss plots for g12 = 1, g20 = 0, and v1 = 1
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When v∗2 =
3
4
, the loss sensitivity is | − 1| = 1. At v∗2 =

3
4
, p∗2 = −0.1875 and the slope of

the loss curve in Fig. 7.5b is −1. At this operating point, a marginal increase in the load at
Bus 2 results in losses equal to the marginal increase in load.

When v∗2 = 1
2
, the loss sensitivity is | − ∞| = ∞. At v∗2 = 1

2
, p∗2 = −0.25, L = 0.25

and the slope of the loss curve in Fig. 7.5b is infinite. At this operating point, a marginal
increase in the load at Bus 2 would theoretically result in infinite losses. This statement
corresponds to the fact that it is not possible to increase the load past 1

4
, because 1

4
is the

maximum power that can be transferred from Bus 1 to Bus 2 when v1 = 1 and g12 = 1 [128].

Nullspace-based Power Flow Linearization for Locational
Marginal Prices

This section makes it clear that the NPFL takes into account the marginal network losses
at the linearization point. This is an important aspect of power flow linearization that has a
number of currently-unused applications. For example, if LMPs were calculated using NPFL
rather than using DC Power Flow or even Coupled Power Flow Linearization (Section 7.4),
then it would not be necessary to add explicit loss-approximation terms to the LMP—the
marginal losses would be baked into the LMPs.

Take, for example, a distribution network with a single substation (or, equivalently, a
network with a single generator that behaves like a slack bus). The first row of the Ω1

matrix in (7.19) gives the sensitivity of the substation injection to any injection on the
network, taking into account the marginal losses on the network. If the LMP at a given
node is calculated based on how much a change in the power injection at the given node
affects the change in the substation power injection (where power is “purchased”), and the
change in the substation power injection is calculated using Ω1, then the marginal losses
are included in the LMP for the given node. Thus, including additional loss-approximations
adders in the LMP is unnecessary.

Transmission networks are more complicated because they have multiple generators, but
the same logic for incorporating losses applies to transmission network LMPs—if the lin-
earization is taken at the current operating point, and power balance is asserted by setting
the voltage at at least one bus to be constant, then the LMPs given by the dual variables of
the cost-minimizing optimal power flow (OPF) will include the marginal losses on the net-
work. Including both δs and δυ in the cost-minimizing OPF decision variables and including
(7.14) in the constraint equations will assert power balance for the δs power injection vector
and include the marginal losses in the LMP prices.
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Chapter 8

Single Bus Injection Power-Voltage
Sensitivity

Chapters 5, 6, and 7 described the power flow manifold and the accompanying tangent
plane/linearization for a full network. The equations derived in Chapters 5, 6, and 7 require
the full bus admittance matrix Y and can be used determine the impact of a power injection
anywhere on the network on any voltage in the network.

In this chapter we use the NPFL power-voltage sensitivity (the answer to Question 2
that motivated NPFL) to derive the power flow linearization that relates only the power
injections at a given bus to the voltages at that given bus. We title this linearization “Single
bus Injection Power-voltage Sensitivity” (SIPS). SIPS can be used for a number of local
control objectives, such as Voltage Phasor Control [90], [129].

SIPS uses a Thevenin Equivalent model for the electric grid [90], [129]. From the per-
spective of the given bus, the Thevenin Equivalent model has the same admittance as the
grid.

8.1 Relationship between SIPS and Full-Network

NPFL

For a Thevenin network, we are interested in the linearization of the power flow manifold
for a two bus network with admittance matrix

Y =

[
y12 −y12
−y12 y12 + y20

]
.

The power-voltage sensitivity matrix for bus two is

χTΨχ =
[(

⟨(u∗2 − 1)y12 + u∗2y20⟩+ ⟨diag
(
u∗2
)
⟩N⟨y12 + y20⟩

)
R
(
u∗2
)]−1

. (8.1)
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[129] introduced a closely related power-voltage sensitivity matrix for a Thevenin-equivalent
network model of a network,

Ψth =
[(

⟨(u∗2 − 1)yth⟩+ ⟨diag
(
u∗2
)
⟩N⟨yth⟩

)
R
(
u∗2
)]−1

. (8.2)

We are interested in describing the differences between (8.1) and (8.2). The two formu-
lations are equivalent if the network does not have shunt admittances, y20 = 0. This can
be seen by substituting y12 for yth. If the network does have shunt admittances, y20 ̸= 0,
and χTΨχ will be slightly different than Ψth. If both y12 and y20 are available, (8.1) should
be used. If y20 = 0 or if y20 is not available and is assumed to be zero, (8.1) and (8.2) are
equivalent.

Online admittance estimation can be used if y12 and y20 are unknown. [129] describes a
method for estimating the Thevenin impedance online by applying recursive least squares
to the changes in the local voltage phasor measurement and the current injection phasor
measurement. The local voltage phasor measurement requires a voltage phasor measurement
unit. The current injection phasor measurement can be estimated from the voltage phase
and the real and reactive power injections.

We define ŷth as the admittance estimate that is produced by applying least squares to
the changes in the local voltage and current injection measurements. If there are no shunt
admittances/voltage dependencies on the network (and the substation acts as an infinite
bus), then ŷth ≈ y12. If ŷth = y12, plugging ŷth in for yth in (8.2) gives (8.1) with y20 = 0.

On the other hand, if there are shunt admittances, ŷth ≈ (y12 + y20). If ŷth = (y12 + y20),
plugging ŷth in for yth in (8.2) gives

Ψth =
[(

⟨(u∗2 − 1)y12 + u∗2y20 − y20⟩+ ⟨diag
(
u∗2
)
⟩N⟨y12 + y20⟩

)
R
(
u∗2
)]−1

,

which is accurate except for the −y20 in the left-term. In order to avoid this source of error,
it is necessary to have an estimate of both y12 and y20, which can be plugged directly into
(8.1).

y12 and y20 can be estimated separately by estimating the full Yth ∈ C2×2 bus admittance
matrix for the Thevenin equivalent network. Estimating Yth requires a current phasor mea-
surement on either the substation current or the shunt admittance.1 Thus, the admittance
estimation could no longer be done locally. Also, the substation’s current measurement will
be influenced by all of the injections on the network, and therefore be very noisy. In prac-
tice, just using ŷth in (8.2) may be sufficiently accurate. Shunt admittances are often small
compared with line admittances and therefore the error introduced into the linearization by
the erroneous y20 term is likely to be benign.

1If the shunt admittance represents a “conceptual” current path such as the half-line charging admittances
for Pi line models or the voltage dependence of local loads, the current phasor measurement would have to be
on the substation transformer, which behaves like the the voltage source for the Thevenin equivalent model.
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8.2 Bus Injection Power-Voltage Sensitivity Sign

Changes

Figure 8.1: The power-voltage sensitivities for bus 2 of a two bus network with y12 = 1j,
plotted against the voltage setpoint for bus 2 in polar coordinates. V1 = 1.

Circumstances in which the sign of the power-voltage sensitivity is state-dependent are
of particular interest for power system control applications. That is, at one voltage, inject-
ing real or reactive power results in the voltage increasing, while at another voltage, the
same change in real or reactive power injection results in voltage decreasing. We investi-
gate this phenomenon for a two bus network, considering three different values for the line
admittance—1) y12 = 1j, 2) y12 = 0.5 + 0.5j, and 3) y12 = 0.1 + 1j. The two bus network
can be thought of as a Thevenin-equivalent network for a bus in a larger network. We use
(8.1) to determine the SIPS.

We focus on the relationship between real power injections and voltage magnitude (the
upper-left images in Fig.s 8.1–8.3. When the line is purely inductive (Fig. 8.1), the sign of the
power-voltage sensitivity can be either positive or negative, depending on the linearization
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Figure 8.2: The power-voltage sensitivities for bus 2 of a two bus network with y12 =
0.5 + 0.5j, plotted against the voltage setpoint for bus 2 in polar coordinates. V1 = 1.

setpoint. When the line is equally resistive and inductive (Fig. 8.2), the power-voltage
sensitivity is always positive. And when the line is significantly more resistive than inductive
(Fig. 8.3), the sign of the power-voltage sensitivity can be either positive or negative.

