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1 Introduction

The fact that topologicalstring am plitudes are closely related to certain

holom orphic quantities in the physicalsuperstring theories was known for

som etim e.A practicalincarnation ofthisrelation istherecently discovered
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[3,4,5]gaugetheory -m atrix m odelconnection.By now,thisidea hasbeen

investigated using threeratherindependentapproaches.

In the originalapproach of[3,4,5], one starts from the open/closed

string duality im plied by a geom etrictransition,and com putesgaugetheory

superpotentialsusing the uxesofthe dualgeom etry [9]-[19]. The resultis

expressed in term s ofthe partition function ofa certain closed topological

string theory.On theopen string sideoftheduality onerelatestheterm sof

the e�ective superpotentialwith the partition function ofthe holom orphic

Chern-Sim ons theory (which describes the �elds on the wrapped D-branes

sourcing the geom etry). Dijkgraafand Vafa conjectured thatthe open and

closed partition functionsare identical. Since the com putation ofthe open

stringpartition function reducestothecom putation ofthepartition function

ofalargeN m atrix m odel,thisconjectureim pliesa certain relation between

gauge theory e�ective superpotentialsand m atrix m odels[3]. Thisrelation

was further strengthened by the study ofthe underlying geom etry ofthe

m atrix m odeland ofthegaugetheory [4,5].

In the second approach [20],the e�ective glueballsuperpotentialofan

N = 1theorywithadjointm atterwasevaluatedusingsuperspacetechniques.

Itwasfound thatonly zero m om entum planardiagram scontribute to this

superpotential,thusvalidating theoriginalconjecture.

In the third approach [8,21]the generalized Konishianom alies ofthe

�eld theorywereused toobtain relationsbetween thegeneratorsofthechiral

ringofthetheory.Theserelations,which undercertain identi�cationscan be

reproduced from a m atrix m odel,can then beused to constructthee�ective

superpotential.

Perhapsthem ostim m ediateextension ofthem atrix m odel-gaugetheory

relation isto theories with �elds transform ing in m atterrepresentations of

thegaugegroup [23]-[47].Fortheorieswith �eldstransform ing in thefunda-

m entalrepresentation ofthegaugegroup itwassuggested thattheaddition

to the originalDV proposalinvolves m atrix m odeldiagram s with a single

boundary. Forarbitrary generalized Yukawa couplingsand a sim ple super-

potentialfortheadjoint�eld thisproposalwasproved in [36].Furtherm ore,

it was shown in [7]that the m atrix m odelfully captures the holom orphic

physics oftheories with N f < N c,regardless ofthe com plexity ofthe tree

levelsuperpotentialfortheadjoint�eld.

Extending thecorrespondenceto gaugetheorieswith baryonsturned out

to besom ewhatm ore challenging.In particular,baryonsonly existforthe-

orieswith certain relationsbetween N f and N c;therefore,taking the large
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N c lim it to restrict to planar diagram s is not possible. M oreover,the no-

tion ofboundary in diagram swith baryonsisnotwell-de�ned unlesscertain

m anipulationsareperform ed.

In [32]an extension ofthe DV proposalto theories with baryons was

form ulated and it was shown that for an SU(N c) theory with N f = N c

quarksthisproposalreproducesexactly theknown gaugetheory physics. 1

Thegoalofthispaperistoextend thecorrespondencetosupersym m etric

QCD with N f = N c + 1 avors. Asitiswellknown [2],thistheory hasN f

baryons,N 2
f m esonsand a dynam ically generated superpotential

W =
1

�2N c� 1
(B iM

i
j
~B j
� detM ) : (1)

Inordertorelatethistheorywith thecorrespondingm atrixm odel,wedeform

itwith the appropriate sources,and integrate outthe m esonsand baryons.

W ethen com paretheresultwith theonegiven by m atrix m odelplanarone-

(generalized)boundary and �nd perfectagreem ent.

Ourinterestin theorieswith baryonshasseveralreasons.The�rstisthat

neitherofthethreeroutesby which theoriginalm atrix m odel-gaugetheory

relation was reached seem s easily extendable to these theories. 2 Second,

in theories with only chiralavors,baryons are the only objects one can

construct. Ifone is to extend the m atrix m odel-gauge theory relation to

such theories,understanding the r̂ole and the correcttreatm entofbaryons

iscrucial.

Lastbutnotleast,thesuperpotentialsoftheoriessim ilarto SQCD with

N f = N c + 1 avors3 areused asstarting pointsforthe construction oflow

energy e�ective superpotentials in m any theorieswhere sym m etries do not

determ inethesesuperpotentialsdirectly.Itisthereforeim portantto havea

directm ethod ofcom puting them .

1Related work hasappeared in [30],where a perturbative � eld theory com putation in

thespiritof[20]wasused to recovertheterm slinearin baryon sourcesin thegaugetheory

e� ectivesuperpotential.
2In particular,aswewillseein thelastsection ofthispaper,understandingthebaryons

atN f = N c + 1 in geom etrictransitionsisquite di� cult.
3Thesearetheso-called s-con� ningtheories.Theyhaveadescription in term sofgauge-

invariantcom positeseverywhereon them odulispace,and thee� ectivesuperpotentialfor

the con� ned degrees offreedom is not singular at the origin ofthe m odulispace.(For

discussionson s-con� ning theoriessee[49,50]and referencestherein).
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Oneofthewaysin which thevalidity oftheN f = N c+ 1 superpotential

isusually tested isby obtaining the correctN f = N c superpotentialin the

absence ofbaryonic sources. However, this superpotentialcontains m uch

m oreinform ation,which can only becaptured by turning on allthebaryon

sources. The fact that the m atrix m odelreproduces the rather involved

e�ective superpotentialobtained with allthe baryon sources turned on is

a very powerfulcon�rm ation ofthe validity ofthe extension ofthe m atrix

m odel-gaugetheory relation to baryons.

Integrating out allthe �elds in both the gauge theory and the m atrix

m odelisrathercom plicated,and often resultsin ratherunedifying expres-

sionsinvolving rootsoflargedegreepolynom ials.Fortunately,thereexistsa

procedure [27]which allowsusto com pare gauge theory and m atrix m odel

resultsin theoriescontaining only m esons.Thus,to com parethegaugethe-

ory and them atrix m odelresultsitisenough tointegrateoutonly twoavor

�eldson thegaugetheory side(sections5 and 6),and to relatetheresultto

them atrix m odelfreeenergy obtained by treatingtheN c� 1m asslessavors

asbackground �elds(section 7).

ExceptforSU(2),where com puting the valuesofthe e�ective superpo-

tentialatitscriticalpointsisnottoodi�cult(sections2and 3),wewillonly

be com paring m atrix and gauge theory resultsatN f = N c � 1. In section

8.2 we willderive these values,using gauge theory techniques,and discuss

a m ethod forcom puting the fullm atrix m odelfree energy. Asan exam ple

we apply thism ethod to the case ofan SU(2)gauge theory and recoverall

expected results,already discussed in sections3.2 and 4.

Before proceeding,letusrem ark thatin ourcase there isno distinction

between theunitary m atrix m odeland theherm itian one.Thisisdueto the

factthatwewillbeinterested in theoriescontaining only �eldstransform ing

in thefundam entalrepresentation.Sincethese�eldsarenotconstructed out

ofgeneratorsofthegaugegroup,they arethesam eboth in theSU(N c)and

in theU(N c)theories.Thus,them atrix integralisthesam eforboth gauge

groups.

