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ARTICLE

Machine learning and structural analysis of
Mycobacterium tuberculosis pan-genome identifies
genetic signatures of antibiotic resistance
Erol S. Kavvas 1, Edward Catoiu1, Nathan Mih1,2, James T. Yurkovich 1,2, Yara Seif 1, Nicholas Dillon3,4,

David Heckmann1, Amitesh Anand1, Laurence Yang1, Victor Nizet 3,4,

Jonathan M. Monk1 & Bernhard O. Palsson 1,2,3

Mycobacterium tuberculosis is a serious human pathogen threat exhibiting complex evolution

of antimicrobial resistance (AMR). Accordingly, the many publicly available datasets

describing its AMR characteristics demand disparate data-type analyses. Here, we develop a

reference strain-agnostic computational platform that uses machine learning approaches,

complemented by both genetic interaction analysis and 3D structural mutation-mapping, to

identify signatures of AMR evolution to 13 antibiotics. This platform is applied to

1595 sequenced strains to yield four key results. First, a pan-genome analysis shows that M.

tuberculosis is highly conserved with sequenced variation concentrated in PE/PPE/PGRS

genes. Second, the platform corroborates 33 genes known to confer resistance and identifies

24 new genetic signatures of AMR. Third, 97 epistatic interactions across 10 resistance

classes are revealed. Fourth, detailed structural analysis of these genes yields mechanistic

bases for their selection. The platform can be used to study other human pathogens.
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Advancements in genome sequencing technologies have
made available thousands of drug-tested M. tuberculosis
genomes in public databases. With available sequences

expected to surpass 60,000 during the next 5 years (https://www.
crypticproject.org/), there is impetus for new quantitative
approaches that excel at analyzing massive datasets. Methods that
explicitly account for structure amongst features—such as those
found in the field of machine learning—will be essential for
addressing this M. tuberculosis data deluge1.

To date, most approaches compare M. tuberculosis genome
sequences against the H37Rv reference strain in order to identify
single nucleotide polymorphisms (SNPs). Following SNP identi-
fication, most studies then focus on the subset of previously
identified resistance-determining SNPs that have been previously
determined to be key resistance-determining mutations, specifi-
cally those within a handful of genes encoding proteins targeted
by drugs2. While such studies have proven to be powerful for
diagnostics3 and elucidating mutational steps to AMR2, they
do not account for potential genome-wide mutations reflecting
positive AMR selection, such as those found to be related to
cell wall permeability, efflux pumps, and compensatory
mechanisms4.

Specific genome-wide functional analyses in M. tuberculosis
have shown that ald loss-of-function5, ubiA gain-of-function6,
and thyA loss-of-function7 mutations occur in off-target
reactions, and confer resistance through modulation of
metabolite pools. These results exemplify the complex interplay
underlying AMR phenotypes that extends beyond the few
genes currently utilized in diagnostic studies. In addition
to limitations of a narrow genetic view, the identification of other
types of resistance-conferring mutations, such as deletions8,9,
suggest that SNPs are no longer comprehensive in describing the
mutational landscape of M. tuberculosis AMR evolution.

Here, we apply a reference-agnostic machine learning
approach complemented by both genetic interaction and protein
structural analysis to deduce the variability in genetic content and
AMR of 1595 M. tuberculosis strains. The complete analysis
recapitulates known AMR mechanisms and infers specific selec-
tion pressures through directed hypotheses.

Results
Characterizing the M. tuberculosis pan-genome. Our first goal
was to characterize and understand the gene content of sequenced
M. tuberculosis strains. We selected a representative set of 1595
M. tuberculosis strains for which AMR testing data was available
from the PATRIC database10 and come from a wide range of
studies (see Supplementary Discussion). Strains were selected for
their genetic, geographic, and AMR phenotypic diversity (Sup-
plementary Fig. 1). The geographic diversity of these strains
reflects areas heavily burdened byM. tuberculosis (Supplementary
Fig. 1a). We constructed a phylogenetic tree for the 1595 strains
using a robust set of lineage-defining SNPs11 (Supplementary
Fig. 1b and Methods). Finally, strains were selected in order to
provide a distribution across commonly used M. tuberculosis
treatment regimens (Methods). Of these 1595 strains, 1282 strains
had AMR testing data for isoniazid, rifampicin, streptomycin, and
ethambutol (Supplementary Fig. 1c) and 946 (59%) were resistant
to both isoniazid and rifampicin. Following the selection of
strains, we determined the pan-genome (i.e., the union of all
genes across the strains) represented by these data and analyzed
the distribution of various genomic features (core genes, virulence
factors, etc.). The pan-genome analysis described a general
theme of high conservation (Supplementary Fig. 2, see Supple-
mentary Discussion for further discussion of M. tuberculosis pan-
genome).