These plots support general standard grid-operation practices—for transmission net-
works, in which the line impedances are generally dominated by the inductance, the voltage
magnitude is primarily controlled using reactive power injections. As shown by Fig.s 8.1–8.3,
the voltage magnitude is more sensitive to reactive power injections than real power injec-
tions. Furthermore, the reactive power-voltage magnitude sensitivity is positive regardless
of Bus 2’s voltage magnitude or angle.

Fig.s 8.1–8.3 give insight into circumstances in which real power injections are used to
control voltage magnitude—if the network is primarily inductive, it is a good idea to estimate
the power-voltage sensitivity using (8.1) or (8.2) before making control decisions. The upper-
left diagram in Fig. 8.3 demonstrates that the real power-voltage magnitude sensitivity for a
primarily inductive network can be negative when the local bus voltage is low and the local
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Figure 8.3: The power-voltage sensitivities for bus 2 of a two bus network with y12 = 0.1+1j,
plotted against the voltage setpoint for bus 2 in polar coordinates. V1 = 1.

voltage angle is leading the substation angle. If this circumstance is encountered and the
negative sensitivity is not take into account, using real power to control the local voltage
magnitude could destabilize the network.
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Chapter 9

Distribution Network Feedback
Optimization with Nullspace-based
Power Flow Linearization

As outlined in the introduction, traditionally distribution networks have not been actively
controlled. Distribution network operators have avoided constraint violations by limiting the
connections onto the network. Actively managing distribution networks will reduce the cost
of electrifying the transportation and heating sectors by using grid capacity in a dynamic
and efficient manner.

Optimal Power Flow (OPF) is the industry standard for controlling electric networks.
Given a cost function, the grid state, and the system constraints, OPF determines the optimal
operating state using an optimization method such as gradient descent. On transmission
networks, OPF determines how much power each generator produces at every moment in
the year.

Theoretically, OPF could also be applied to distribution networks. However, OPF is not
well-suited for distribution networks because of the following challenges:

1. distribution network models are often inaccurate or unavailable,

2. distribution networks have many constraints and many DERs to control, and

3. the distribution network state changes quickly and in a manner that is hard to accu-
rately predict.

Challenge 1 is addressed in Chapters 2 and 3. Challenges 2 and 3 highlight the compu-
tational challenges of applying OPF to distribution networks. 2 points out that distribution
networks have many constraints (e.g. the maximum power that can flow through the substa-
tion transformer, the line flow constraints, and the voltage magnitude constraints at the end
of the feeder lines) and could have many controlled distributed resources (e.g. the charging
power for each EV charging station on the network) that control decisions must be made
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for. Challenge 3 points out that distribution networks are stochastic systems and, therefore,
online control will outperform open-loop control decisions made in advance. Challenge 3 also
points out that distribution network states shift rapidly. In order for online control decisions
to be implemented while they are still relevant, the decisions must be made quickly.

Full, centralized OPF is not well suited for distribution networks because of the compu-
tational challenges described by Challenges 2 and 3. A number of alternatives to standard
centralized OPF have been proposed [130]. Feedback Optimization (FO), recently proposed
and developed in [93], [131]–[145], addresses the computational issues of OPF by only taking
one optimization step at each timestep. Once the optimization step is determined, the out-
put is sent to the actuators and the resultant measurements are “fed back” to the FO engine,
which takes another optimization step to determine the actuation for the next timestep. FO
saves computation by 1) just taking one optimization step, not solving the full optimization
at each timestep, and 2) using the physical infrastructure to “solve” power flow. In addition
to the computational complexity concerns, the feedback nature of FO provides robustness
to external disturbances and model mismatch that standard open loop optimization (e.g.
OPF) does not. Thus, FO is well-suited for distribution networks.

9.1 Feedback Optimization implemented with

Linearized Output Projected Gradient Descent

There are a number of algorithms which can be used to implement FO. We focus on Lin-
earized Output Projected Gradient descent (LOPG) [132], [135], [146], [147] because it is
simple and effective. We define the following variables:

ν is the output,
ρ is the input,
∇ is the gradient operator with respect to ρ,
ϕ(ρ) is the input-output equation, ν = ϕ(ρ),
Φ is the input-output sensitivity matrix,
C is the input inequalities constraint matrix,
c is the input inequalities constraint vector,
D is the output inequalities constraint matrix, and
d is the output inequalities constraint vector.

LOPG finds the input adjustment αδρ such that ρ + αδρ does not violate the system con-
straints and δρ is as close to ∇J(ρ, ν) as possible. δρ is found using the following convex
optimization:

arg min
ω

∥∥ω +
[
I ΦT

]
∇J(ρ, ν)T

∥∥
subject to C(ν + αω) ≤ c,

D(ν + αΦω) ≤ d,

(9.1)

Using (9.1), we define the LOPG algorithm.
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Algorithm 4: Linearized Output Projected Gradient Descent (LOPG) with

NPFL
At each timestep t:

1. Measure/estimate the system inputs ρ(t) and outputs ν(t).

2. Calculate Φ using NPFL.

3. Run (9.1) to determine δρ(t+ 1).

4. Send ρ(t+ 1) = ρ(t) + αδρ(t+ 1) to the actuators.

LOPG requires three externally-provided inputs—the cost function J(ρ, ν), measure-
ments/estimates of the outputs ν (and sometimes the inputs ρ) from the previous timestep,
and the sensitivity between the inputs and outputs of the system Φ. For a distribution
network with a single slack bus, the power-voltage sensitivity is given by (7.6). (7.6) can
be used for voltage magnitude constraints. (7.3) can be used if the substation transformer
power flow is constrained. If the line flows are constrained, the power injection-to-line flow
sensitivities1 can be built from the power-voltage sensitivity matrix (7.6) and the weighted
bus incidence matrix [153]. (7.34) can be used if the aggregate network losses are included
in the objective function.

Ongoing research is implementing LOPG with all of these sensitivities to control EV
charging on a full-scale model of Bay Area [154]. This research includes HELICS cosimula-
tion [155], [156] of both a BEAM transportation network simulation [157], [158] and a PyDSS
simulation of the distribution and subtransmission networks [159], [160]. The LOPG Feed-
back Optimization Controller is implemented on the full, unbalanced, three-phase network
model.

Linearized Output Projected Gradient Feedback Optimization for
Slack Bus Power Injection Constraints

We demonstrate one way in which Algorithm 4 can be used to optimize the service provided
by a distribution network, while not damaging the distribution network infrastructure. In
particular, we consider a distribution network with a substation power flow constraint, which
could be determined by the substation transformer or another piece of equipment.

The substation power flow constraint manifests as a slack bus power injection constraint
for the distribution network model. Fig. 9.1 demonstrates a circumstance in which the

1The power injection-to-line flow sensitivities are equivalent to Injection Shift Factors (ISFs) and closely
related to Power Transfer Distribution Factors (PTDFs) commonly used to control transmission networks
[103], [148]–[152].
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substation power injection minimum is set to -0.3. This constraint limits the maximum
amount of power that is allowed to flow into Bus 1.2

LOPG requires a sensitivity between the input δp2, and the constrained output, δp1. The
naive power balance assumption, which applies only to a network without shunt admittances
at the nominal voltage (Section 7.4), is that δp1 = −δp2. Fig. 9.1a plots the LOPG step
that makes this assumption. As is evident from the figure, with this incorrect input-output
sensitivity, the LOPG will be overly-cautious and find a suboptimal point.

Alternatively, the LOPG algorithm could also project the ω (δp2) vector onto the power
flow manifold orthogonally. However, as demonstrated by Fig. 9.1b, this method also creates
issues. The orthogonal projection onto the power flow manifold also adjusts δp2, reducing it
slightly. Thus, if the ω (δp2) vector is actuatued, the resultant δp1 injection will violate the
constraint.