To �x the notation,Latin indices from the beginning ofthe alphabet

(a;b;c) are SU(N c)indices;Latin indices from the m iddle ofthe alphabet

(i;j;k)areSU(N f = N c+ 1)indices;Greek indicesfrom thebeginningofthe

alphabet(�;�;)areSU(2)indicescorresponding to two avor�eldswhich

are singled out. They take the valuesN c and N c + 1. Hatted Latin indices

from the m iddle ofthe alphabetare SU(N f = N c � 1)indices,correspond-

ing to theavorsym m etry unbroken by thequark m asses(butnevertheless
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broken by thepresence ofbaryon operators).

2 R eview ofthe D ijkgraaf-Vafa proposalfor avors

In a series ofpapers [3,4,5],Dijkgraafand Vafa proposed a perturbative

m ethod forcom puting thee�ectiveglueballsuperpotentialofcertain N = 1

theorieswith �eldstransform ing in theadjointand bifundam entalrepresen-

tationsofthe gaugegroup. According to thisproposal,the planardiagram

contribution to thefreeenergy ofa certain m atrix m odelyieldsthee�ective

superpotentialofthecorrespondingN = 1gaugetheory.In ’tHooft’sdouble

linenotationsthesediagram shavethetopology ofa sphere.

W hen �eldstransform ing in thefundam entalrepresentation ofthegauge

group (quarks)arepresentonem ustalsoincludethefreeenergy arisingfrom

planardiagram swith one boundary (diagram swith the topology ofa disk)

[23,26]. M ore explicitly,the gauge theory e�ective superpotentialisgiven

by

W e�(S;�)= N cS(1� ln
S

�3
)+ N c

@F �= 2

@S
+ N fF �= 1 ; (2)

wherethe�rsttwo term sarealso presentin a theory with only adjoints,and

thethird term isthecontribution oftheavors.

Ifbaryonicsourcesarealso added,thediagram sthatcan beconstructed

becom em orecom plicated.However,only theplanardiagram swith asm any

index loopsasa diagram with one boundary contribute to the e�ective su-

perpotential[32]. Since the num berofcolorsand the num berofavorsare

related,itisnotpossibleto selecttherelevantdiagram sby taking thelim it

in which the num ber ofcolors is large. Thus, the planar diagram s with

baryon sourceshaveto beselected by hand.In [32]itwasshown thatplanar

baryonicdiagram sforSU(N c)theorieswith N c avorsreproducetheknown

physics.

Thenonlinearitiesintroduced bythebaryonicoperatorsm akethecom pu-

tation ofthem atrix m odelpartition function challenging.Fortunately,when

thetreelevelsuperpotentialcan beexpressed in term sofm esons,them atrix

m odeland gauge theory can be related m ore directly [27]. Thus,adding

in the m atrix path integrala constraint which identi�es the m atrix m odel

quark bilinearswith thegaugetheory m esonsallowsonetocom putedirectly

the gauge theory superpotentialwith the corresponding m esons integrated

in.Thisproposalwasproved using thegeom etricconstruction ofthem atrix
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m odel[18],using thesym m etriesofthegaugetheory [32],and by explicitly

integrating in quarks[41].

Thus,the free energy which gives the superpotentialofa theory with

both m assive and m asslessavorsisgiven by

e
F =

Z

D Q D ~Q�(Q a
{̂
~Q |̂
a � M

|̂

{̂)e
� W tree(Q {̂;Q � )

�
�
�
planar+ 1boundary

(3)

whereQ � arethem assive quarksand Q {̂ arethem asslessones.

Thisexpression also allowsusto com putethefreeenergy in thepresence

ofbaryons,aslong asN f = N c + 1. Indeed,choosing two m assive quarks,

itispossible to sum up allFeynm an diagram sinvolving them and obtain a

resultwhich only dependson quark bilinears.4 Atthisstagethe�-function

constraintcan beeasily enforced and weareleftwith com puting theintegral

oftheconstraint.

Ifthe dim ension ofthe m atrices M c islargerthan N f (which isalways

thecasein largeM c lim it)thisintegralis[27]:

Z

D Q {̂D ~Q |̂
�(Q a

{̂
~Q |̂
a � M

|̂

{̂)= e
M c ln(detM̂ =�

2N f )� N f ln(detM̂ =�
2N f )� N fM c lnM c;

(4)

where�isacuto�.Thisresulthowevercontainsboth leadingand subleading

term s in N f=M c. In particular the logarithm in the second term in the

exponent is proportionalto the num ber ofavors,N f (the determ inant is

taken overavorindices,and therefore isoforderM N f),and therefore this

term is oforder N 2
f. Hence,it is generated by a m ulti-boundary diagram

with insu�cient gauge index loops,and should notbe included in the free

energy.

Identifying the m atrix m odel’t Hooft coupling with the gauge theory

glueballsuper�eld and taking into accounttheclari�cationsabove,thecon-

tribution ofthe planarand 1-boundary diagram sto the above integralbe-

com es:
Z

D Q {̂D ~Q |̂
�(Q a

{̂
~Q |̂
a � M

|̂

{̂)= e
S ln(detM̂ =�

2N f )� N fS ln(S=�
3) (5)

Thisequation willbeoneoftheim portantingredientsin ourcom parison of

m atrix m odeland gaugetheory results.

4Thislittlem iraclehappensonlyforN f = N c orN f = N c+ 1.IfN f � N c+ 2oneneeds

to choose m ore than two m assive  avors,which m akesthe m atrix integralnon-G aussian

and ratherhard to com pute.
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3 Integrating-O ut A llFlavors

In thissection we com pute the gauge theory e�ective superpotentialatits

criticalpoints. The unbroken sym m etries determ ine itsvalue up to an un-

known function ofone variable. By requiring consistency with the high en-

ergy theory,we constructa di�erentialequation forthisfunction. W e �rst

solve it for the specialcase ofan U(2) theory with three avors and then

turn to thegeneralcase.

3.1 Sym m etries and C onsistency C onstraints

W estartwith a treelevelsuperpotentialwith m assterm sand baryon source

term sforallavors:

W tree = m
i
jQ i

~Q j + biB
i+ ~bj ~B j: (6)

The totalsuperpotentialisthe sum ofthistree levelsuperpotentialand

ofthedynam ically generated superpotential

W dyn = �
1

�2N c� 1

�

detM � B M ~B
�

: (7)

Thequantum num bersofthesourcesare

U(1)R SU(N f)Q SU(N f)~Q U(1)B U(1)A D

Q 1

N f
N f 1 +1 +1 1

~Q 1

N f
1 N f �1 +1 1

M 2

N f
N f N f 0 +2 2

B 1� 1

N f
N f 1 N f � 1 N f � 1 N f � 1

~B 1� 1

N f
1 N f �N f + 1 N f � 1 N f � 1

m 2� 2

N f
N f N f 0 �2 1

b 1+ 1

N f
N f 1 �N f + 1 �N f + 1 �N f + 4

~b 1+ 1

N f
1 N f N f � 1 �N f + 1 �N f + 4

�2N f� 3 0 1 1 0 2N f 2N f � 3

Using these quantum num bers,we can determ ine the form ofthe allowed

superpotentialterm safterintegrating outallavors.

Allsuperpotentialterm s are functions of�2N f� 3,b,~b,and m . To con-

structinvariantsunderthe non-abelian avorsym m etries,the only allowed
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building blocks are bim
i
j
~bj and detm . The U(1)R invariant com bination

ofthese is (bim
i
j
~bj)N f� 1=(detm )2. Its U(1)A charge is (�2N f)(N f � 1)�

2(�2)N f = �2N 2
f + 6N f.Thereforethecom bination

(bim
i
j
~bj)N f� 1

(detm )2
(�2N f� 3)N f� 3 (8)

isinvariantunderallsym m etries,and isdim ensionlessaswell.

