Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Matrix model description of baryonic deformations

Permalink
https://escholarship.org/uc/item/7c1806d1

Authors

Bena, losif
Murayama, Hitoshi
Roiban, Radu

Publication Date
2003-03-13

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/7c1806dr
https://escholarship.org/uc/item/7c1806dr#author
https://escholarship.org
http://www.cdlib.org/

arXiv:hep-th/0303115v1l 13 Mar 2003

UCB-PTH-03/05
LBNL-52343
UCLA /03/TEP/5
hep-th/0303115

M atrix M odelD escription of B aryonic D eform ations

Tosif Bena®, H itoshiM urayam &, Radu Roiban®, Radu Tatar®

@ D gpartm ent of Physics and A stronom y
University of C alifornia, Los Angeles, CA 90095

Pid D epartm ent of Physics, 366 Le Conte Hall
University of California, Berkeley, CA 94720

and

Lawrence Berkeley N ational Lalkoratory
Berkeky, CA 94720

“D gpartm ent of Physics
U niversity of California, Santa Barlkara, CA 93106

A bstract

W e Investigate supersymm etricQCD with N.+ 1 avorsusing an
extension of the recently proposed relation between gauge theories
and m atrix m odels. T he In pressive agreem ent between the two sides
provides a beautifulcon m ation of the extension of the gauge theory—
m atrix m odel relation to this case.

M arch 2003

E-mail: ® iosif@physics.ucla.edu

® murayama@lbl.gov
radu@vulcan2.physics.ucsb.edu
rtatar@socrates.berkeley.edu

C

d


http://arXiv.org/abs/hep-th/0303115

C ontents
[L__Tntroduction
E , o ¥ - - L5 |

3__Integrating-0 ut A 11 F lavord

|32 SU (2) with three avom°Fje]dTh@oTvl .............

|4 SU (2) with three avors:M atrix M odell

IL') Im'ecrra‘rjng—() ut Two Flavors —The F legant W ayl
51 Prelindnaried . . . v oo
52 =t Quwihft=1; N L
53 b =B =0Qwih ; =N Not 1 ... .
|54 Geneml(‘aqcl

l6__Tntegrating-0 ut Flavors — The Laborious Ui ayl

I7 SU (Ng) w ith No+ 1 avors;M atrix M od@i
171 Comparison forbh = 0= Mo

3

I72 G eneral analysjf]s ..........................

|8_,]_Imiagra_ﬁng outall edsingaugetheord .« v v v v v v v v v o

I82 TheMatrix M odelFree PNy v v v v v v v v o v v e o o o o e
83 Radk to SU (2]

lo_® aryons and G eom etric Tran sitiond

[10 C onclisiond

1 Introduction

10

11
12
13
14
15

17

20
23
23

24
25
26
27

28

29

The fact that topological string am plitudes are closely related to certain
holom orphic quantities in the physical superstring theories was known for
som e tin e. A practical ncamation of this relation is the recently discovered



3,14,19] gauge theory —m atrix m odel connection. By now , this idea has been
nvestigated using three rather independent approaches.

In the original approach of [3, [4, [3], one starts from the open/closed
string duality in plied by a geom etric transition, and com putes gauge theory
superpotentials using the uxes of the dual geom etry [9-19]. The resul is
expressed In term s of the partition function of a certain closed topological
string theory. O n the open string side of the duality one relates the term s of
the e ective superpotential w ith the partition function of the holom orphic
Chem-Sin ons theory (which describes the elds on the wrapped D Jranes
sourcing the geom etry). D ikgraaf and Vafa confctured that the open and
closed partition functions are dentical. Since the com putation of the open
string partition function reduces to the com putation of the partition fiinction
ofa large N m atrix m odel, this conecture in plies a certain relation between
gauge theory e ective superpotentials and m atrix m odels |3]. This relation
was further strengthened by the study of the underlying geom etry of the
m atrix m odel and of the gauge theory [4,135].

In the s=cond approach [20], the e ective glueball superpotential of an
N = 1 theory w ith ad pintm atterw asevaluated using superspace techniques.
It was found that only zero m om entum planar diagram s contribute to this
superpotential, thus validating the original concture.

In the third approach [8, [21]] the generalized K onishi anom alies of the

eld theory were used to obtain relations between the generators of the chiral
ring of the theory. T hese relations, which under certain identi cationscan be
reproduced from am atrix m odel, can then be usad to construct the e ective
superpotential.