Finally, Fig. 9.1c demonstrates an LOPG step which uses NPFL to determine the sen-
sitivity between the input δp2 and the output δp1. The β direction is vertical, which corre-
sponds to the behavior of the true system—the slack bus adjusts its power injection in order
to maintain power balance. Also, for this stepsize, the tangent plane is close to the true
power flow manifold. Thus, the LOPG step is neither too conservative nor too aggressive
when LOPG uses NPFL.

Of course, the intuition is simple for two-bus networks with a single slack bus, and
hardcoded rules could be applied to achieve the same results. Algorithm 4 can, however,
be extended to networks with arbitrary numbers of actuators and constraints, and arbitrary
numbers of slack buses or β power-balancing directions, without requiring hardcoded rules
or external information.

2The analysis in this section applies to a positive injection constraint as well. The negative constraint
fit on the plot better than the positive constraint.
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(a) Assuming δp̂1 = −δp2 (b) Orthogonally projecting ω onto the power
flow manifold

(c) Using NPFL to determine the slack bus power
injection sensitivity

Figure 9.1: Linearized Output Projected Gradient Feedback Optimization for a network with
power injection constraints on the slack bus
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Appendix A

The No-Jargon Introduction

Note to reader:
This “Introduction” is intended to be exactly that—an introduction to the work in this dis-
sertation for a reader who is not already familiar with power systems research. It provides
an explanation for the work in this dissertation without assuming that the reader has a prior
understanding of power systems, or a familiarity with the jargon of the field of power systems
research.

Power systems, or “the grid,” use electricity1 to transfer energy from generators to loads
so the loads can work. “Generators” are anything that injects power into the grid.2 “Loads”
are anything that intentionally takes power from the grid. Examples of loads include a
light that is on, a toaster that is toasting, or an electric vehicle that is charging. “Work”
has a technical meaning in physics (“the application of force along a displacement”) that is

1Water and mountains are an imperfect-but-helpful analogy for electricity. The grid can be thought of
as a hypothetical mountain that is used to transmit work from one location to another location. Generators
use an external source of power to push water up the mountain to a higher elevation. The water then flows
laterally across the mountain through a river to the location where the load is. When it gets to the location
where the load is, the water flows down the mountain through a wheel/turbine, powering the load. The
power delivered to the load is given by multiplying the river’s elevation on the mountain where the load is
by the amount of water flowing. In this explanation, the riverbed is analogous to the wires on the grid, the
elevation of the riverbed is analogous to electric voltage, and the river is analogous to electric current.

This analogy is intended to help develop intuition for why electric power is the product of voltage and
current. In the water-and-mountain analogy, if the load wanted more power, the generator could push more
water up the mountain to flow through the riverbed to the load (i.e., send more current at the same voltage),
or it could push the same amount of water to a riverbed at a higher elevation (i.e., send the same amount
of current at a higher voltage).

2Traditionally, generators have been large machines that produce electric power for distribution by
spinning a magnet inside coils of wires that are attached to a grid. The magnet spins because it is attached
to turbine blades that are pushed by steam or water. Most of the electric power on the grid today is provided
by power plants that burn natural gas or coal to produce steam that pushes turbine blades. But there are
other types of generators that do not rotate magnets inside of coils of wire, such as solar panels and batteries.
Solar panels and batteries are also “generators.”
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different fom its meanings in everyday language. The technical distinctions of “work” are
not important for power systems analysis, however; what is important is that loads take
power from the grid. “Power” is the rate at which energy is transferred from generators to
loads. Thus, power is a measurement that is made at each instant, whereas energy is the
cumulative sum of power over a period of time.3 All the power that loads take from the grid
comes from generators. The total generation and total load4 must be approximately equal
at all moments in time. If this balance is disrupted for a significant amount of time, the grid
will have a “blackout” and not be able to transfer power from the generators to the loads
until the grid is restarted.

Power systems deliver power from generators to loads using power lines.5 The electric
power flowing into, out of, or through any location on the grid is given by multiplying the
voltage at the location by the current flowing into, out of, or through the location at each
moment in time.6 Thus, the amount of electric power flowing into, out of, or through a given
location on the grid can be increased in two ways: by increasing the voltage at the location,
or by increasing the current flowing into, out of, or through the location.

The grid’s physical infrastructure constrains the amount of current that can flow on a
line as well as the maximum voltage at which it is safe to operate the grid.7 If there is too
much current flowing in the lines, the lines become too hot. These are called “thermal,” or
“flow” constraints. If the line voltage is too high, then the voltage difference between the
power lines can damage equipment. If the grid voltage is too low, then the voltage on the
grid can suddenly collapse to zero, causing a blackout. Thus, electric grids are operated in
such a way that both the line flows and the voltages stay within upper and lower bounds.
The grid is also operated so that the grid frequency stays within upper and lower bounds,
but the work in this dissertation focuses on thermal and voltage constraints, not frequency
constraints.

3To illustrate the difference between power and energy, consider the example of two generators with one
attached to a solar panel and the other attached to a battery. The two generators have the same capacity, but
the generator attached to the solar panel only generates electricity when the sun is shining on the solar panel,
whereas the battery generates power whenever it is told to (if the battery has not been fully discharged).
Thus, if the sun shines for the first five minutes of an hour and then is blocked by rain clouds, the solar
panel will generate full electricity for only the first five minutes then turn off for the rest of the hour. The
battery, however, may generate electricity for the full hour. The solar panel and battery may thus be able
to provide the same amount of electric power for the grid, but the solar panel will provide less energy over
the course of the hour than the battery.

4In addition to the loads, some power is “lost” as heat on the power lines when power flows from the
generators to the loads. We define the “total load” on the grid to be the sum of all the loads attached to
the network and all of the losses on the network.

5Power lines are large metal (aluminum) wires that can transfer large amounts of electricity.
6See footnote 1.
7Continuing the water analogy to understand grid constraints, the flow/thermal constraints are the max-

imum amount of current that can flow through a riverbed/wire before bad things happen (i.e., overheating
the wire). Voltage constraints are defined as the range of elevations at which it is safe for a riverbed to be.
For reasons specific to electric grids, there are both upper and lower limits on voltage.
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Electric power cannot be told where to flow—once power is on the grid, it flows from
the generators to the loads according to the laws of physics. If the loads on the grid are not
managed by grid operators, as is traditionally assumed, the power/current flows on the grid
can only be altered by changing which generators supply power to the grid at each moment
in time.

The Internet and relatively inexpensive, powerful computers have made it possible to
manage loads in real time, upending the traditional assumption that only generators can
be controlled. It is now possible to avoid thermal and voltage constraints by reducing the
power drawn by certain loads on the system in real time. For example, it is now possible to
tell electric vehicles in each neighborhood that there is too much load in that neighborhood
at a given moment and the power lines have hit their thermal limit. The utility company
that manages the grid can offer to pay the electric vehicle owners if they reduce their vehicle
charging rate until the power/current flows on the lines are below their limits.

In the future there might be thousands of loads on the grid which can be managed to
avoid constraint violations. Thus, it will be necessary to have tools that automatically make
decisions for each load based on high-level objectives that are set by the utility company/grid
operator. It is worth noting that the same tools that automatically make decisions for loads
can also be used to automatically make decisions for generators distributed across the grid,
such as rooftop solar panels or Tesla Powerwall batteries. By thinking of the distributed
generators as “negative loads,” the tools used to automatically manage loads can also be
used to control the power output of distributed generators without any modification to the
tools.

The final distinction that will help in understanding the application of this dissertation
is the distinction between transmission networks and distribution networks.8 Transmission
networks span large areas, such as the western United States and parts of Canada and
Mexico, with thick wires that transfer a lot of power at “very high” voltage (e.g., hundreds
of kilovolts (kV)). Distribution networks attach to the transmission grid via substations,
which step the voltage down to just “high” voltage (e.g., tens of kV). A single transmission
system can provide power to thousands of distribution networks.

While the same physics apply to transmission and distribution networks, the two types of
systems are operated in different ways. Typically, transmission systems have been actively
managed to avoid constraint violations—that is, care is taken when grid operators decide
how much power to generate at each generator so that the power/current flows on the
transmission lines do not violate thermal constraints.