Theexistenceofthegluinocondensateim pliesthatin theabsenceofbary-

onicsources,b= ~b= 0,thesuperpotentialis(N f� 1)[(detm )�
2N f� 3]1=(N f� 1).

Therefore the possible form ofthe superpotentialin the presence ofbaryon

sourceterm sis

W e� = (N f � 1)[(detm )�2N c� 1]1=N cf

0

@
(bim

i
j
~bj)N f� 1

(detm )2
(�2N f� 3)N f� 3

1

A ; (9)

wheref(x)isa function wewantto determ ine.

In the lim itofin�nite m assparam eterm thistheory reduces to a pure

N = 1 gaugetheory. In thiscase we know thatthere areN c vacua and the

valuesofthe superpotentialatthe criticalpointsdi�erby rootsofunity of

orderN c.In thislim it,theargum entofthefunction f in theequation above

vanishes,while its coe�cient can be identi�ed with the dynam icalscale of

the resulting theory. Thus,in order to recover the expected gauge theory

results,wem ustim posetheboundary condition

f(0)= !
k
N c
;k = 0;:::;N c� 1 with !

N c = 1 : (10)

Theexpectation valuesofthem oduliareobtained by di�erentiating this

e�ectivesuperpotentialwith respectto thesources. 5

M
j

i =
@W e�

@m i
j

= [(detm )�2N f� 3]1=(N f� 1)�

 

(m � 1)ijf(x)+ (N f � 1)xf0(x)

 
(N f � 1)bi~b

j

(bm ~b)
� 2(m � 1)ij

! !

(11)

B
i =

@W e�

@bi
= (N f � 1)2[(detm )�2N f� 3]1=(N f� 1)xf

0(x)
m i

j
~bj

(bm ~b)
(12)

~B j =
@W e�

@~bj
= (N f � 1)2[(detm )�2N f� 3]1=(N f� 1)xf

0(x)
bim

i
j

(bm ~b)
(13)

5W e use the sim pli� ed notation (bim
i
j
~bj)� (bm ~b)
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Therefore,we�nd

B
i
M

j

i = (N f � 1)2[(detm )�2N f� 3]2=(N f� 1)xf
0(x)�

 

(m � 1)
j

kf(x)+ (N f � 1)xf0(x)

 
(N f � 1)bk~b

j

(bm ~b)
� 2(m � 1)

j

k

! !
m k

l
~bl

(bm ~b)

= (N f � 1)2[(detm )�2N f� 3]2=(N f� 1)xf
0(x)

~bj

(bm ~b)
�

(f(x)+ (N f � 1)(N f � 3)xf0(x)): (14)

Oneoftheequationsofm otion derived from W tree + W dyn (6,7)im poses

thefollowing relation:

B
i
M

j

i = ��2N f� 3~bj : (15)

Therefore,

(N f � 1)2x� 1=(N f� 1)xf
0(x)[f(x)+ (N f � 1)(N f � 3)xf0(x)]= �1: (16)

This equation is specialfor N f = 3,as the secont term vanishes. W e

begin in thefollowingsubsection byanalyzingthiscase,and deferthegeneral

discussion to section 8. W e then give the m atrix m odeldescription ofthe

SU(2)theory and com paretheresults.

3.2 SU(2)w ith three avors:Field T heory

ForN f = 3 thesuperpotential(9)is

W = 2[(detm )�3]1=2f

0

@
(bim

i
j
~bj)2

(detm )2

1

A : (17)

Letusnoticethattheargum entoff(x)doesnotdependon�.Thisiseasy

to understand.BecauseoftheLiealgebra identi�cation SU(2)’ Sp(1),the

baryonscan beinterpreted asm esonsin theSp(1)theory.Them assm atrix

is  
�ijkbk m i

j

�m i
j �ijk

~bk

!

(18)

and its Pfa�an can be perturbatively expanded around detm in inverse

powersofm .Thefunction f(x)m ustbeprecisely thisexpansion.Therefore

itisa polynom ialof
p
x.

9



Indeed,equation (16)reducesto

4x1=2f0(x)f(x)= �1: (19)

which im pliesthatf(x)isgiven by

f(x)= �(C � x
1=2)1=2; (20)

Theintegration constantC is�xed tounity by theboundaryconditions(10).

Then,thee�ectivesuperpotentialbecom es

W = �2[(detm )�3]1=2

0

@ 1�
bim

i
j
~bj

detm

1

A

1=2

= �2
h

(detm )� (bm ~b)
i1=2

�3=2
:

(21)

The com bination in the square bracketisprecisely the Pfa�an ofthe m ass

m atrix includingthebaryon sourceterm s.In thenextsection wewillrecover

thisresultfrom m atrix m odelcom putations.

4 SU(2)w ith three avors;M atrix M odel

In thissection wedescribeSU(2)supersym m etric QCD with 3 avorsusing

the m atrix m odel. Since the baryon operatorsin thistheory are bilinearin

quarks,them atrix m odelfreeenergy can becom puted directly.W ewill�nd

that,afterintegratingouttheglueballsuper�eld,thee�ectivesuperpotential

agreeswith the�eld theory resultgiven in Eq.(21).6

Asbriey stated in theprevioussection,foran SU(2)theory with three

avorsthetreelevelsuperpotentialis

W tree = m
j

iQ
a
i
~Q j
a + bi�

ijk
�abQ

a
jQ

b
k +

~bi�ijk�
ab ~Q j

a
~Q k
b : (22)

To com putethepartition function itisusefulto rewritethisexpression as

W tree =
1

2
Q

T
K U (2)Q (23)

where

K U (2) =

 
bi�

ijk 
 �ab m k
j 
 �ba

m k
j 
 �ba

~bi�ijk 
 �ab

!

and Q =

�
Q b
k

~Q
j

b

�

(24)

6ForlargerN c the m atrix m odelis su� ciently com plicated to renderchallenging the

directrecovery ofthe � eld theory results.W e willreturn to these questionsin section8.
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The1-boundary freeenergy isgiven by thelogarithm ofthedeterm inant

ofK U (2).Thiscan beeasily com puted and itgives:

detK U (2) =
�

detm � (bm ~b)
�2� 2

(25)

wherein theexponentthe�rstfactorof2isduetothefactthatweintegrated

overtwo typesof�elds,Q and ~Q,whilethesecond factorof2 representsthe

num berofcolors.

In principle one should worry about isolating the planar diagram con-

tribution to the free energy. Fortunately,for SU(2),allthe diagram s are

planar.7

Com biningthiswith theVeneziano-Yankielowiczterm yieldsthee�ective

superpotential:

W e� = N cS

�

1� ln
S

�3

�

� S ln
1

�3

�

detm � (bm ~b)
�

(26)

To com pare with the �eld theory resultwe m ust integrate outS. This

gives

W e� = �2
�

detm � (bm ~b)
�1=2

�3=2 (27)

which precisely m atchesthe�eld theory result.

Perhaps this agreem ent should not appear surprising,since for a U(2)

gauge group the m esons and baryonshave sim ilarstructure. However,the

com putations which led to the two results are substantially di�erent;this

seem s to im ply thatthe agreem ent issom ewhat nontrivial. Anotherpoint

worth em phasizing is that allm atrix m odeldiagram s contributed to the

e�ective superpotential.The origin ofthisfairly surprising factisagain the

bilinearity ofthebaryons.Thiswillnothappen in thegeneralcaseto which

wereturn in section 7.