Perhaps them ost in m ediate extension of the m atrix m odelgauge theory
relation is to theories wih elds transform ing in m atter representations of
the gauge group R31-47]. For theoriesw ith elds transform ing in the funda-
m ental representation of the gauge group it was suggested that the addition
to the original DV proposal nvolves m atrix m odel diagram s w ith a single
boundary. For arbitrary generalized Yukawa couplings and a sin ple super—
potential for the ad pint eld this proposalwas proved in [36]. Furthem ore,
it was shown in [/] that the m atrix m odel fully captures the holom orphic
physics of theories with N¢ < N, regardless of the com plexity of the tree
level superpotential for the ad pint eld.

E xtending the corregpondence to gauge theories w ith baryons tumed out
to be som ewhat m ore challenging. Tn particular, baryons only exist for the-
ories w ith certain relations between N : and N .; therefore, taking the large



N . lim it to restrict to planar diagram s is not possible. M oreover, the no—
tion of boundary in diagram s w ith baryons is not wellde ned unless certain
m anipulations are perform ed.

In [34] an extension of the DV proposal to theories w ith baryons was
formulated and it was shown that for an SU (N.) theory with N = N
quarks this proposal reproduces exactly the known gauge theory physics. !

T he goalof thispaper is to extend the correspondence to supersym m etric
QCD with N¢ = N.+ 1 avors. As it iswellknown [2], this theory hasN ¢
baryons, N f2 m esons and a dynam ically generated superpotential

W = %(Bil\/l B? detM ) : 1)
In order to relate this theory w ith the corresponding m atrix m odel, we deform
it w ith the appropriate sources, and integrate out the m esons and baryons.
W e then com pare the result w ith the one given by m atrix m odel planar one—
(generalized) boundary and nd perfect agreem ent.

O ur interest in theoriesw ith baryonshas severalreasons. The rst isthat
neither of the three routes by which the originalm atrix m odel-gauge theory
relation was reached seam s easily extendable to these theordes. 2 Second,
In theories with only chiral avors, baryons are the only obfcts one can
construct. If one is to extend the m atrix m odelgauge theory relation to
such theordes, understanding the r0l and the correct treatm ent of baryons
is crucial.

Last but not Jeast, the superpotentials of theories sim ilar to SQCD w ith
N¢= No+ 1 avors® are used as starting points for the construction of low
energy e ective superpotentials in m any theories where sym m etries do not
determm Ine these superpotentials directly. It is therefore in portant to have a
direct m ethod of com puting them .

'R elated work has appeared in [30], where a perturbative eld theory com putation in
the spirit of 20] wasused to recover the term s linear in baryon sources In the gauge theory
e ective superpotential.

2In particular, aswew illsee in the last section ofthis paper, understanding the baryons
atN¢ = N+ 1 In geom etric transitions is quite di cult.

3T hese are the so-called scon ning theories. T hey have a description in term s of gauge—
nvariant com posites everyw here on the m oduli space, and the e ective superpotential for
the con ned degrees of freedom is not sihgular at the origin of the m oduli space.{For
discussions on scon ning theories seel49, 150] and references therein).



One of the ways in which the valdity ofthe N¢ = N+ 1 superpotential
is usually tested is by obtaining the correct N = N . superpotential in the
absence of baryonic sources. However, this superpotential contains much
m ore Inform ation, which can only be captured by tuming on all the baryon
sources. The fact that the m atrix m odel reproduces the rather involved
e ective superpotential obtained w ith all the baryon sources tumed on is
a very powerful con mm ation of the validity of the extension of the m atrix
m odelgauge theory relation to baryons.

Integrating out all the elds In both the gauge theory and the m atrix
m odel is rather com plicated, and often results in rather unedifying expres-
sions involring roots of large degree polynom ials. Fortunately, there exists a
procedure [27] which allow s us to com pare gauge theory and m atrix m odel
results in theories containing only m esons. T hus, to com pare the gauge the-
ory and them atrix m odelresuls it is enough to integrate out only two avor

elds on the gauge theory side (sections[d and @), and to relate the result to
them atrix m odel free energy obtained by treating theN . 1 m assless avors
as background elds (section [0).

Except for SU (2), where com puting the values of the e ective superpo-
tential at its critical points isnot too di cul (sections 2 and 3), we willonly
be com paring m atrix and gauge theory resultsat N = N. 1. In section
B we will derive these values, using gauge theory technigues, and discuss
a m ethod for com puting the full m atrix m odel free energy. A s an exam pl
we apply thism ethod to the case of an SU (2) gauge theory and recover all
expected results, already discussed in sections[3A and [4.