Distribution networks, on the other hand, are not actively managed. The power flows
from the substation to the loads without any coordination of the loads and generators on the
distribution network. Thermal and voltage constraints are avoided on distribution networks
by 1) building the distribution infrastructure for the most challenging possible circumstance,

8In this dissertation I use “distribution network,” “distribution grid,” and “distribution system” inter-
changeably. There are subtle differences between some of these terms, but the distinctions are not important
for the work in this dissertation.
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and 2) limiting new connections onto the grid.9 Requiring distribution networks to support
the most challenging possible circumstance without any coordination of applicable loads
and generators results in unnecessary interconnection restrictions and the need to install
larger, more expensive equipment than would be necessary if the loads and generators were
coordinated.

This dissertation is focused on the emerging practice of managing/controlling the power
consumption or generation of distributed energy resources to avoid violating distribution
network thermal and voltage constraints. “Managing distributed energy resources” could
mean managing how much power an electric vehicle charging station uses, how much power
a Tesla Powerwall battery injects back into the grid, or reducing the power generated by
a rooftop solar panel. Managing distributed energy resources to avoid network constraints
is not something that has been done historically,10 but it may become commonplace in the
coming years as the amount of electric power the grid delivers from generators to loads
increases. Managing distributed energy resources to avoid network constraints will result in
more affordable, more accessible, and more efficient electricity service.

In the future, we expect there to be many electric vehicles, batteries, rooftop solar panels,
and other distributed energy resources attached to the grid. Managing these resources will be
challenging because the decisions for many resources must be made at once, and they must
be made in a “fair” manner.11 Furthermore, distribution network operators do not generally
know exactly how a change in the power consumption or generation from one resource will
affect a given voltage or line flow that is in danger of violating a constraint. Consider
an example distribution network which supplies power to both an electric vehicle charging
station in town and homes outside of town. If the voltage is too low at the homes outside of
town, it would be helpful for distribution network operators to know exactly how sensitive
the voltage at those homes is to changes in the power consumption at the electric vehicle
charging station. At present, distribution network operators do not know the sensitivities

9For example, if an individual household or business wanted to build a powerful electric vehicle charg-
ing station, the utility that owns and operates the distribution network would limit if/where the house-
hold/business could build the charging station based on where the grid has capacity for large new loads.
The capacity for new loads is based on the single moment of the year that is most challenging for the thermal
and voltage constraints. For the rest of the year, the line flows and network voltages are below thermal and
voltage constraints.

Similarly, not every house is allowed to install new rooftop solar panels that will inject power back into
the grid. The decision to install new solar panels that will inject power back into the grid must be cleared
with the utility, which is allowed to say that a household/business is not allowed to inject power back into
the grid.

10There are a number of utility programs and companies that control distributed energy resources, but
these programs/companies focus on reducing load or increasing generation so that the total load and the
total generation on the grid are equal, not avoiding distribution network constraints. “Virtual Power Plant”
is a term commonly used to describe controlling distributed energy resources so that the total generation
matches the total load.

11The question of what is “fair” allocation of grid resources is critically important, but outside of the
scope of this dissertation, which focuses on the engineering challenges. The work in this dissertation seeks to
provide tools to operate the grid more efficiently, and to make the trade-offs of policy decisions transparent.
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that describe how a change in the power injections will change the voltages and line flows
on a distribution network.12 This lack of knowledge prevents distribution network operators
from actively managing the resources on distribution networks.

This dissertation introduces new equations that describe how changes in the power in-
jections of the resources attached to the grid will affect the voltages, line flows, and other
quantities of interest at any location on a given distribution network. These equations that
describe the “sensitivity” of the grid require a model of the grid that includes how the grid
wires are connected, what the wires are made of, and how long the wires are.

This dissertation also introduces methods for learning grid models from sensor measure-
ments. As it turns out, it is not always possible to learn a useful grid model from sensor
measurements. This dissertation explains why, and it proposes a method for determining
how accurate the learned grid model can be expected to be based on the quality of the
sensors.

Finally, this dissertation introduces two different tools for automatically managing dis-
tributed energy resources to avoid thermal and voltage constraint violations on distribution
networks. The two tools, “Voltage Phasor Control” and “Feedback Optimization,” make
automatic decisions based on an objective function. An objective function is a mathemat-
ical expression that codifies the grid-operation goals.13 Thus, the objective function can
be crafted so that the Voltage Phasor Control tool and/or the Feedback Optimization tool
control distributed energy resources in a fair manner. The tools themselves do not specify
an objective function—that is left up to the policy-makers, grid operators, and people who
use the grid.

12Distribution network operators have an estimate or intuition for the sensitivities of the voltages and line
flows, but do not generally have an accurate mathematical expression for them because there are challenging
nuances in accurately determining the sensitivities. Also, traditional distribution network operation has
not required exact sensitivities. Accurate mathematical expressions for the sensitivities are helpful for
automatically managing the power injections of distributed energy resources to avoid distribution network
constraint violations.

13Examples of goals that can be expressed as objective functions include “deliver as much electric power
as possible,” “give all participants the same amount of electric power,” or some combination of the two.
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Keith Moffat Berkeley, CA     94703
Dear Commission, 

I am a PhD student in Electrical Engineering at UC Berkeley. My research focuses on 
distribution network optimization and electricity pricing. In my research for my Ph.D. at 
UC Berkeley I have come to the independent conclusion that real-time electricity pricing 
is the correct way to engage customer flexibility and to provide customers with a 
cheaper, more equitable electricity service. Thus, I am pleased to see Proceeding 
R2207005 from the California Public Utility Commission (CPUC) and would like to offer 
my full support for the proposed "CalFUSE roadmap" in the CPUC Energy Division's 
Demand Flexibility Whitepaper. 

The CalFUSE roadmap is forward-looking and will create growth in California's electricity 
sector. Growth of the electricity sector is necessary to meet California's greenhouse gas 
emission goals. Currently, the growth of the electricity sector is impeded by the static 
electricity rates that are presented to customers by the Utility Distribution Companies 
(UDCs) and other Load Serving Entities (LSEs)?see the "Replacing Demand Charges" 
Section in my extended comment, which can be found at the link at the end of this 
comment. The CalFUSE roadmap outlines sequential steps for UDCs and LSEs to 
provide customers with real-time electricity rates that will benefit the entire electricity 
sector.

The CalFUSE roadmap's call for using real-time electricity rates to spur electrification in 
California is prescient. Real-time electricity rates, however, only address electricity 
consumption/production inefficiencies for consumers/producers that are already 
connected to the electric grid. In addition to real-time electricity rates, including flexible 
interconnection agreements for certain subsectors (DC fast charging stations and 
medium-to-large renewable energy plants) will benefit electricity consumers, electricity 
producers, and UDCs/LSEs by enabling new grid connections. The "Flexible 
Interconnections for Certain Subsectors" Section in my extended comment provides 
more detail for why real-time electricity rates should be accompanied by flexible 
interconnections for certain subsectors.

The time is now for real-time electricity rates and flexible interconnections. Emerging 
technologies have matured to the point that real-time electricity rates and flexible 
interconnections are both necessary and practical. The technologies that make real-time 
electricity rates and flexible interconnections necessary include electric vehicles and 
electric home heating/cooling, which are posed to double electricity consumption in 
California, as well as intermittent renewable generation such as solar and wind power. 
The technologies that make real-time electricity rates and flexible interconnections 
practical include home energy management products, as well as internet and cloud 
computation infrastructure, that make the determination and dissemination of the real-
time prices and power limits practical at scale.

Regarding the technical aspects of implementing real-time electricity rates and flexible 
interconnections, I would like to make the point that there is active research in this field. 
Research resources may be tapped to sort out the technical challenges that arise with 
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real-time electricity rates and flexible interconnections.

My extended comment, which can be found at the link below, describes 
1. the case for flexible interconnections for certain subsectors,
2. the case for replacing demand charges with scarcity pricing for capacity cost recovery,

3. the technical details of implementing delivery scarcity pricing.