5 Integrating-O ut T wo Flavors -T he Elegant W ay

As discussed in section 2,our goalis to m atch the gauge theory e�ective

superpotentialafterintegrating outtwo quarkswith the m atrix m odelpre-

dictions. Let us therefore begin with the appropriate com putation on the

7This is due to the fact that both �ba as wellas �ab are invariant tensors. The non-

planarity can in principle arise due to insertionsofa baryonic operatorin the Feynm an

diagram ,butthe antisym m etry of�ab can be used to transform itinto a planarone.
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gauge theory side. There are two waysto achieve ourgoal. In thissection,

using sym m etry argum ents,we constrain the form ofthe e�ective potential

afterintegrating outtwo quarksand then derive certain constraintson the

unknown functions.Solvingtheseconstraintsleadstoourresult.In thenext

section werederivethesam eresultbydirectlyintegratingouttheappropriate

�elds.

Sinceweonly givem asstotwooftheavors,thetreelevelsuperpotential

is

W = m
�
�Q �

~Q � + biB
i+ ~bj ~B j ; (28)

where�;�= N c;N c+ 1.Hereafterwedistinguish theindicesofthem assive

and m asslessavors:�;�= N c;N c+ 1,and {̂;̂|= 1;� � � ;Nc� 1 respectively.

Thesuperpotentialhasa treelevelpart

W = m
�
�M

�
� + b�B

� + biB
i+ ~b� ~B � + ~bj ~B j ; (29)

and a non-perturbatively generated part

1

�2N c� 1

�

B
{̂
M

|̂

{̂
~B |̂+ B

�
M

|̂
�
~B |̂+ B

{̂
M

�

{̂
~B � + B

�
M

�
�
~B � � detM

�

: (30)

5.1 Prelim inaries

Ourgoalisto �nd thee�ective superpotentialafterintegrating outthetwo

m assiveavors.Thissuperpotentialisa function ofb�,b̂{,~b
�,~b|̂,m and M

|̂

{̂.

In theabsenceofbaryonicsourceterm s,itiseasy to �nd thesolution

B
� = B

{̂= ~B � = ~B |̂ = 0 ; (31)

M
{̂
� = M

�
|̂ = 0 ; (32)

M
�
� =

(m � 1)��(detm )�
2N c� 1

detM̂
; (33)

where,(m � 1)istheinverseofthetwo-by-two m assm atrix,and M̂ isthem e-

son m atrix constructed outofthe rem aining avors.The resulting e�ective

superpotentialis

W =
(detm )�2N c� 1

detM̂
: (34)

which istheexpected A�eck{Dine{Seiberg superpotential.
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In the generalcase the quantum num bers under the SU(N f � 2)Q �

SU(2)Q � U(1)Q � SU(N f)avorsym m etry and itscounterpartfor ~Q,force

thesuperpotentialto taketheform

W =
(detm )�2N c� 1

detM̂
f(x;y); (35)

wheretheinvariantsx and y are

x =
(bm ~b)(detM̂ )2

(detm )2�2N c� 1
; (36)

y =
(bM̂ � 1~b)detM̂

(detm )
: (37)

with (bm ~b) � b�m
�
�
~b� and (bM̂ � 1~b) � b̂{(M̂

� 1){̂|̂
~b|̂. W e require that the

superpotentialberegularin thelim itofno baryon sourcesand also atweak

coupling � ! 0.Therefore,thefunction f(x;y)can be atm ostlinearin x,

and hence

W =
(detm )�2N c� 1

detM̂
g(y)+

(bm ~b)detM̂

detm
h(y) : (38)

Inordertoobtaintheexplicitform sofg(y)andh(y)itisusefultoconsider

severallim iting cases.

5.2 b̂{= ~b|̂ = 0 w ith {̂;̂|= 1;� � � ;Nc� 1

In thiscase,theSU(N f � 2)Q � SU(N f � 2)~Q sym m etry isunbroken.Hence,

M
{̂
� = M

�
|̂ = 0; (39)

B
{̂= ~B |̂ = 0: (40)

Theequationsofm otion are

B
� ~B � � (M � 1)��(detM )+ �2N c� 1m

�
� = 0; (41)

B
� = (M � 1)��

~b�; (42)

~B � = b�(M
� 1)��: (43)

where (M � 1)
� ~�

is de�ned only in the two-by-two block. Substituting the

solutionsfrom thelasttwo equationsinto the�rstone,we�nd

[(M � 1)��
~b�][b(M

� 1)


�]� (M � 1)��(detM )+ �2N c� 1m
�
� = 0: (44)
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This is an equation for two-by-two m atrices and hence there are four un-

knowns.On sym m etry groundswetakethefollowing ansatz:

(M � 1)�� = �m
�
� + �(m ~b)�(bm )� (45)

where �,� are function ofthe invariants. Apparently this system is over-

constrained,astherearefourequationsfortwo unknowns.However,a solu-

tion existsand isgiven by

� =
�(detM )(detm )

�(bm ~b)(detM )2 + (detm )2�2N c� 1
; (46)

� =
�(detM )3

(detm )((bm ~b)(detM )2 � (detm )2�2N c� 1)�3� 2N f

: (47)

Using thissolution,thesuperpotentialisgiven by

W e� =
(detm )�2N c� 1

(detM̂ )
�
(detM̂ )(bm ~b)

(detm )
; (48)

which isprecisely whatwe expected from the sym m etry considerations,ex-

ceptthatwe now determ ined the coe�cient �1 forthe second term . This

determ inestheboundary condition h(0)= �1.

5.3 b� = ~b� = 0 w ith �;�= N c;N c+ 1

Thenextsim plecaseisb� = ~b� = 0,when theonlyparam etersin thee�ective

superpotentialare m �
�, bi,

~bj, M
|̂

{̂. Hence there are no doublet breaking

param etersofSU(2)Q � SU(2)~Q .Thisim m ediately gives

M
�

{̂ = M
�
|̂ = B

� = ~B � = 0: (49)

Theequationsofm otion can beeasily solved,

~B |̂ = ��2N c� 1b̂{(M̂
� 1){̂|̂; (50)

B {̂= ��2N c� 1(M̂ � 1)̂{̂|~b
|̂
; (51)

M
�
� = (m � 1)��

(detm )�2N c� 1

(detM̂ )
; (52)
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where M̂ isthem eson m atrix fortherem aining N f � 1 avors.Substituting

thesolutionsto thesuperpotential,we�nd

W e� =
(detm )�2N c� 1

detM̂
� �2N c� 1bi(M̂

� 1){̂|̂
~b|̂ ; (53)

and therefore g(y)= 1� y. The only rem aining function to be determ ined

ish(y).

5.4 G eneralC ase

Putting togetherwhatwehavelearned so far,thesuperpotentialis

W e� =
(detm )�2N c� 1

detM̂
� �2N c� 1(bM̂ � 1~b)+

(bm ~b)detM̂

detm
h(y); (54)

with h(0)= �1 and

y =
(bM̂ � 1~b)detM̂

(detm )
: (55)

From thissuperpotentialwecan obtain thevacuum expectation valuesofthe

M �
� m esonsand ofthebaryons:

M
�
� =

@W e�

@m �
�

=
(m � 1)��(detm )�

2N c� 1

detM̂
+
(b�~b

�)detM̂

detm
h(y)

�(m � 1)��
(bm ~b)detM̂

detm
h(y)�

(bm ~b)detM̂

detm
yh

0(y)(m � 1)��; (56)

~B |̂ =
@W e�

@~b̂|
= ��2N c� 1(bM̂ � 1)̂|+

(bm ~b)detM̂

detm
yh

0(y)
(bM̂ � 1)̂|

(bM̂ � 1~b)
;(57)

~B � =
@W e�

@~b�
= �

(bm )� detM̂

detm
h(y); (58)

The one piece ofinform ation we cannot obtain from this superpotentialis

the vacuum expectation value of the o�-diagonalm esons. By sym m etry

considerationsitm ustbeoftheform

M
|̂
� = �(x;y)b�~b

|̂
; (59)
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and sim ilarly forM
�

{̂ .To determ inetheunknown functions�(x;y)and h(y)

onem ustusetheequationsofm otion.W estartwith

0 =
@W

@B �
=
M �

�
~B � + M |̂

�
~B |̂

�2N c� 1
+ b�

=
1

�2N c� 1

(

b��
2N c� 1h(y)+ b�

(bm ~b)(detM̂ )2

(detm )2
yh

0(y)h(y)

+�

"

��2N c� 1(bM̂ � 1~b)b� +
(bm ~b)detM̂

detm
yh

0(y)b�

#)

+ b�: (60)

Thisleadsto thedi�erentialequation

1+ h(y)+ xyh
0(y)h(y)+ �

detm

detM̂
[�y+ xyh

0(y)]= 0: (61)

Anotherusefulequation is

0 =
@W

@B i
=
M

�

i
~B � + M

|̂

i
~B |̂

�2N c� 1
+ bi

=
bi

�2N c� 1

(

�
(bm ~b)detM̂

detm
h(y)� �2N c� 1

+
(bm ~b)detM̂

detm (bM̂ � 1~b)
yh

0(y)

)

+ bi: (62)

Thisleadsto anotherdi�erentialequation

�
detm

detM̂
h(y)+ h

0(y)= 0: (63)

Solving for�from the second equation and substituting itinto the �rst

one,weobtain

1+ h(y)� xyh
0(y)h(y)+ (y� xyh

0(y))
h0(y)

h(y)
= 0: (64)

Becausethisequation hasto hold forany x,itgivestwo equationsforh(y),

1+ h(y)+ y
h0(y)

h(y)
= 0; (65)

�yh
0(y)h(y)+ yh

0(y)
h0(y)

h(y)
= 0: (66)
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It is non-trivialthat two di�erent non-linear di�erentialequations have a

consistentsolution.The�rstequation gives

dh

h2 + h
= �

dy

y
; (67)

and hence

log

�
�
�
�
�

1+ h(y)

h(y)

�
�
�
�
�
= logjyj+ const: (68)

Togetherwith theboundary condition h(0)= �1,thisleadsto thesolution

h(y)= �
1

1� y
: (69)

On theotherhand,thesecond equation gives

dh

h2
= �dy; (70)

and hence

h(y)= �
1

1� y
: (71)

Both equationsgive the sam e solution,which con�rm sourresult. 8 There-

fore,thee�ective superpotentialafterintegrating outtwo quarksis

W e� = �2N c� 1

"
detm

detM̂
� (bM̂ � 1~b)

#

�
(bm ~b)detM̂

detm � (bM̂ � 1~b)detM̂
: (74)

6 Integrating-O ut Flavors -T he Laborious W ay

In this section we willrecover the results ofthe previous section using a

di�erentm ethod:instead ofusing sym m etriesto constrain the�nalform of

8W e can also determ ine �(x;y):

�(x;y)
detm

detM̂
= �

1

1� y
; (72)

and hence

M
|̂
� = �

b�
~b|̂

1� y

detM̂

detm
; M

�
|̂ = �

b̂|
~b�

1� y

detM̂

detm
: (73)

Theseexpressionsarenecessary forintegrating the two  avorsback in.
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thee�ectivesuperpotential,wewilljustdirectly solvetheclassicalequations

ofm otion and then evaluatetheinitialsuperpotentialatthesevaluesofthe

�elds.Starting from (29,30)

W e� = M
�
� m

�
� + b̂{B

{̂+ ~b{̂~B {̂+ b�B
� + ~b� ~B � (75)

+
1

�2N c� 1

h

B
{̂
M

|̂

{̂
~B |̂+ B

{̂
M

�
{̂
~B � + B

�
M

|̂
�
~B |̂+ B

�
M

�
�
~B � � detM

i

:

theequationsofm otion are:

B i
~B j
� �M

j

i + m
j

i�
2N c� 1 = 0 (76)

B iM
i
j +

~bj�
2N c� 1 = 0 (77)

where i;j = 1:::N c + 1, �M
j

i isthe cofactor,and only m �
� 6= 0. W e splitthe

(N c+ 1)� (N c+ 1)m atrix M
j

i intoa2� 2block M
�
� ,and a(N c� 1)� (N c� 1)

block M̂
|̂

{̂.Theo� diagonalblocksareM
|̂
� and M

�
{̂ respectively.

M ultiplying(76)by M i
k and usingthefactthatM

j

i
�M k
j = detM �ik we�nd

aftera few straightforward steps:

M
�
{̂ m

�
� = b̂{B

� (78)

M
{̂
�m

�
� = ~b{̂~B � (79)

M
�
 m

�
� = bB

� + �
�
 detM �� (2N c� 1) (80)

M
�
 m



� = ~b� ~B � + �
�
� detM �� (2N c� 1) (81)

Equations(80)and (81)give ~B �
~b�m 

� = B b�m
�
�,which im plies

B
 = B m


�
~b��2(2N c� 1) (82)

~B � = B m

� b�

2(2N c� 1) ; (83)

whereB isa param eter.

W e will�rstexpress allthe expectation valuesin term sofB ,and then

use som e ofthe rem aining equationsofm otion to relate B and detM .The

m esonsaregiven by:

M
�
� = b�

~b� B �2(2N c� 1)+ (m � 1)�� detM �� (2N c� 1) (84)

M
{̂
� = b�

~b{̂ B �2(2N c� 1) (85)

M
�
{̂ = b̂{

~b� B �2(2N c� 1) (86)
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Com bining theseequationswith equation (77)one�ndsthebaryonsB {̂:

B
{̂ = �(M̂ � 1){̂|̂

~b|̂(1+ X B
2)�2N c� 1 (87)

~B {̂ = � b̂|(M̂
� 1)

|̂

{̂(1+ X B
2)�2N c� 1 (88)

where

X � (bm ~b)�3(2N c� 1): (89)

Substituting everything back into W e� we�nd

W e� = ��2N c� 1(bM̂ � 1~b)(B 2
X + 1)2

+
1

�2N c� 1

h

(B 2
X + 1)detM + B X (B 2

X + 3)
i

: (90)

whereasbefore(bM̂ � 1~b)isa shorthand for b̂{(M̂
� 1){̂|̂

~b|̂.

Thenextstep in ourevaluation isto�nd therelation between detM and

B . Using the block decom position ofthe m eson m atrix we outlined in the

beginning,itisnothard to �nd thatdetM can beexpressed as:

detM = (detM̂
|̂

{̂)det(M
�
� � M

|̂
�(M̂

� 1){̂|̂M
�

{̂) (91)

Afterexpressing allits com ponents in term s ofB ,one can easily com pute

thedeterm inantofthe2� 2 m atrix to be:

det(M �
� � M

|̂
�(M̂

� 1){̂|̂M
�

{̂ )=
detM 2 + X

h

B � �2(2N c� 1)B 2(bM̂ � 1~b)
i

detM

�2(2N c� 1)detm
:

(92)

W e should note thatifk avorswere integrated out,the num eratoron the

right-hand-side of the equation above should be replaced with detM k +

X (B � B 2bM̂ � 1~b)detM k� 1. Thus,the �rstequation relating B and detM

is:

(detM )2 =
(detM )(detm )�2(2N c� 1)

(detM̂ )
� (detM )X (B � �2(2N c� 1)B

2(bM̂ � 1~b))

(93)

To �nd the other relations between B and detM we use the equation of

m otion:

B
�
B � + m

�
��

2N c� 1 =
@detM

@M
�
�

= (detM̂
|̂

{̂)
@det

h

M �
� � M |̂

�(M̂
� 1){̂|̂M̂

�

{̂

i

@M
�
�

(94)
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M ultiplying thisequation by (M �
� � M |̂

�(M̂
� 1){̂|̂M

�

{̂ )and using thefactthat

M
j

i
@ detM

@M
j

k

= detM �ki weobtain aftera few steps:

detM = �B X �
1

B
+ �2(2N c� 1)(B 2

X + 1)(bM̂ � 1~b) : (95)

Again thisrelation isindependent ofthe num ber ofavors integrated out.