Assessing allele frequencies identifies key AMR genes. Although
the M. tuberculosis pan-genome clusters provide an informative
view of the global genetic repertoire within a species, they lack the
resolution necessary to discriminate between most AMR pheno-
types. To elucidate fine-grained genetic variation indicative of
AMR evolution, we separated each pan-genome cluster into
groups of exact amino acid sequence variants, or alleles (Sup-
plementary Fig. 3g). In contrast to alignment-based perspectives,
the allele-based pan-genome does not reduce non-H37Rv variants
to a collection of SNPs, but instead represents variants in their
functional protein-coding form. This approach accounts for all
protein-coding alleles in the M. tuberculosis pan-genome, thereby
representing the extensive strain-to-strain variation observed in
bacterial genomes without biasing the variations relative to a
single reference genome.

We used mutual information (MI)12 as an association metric to
identify resistance-determining genes with this newly constructed
variant pan-genome and the accompanying AMR dataset
(Methods). Importantly, this approach identified primary
resistance-conferring genes previously reported in the literature
(Fig. 1). In addition to MI, we calculated associations using a chi-
squared test and an ANOVA F-test, both of which identified
similar sets of key AMR genes (P < 0.005; Bonferroni correction)
(Supplementary Data 1). These results suggest that allele
frequencies based on exact sequence (i.e., without a metric for
genetic distance) are capable of identifying AMR genes, which has
previously been shown with k-mer based approaches13–15.

Machine learning identifies known and new resistance genes.
Although simple and effective, pairwise association tests (i.e., MI,
chi-squared, and ANOVA F-test) do not simultaneously account
for multiple alleles because the pairwise calculations consider
variants independently of one another. Thus, we tailored a sup-
port vector machine (SVM)—a method that inherently accounts
for structure amongst the features—to uncover AMR-conferring
genes (Methods). Using the allele presence–absence across strains
as the features, the SVM identified an additional seven known
AMR gene–antibiotic relations absent from the top 40 ranked
alleles determined by pairwise associations, including those
associated with complex resistance (Table 1). In particular, ubiA,
a resistance gene recently found to confer high level resistance to
ethambutol6, appeared as a strong signal across the ensemble of
SVM simulations—despite not being accounted for in con-
temporary M. tuberculosis diagnostics (Supplementary Data 2).

Isoniazid
Rifampicin
Streptomycin
Ethambutol

MI
(bits)

0.6

0.4

0.2

Antibiotics

Ofloxacin
Pyrazinamide

embB

rpsL

pncA

rpoB

katG

gyrA

Pan-genome
alleles

Fig. 1 Identification of key resistance-conferring genes using mutual
information. The pairwise mutual information (vertical axis) between the
pan-genome alleles and antibiotic resistance was calculated across all
possible pairs. The listed genes correspond to the pan-genome alleles that
hold the most information about the listed drug’s AMR phenotype
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The SVM method revealed an abundance of AMR-implicated
genes involved in metabolic pathways (119/317, 37.5%) (Supple-
mentary Data 2). In fact, the majority of the known AMR
determinants are metabolic enzymes (24/33, 73%). We found
over 20 genes related to cell wall processes (26/317, 8.2%), which
is consistent with previous findings of convergent AMR evolution
in M. tuberculosis4. Furthermore, many high-signal AMR genes,
such as pbpA and mmpS3, have recently been identified as
determinants of intrinsic M. tuberculosis AMR16. The full list of
identified genes for each drug is provided (Supplementary
Data 2).

Machine learning uncovers genetic interactions. Beyond iden-
tifying AMR genes, four key attributes of our ensemble SVM
learning approach enable analysis of genetic interactions under-
lying variable AMR phenotypes (Methods and Supplementary
Fig. 4): (1) the weighting of a particular allele in a specific SVM
hyperplane scales with its contribution to a particular AMR
phenotype, (2) the sign of the weighting (positive or negative)
corresponds to the contribution of that allele to the AMR phe-
notype (i.e., positive weights correspond to resistance while the
negative weights correspond to susceptibility), (3) the magnitude
and sign of an allele weighting is dependent upon the magnitudes
and signs of other alleles within the same hyperplane, and (4) the
use of bootstrapping (i.e., randomized subsampling of the
population with replacement), and stochastic gradient descent
ensures variability in the weights, signs, and set of alleles for each
SVM hyperplane. Motivated by attributes 3 and 4, we hypothe-
sized that two genes may interact if the weights, signs, and
appearance of their alleles are significantly correlated across the
ensemble of SVM hyperplanes (Methods). Therefore, to identify
genetic interactions contributing to AMR in M. tuberculosis
strains, we constructed a correlation matrix of allele weights
across the ensemble of randomized SVM hyperplanes (Supple-
mentary Data 3) and filtered for the top 60 highest gene–gene
correlations for eight AMR classifications. The resulting set of
gene–gene pairs were interrogated through logistic regression
modeling, selecting those gene pairs with statistically significant
allele–allele interactions (P < 0.05; Benjamini–Hochberg correc-
tion) (Methods and Supplementary Fig. 4). This approach
uncovered 94 potential genetic interactions (Supplementary
Fig. 4).