Regards, 

Keith Moffat

Ph.D. Candidate
Electrical Engineering and Computer Science Department
UC Berkeley 
e: keithm@berkeley.edu
w: keithmoffat.com

Extended comment link:

https://www.keithmoffat.
com/KeithMoffat_Comment_CPUCproceedingR2207005_DemandFlexibilityThroughElect
ricRates_8.15.22.pdf

Aug 15, 2022 1:51 pm
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B.1 Extended Comment on Proceeding R2207005

8/15/22

Dear Commission,

I, Keith Moffat, offer the following comments on Proceeding R2207005, “Order In-
stituting Rulemaking to Advance Demand Flexibility Through Electric Rates”
related to the recent CalFUSE proposal [2].

Executive Summary

I am a PhD student in Electrical Engineering at UC Berkeley. My research focuses on
distribution network optimization and electricity pricing. In my research for my Ph.D. at
UC Berkeley I have come to the independent conclusion that real-time electricity pricing
is the correct way to engage customer flexibility and to provide customers with a cheaper,
more equitable electricity service. Thus, I am pleased to see Proceeding R2207005 from
the California Public Utility Commission (CPUC) and would like to offer my full support
for the proposed “CalFUSE roadmap” in the CPUC Energy Division’s Demand Flexibility
Whitepaper.

The CalFUSE roadmap is forward-looking and will create growth in California’s electric-
ity sector. Growth of the electricity sector is necessary to meet California’s greenhouse gas
emission goals. Currently, the growth of the electricity sector is impeded by the static elec-
tricity rates that are presented to customers by the Utility Distribution Companies (UDCs)
and other Load Serving Entities (LSEs)—see the “Replacing demand charges” comment
below. The CalFUSE roadmap outlines sequential steps for UDCs and LSEs to provide
customers with real-time electricity rates that will benefit the entire electricity sector.

The CalFUSE roadmap’s call for using real-time electricity rates to spur electrification
in California is prescient. Real-time electricity rates, however, only address electricity con-
sumption/production inefficiencies for consumers/producers that are already connected to
the electric grid. In addition to real-time electricity rates, including flexible interconnection
agreements for certain subsectors (DC fast charging stations and medium-to-large renewable
energy plants) will benefit electricity consumers, electricity producers, and UDCs/LSEs by
enabling new grid connections. The “Flexible Interconnections for certain subsectors” com-
ment below provides more detail for why real-time electricity rates should be accompanied
by flexible interconnections for certain subsectors.

The time is now for real-time electricity rates and flexible interconnections. Emerging
technologies have matured to the point that real-time electricity rates and flexible intercon-
nections are both necessary and practical. The technologies that make real-time electric-
ity rates and flexible interconnections necessary include electric vehicles and electric home
heating/cooling, which are posed to double electricity consumption in California, as well
as intermittent renewable generation such as solar and wind power. The technologies that
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make real-time electricity rates and flexible interconnections practical include home energy
management products, as well as internet and cloud computation infrastructure, that make
the determination and dissemination of the real-time prices and power limits practical at
scale.

Regarding the technical aspects of implementing real-time electricity rates and flexible
interconnections, I would like to make the point that there is active research in this field.
Research resources may be tapped to sort out the technical challenges that arise with real-
time electricity rates and flexible interconnections.

The rest of this comment discusses 1. the case for flexible interconnections for certain
subsectors, 2. the case for replacing demand charges with scarcity pricing for capacity cost
recovery, 3. the technical details of implementing delivery scarcity pricing. I submit these
comments because I have been studying the best way to implement distribution scarcity
pricing and flexible interconnections over the course of my Ph.D. While I focus on technical
details in this comment, I would like to reiterate that the broader goals of implementing
real-time pricing and flexible interconnections are what is important at this time. The
implementation specifics, which I focus on in comment 3, can be determined later in the
implementation process.

Comment 1: Flexible Interconnections for Certain Subsectors

Real-time electricity rates only address electricity consumption/production inefficiencies for
consumers/producers that are already connected to the electric grid. In addition to real-
time electricity rates, including flexible interconnection agreements for certain subsectors
(e.g. the DC fast charging station subsector and the medium-to-large renewable energy
plant subsector) will benefit electricity consumers, electricity producers, and UDCs/LSEs by
enabling new grid connections.

It is necessary to build a significant amount of new infrastructure to support the elec-
trification of the transportation sector. For example, California will have to build many
DC Fast Charging stations, which pull orders of magnitude more electricity from the grid
than standard Level 1 and Level 2 charging stations. The current Interconnection Capacity
Analysis (ICA) process for siting new charging stations impedes electrification because the
ICA process rejects new charging station sites that should not be rejected.

The current ICA process only allows new connections to the grid if it is impossible for the
new connection to overload the grid infrastructure. Thus, the current ICA process is based
on the premise that any load on the network should be allowed to extract as much power
as it would like at any moment in time. Operating a grid with this max-power-at-any-time
premise leads to overbuilt grid infrastructure, as the aggregate max load (generation) on the
system occurs at very few moments in the year.

While appropriate for many types of electricity customers such as residential or standard
commercial customers, the max-power-at-any-time premise is not appropriate for electricity
subsectors that 1) use (produce) a lot of electricity, and 2) are flexible in when they can
consume (produce) electricity. DC fast charging stations are an example of an electricity



APPENDIX B. PUBLIC COMMENT ON THE CALIFORNIA PUBLIC UTILITY
COMMISSION’S PROCEEDING R2207005 123

subsector that matches criteria (1) and (2), as are medium-to-large intermittent renewable
generation plants.

Flexible interconnection is an alternative to max-power-at-any-time interconnection. Flex-
ible interconnection allows the utility to reduce the amount of power that a consumer can
take from (producer can inject onto) the grid to avoid grid constraint violations. The flexible
interconnection can be based on real time grid measurements or time of use.

Flexible interconnection has grassroots support in the research community and has been
implemented in industry. Smarter Grid Solutions released a flexible interconnection product
in 2010 that enabled the UK grid to connect more wind power, without requiring expensive
infrastructure upgrades.

In addition to introducing new electricity rates, the CalFUSE roadmap should include
a requirement that UDCs support flexible interconnections for the DC fast charging station
subsector and medium-to-large renewable energy plant subsector. Incorporating flexible
interconnections for these sectors will increase electrification, reduce carbon emissions, use
grid infrastructure more efficiently, and provide a cheaper electricity service to customers.

Comment 2: Replacing Demand Charges

Demand charges have distorted the electricity market, prevented electrification, and encour-
aged customers to pursue inefficient consumption patterns. Thus, demand charges result
in unnecessary costs for electricity consumers and unnecessary greenhouse gas emissions.
Replacing demand charges with scarcity pricing for capacity cost recovery, as proposed in
CalFUSE, will provide significant value to customers by allowing customers to save money
by aligning their consumption patterns with grid infrastructure constraints.

Demand charges are per-kW (power-based, rather than energy-based) rates that are
intended to be a proxy for the infrastructure investment incurred by a grid-connected load or
generator. Unfortunately, demand charges are a poor proxy for infrastructure investment and
severely impede the construction of new electric resources such as electric vehicle charging
stations.

Regarding cost causation, demand charges are correlated with the capacity/maximum
power flow of “local” grid infrastructure. However, individual peak energy use is not well-
correlated with the peak energy use for non-local grid infrastructure. That is, as you get
further from the customer, it becomes less likely that the customer’s peak power consumption
coincides with the peak power flowing through a given grid component. Most of the grid
infrastructure falls into this “non-local” category.

Consider the example of an electric vehicle DC fast charging station whose peak energy
use occurs at noon. The peak power flowing through the charging station’s service drop
will be at noon. However, if the charging station is in an area with a lot of solar power,
the charging station’s power use at noon might reduce the amount of power flowing through
the main power lines or substation transformer at noon. Thus, the time of customer power
consumption is critical and should be considered when determining the best way to recover
capacity costs.
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The CalFUSE roadmap proposes replacing demand charges with scarcity pricing for
capacity cost recovery. This switch will create significant value for the entire electricity
sector, including electricity customers, generators, UDCs, and LSEs. By allowing (a subset
of) electricity customers to respond to real-time prices, the (subset of) customers may align
their consumption with both the real-time generation cost and the grid infrastructure, which
will avoid unnecessary infrastructure replacements and result in cheaper electricity prices
for everyone. Cheaper prices will, in turn, lead to the growth of the electricity sector in
California.