Onecan alsoevaluateby hand thecofactorsin (94),sum them with m �
�,and

obtain

detM =
detm �2(2N c� 1)

2detM̂
(2+ B

2
X )�

X

2
(B � �2(2N c� 1)B

2(bM̂ � 1~b)) (96)

Theequations(93,95,96)havea uniquesolution

detM =
detm �2(2N c� 1)

detM̂
� X

h

B � �2(2N c� 1)B
2(bM̂ � 1~b)

i

B =
�� 2(2N c� 1)detM̂

(bM̂ � 1~b)detM̂ � detm
: (97)

which gives

W e� = �2N c� 1

"
detm

detM̂
� (bM̂ � 1~b)

#

�
(bm ~b)detM̂

detm � (bM̂ � 1~b) detM̂
(98)

W ehavethusrecovered thee�ective superpotential(74)constructed in sec-

tion 5.W enow turn to them atrix m odelanalysisofthetheory and recover

thesam eresults.

7 SU(N c)w ith N c+ 1 avors;M atrix M odel

Thetreelevelsuperpotentialofthetheoryunderconsideration wasdescribed

in section 3.1.Since thegoalissum m ing alldiagram scontaining two avor

�elds,itisusefulto rewriteitin thefollowing form :

W tree = m
�
�Q

a
�
~Q �
a + �

��
b�Q

a
�Va + ���

~b� ~Q �
a
~V a

+ b̂{�
��
Q
a
�Q

b
�V

{̂
ab+

~b{̂��� ~Q
�
a
~Q
�

b
~V ab
{̂

where�and � takethevaluesN c and N c+ 1,and

Va = �
N c;N c+ 1;̂{1;:::;̂{N c� 1�aa1:::aN c� 1

Q
a1
{̂1
:::Q

aN c� 1

{̂N c� 1

{̂1;:::;̂{N c� 1 = 1;:::;N c� 1 a1;:::;aN c� 1 = 1;:::N c (99)
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and sim ilarly for ~V a.Also,

V
{̂
b1b2

= �
N c;N c+ 1;̂{;̂{1;:::;̂{N c� 2�b1b2a1:::aN c� 2

Q
a1
{̂1
:::Q

aN c� 2

{̂N c� 2

{̂1;:::;̂{N c� 2 = 1;:::;N c� 1 ; b1;b2;a1;:::;aN c� 1 = 1:::N c(100)

and sim ilarly ~V ab
{̂ .

Forlatterconvenience letuspointoutthat:

Q
a
{̂Va = 0 ~Q {̂

a
~V a = 0 (101)

where {̂and |̂take valuesonly from 1 to N c � 1. There isno constraintof

thissortforQ a
|̂V

{̂
ab,etc.However,onecan seethat

VaVb~V
ab
{̂ = 0 and ~V a~V b

V
{̂
ab = 0 (8) {̂= 1;:::;N c� 1 : (102)

To system atically com putetheintegralitisusefulto writethetreelevel

superpotentialasa quadraticform .Thisiseasily doneby introducing

Q =

�
Q a
�

~Q �
a

�

V =

 P N c+ 1

= Nc
��bVa

P N c+ 1

= Nc
��

~b ~Va

!

(103)

and

K =

 
��� 
 biV

i
a1a2

m �
� 
 �a2a1

m �
� 
 �a2a1 ��� 


~bi~V
i
a1a2

!

K
T = K �=

�
0 1

�1 0

�

:(104)

Then,thetreelevelsuperpotential�� them atrix m odelpotential�� can be

written as:

W tree =
1

2
Q

T
K Q + Q

T
� V

=
1

2

�

Q + K
� 1
V
�T

K
�

Q + K
� 1
V
�

�
1

2
V
T
K

� 1
V : (105)

Therefore,thepartition function is

Z =

Z

D Q
{̂
D ~Q |̂�(Q

�
{̂
~Q |̂
� � M̂

|̂

{̂)e
1

2
V
T K � 1

V�
1

2
lndetK

�
�
�
planar+ 1 boundary

: (106)

The exponent ofthe integrand can be easily analyzed;fairly standard

m atrix m anipulationslead to:

detK =
h

detc

�

�
b
a detm + b̂{

~b|̂V {̂
ac
~V cb
|̂

�i2
; (107)
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wheredetc denotesa determ inantoverthecolorindicesa;b,whileintroduc-

ing the notation V � biV
i
ab and sim ilarly for ~V ,the inverse ofK is given

by:

K
� 1 =

 
��
 ~V (1lcdetm + V ~V )� 1 m � 1 
 (1lc+

~V V

detm
)� 1

m � 1 
 (1lc+
V ~V

detm
)� 1 ��
 V (1lcdetm + ~V V )� 1

!

: (108)

Let us now analyze in som e detailthe com bination (V ~V + 1lcdetm )
� 1.

Equation (101)im pliesthatweneed tocom puteonly theterm sproportional

to the identity m atrix. The otherterm s willvanish upon contracting with

V.Itisnothard to seethat

(V ~V )ba = �bM̂
� 1~bdetM̂ �

b
a + X

j

i(M̂ )Q a
i
~Q
j

b; (109)

wherewehavealready used the�-function constraintfrom thepath integral

to replaceQ a
{̂
~Q |̂
a with M̂

|̂

{̂.Thisin turn im pliesthat

h

(V ~V + detm )� 1
i
b
a =

�ba

detm � (bM̂ � 1~b)detM̂
+ Y

{̂
|̂Q

a
{̂
~Q
|̂

b : (110)

The precise value ofY isirrelevant,since the lastterm alwayscancelsdue

to contractionswith Va or ~V
b

Thus

V
T
K

� 1
V =

2(bm ~b)

detm � (bM̂ � 1~b)detM̂
~V a
Va =

2(bm ~b)detM̂

detm � (bM̂ � 1~b)detM̂
:(111)

Com bining allpieces together we �nd that the gauge theory e�ective

superpotentialisgiven by:

� W e� = �S

�

1� ln
S

�3

�

+ S ln
detM̂

�2(N c� 1)
(112)

+
(bm ~b)detM̂

detm � (bM̂ � 1~b)detM̂
� lndet

�

detm �ba + b̂{
~b|̂V {̂

ac
~V cb
|̂

�

:

Theunitcoe�cientin frontoftheVeneziano-Yankielowiczterm arisesasthe

di�erence between the num ber ofgauge theory colors N c and the num ber

ofm assless avor �elds N f. Before we proceed,let us point out that the

lastterm in the equation above hasan im plicitdependence on the glueball

super�eld.Indeed,asthedeterm inantistaken overthem atrix m odelcolor

indices,the argum ent ofthe logarithm is ofthe order m 2S. Exposing the

partarising from therelevantplanardiagram sispotentially com plicated;we

willreturn to itshortly,aftergaining som e con�dence in the power ofthe

m atrix m odel.
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7.1 C om parison for b̂{= 0= ~b{̂

Underthisassum ption thelastterm in equation (112)sim pli�esconsiderably,

and thee�ective superpotentialreducesto:

W e� = S

�

1� ln
S

�3

�

� S ln
detM̂

�2(N c� 1)
�
(bm ~b)detM̂

detm
+ S ln

detm

�2
: (113)

Tocom parewith thegaugetheory e�ectivesuperpotentialwem ustintegrate

outtheglueballsuper�eld.