We can use the evolution of ethambutol resistance as a case
study to examine the output of our approach. Epistasis analysis of
ethambutol AMR genes implicated interactions between embB,
ubiA, and embR; all genes known to contribute to ethambutol

resistance6,17,18. Although the embR alleles appeared few times
across the multiple SVM simulations, their appearance was highly
correlated with alterations in the sign and weight of the ubiA
allele (see Supplementary Figure 6). This implies that embR is
only a predictive feature within the context of ubiA, which may
result from the weak penetrance of embR alleles within M.
tuberculosis (Fig. 2a). Logistic regression modeling identified
significant allele–allele interactions between ubiA and embR
alleles (Supplementary Fig. 4). We investigated these interactions
through a co-occurrence table of the genes, where each cell
corresponds to the number of resistant strains with both alleles
over the total number of strains with both alleles (Fig. 2a). The log
odds ratio (LOR)—a measurement of the association of the co-
occurrence of both alleles with AMR phenotype—was used to
color each cell in the co-occurrence table (Fig. 2, see Methods).
We observed that the resistant-dominant ubiA alleles (i.e., those
with high positive LOR), 2 and 4, occurred exclusively in the
background of nonsusceptible-dominant embR alleles (Fig. 2a).
Interestingly, in contrast to embB and ubiA, no embR allele
appeared as a clear resistance determinant (Fig. 2a). Furthermore,
neither embR nor ubiA were significantly associated with
ethambutol AMR in pairwise associations tests (Table 1 and
Supplementary Data 1), showing that our ensemble-based
machine learning approach uncovers M. tuberculosis AMR
complexity. In addition to these known AMR determinants of
ethambutol, our analysis implicated ubiA interactions with
Rv3848 in ethambutol resistance (Table 2 and Supplementary
Data 4). Interestingly, the resistant-dominant allele of Rv3848
occurs exclusively in the background of the AMR-neutral ubiA
allele 3, hinting at an alternative route of high-level ethambutol
resistance.

For identified isoniazid AMR genes, the co-occurrence table
highlighted cases where either katG or inhA genes provide the
dominant mode of resistance (Fig. 2b). Specifically, the incidence
of susceptible katG alleles 1, 2, 5, and 6 (i.e., low LOR) with the
resistance inhA alleles 2 and 3 (i.e., high LOR) showed that
isoniazid resistance in our dataset arose from either katG or inhA
mutations, but not both. Aside from these two highly studied
isoniazid AMR determinants, epistatic interactions between katG
and oxcA appeared with a high signal and further displayed an
interesting co-occurrence relationship with katG (Fig. 2b). This
epistatic interaction for oxcA has not been previously described;
specifically, alleles 3 and 7 of oxcA appear exclusively in isoniazid-
resistant strains. While the AMR phenotypes for the strains
containing these alleles may be attributed to the presence of the
resistance-dominant katG alleles 3 and 7, as is often offered in
studies to “explain resistance”, the variation in AMR phenotypes
across the different alleles were determined to be significant by
the machine learning algorithm and thus motivated further
investigation. Co-occurrence tables of epistatic AMR genes are
provided for the ten antibiotic classifications (Supplementary
Data 5).

Structural analysis suggest drivers of selection. Although the
machine learning results agree with experimental literature, it
remains unclear whether the uncovered genetic features are either
true determinants of AMR or possible artifacts of the statistical
learning algorithm. To gain additional insight into whether or not
the uncovered alleles are causal in AMR evolution, we mapped
the alleles of the 254 AMR genes to protein structures using both
experimental crystal structures (20/254) and predicted homology
models (50/254) using the ssbio Python package (Methods and
Supplementary Data 6)19. Out of the 254 genes, 217 had available
protein sequence annotations (i.e., binding domains, secondary
structures, etc.). First, we established a positive control by

Table 1 Known AMR genes uncovered by machine learning

Antibiotics Known AMR genes

Isoniazid katG43, inhAa20, fabG144

Rifampicin rpoB45, rpoCa46 Rv3239c47

Ethambutol embB48, embC17, ubiAa6, embRa17

Pyrazinamide pncA49

Streptomycin rpsL50, gidB51

Ofloxacin gyrA52

4-Aminosalicylic acid folCa7, thyAa53

Ethionamide ethA54, inhAa20

Known AMR genes
associated with other
antibiotics

dprE155, ald5, alr56, murA57, pks258, pks1259,
ppsA60, ppsD60, drrB61, drrC61, moeW55,
Rv068762, mshD63, gyrB52, Rv187764,
Rv019465