Comment 3: Implementing Delivery Scarcity Pricing

It will be important to implement scarcity pricing for capacity cost recovery in the correct
manner. The CalFUSE roadmap splits the scarcity price framework up into delivery scarcity
price, capacity scarcity price, and ramp scarcity price. The delivery scarcity price is focused
on recovering the fixed costs that were used to build the distribution network infrastructure
(the power lines, transformers, and other pieces of grid equipment). The following comments
are focused on the specifics of implementing the delivery scarcity pricing for distribution
network capacity cost recovery.

Comment 3a: On Delivery Scarcity Pricing—the Pricing Mechanism

The mechanism that determines the delivery scarcity price must be transparent and fair.
The best way to create transparency and fairness is with an algorithm. The algorithm rules
and settings can be published publicly and adjusted as necessary to meet the needs of society
regarding equity, optimality, and other considerations. Note, it is the algorithm rules and
settings that are adjusted by policy makers, not the prices themselves.

Pages 58-60 of the CalFUSE whitepaper outline a method of determining scarcity prices
using a quadratic function with hand-picked parameters. While simple, this quadratic-
function-with-hand-picked-parameter method has several downsides. One downside is that
the process for choosing the parameters could be corrupted and would be the basis for endless
debate among stakeholders. A second downside is that the hand-picked parameters cannot
be adjusted in real-time to match the grid conditions as they evolve.

Lagrangian-based optimization is an alternative method for determining the delivery
scarcity price. Lagrangian-based optimization is used ubiquitously in optimization. For ex-
ample, the Locational Marginal Prices (LMPs) for the CAISO transmission network are cal-
culated using Lagrangian-based optimization. A Lagrangian-based optimization algorithm
would be a better way of determining the delivery scarcity prices than a quadratic-function-
with-hand-picked-parameter method because Lagrangian-based optimization automatically
adjusts the prices, rather than requiring an exogenous entity to hand-pick parameters.
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Comment 3b: On Delivery Scarcity Pricing—Capacity Utilization vs.
Constraint-based Pricing

The delivery scarcity pricing method proposed on pages 58-60 of the CalFUSE whitepaper
implements a rate adder based on capacity utilization. A rate adder based on capacity
utilization would work well when individual customer electricity consumption can be mapped
directly to the capacity utilization for an existing piece of grid infrastructure. For example,
individual customer energy use can be easily mapped to substation transformer capacity
utilization on a radial network that is served by that single substation transformer. Such a
scenario corresponds to the example given in the CalFUSE whitepaper.

However, a rate adder based on capacity utilization would not be easy to implement when
there is not a clear mapping from individual customer energy use to capacity utilization. For
example, if a feeder is served by multiple substation transformers in different locations, it
would be more difficult to map individual customer energy use to substation transformer
capacity utilization for each transformer.

Another example is related to voltage constraint violations—the voltage on the grid must
be kept between minimum and maximum values, according to grid codes. While voltage vi-
olations cannot be mapped to capacity utilization of specific, existing infrastructure, voltage
violations also demonstrate delivery resource scarcity.

If delivery scarcity pricing is implemented based on (proximity to) constraint violations,
rather than the capacity utilization of existing infrastructure, then the delivery scarcity
pricing will apply to all types of delivery resource scarcity.

Lagrangian-based optimization, as proposed in Comment 3a, supports constraint-based
pricing. Implementing delivery scarcity pricing with Lagrangian-based optimization will
produce a system that automatically adjusts prices based on (proximity to) constraint vio-
lations, applies to all types of delivery resource scarcity, and does not require hand-picked
parameters.

Regards,

Keith Moffat
Ph.D. Candidate
Electrical Engineering and Computer Science Department
UC Berkeley
e: keithm@berkeley.edu
w: keithmoffat.com
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Appendix C

Voltage Phasor Control Proofs

C.1 Derivations of the voltage sensitivities in Table

4.2

The sensitivities of the circuits without VPC are straightforward derivatives with respect to
the disturbance injection current. With VPC, the PCN current injection at the PCN is a
function of the disturbance node injection.

Circuit in row 1 of Table 4.2

The circuit equations are

v1 = 1− i01z10, and

i01 = −(i1 + i2 + i3).

Without VPC:

∂v1
∂i3

= z10.

With VPC:

i2 =
v̂2 − i3(z10 + z21)− i1z10 − 1

z10 + z21
. (C.1)

Therefore, ∂i2
∂i3

= −1. From KCL,

∂i01
∂i3

= −∂i2
∂i3

− 1 = 0.

Using the chain rule, we find that

∂v1
i3

=
∂v1
∂i01

∂i01
i3

= 0.
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Circuit in row 2 of Table 4.2

The circuit equation is

v3 = 1 + i3z32 + (i2 + i3)z21 + (i3 + i2 + i1)z10. (C.2)

Without VPC:

∂v3
∂i1

= z10.

With VPC, Eqn. (C.1) still holds. Therefore,

∂i2
∂i1

= − z10
z10 + z21

,

and, from the circuit equation (C.2),

∂v3
∂i1

=
∂i2
∂i1

z21 +
∂i2
∂i1

z10 + z10

= 0.

C.2 Derivations of the line flow sensitivities in Table

4.3

The circuit equations are

1− v2 = i01z10 + i12z12,

i01 = −i1 + i12, and (C.3)

i12 = −i2 − i3. (C.4)

When VPC holds v2 at v̂2, i01 and i12 are functions of i1:

i01 =
1− v̂2
z10 + z12

− i1
z12

z10 + z12
. (C.5)

i12 =
1− v̂2
z10 + z12

+ i1
z01

z10 + z12
, (C.6)

The sensitivities in Table 4.3 come from the partial derivatives of equations (C.3), (C.4),
(C.5), and (C.6).
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C.3 Proof of Lemma 4.3.1

Proof. From (C.5), ∂i01
∂i1

= −a.
Using the Triangle Inequality,

|iVPC
01 | − |ibef01 | ≤ |∆i1

∂i01
∂i1

| = |∆i1||a|.

A similar proof applies to Lemma 4.3.2.

C.4 Proof of Lemma 4.3.3

Proof. Without VPC, iol01 = (ibef01 −∆i1), and

|iol01|2 = (ibef01 −∆i1)(i
bef
01 −∆i1)

∗

= |ibef01 |2 − 2 cos(θibef01
− θ∆i1)|ibef01 ||∆i1|+ |∆i1|2.

With VPC, iVPC
01 = (ibef01 − a∆i1), and

|iVPC
01 |2 = (ibef01 − a∆i1)(i

bef
01 − a∆i1)

∗

= |ibef01 |2 − 2a cos(θibef01
− θ∆i1)|ibef01 ||∆i1|+ a2|∆i1|2.

Because ∆i1 increases i01 and z01 and z12 have the same X/R ratio, |iVPC
01 |2 > |ibef01 |2, and

0 < −2a cos(θibef01
− θ∆i1)|ibef01 ||∆i1|+ a2|∆i1|2.

Using the fact that 0 < a < 1,

0 < 2(a− 1) cos(θibef01
− θ∆i1)|ibef01 ||∆i1|+ (a− a2)|∆i1|2. (C.7)

Taking the difference between |iol01|2 and |iVPC
01 |2, we get

|iol01|2 − |iVPC
01 |2 = 2(a− 1) cos(θibef01

− θ∆i1)|ibef01 ||∆i1|
+ (a− a2)|∆i1|2 + (1− a)|∆i1|2. (C.8)

Substituting (C.7) into (C.8) gives

|iol01|2 − |iVPC
01 |2 > (1− a)|∆i1|2,

which is positive because 0 < a < 1.