B efore proceeding, ket us rem ark that in our case there is no distinction
between the unitary m atrix m odel and the herm itian one. T his is due to the
fact that we w ill be Interested in theories containing only elds transform ing
In the fundam ental representation. Since these elds are not constructed out
of generators of the gauge group, they are the sam e both In the SU (N .) and
In the U (N.) theordes. T hus, the m atrix integral is the sam e for both gauge
groups.

To x the notation, Latin indices from the beginning of the alphabet
(@;b;c) are SU (N .) indices; Latin indices from the m iddle of the alphabet
(i;3;k) are SU (N ¢ = N .+ 1) indices; G reck Indices from the beginning of the
alphabet (; ; ) are SU (2) Indices corresponding to two avor eldswhich
are singled out. They take the valuesN . and N.+ 1. Hatted Latin Indices
from the m iddle of the alphabet are SU N¢f = N. 1) Indices, correspond—
ng to the avor symm etry unbroken by the quark m asses (but nevertheless



broken by the presence of baryon operators).

2 Review of the D ijkgraafVafa proposal for avors

In a series of papers [3, 14, 18], D ikgraaf and Vafa proposed a perturbative
m ethod for com puting the e ective glueball superpotential of certain N = 1
theories w ith elds transform ing in the ad pint and bifindam ental represen—
tations of the gauge group. A cocording to this proposal, the planar diagram
contribution to the free energy of a certain m atrix m odel yields the e ective
superpotential of the corresponding N = 1 gauge theory. In £ H ooft’'sdouble
line notations these diagram s have the topology of a sphere.

W hen eldstransform ing in the fiindam ental representation of the gauge
group (quarks) are present onem ust also Include the free energy arising from
planar diagram s w ith one boundary (diagram s w ith the topology of a disk)
23, 120]. M ore explicitly, the gauge theory e ective superpotential is given
by

S

. — @F =2 .
We (S; )=NS(@A Jr1—3)+Nc@T+NfF -1 2)

where the rsttwo temm s are also present in a theory w ith only ad pints, and
the third term is the contribution of the avors.

If baryonic sources are also added, the diagram s that can be constructed
becom e m ore com plicated. H owever, only the planar diagram sw ith asm any
Index loops as a diagram w ith one boundary contribute to the e ective su-
perpotential [32]. Since the num ber of colors and the num ber of avors are
related, it is not possible to sslect the relevant diagram s by taking the lim it
In which the number of colors is large. Thus, the planar diagram s w ith
baryon sources have to be selected by hand. In [32] it was shown that planar
baryonic diagram s for SU (N ) theoriesw ith N . avors reproduce the know n
physics.

T he nonlinearities introduced by the baryonic operatorsm ake the com pu-—
tation of them atrix m odel partition fiinction challenging. Fortunately, when
the tree level superpotential can be expressed in term s ofm esons, the m atrix
m odel and gauge theory can be related m ore directly [24]. Thus, adding
In the m atrix path integral a constraint which identi es the m atrix m odel
quark bilinears w ith the gauge theory m esons allow s one to com pute directly
the gauge theory superpotential w ith the corresponding m esons integrated
In. Thisproposalwas proved using the geom etric construction of the m atrix



m odel [18], using the sym m etries of the gauge theory [34], and by explicithy
Integrating in quarks [41l].
Thus, the free energy which gives the superpotential of a theory w ith
both m assive and m assless avors is given by
z
€ = DODQ Q0] Me el 3)
planar+ 1 boundary
where Q are the m assive quarks and Q ; are the m asskess ones.

T his expression also allow s us to com pute the free energy in the presence
of baryons, as Iong asN¢ = N .+ 1. Indeed, choosing two m assive quarks,
it ispossible to sum up allFeynm an diagram s involring them and obtain a
result which only depends on quark bilinears. * At this stage the -fiinction
constraint can be easily enforced and we are left w th com puting the ntegral
of the constraint.

If the dim ension of the m atrices M . is larger than N (Wwhich is always
the case In Jarge M . Iin it) this integral is [274]:

z

1 Mchn@etM = M) NyhdetM = 2M£) NM oMo
DopQ" Qo] M)=é'-R0e ) e ) ;

(4)
where isacuto . Thisresult however containsboth leading and sublading
tetm s in N¢=M .. In particular the logarithm in the second term in the
exponent is proportional to the number of avors, N ¢ (the determm inant is
taken over avor indices, and therefore is of order M V1), and therefore this
term is of order N f2 . Hence, it is generated by a m ultidbboundary diagram
with Insu cilent gauge index loops, and should not be included in the free
energy.