The eight antibiotics shown each have an AUC greater than 0.80 (Supplementary Fig. 5)
aNot found in top 40 ranked alleles determined by mutual information, chi-squared, and
ANOVA F-test
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mapping the alleles of known AMR genes to protein structures
and verified that resistance-conferring alleles were located in
annotated structural regions that indicate the known mechanism
of action (Supplementary Fig. 7). For example, structural map-
ping of the isoniazid AMR-determinant, inhA, showed that the
resistance-dominant alleles of 2 and 3 are located within two
NAD-binding domains (Fig. 3a). The incidence of these two
alleles in proximal NAD-binding domains is congruent with the
experimentally derived mechanism of action, which describes the
bactericidal effect of tight binding between the isoniazid-NAD
adduct and inhA20,21. Moreover, the resistance-conferring
mutations in the NAD-binding domains explains the previously
described allele co-occurrence of susceptible katG alleles 1, 2, 5,
and 6, with resistant inhA alleles 2 and 3, because the isoniazid-
NAD adduct results from binding to katG, which would only
occur if the M. tuberculosis strain lacks the resistance-conferring
katG mutation that disables the isoniazid binding opportunity.
With established confidence through case–controls, we set out to
analyze the implicated and uncovered AMR genes.

Revisiting the ethambutol case study, we noticed that the
susceptible-dominant embR alleles shared an SNP that is 14.6 Å
away from the DNA-binding domain (Fig. 3a). Given that embR
is a positive regulator of embB22 and that the expression of embB

decreases in the presence of ethambutol6, the SNP suggests a
relative increase over alleles 1 and 3 in expression of the
ethambutol target, embB, through increased DNA binding. For
oxcA, the resistance-dominant alleles, 3 and 7, uniquely share
mutations at residue 253, which is contained in the thiamin
diphosphate-dependent enzyme M-terminal domain and is 4.51
Å proximal to a mutation at residue 224 shared by most alleles
(Fig. 3). Notably, oxcA is an essential oxalyl-CoA decarboxylase
enzyme that converts toxic oxalyl-CoA to CO2 and formyl-CoA,
and plays a role in low pH adaptation in E. coli23. The totality of
studies describing the poisonous effect of glyoxylate24, significant
acid stress in the macrophage environment, use of CO2 as a
carbon source25, and the importance of glyoxylate metabolism in
antibiotic tolerance26, all suggest that the uncovered resistance-
conferring adaptations in oxcA increase depletion of oxalyl-CoA
through increased binding affinity of the thiamin diphosphate
cofactor. Without structural models, sequence annotations of
structural features enabled the delineation of resistant and
susceptible allele mutations to unique structural domains—
highlighting an advantage of our exact-variant perspective
(Fig. 3b). We provide a list of newly implicated AMR genes
along with their associated antibiotic, key mutation frequency,
and structural protein features (Table 2).
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both alleles (Methods). The alleles enclosed by a purple box represent those chosen as features by the support vector machine (SVM). Note that in some
cases the rows and columns do not sum up to the total strains due to rare cases when strains lack those alleles (Methods)
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Resistant and susceptible alleles are globally stratified. Since
our set of M. tuberculosis strains spans multiple continents, we
geographically contextualized our set of SVM-derived AMR genes
towards delineating possible country-specific adaptations
(Table 2). We observed that resistant and susceptible alleles of the
identified AMR genes were stratified amongst specific countries of
origin: resistant-dominant alleles were primarily located in
Belarus, South Africa, and South Korea, while susceptible alleles
were primarily located in India (Table 2). The geographic locality
of ethambutol, rifampicin, and isoniazid resistant alleles suggests
a genetic basis underlying the successful proliferation of M.
tuberculosis in Belarus—a country with the highest prevalence of
multidrug resistant (MDR) strains ever recorded27. We observed
that the resistant alleles associated with para-aminosalicylic acid
(PAS) were based in the high-burden MDR country of South
Korea. Since PAS was a key component in the standard MDR
treatment regimen of South Korea28, these alleles may represent
specific adaptations to post-MDR PAS treatment that could be
leveraged to better optimize the regimen. In total, these results
portray a geographic basis for M. tuberculosis AMR evolution and
demonstrate that our phylogenetically-agnostic machine learning
approach is capable of capturing population behavior, which
often confounds AMR predictions29,30.