129

Appendix D

Unsupervised Impedance and
Topology Estimation of Distribution
Networks

D.1 The subKron Reduction Derivation

The subKron admittance matrix in Eq. (2.4) is derived in section 2.3. We can equivalently
derive an expression for the subKron impedance matrix as follows: VA − 1V T

A1 = ZKIA −
1ZT

K1IA . ZT
K1 is the first row of ZK . Since ZK is symmetric, ZK1 is also the first column of

ZK . By conservation of current, IA1 = −
∑A

i=2 IAi, so we can rewrite the above as follows:

VA − 1V T
A1 = (ZK − 1ZT

K1)

[
−1T

I(A−1)

]− IA2 −
...

− IAA −


where I(A−1) is the (A−1)×(A−1) identity matrix. Define Z̄ = (ZK−1ZT

K1)

[
−1T

I(A−1)

]
. Then

the elements of Z̄ ∈ CA×(A−1) are related to the values in ZK by: Z̄(i, j) = ZK(i, j + 1) −
ZK(1, j+1)−ZK(1, i)+ZK(1, 1). Using the symmetry of ZK , we can see that ∀j : Z̄(1, j) = 0:
Z̄(1, j) = ZK(1, j +1)−ZK(1, j +1)−ZK(1, 1) +ZK(1, 1) = 0 Therefore, the first row of Z̄
is 0, corresponding to the row of 0s in VA − 1V T

A1. Discarding both rows of zeros reduces the
equation dimensionality and leaves us with a square matrix ZsK ∈ C(A−1)×(A−1).− (VA2 − VA1)

T −
...

− (VAA − VA1)
T −

 = ZsK

− IA2 −
...

− IAA −


ZsK is the subKron impedance matrix with elements defined by Eq. (2.6). Eq. (2.6) comes

directly from the values in Z̄. The two subKron forms of Ohm’s Law are then: IsA =
YsKVsA ↔ VsA = ZsKIsA.
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D.2 Recursive Grouping and Relaxed Recursive

Grouping

RG constructs the radial network recursively, progressively shrinking O as parent nodes are
identified/introduced using lemma D.2.1. For distribution networks, the initial set O is the
set A, which includes at least all of the leaf nodes. Once a parent is identified/introduced,
the children nodes are removed from O. A toy demonstration of RG is given in Fig. 2.4.

RG determines connectivity relationships between observed nodes by comparing dij with
Φijk ≜ dik − djk, for all possible combinations i, j, k ∈ O. The following Lemma D.2.1 [27]
describes the relationship between dij and Φijk for nodes which are parent/child pairs or
siblings.

Lemma D.2.1. (i) dij = Φijk,∀k ∈ O\(i, j) iff i is a leaf node in O, and j is the parent of
i.
(ii) −dij < Φijk = Φijk′ < dij, ∀k, k′ ∈ O\(i, j) iff i and j are leaf nodes in O, and siblings.

If two or more nodes are siblings without a parent node, a new parent node is added. As
new nodes are added, the effective impedances between them and the rest of the network are
calculated using linear operations (eqns. (13)− (14) in [27]). Thus, RG is a linear operator.

[27] also introduces “Relaxed Recursive Grouping” for scenarios where the inter-node
distance estimates (d̂) contain noise/errors. The parent/child criteria in Lemma D.2.1 is
replaced with:

|d̂ij − Φ̂ijk| ≤ ϵ,∀k ∈ Kij, (D.1)

and the sibling group criteria in Lemma D.2.1 with:

Λ̂ij ≜ max
k∈κij

(|Φ̂ijk|)− min
k∈κij

(|Φ̂ijk|) ≤ ϵ. (D.2)

Eqs. (D.1) and (D.2) introduce a bias, because it is more likely that pair (i, j) will be
recognized as a parent/child or sibling pair if Kij contains fewer nodes. To avoid this, we

introduce alternative relaxed RG tests which consider the average Φ̂ijk value over k ∈ Kij,
rather than the max. The proposed relaxed RG parent/child and sibling tests are precisely
the CRG tests (2.9) and (2.10).

In order for relaxed RG to converge, it must select at least two nodes in O to be a
parent/children pair or siblings at each iteration. But with imperfect d̂ estimates, it is
possible that no nodes in O satisfy the parent/child or sibling tests for a given ϵ. This can
be addressed using the expanding ϵ technique presented in [28]—ϵ (for the current comparison
round) is increased when no nodes satisfy the parent/child or sibling tests.
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Appendix E

Mathematical Background for Power
Flow Manifold Tangent Planes

E.1 Converting Complex-Valued Equations to

Real-Valued Equations

⟨x⟩ :=
[
Re(x)
Im(x)

]
if x is a vector, (E.1)

⟨M⟩ :=
[
Re(M) − Im(M)
Im(M) Re(M)

]
if M is a matrix. (E.2)

The ⟨·⟩ conversion works for matrix-vector multiplications. Consider the product of a
complex matrix M = A+Bj and a complex vector x = y + zj,

Mx = [A+Bj][y + zj]

= [Ay −Bz] + [Az +By]j.

Alternatively, we can compute the product in real space,

⟨Mx⟩ = ⟨M⟩⟨x⟩

=

[
A −B
B A

] [
y
z

]
=

[
Ay −Bz
By + Az

]
,

arriving at the same answer as the complex multiplication after taking ⟨·⟩ of the complex
multiplication.



APPENDIX E. MATHEMATICAL BACKGROUND FOR POWER FLOW MANIFOLD
TANGENT PLANES 132

The ⟨·⟩ conversion works for matrix-matrix multiplications as well. Consider the product
of a complex matrix M = A+ Cj and another complex matrix D = R + Ej,

MD = [A+ Cj][R + Ej]

= [AR− CE] + [AE + CR]j.

Alternatively, we can compute the product in real space,

⟨MD⟩ = ⟨M⟩⟨D⟩

=

[
A −C
C A

] [
R −E
E R

]
=

[
AR− CE −AE − CR
AE + CR AR− CE

]
,

once again arriving at the same answer as the complex multiplication after taking ⟨·⟩ of the
complex multiplication.

Finally, we define the following rules for complex conjugates,

⟨x⟩ = N⟨x⟩ if x is a vector, but (E.3)

⟨M⟩ = N⟨M⟩N if M is a matrix. (E.4)

For N ∈ R2n defined as

N :=

[
In 0n
0n −In

]
.

The (E.3) and (E.4) equations follow from (E.2) and (E.1).

E.2 Implicit Functions, Manifolds, and Tangent

Planes

An implicit function of x is a relation of x defined by setting a function equal to zero. For
example,

Φ(x) = 0.

Φ defines the submanifold of the implicit function,

M := {x
∣∣ Φ(x) = 0}.

The dimensions of x and Φ define the dimension of the submanifold. The Jacobian of Φ(x)
with respect to x is the matrix of partial derivatives,

J =
∂Φ(x)

∂x
.
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The rows of the Jacobian evaluated at x∗ define vector space that is normal to M at x∗. The
tangent plane at x∗ is the space of vectors that are orthogonal to the rows of the Jacobian
at x∗,

T |x∗ := {x
∣∣ J |x∗δx = 0}.

Two-dimensional Example

Let us take an example implicit function Φ of x =
[
x1 x2

]
to provide some intuition,

Φ(x) = x1 − x22 = 0.

The 1-dimensional submanifold of R2 is defined as

M := {x
∣∣ Φ(x) = 0}.

The Jacobian J is given by

J =
∂Φ(x)

∂x
=

[
1 −2x∗2

]
.

The tangent plane at x∗ =
[
x∗1 x∗2

]
is given by

T |x∗ :=

{
x
∣∣ [1 −2x∗2

] [δx1
δx2

]
= 0

}
,

where δx = x − x∗. The normal vector (space) to the manifold M and the tangent vector

(plane) is the row vector (space) of J ,
[
1 −2x∗2

]T
. The tangent vector can be written

explicitly as

δx1 − 2x∗2δx2 = 0. (E.5)

This tangent vector can be compared with the derivative of the explicit function ϕ(x1)
derived by setting x2 = ϕ(x1),

ϕ(x1) = ±
√
x1.