�W e�

�S
= 0 )

S

�detm
=
�2(N c� 1)

detM̂
(114)

and thusthee�ective superpotentialisgiven by:

W e� =
�2N c� 1detm

detM̂
�
(bm ~b)

detm
detM̂ ; (115)

which reproducesthe�eld theory result.The�rstterm can berecognized as

the ADS superpotentialupon noticing that�2N c� 1detm isthe scale ofthe

theory obtained from theinitialoneby integratingouttwoquarkswith m ass

m atrix m .

7.2 G eneralanalysis

W e now turn to analyzing the lastterm in equation (112)and isolating the

partarising from planarand singleboundary (in thesenseof[32])diagram s.

Itiseasytoreorganizethisterm usingequation (109).Toavoid cluttering

theequations,letusintroduce

A = detm � (bM̂ � 1~b)detM̂ : (116)

Then thelastterm in (109)becom es:

lndet
�

�
b
a detm + b̂{

~b|̂V {̂
ac
~V cb
|̂

�

= TrlnA�ba + Trln

�

�
b
a +

1

A
X

|̂

{̂Q
b
|̂
~Q {̂
a

�

= S lnA + lndetf

�

�
|̂

{̂+
1

A
X

|̂

k̂
M

k̂
{̂

�

(117)

where,as before,we identi�ed the ’t Hooft coupling with the glueballsu-

per�eld and the m atrix whose determ inantiscom puted in the second term

carriesavorindices.
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W em ustnow identifytheleadingterm sin thisequation -term sgenerated

by planar diagram s with as m any gauge index loops as the diagram s with

one boundary. Forthis purpose it is im portant to notice that the com pu-

tationsin theprevioussection yield thesum ofall1-loop n-pointfunctions.

Furtherm ore,the planar,1-boundary contribution m ust be proportionalto

thenum berofcolorsN c � S,sincethereisonegaugeindex loop in such dia-

gram s.Itisthereforeclearthatonly the�rstterm in equation (117)should

bekeptsincethedeterm inantin thesecond term isin avorspaceand there

is no term in its expansion which is proportionalto the num ber ofcolors.

Thus,thegaugetheory e�ectivesuperpotentialisgiven by:

W e� = S

�

1� ln
S

�3

�

� S ln
detM̂

�2(N c� 1)
(118)

�
(bm ~b)detM̂

detm � (bM̂ � 1~b)detM̂
+ S ln

1

�2

�

detm � (bM̂ � 1~b)detM̂
�

:

Integrating outS leadsto:

S

�3
= �2(N c� 2)

"
detm

detM̂
� (bM̂ � 1~b)

#

(119)

which in turnsim pliesthatthee�ective superpotentialis:

W e� = �2N c� 1

"
detm

detM̂
� (bM̂ � 1~b)

#

�
(bm ~b)detM̂

detm � (bM̂ � 1~b)detM̂
(120)

Thisreproducesthe�eld theory result(74,98).

8 Vacua

Although it is already clear that there is an exact agreem ent between the

m atrix m odeland gaugetheory,letusbriey discussthevacua ofthegauge

theory and their construction from the m atrix m odel. In gauge theory we

need to integrate out allm esons and baryons,while on the m atrix m odel

side we need to com pute the fullpartition function. W e begin with the

gaugetheory discussion.W ewilldiscusstheconstruction in thelanguageof

section 3 and relateitattheend with section 6.
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8.1 Integrating out all�elds in gauge theory

Letus recallequation (16),which determ ines the low energy e�ective su-

perpotentialfora generalN f 6= 3:

(N f � 1)2x� 1=(N f� 1)xf
0(x)[f(x)+ (N f � 1)(N f � 3)xf0(x)]= �1:

Besidesthisequation,there are otherequationsf(x)obeys,obtained from

varying thedynam icalsuperpotentialwith respectto them esons:

B i~B j � (detM )(M � 1)ij

�2N c� 1
+ m

i
j = 0: (121)

Using variousequationsfrom section 3.1 thisequation can written as:

B
i~B j � (detM )(M � 1)ij = �m

i
j�

2N c� 1

=
(m ~b)i(bm )j

(bm ~b)
(N f � 1)2

�

(N f � 1)2xf0(x)[(detm )�2N c� 1]2=(N f� 1)
xf0(x)

(bm ~b)

+�2N c� 1(f(x)� 2(N f � 1)xf0(x))N f� 2(f(x)+ (N f � 1)(N f � 3)xf0(x))

�

�m
i
j�

2N c� 1(f(x)� 2(N f � 1)xf0(x))N f� 2[f(x)+ (N f � 1)(N f � 3)xf0(x)]:

(122)

To satisfy thisequation,the coe�cientof(m ~b)i(bm )j in the square bracket

m ustvanish,and the coe�cientofm i
j m ustagree on both sides. Therefore

we�nd

(N f � 1)2x� 1=(N f� 1)xf
0(x)+ (f(x)� 2(N f � 1)xf0(x))N f� 2 = 0 ;(123)

(f(x)� 2(N f � 1)xf0(x))N f� 2(f(x)+ (N f � 1)(N f � 3)xf0(x)) = 1 :(124)

Thus,thereseem to bethreeequationsfora singlefunction;itturnsout

however thatone ofthem can be obtained from the othertwo. In general,

wecannotexpectto �nd a consistentsolution fortwo �rst-orderdi�erential

equations forone function. In the N f = 3 case,the two di�erentialequa-

tionswereself-consistent,and theircom bined e�ectwasto�x theintegration

constantin f(x)9.W eexpectthesam eto happen here.

In general,wecansolveforf0(x)usingEq.(16),andsubstituteittooneof

theotherequations.SinceEq.(16)isquadraticin f0(x),ithastwosolutions.

9Indeed,ifone did not� x the integration constantc in f(x)= �
p
c� x1=2 using the
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Only one ofthem is consistent with the boundary condition jf(0)j = 1.

Keeping only theconsistentsolution,we�nd

0

@
(N f � 1)(N f � 2)f �

q

(N f � 1)2f2 � 4(N f � 1)(N f � 3)z

(N f � 3)(N f � 1)

1

A

N f� 2

+
z� 1

�

�(N f � 1)f +
q

(N f � 1)2f2 � 4(N f � 1)(N f � 3)z
�

2(N f � 3)
= 0;(126)

wherez= x1=(N f� 1).Thisequation determ inesthefunction f(x)im plicitly.

The sam e results can be obtained following the steps in section 6. In

particular,when allN f = N c + 1 avorsare integrated out,equations(93)

and (95)becom e:

detM = �B X �
1

B
(127)

detM N f� 1 + X B detM N f� 2 = detm �N f(2N c� 1) (128)

Thee�ectivesuperpotentialisthen obtained by substituting thesolutionsof

theseequationsin thesuperpotential(90)

�2N c� 1
W eff = (B 2

X + N f � 1)detM + B
3
X

2 + 3B X : (129)

Itisnothard to check thatthisreproducesthe resultsin chapter3 forthe

caseofan SU(2)gaugegroup with 3 avors;itis,however,som ewhatm ore

challenging to seethatitagreeswith (126)aswell.

8.2 T he M atrix M odelFree Energy

Letusnow consider the m atrix integralwe considered before,butwith all

avorsm assive.In thiscase,wecan reinterpretthe�-function asarisingfrom

thechangeofvariables

Z

D QD ~Q =

Z

D M

Z

D QD ~Q�(Q ~Q � M ) (130)

boundary conditions,equation (124):

 
p
c� x1=2 � 4x

� 1

2
x� 1=2

2
p
c� x1=2

!
p
c� x1=2 = 1; (125)

would � x thisconstantto be c= 1.
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Thus,to �nd the e�ective superpotentialas a function ofthe glueballsu-

per�eld (2),we m ustsupplem ent the resultsofthe previoussection with a

m assterm fortherem aining m esonsand then com putetheintegraloverM

aswell.W erecallthatweareinterested only in the1-boundary freeenergy.