Discussion
The data deluge on M. tuberculosis and its AMR characteristics is
likely to continue unabated until all M. tuberculosis strains iso-
lated from patients will be sequenced with associated metadata to
guide clinical management. A reference-agnostic computational
platform needs to be developed to receive, warehouse and con-
tinually analyze this data. We have taken the first step at devel-
oping a computational platform to meet this challenge. The
platform was applied to 1595 sequenced strains to yield results in
four categories: pan-genome properties, identification of genes
conferring antibiotic resistance, their epistatic interactions, and
protein structure based mechanistic insights.

The pan-genome properties derived by our computational
platform reflect the current understanding of M. tuberculosis
genetic variability. The other three categories of results are
intertwined. We recovered 33 known AMR genes and uncovered
an additional 24 novel genetic targets. This demonstrates the
platform’s ability to generate hypotheses that may expand our
knowledge of the genetic basis of AMR in M. tuberculosis. Some
of these new targets are surprising (e.g., Rv3471c) and some are
understandable (e.g., oxcA), but all provide an impetus for more
detailed experimental studies (Supplementary Discussion).

The third and fourth categories of results are interconnected and
detail intricate features underlying M. tuberculosis AMR evolution.
The 74 epistatic interactions revealed are new but in many cases
involve known gene partners (e.g., ubiA). In other cases, these new
epistatic interactions involve novel gene products (e.g., Rv2090).
This novelty, reinforced by structural insights, inform a new line of
experimental inquiry (Supplementary Discussion). The larger
implications of these intricacies are threefold: (1) genetic back-
ground contributes to AMR phenotypic variation, but may be
subtle (e.g., embR); (2) high-level resistance mutations are pre-
valent in off-target genes, such as transmembrane proteins (e.g.,
Rv3848); and (3) high-level resistance mutations localize to coun-
tries with poor M. tuberculosis management (i.e., Belarus). These
features point to the adverse effects of prolonged treatment31.

While our framework successfully identifies genetic AMR sig-
natures, there are limitations to our approach that future efforts
may expand upon. For one, our platform utilizes prior knowledge
of known gene–antibiotic relationships and thus does not provide
a means to uniquely deconvolve out an association of a region
with a specific drug (Supplementary Discussion). In addition,
while our structural analysis provided a foundation for hypo-
thesizing potential evolutionary drivers, it did not provide further
support to the causality of an allele. Novel statistical methods may
leverage variations in structural features towards supporting
causal alleles. Furthermore, our approach lacks the ability to
understand systemic relationships connecting the alleles on a
mechanistic level, such as interacting changes in biochemical flux.

Table 2 Newly proposed AMR genes

Gene Drug Dominant allele Mutation Structural domain feature

Rv3848 EMB, XDR R: (25/26) SNP Outside transmembrane helical domain
embR EMB S: (2/37, 9/129) SNP Proximal to DNA-binding domain
Rv3129 EMB R: (8/11) SNP –
proC EMB S: (1/27, 11/127) SNP –
kdpC EMB R: (80/91) SNP 11 Inside transmembrane helical domain
oxcA INH R: (66/66, 26/26) SNP 253 TPP enzyme M-terminal domain
chp2 ETA R: (29/37, 34/60) SNP 296 DELs in mutagen and helical domain
lipD ETA R: (48/58, 8/12) SNP 105 Inside beta-lactamase domain
Rv3471c ETA, XDR, SM R: (48/50) SNP 64 Inside Cupin 1 domain
mmpL11 PAS R: (35/48) SNP 520 –
Rv0044c PAS R: (13/13) DEL 137–264 BAC Luciferase
Rv0954 PAS R: (34/46, 4/6) SNP 223 Different mutational backgrounds
Rv2560 PZA S: (6/41) DEL 1–80 Compositional bias Proline-rich domain
Rv2090 RIF, INH S: (9/67, 6/46, 5/51) SNP 295 –
lpqZ RIF S: (10/91, 12/79) SNP 119 Within opuAC signaling domain
Rv1597 RIF, MDR, INH R: (18/19) SNP 196 No mutation in methyltransferase domain
Rv1543 RIF, MDR S: (10/84, 12/80) SNP 128 Proximal to binding domain
nuoL MDR, PAS R: (17/17) SNP 503 Outside transmembrane helical domain
dnaA SM R: (22/22) SNP 233 Proximal to nucleotide binding domain 213
yajC SM R: (30/30) SNP 87 Within transmembrane helical domain
accD5 OFX, MDR R: (16/16) SNP 127 Within CoA carboxyltransferase domain
Rv3041c RIF, OFX, SM, MDR R: (20/28, 25/44) SNP 140 SNP in ATP binding domain
VapC21 XDR R: (14/23, 14/20) DEL 88–138 Within second magnesium binding domain

The mutation column represents the distinguishing mutation for the resistant or susceptible-dominant allele(s). Abbreviations: R, resistant; S, susceptible; EMB, ethambutol; PAS, para-aminosalicylic acid;
INH, isoniazid; PZA, pyrazinamide; RMP, rifampicin; SM, streptomycin; OFX, ofloxacin; ETA, ethionamide; MDR, multidrug resistant; XDR, extensively-drug resistant
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Future efforts may integrate genome-scale models of pathogens
towards elucidating and understanding the genetic signatures of
antibiotic resistance32.