The derivative of ϕ(x1) with respect to x1 evaluated at x∗1 is

∂ϕ(x1)

∂x1
= ± 1

2
√
x∗1
. (E.6)

Plugging (x∗2)
2 in for x∗1 in (E.6) demonstrates that the derivative (E.6) describes the same

tangent vector in R2 as (E.5).
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Appendix F

Power Flow Equivalence proofs

F.1 Coupled Linear Power Flow Derivation

We define δvlk = vl − vk, δvk1 = vk − 1, and δθlk = θl − θk. We also define the l,: subscript
to mean “all of the entries corresponding to i.” For the set of edge real power flows, pl,: is
all of the real power flows from bus i. For a matrix M, Ml,:, to be all of the entries of the ith

row of M.

CLPF Voltage-Power Sensitivity

Using Approximation 1,

s = diag(v)̄i

s ≈ ī.

Assuming that the network has no shunt elements,1 we can write an expression for Re(il) as

Re(il) =
n∑

k ̸=l

[vl(cos(θl)glk − sin(θl)blk)− vk(cos(θk)glk − sin(θk)blk)].

Plugging in the small angle approximations and expanding the voltage magnitudes that are
multiplied by angles into vl = 1 + δvl1 and vk = 1 + δvk1 gives

Re(il) ≈
n∑

k ̸=l

[vl(glk − θlblk)− vk(glk − θkblk)]

=
n∑

k ̸=l

[
(vl − vk)glk − (1 + δvl1)θlblk + (1 + δvk1)θkblk

]
.

1A similiar derivation applies to networks with shunt elements. We include the no-shunt derivation here
because it is simpler.
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Discarding products of δv and θ leaves

Re(il) ≈
n∑

k ̸=l

[
glk(vl − vk)− blk(θl − θk)

]
= Gl,:v −Bl,:θ.

Similarly, we derive the linearization for Im(il),

Im(il) =
n∑

k ̸=l

[vl(sin(θl)glk + cos(θl)blk)− vk(sin(θk)glk + cos(θk)blk)]

≈
n∑

k ̸=l

[vl(θlglk + blk)− vk(θkglk + blk)]

=
n∑

k ̸=l

[
(vl − vk)blk + (1 + δvl1)θlglk − (1 + δvk1)θkglk

]
≈

∑
k ̸=l

[
blk(vl − vk) + glk(θl − θk)

]
= Bl,:v +Gl,:θ.

Combining these results gives the CLPF approximation of the power injections in terms of
the voltage phasors, [

p
q

]
≈

[
G −B
−B −G

] [
v
θ

]
.

Taking the difference from a given operating point2 and eliminating the power injections and
voltages for the constant voltage/slack bus gives the CLPF voltage-power sensitivity,[

δpR
δqR

]
=

[
GR −BR

−BR −GR

] [
δvR
δθR

]
.

CLPF Power-Voltage Sensitivity

Taking the inverse of the CLPF voltage-power sensitivity using the complex-matrix equiva-
lence in Appendix E.1, [

GR −BR

−BR −GR

]−1

= (N⟨YR⟩)−1

= ⟨ZR⟩N

=

[
RR XR
XR −RR

]
.

2Commonly-used operating points include the Flat voltage profile and the “No Load” voltage profile
[104], [120].
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F.2 Equivalence of Branch Flow and Bus Injection

Linearizations

The linearized edge flow equation in v for a edge from node i to node j is[
δvlk
θlk

]
≈

[
rlk xlk
xlk −rlk

] [
plk
qlk

]
The inverse of this equation is[

plk
qlk

]
≈

[
glk −blk
−blk −glk

] [
δvlk
θlk

]
The edge flow equations for all the edges connected to node i are given by:

pl1
...
pln
ql1
...
qln


≈



gl1 . . . 0 −bl1 . . . 0
...

. . .
...

...
. . .

...
0 . . . gln 0 . . . −bln

−bl1 . . . 0 −gl1 . . . 0
. . .

...
...

. . .
...

0 . . . −bln 0 . . . −gln





v1 − vl
...

vn − vl
θ1 − θl

...
θn − θl


(F.1)

=⇒
[
pl,:
ql,:

]
≈

[
diag(Gl,:) −diag(Bl,:)
−diag(Bl,:) −diag(Gl,:)

] [
vδi

θδi

]
. (F.2)

Note the difference between G and G. G is not the network conductance matrix. Instead,
G contains conductances of each network line: G(i, k) = glk, the conductance of line (i, k).
Similarly, B differs fromB. If a connection does not exist between nodes i and j, glk = blk = 0.
G(i, i) and B(i, i) are both 0 as well, not the shunt admittance.

Using the definiition of the l,: subscript from the beginning of F.1, We have the following
relationship between the edge flows from node i and the nodal power injection at node i,[

pl
ql

]
= −

[
1T 0T

0T 1T

] [
pl,:
ql,:

]
. (F.3)

We also have the following relationship between the voltage magnitude and angle differences
along the edges emanating from node i and the nodal voltage magnitudes and angles,[

vδi

θδi

]
=

[
E (i) 0
0 E (i)

] [
v
θ

]
. (F.4)

Here E (i) ∈ Zn×n is related to the incidence matrix. However, it doesn’t only describe the
existing edges in the graph, but every possible edge. The jth row of E (i) contains only two
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nonzero entries. Namely, E (i)(j, i) = −1 and E (i)(j, j) = 1. Therefore, the ith column of E (i)

contains all −1’s. We can write E (i) as the sum of two matrices,

E (i) = I − 1(i).

where 1(i) ∈ Zn×n is a matrix of all zeros, except the ith column which contains ones.
plugging (F.1) and (F.4) into (F.3), allows us to write an equation for the matrix relating
the power injection at node i to the nodal voltage magnitudes and angles.[

pl
ql

]
≈ −[ 1

T 0T

0T 1T ][
diag(Gl,:) −diag(Bl,:)

−diag(Bl,:) −diag(Gl,:)
][ E

(i) 0
0 E(i) ]

[
v
θ

]
≈ −

[
Gl,: −Bl,:

−Bl,: −Gl,:

] [
E (i) 0
0 E (i)

] [
v
θ

]
.

Recall that Gl,: ∈ Rn and Bl,: ∈ Rn contain conductances and susceptances respectively for
each edge (i, k). If the edge (i, k) doesn’t exist, the corresponding element of Gl,: ∈ Rn and
Bl,: ∈ Rn will be zero.

Gl,:E (i) = Gl,:I − Gl,:1
(i)

=
[
gl1 . . . gln

]
−
[
0 . . . −

∑n
j=1 glk . . . 0

]
=

[
gl1 . . . −

∑n
j=1 glk . . . gln

]
= −Gl,:.

Where Gl,: is the i
th row of network conductance matrix G without any shunt elements.

Similarly, we have

Bl,:E (i) = −Bl,:

putting these results together gives:[
pl
ql

]
≈

[
Gl,: −Bl,:

−Bl,: −Gl,:

] [
v
θ

]
.

Stacking together pl and ql for every node gives CLPF in bus injection form[
p
q

]
≈

[
G −B
−B −G

] [
v
θ

]
.

F.3 NPFL for a Network without Shunt Admittances

at Flat voltage

power-voltage Sensitivity
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If u∗ = uflat = 1n,

R(uflat) = 12n

⟨diag(uflat)⟩ = 12n.

If, in addition, there are no shunt admittances,

Y uflat) = 0n.

plugging these values into Γ in (5.8) gives

Γ =

[
GR −BR
−BR −GR

]
.

Calculating χ1
Γχ1 for (7.6) gives

χ1
Γχ1 =

[
GR −BR
−BR −GR

]
.

Using the result from Appendix F.1,

χT
1
ψχ1 =

[
RR XR
XR −RR

]
.

Slack Bus power Inejction

Because ker(GT ) = 1n and ker(BT ) = 1n

Ξ1
Γχ1 = Ξ1

[
U+ U0

]
ΣvT

Ξ1
U

0,1
= I2

Ξ1
U
0,χ1

=

[
1n−1 0
0 1n−1

]
.

plugging into (7.3) to calculate Ξ1Ω1Ξ
T
1 from Remark 7.3.5 gives

Ξ1Ω1Ξ
T
1 =

0 [
−1Tn−1 0

0 −1Tn−1

]
0 I2n−2

 .