Thus,the integralcan be com puted by a saddle-point approxim ation. Al-

ternatively,itis easy to see thatthe one-boundary free energy is given by

the sum ofalltree-levelFeynm an diagram sarising from the superpotential

(118). Thisim pliesthat,asexpected,the e�ective superpotentialisunique

even when expressed in term s ofthe glueballsuper�eld. The vacua ofthe

theory arisein thislanguageasthecriticalpointsofW e� (S).

W enow illustratethissim pleobservation fortheSU(2)theory with three

avors,leaving to the reader the exercise ofrecovering the m ore involved

resultsofsection 8.1.

8.3 B ack to SU(2)

Considertheequation(118)forthecaseofanSU(2)theorywiththreeavors.

Since M̂ is1-dim ensional,thesuperpotentialis:

W e� = S

�

1� ln
S

�3

�

� S ln
M̂

�2
(131)

�
(bm ~b)M̂

detm � (bl~bl)
+ S ln

1

�2

�

detm � (bl~bl)
�

+ m M̂

where bl and ~bl arethesourceswith indicesalong the m eson which wasnot

integrated outin theprevioussection.Thesaddlepointequation is:

S

M̂
= m �

(bm ~b)

detm � (bl~bl)
=
det�m � (b�m ~b)

detm � (bl~bl)
where �m =

�
m �

� 0

0 m

�

(132)

and b and ~b are understood as 3-com ponent vectors. Then,the e�ective

superpotentialasa function oftheglueballsuper�eld is:

W e� (S) = 2S

�

1� ln
S

�3

�

� S ln
�3

det�m � (b�m ~b)
(133)

Asargued before,the vacua are now described by the criticalpointsof

W e� (S),and aregiven by

2ln
S

�3
= ln

det�m � (b�m ~b)

�3
, S = �

q

det�m � (b�m ~b)�3=2 (134)
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Thesuperpotentialatthecriticalpointsistherefore:

W e�

�
�
�
crit

= �2

q

det�m � (b�m ~b)�3=2
: (135)

W e thusrecoverthe m atrix m odelresultfound directly in equation (27)of

section 4,aswellasthe�eld theory result.

9 B aryons and G eom etric Transitions

In thissection we discussthe baryonsin the contextofthe geom etric tran-

sitions. The gauge theory isengineered by wrapping D5 braneson several

com pact P1 cycles ofa geom etry which locally,around each cycle,is the

geom etry ofthesm allresolution oftheconifold.Alternatively,itcan bede-

scribed using theT-dualbranecon�guration,wheretheD5 braneswrapped

on P
1 cyclesare m apped into D4 branesstretched between NS branes[18],

[51,52,53].

Letusbegin by briey reviewing the results of[54,55],concerning the

baryonicdegreesoffreedom in M QCD.First,weneed tocom m enton having

an SU(N )ratherthan an U(N )gauge group. The Type IIA brane con�g-

uration aswellasthe Type IIB geom etric construction describe a classical

U(N )gaugetheory.TheM theory lim itdescribesa quantum SU(N ),where

theU(1)factordecouples.Asexplained in [51],theU(1)factorisrecovered

afterthegeom etrictransition,when theSU(N )partcon�nes.Therefore,the

approach of[18]cannotbeapplied forthecaseofbaryons,asthequantities

in m atrix m odelswereobtained from theparam etersofbranecon�gurations

via lifting to M theory.

Itisneverthelesspossible to collectsom einform ation aboutthevacuum

expectation valuesofthe baryon operatorsin M QCD.Asdescribed in [54],

in the case N f = N c,the di�erence between a baryonic and a non-baryonic

branch isthatthe asym ptotic regionsofthe form erintersect,and the ones

ofthe latter do not. Indeed,the asym ptotic regions for the non-baryonic

branch aregiven by:

t = (w 2 + �4
N = 1)

N c=2 ; v = 0

t = �
2N c

N = 1 ; w = 0 (136)

whiletheonesforthebaryonicbranch aregiven by:

t = w
2N c ; v = 0

t = �
2N c

N = 1 ; w = 0 : (137)
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Itisclearthatthetwobranchesintersectin (136),butareseparated in (137).

Thedistancebetween theasym ptoticregionsin (137)isthevalueof ~B B .

In M theory term s the geom etric transition corresponds to a transition

from an M 5 branewith a worldvolum e containing a Riem ann surface in the

(v;w;t)plane to an M 5 brane with two dim ensionsem bedded in (v;w),for

constantt. The equation in (v;w)representsan NS brane which isT-dual

to thedeform ed conifold.

In thecaseof(136)-(137),v and w aredecoupled so theabovediscussion

doesnotapply. In the language of[18],thiscan be understood by starting

with D4m branescorresponding to m assive avors,taking the m assto zero

and com bining with a colorD4 brane to geta D4M brane which describes

a avor with an expectation value. Therefore,in the geom etricalpicture,

there are no D5 branes on the com pact P
1
cycles and there are only D5

braneson the noncom pact 2-cycles. W e then see thatthe duality between

m atrix m odelsand �eld theory failsin thiscase.

The only way to use the results of[3,4,5]is to give m ass to one of

the avors, which m eans decom posing one D4M brane into a D4m brane

and a colorbrane. Thisisexactly the procedure discussed in detailin [32]

where a m ethod to dealwith this case was stated. Therefore,we see that

thedi�cultieswith them atrix m odelanalysisofthebaryon operatorshavea

geom etriccounterpart.Thisshould probablybeexpected,sincethegeom etry

isunderlying them atrix m odels.

10 C onclusions

Inthispaperwefurtheranalyzedtheextension oftheDijkgraaf-Vafaproposal

to theories containing �elds in the fundam entalrepresentation. W hile this

extension wasthoroughly analyzed in situationsin which the gauge theory

was described solely in term s ofm esons,the m atrix m odeldescription of

baryonicdeform ation rem ained untilnow largely unexplored.Them ain goal

ofourwork wasto �llthisgap.

W e have started with the N = 1 SQCD with gauge group SU(N c)and

N c + 1 avorswhose e�ective superpotentialwasconjectured in [2]and de-

form ed thetheory by adding baryon sourcesaswellasm assterm sforeither

two or allavor �elds. W e com pared the resulting e�ective superpoten-

tialobtained by integrating out the appropriate m esons and baryons with

the one com ing from the m atrix m odelcom putationsand we found perfect
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agreem ent. Ofessentialim portance has been the correct identi�cation of

Feynm an diagram scontributing to thesuperpotential.

W eexpectthatthee�ectivesuperpotentialforothers-con�ning theories

iscom putableusing m atrix m odeltechniquesalong thelinesdescribed here,

aftersuitabledeform ationsby m assterm sand othersources.

SQCD theories with N f � N c + 2 are usually analyzed using Seiberg’s

duality. One m ay ask whether the m atrix m odeltechniques can shed light

on theire�ective superpotential. Using ’tHooft’sanom aly m atching condi-

tionsitwasshown thatthem esonsand baryonsarenottheonly low energy

degrees offreedom . However,the com plete set oflow energy �elds is not

known. Nevertheless,by inserting sources for the known �elds in the tree

levelsuperpotential,them atrix m odelperturbation theory should allow one

to recoverthetruncation ofthefulle�ective superpotentialto these�elds.
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