Taken together, the platform presented here meets the pressing
need for disparate data-type analysis enabled by rapidly growing
data available for M. tuberculosis pathogenesis and AMR. It both
recovers known AMR features (i.e., positive control) and reveals
new ones. This platform utilizes a unique combination of pan-
genomic analysis, machine learning, structural analysis, and
geographic contextualization. These data types are likely to
become available for all urgent and serious threat human pro-
karyotic pathogens in the near future. Similar results to those
presented here are thus likely to appear on a pathogen-specific
basis in the coming years.

Methods
M. tuberculosis strain dataset. The selected set of M. tuberculosis strains are
representative of various antimicrobial resistance phenotypes, geographic isolation
sites, and genetic diversity. References for the published and unpublished data sets
are provided (Supplementary Discussion, Supplementary Data 7). The sequencing
data for the TB Antibiotic Resistance Catalog (TB-ARC) projects (Supplementary
Data 7) were generated at the Broad institute. Additional information for each of
these unpublished projects can be found at the Broad Institute website. All data
were acquired from the PATRIC database.

M. tuberculosis pan-genome construction and QA/QC. We employed QA/QC of
the constructed 1595 pan-genome by initially filtering out outlier strains. The
initial selection of 1603 strains was reduced to 1595 upon review of both the cluster
size distribution and the number of unique clusters across the set of all strains
(Supplementary Fig. 3a, b). We found only four strains in the PATRIC database
that had either a very low (<2000) or high number (>5500) of clusters. The final
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selection of 1595 strains has a cluster size distribution between 3900 and 4400, and
a reasonable unique cluster distribution where the number of unique clusters did
not exceed 160 (note that unique is defined here as being in only one strain). The
pan-genome of all 1595 strains was constructed by clustering protein sequences
based on their sequence homology using the CD-hit package (v4.6). CD-hit clusters
protein sequences based on their sequence identity33. CD-hit clustering was per-
formed with 0.8 threshold for sequence identity and a word length of 5.

Pan-genome core and unique cutoff determination. We determined the core and
unique pan-genome through sensitivity analysis by plotting the change in core and
unique cutoff values by the change in percentage. The cutoffs were chosen to be at
the point where the second derivative of the curve is the largest. The curve
represents the change in pan-genome core percentage to changes in the number of
strains a gene must be found in to be defined as core (Supplementary Fig. 3c, d).

Phylogenetic tree and categorization of lineages. We created a robust phylo-
genetic tree of the 1595 strains using SNPs at the core genome. Specifically, we
chose a set of 2803 core genes that appeared in at least 1593 strains, included the
H37Rv reference strain (83332.12). We used needle34 to align sequences within the
2803 pan-genome clusters (a cluster is representative of a particular loci) to the
H37Rv reference allele. We built a binary SNP matrix using all of the SNPs
identified from the 2803 genes (21,206 SNPs in total), and then estimated a
maximum-likelihood phylogeny using RaXML version 835. The tree was visualized
using iTOL36.

We used an existing SNP typing scheme11 for categorizing the strains into
lineages and sublineages.

Specifically, we used a total of 141 SNPs for identifying lineages and sublineages
for our 1595 TB strains. These SNPs were previously determined to be sufficient for
categorizing lineages11. Of these SNPs, 61 were in nonsynonymous sites and the
other 70 were SNPs found in drug resistance genes. These 141 SNPs comprised a
total of 74 genes. The presence of SNPs were then used to categorize the strains
into the defined lineages. Of the 1595 strains, 1366 strains were categorized and 229
were uncategorized. The remaining 229 strains were categorized according to their
proximity to strains with lineage-defining SNPs, with proximity defined according
to our core genome SNP phylogeny. We have included the frequency of lineage
variants in order to help readers discern between epistatic alleles and those in tight
linkage (Supplementary Data 8). Implicated co-occurring alleles that span different
lineages are unlikely to be in tight linkage (i.e., hitchhikers).

For the numeric subscripts shown in Fig. 2—describing the number of unique
sublineages for each allele–allele pair—were determined as the maximum number
of unique sublineages at a single branch amongst all lineage/sublineage branches..
For example, an allele co-occurrence which has strains in both lineage 1.1 and 1.2
counts as two sublineages. An allele co-occurrence which has strains in both
lineage 1.1, 1.1.2, 1.1.3, 1.1.3.1, 1.1.3.2, and 1.1.3.3 counts as three sublineages
(1.1.3.1, 1.1.3.2, and 1.1.3.3). If an allele co-occurrence has strains in sublineages
4.1, 4.1.2, and 4.1.2.1, then only one sublineage is counted, since the strains can be
traced through a single lineage (4.1 to 4.1.2 to 4.1.2.1).

Pan-genome-wide correlation analysis. We performed pairwise association
analysis for all alleles in the pan-genome and for the 13 antibiotics to identify key
AMR genes. We utilized MI, chi-squared tests, and ANOVA F-tests. MI has many
statistical benefits, which include being a nonparametric method that can quantify
nonlinear relationships, unlike Pearson’s correlation which measures a linear
relationship. MI has proven to be a natural and powerful means to equitably
quantify statistical associations in large datasets37. The pairwise MI was calculated
for each column vector in the unique variant pan-genome with each drug sus-
ceptibility vector (Supplementary Fig. 3g). The discrete entropy calculations were
carried out using the Non-Parametric Entropy Estimation Toolbox (NPEET,
https://github.com/gregversteeg/NPEET). Since both vectors are binary, the naive
implementation of discrete entropy estimation used in NPEET is sufficient. The top
40 MI associations for 11 drugs are recorded (Supplementary Data 1).

Associations were similarly calculated with chi-squared and ANOVA tests. P
values were adjusted using the Bonferroni multiple-hypothesis testing correction.
Theses statistical tests and corrections were implemented using the python
package, statsmodels38. The top 40 associations determined by chi-squared and
ANOVA F-test were recorded for 10 AMR classifications (Supplementary Data 1).

Allele feature selection through support vector machines. The support vector
machine (SVM) attempts to account for all variants together by learning a mul-
tidimensional hyperplane that best separates the susceptible and resistant strains.
The resulting hyperplane is a function of all exact-variant vectors in the pan-
genome. Since the goal is not to predict resistance with high accuracy, but to
instead extract key insights from the data, we take a feature selection approach by
gearing the linear SVM with an L1-norm penalty and stochastic gradient descent
optimization algorithm using the scikit-learn package. The L1-norm enforces
sparsity in the decision function, which is ideal for feature selection. The stochastic
gradient descent algorithm, in conjunction with the L1-norm, returns a different
set of significant features each run. Since the chosen SVM does not reach the same
solution, we look at the ensemble of 200 SVM feature selection simulations.

Furthermore, we performed bootstrapping by randomly selecting a subpopulation
representing 80% of the training data for each SVM simulation.

Prior to simulation, we took out the primary resistance-conferring gene of an
antibiotic from the machine learning analysis of other antibiotics in order to
amplify the signal of other genes—a preprocessing step previously utilized in AMR
gene identification studies5 (Supplementary Table 3). For example, all katG alleles
were only accounted for as features in the machine learning analysis for isoniazid.
Furthermore, we removed all mobile element proteins, PE/PPE/PE-PGRS proteins,
transposases, and hypothetical proteins from consideration in the machine learning
analysis due to primarily appearing in the accessory and unique pan-genome of M.
tuberculosis which may confound the results. Finally, we balanced the class weight
in the SVM algorithm in order to account for the imbalance of resistant and
susceptible strains seen for each drug in our dataset.

Features were selected from the SVM based on a threshold value. The value was
determined through tenfold cross-validation where the threshold value was
optimized through grid search (Supplementary Table 3). The use of bootstrapping
in the machine learning algorithm may account for biased subpopulations in the
data, which often confounds GWAS analysis for M. tuberculosis29,30.

Filtering of gene sets for epistatic analysis. Leveraging machine learning
towards identification of genetic interactions, we constructed a correlation matrix
of allele weights across the ensemble of randomized SVM hyperplanes for each
antibiotic (Supplementary File 3). We limited our machine learning analysis to
AMR classifications that achieved an average AUC (i.e., average area under
ensemble of receiver–operator curves) greater than 0.80 (Supplementary Fig. 5).
We selected the top 100 gene–gene correlations that include genes in the top 25
ranked SVM alleles for each antibiotic. We limited the correlations to in the top 25
ranked alleles in order to avoid the case when low weighted alleles appear sparsely
with other low weighted alleles, which lead to significant correlations. The resulting
set of gene–gene pairs were then analyzed using a logistic regression model in order
to determine statistically significant interactions. The filtering of potential
gene–gene pairs prior to classical quantitative epistasis analysis addresses the
problem of combinatorial explosion of pairwise interaction terms in conventional
techniques.

Epistatic analysis with logistic regression models. We utilized logistic regres-
sion to identify significant epistatic interactions. A logistic regression model was
built for each potential gene–gene pair previously determined by the ensemble
SVM correlation analysis. The variables of the gene–gene logistic regression model
were composed of both alleles and allele–allele interaction variables:

Y � βo þ
X

i
βiai þ

X
j
βIþjbj þ

XX
i;j
βIþJþkaibj; ð1Þ

where i and j index the alleles for genes a and b, respectively, I and J are the total
number of alleles for genes a and b, respectively, Y is the binary AMR phenotype, k
indexes each unique interaction term, aibj, and β is the regression coefficient
corresponding to each predictor. The interaction terms were limited to cases in
which the two alleles co-occur in at least one strain. The interaction variable was
the dot product of the two allele presence–absence vectors. In order to account for
collinearity in the variables, we applied the following three filtering criteria (note
that ai is interchangeable with bj):

1. If the allele ai presence–absence is the same as the interaction aibj
presence–absence, remove the aibj interaction variable from the logistic
regression model

2. If the allele ai presence–absence is equal to allele bj presence–absence, remove
both variables as well as the allele–allele interaction variable, aibj.

3. If the allele ai presence–absence is equal to the sum of all interaction variables
involving that allele (i.e., aibj for all j), remove the allele variable, but keep the
interaction variables.

We filtered for allele–allele interactions with P value < 0.05 after
Benjamini–Hochberg multiple-testing corrections. The resulting set of gene–gene
interactions encompassing significant allele–allele interactions were portrayed
through allele co-occurrence tables (Supplementary Data 5). Logistic regression
and statistical tests were implemented using the python package statsmodels38.

Calculation of log odds ratio in allele co-occurrence tables. The odds ratio of
each cell in the allele co-occurrence tables was determined as follows:

OR ¼ BR �NR
BS �NS ; ð2Þ

where BR is the number of strains that have both alleles and are resistant to the
specified antibiotic, NR is the number of strains that do not have both alleles and
are resistant to the specified antibiotic, BS is the of strains that have both alleles and
are susceptible to the specified antibiotic, NS is the number of strains that do not
have both alleles and are susceptible to the specified antibiotic. For a single allele,
the odds ratio was calculated the same way with each variable representing the
single allele case. If any of the four values (BR, BS, NR, and NS) were zero, 0.5 was
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added to each value in order to ensure a value when computing the logarithm of
the odds ratio.

Missing alleles in allele co-occurrence tables counts. The lack of specific alleles
shown in the allele co-occurrence table is due to strains missing some alleles. For
example, embB allele 5 is found in 147 strains but only 144 strains have both embB
allele 5 and ubiA allele 2 (Fig. 2). Specifically, the three strains missing the three
ubiA alleles are the following PATRIC strains as described by their genome
identifiers: 1423432.3, 1448794.3, and 1448824.3. Searching on the PATRIC
database for either ubiA or Rv3806c results in 0 hits for these organisms. While it is
unlikely that the strain is missing this allele, these limitations are not due to the
analysis but instead results from the selection of strains. These events happen quite
rarely and were accounted for in the partitioning of pan-genome portions. The
large sample size was able to recapitulate the key genes due to large sample size.

Structural protein analysis of identified AMR genes. For identified AMR genes,
the ssbio software was used to gain gene-specific, protein sequence and structure
based information about residue-level changes (SNPs and deletions) present in the
M. tuberculosis alleles19. Each AMR gene was mapped to a reference protein
sequence file obtained from UniProt39 and sequence-based metadata identifying
protein-specific features (e.g., active sites, secondary structures, and mutations in
studied wild-type strains) was used to determine the occurrence of allele-specific
AMR mutations within the gene feature set (Supplementary Data 6). When
available, AMR genes were additionally mapped to experimentally obtained protein
structures from the RCSB Protein Data Bank or to homology structures generated
using the Iterative Threading ASSEmbly Refinement (I-TASSER) platform40,41. To
help elucidate the mechanistic effects of AMR mutations, both AMR mutations and
the residue-level feature set were mapped to these structures and visualized using
the NGLview Jupyter notebook plugin42. The structural information was utilized to
calculate distances between each mutation and annotated protein feature (Sup-
plementary Data 6).

Code availability. The computational platform is provided as a github code
repository.

Data availability
All data utilized in this study is publicly available at the PATRIC database. Identifiers for
the 1595 genomes are provided in the Supplementary Information (Supplementary
Data7). References for the published and unpublished data sets can be found in the
Supplementary Information (Supplementary Data 7). The sequencing data for the TB
Antibiotic Resistance Catalog (TB-ARC) projects (Supplementary Data 7) were generated
at the Broad institute. Additional information for each of these unpublished projects can
be found at the Broad Institute website (https://olive.broadinstitute.org/projects/tb_arc).
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