Identifying the m atrix m odel t Hooft coupling w ith the gauge theory
glieball super eld and taking into account the clari cations above, the con—
tribution of the planar and 1-Joundary diagram s to the above integral be-

aom es:
Z

D Q/{D Q’T (Q ?ng M /{1\) — eS In (detM =

MNf) NesShn(s= 3
) £ ( ) (5)

T his equation w ill be one of the In portant ingredients in our com parison of
m atrix m odel and gauge theory resuis.

4This littlem fraclk happensonly HrN¢ = NcorNg = N+ 1. IfN¢ N+ 2 oneneeds
to choose m ore than two m assive avors, which m akes the m atrix integral non-G aussian
and rather hard to com pute.



3 Integrating-O ut A 11 F lavors

In this section we com pute the gauge theory e ective superpotential at its
critical points. T he unbroken sym m etries determ ine its value up to an un—
known function of one variable. By requiring consistency w ith the high en-
ergy theory, we construct a di erential equation for this function. W e rst
solve it for the special case of an U (2) theory with three avors and then
tum to the general case.

3.1 Symm etries and C onsistency C onstraints

W e start w ith a tree level superpotential w ith m ass term s and baryon source
term s for all avors:

W e = m 30507 + bB *+ BBj: ©)

T he total superpotential is the sum of this tree level superpotential and
of the dynam ically generated superpotential

1
W dyn = W detM BME : (7)

T he quantum num bers of the sources are

U@z SUWNg)g SUNg)y Ul U (1)a D
0 ﬁ N ¢ 1 +1 +1 1
o ﬁ 1 N ; 1 +1 1
M é N ¢ N ¢ 0 +2 2
B 1 NL N¢ 1 Neg 1 Ne 1 Ne 1
B 1 ﬁ 1 N¢ N;+1 N 1 Nf 1
m 2 Ni N¢ N 0 2 1
b 1+i N ¢ 1 Neg+ 1l Neg+1 Ne+ 4
B 1+ﬁ 1 N ¢ Ne 1 Neg+ 1 Ne+ 4
MNge 3 0 1 1 0 2N ¢ 2N 3

U sing these quantum num bers, we can determm ine the form of the allowed
superpotential term s after Integrating out all avors.

A 11 superpotential term s are functions of 't 3, b, B, and m . To con—
struct invariants under the non-abelian avor sym m etries, the only allowed



buiding blocks are bm §bﬂ' and detm . The U (1) Ihvariant com biation
of these is (om B)"* '=detm ). TtsU (1)y charge is ( 2N¢)We 1)
2( 2)Ng= 2NZ+ 6N;. Therefore the com bination

(bj_m ibj)Nf 1

ON: 3\N: 3
detm )2 ) ®)

is Invariant under all sym m etries, and is din ensionless as well.

T he existence of the gluino condensate In plies that in the absence ofbary—
onic sources, b= B= 0, the superpotentialis W 1)[detm ) #¢ 3p=®: 1
T herefore the possible form of the superpotential in the presence of baryon

source term s is
0 1

i \Ng 1
f£e@ (bimjbj) ' 2N ¢ 3)Nf 3a

— 2N 141N,
We = ON:  1)[detm) ] ot )

i )
where f (x) is a function we want to determ ine.

In the lm it of In nite m ass param eter m this theory reduces to a pure
N = 1 gauge theory. In this case we know that there are N . vacua and the
values of the superpotential at the critical points di er by roots of unity of
order N .. In this lin it, the argum ent of the function £ in the equation above
vanishes, while its coe cient can be denti ed with the dynam ical scale of
the resulting theory. Thus, In order to recover the expected gauge theory
resuls, we must in pose the boundary condition

£ )= !Ec;k= O;:::;N. 1 w Ith 1Ne = 1 (10)

T he expectation values of the m oduli are obtained by di erentiating this
e ective superpotentialw ith respect to the sources. °

Mij _ @w e _ [detm ) ON ¢ 3]1:(Nf 1)
@m§
m HYYfFx)+ O 1)xfox) W 1B 2m Y @a1)

(m B)
. W i

pi — a e _ (.Nf 1)2[(detm) 2N ¢ 3]l=(Nf l)XfO(X)m] (12)
(CheY (m B)

By = @Zg _ e 1Pldetm) PP Uxpg il )

°W e use the sinpli ed notation (gm &)  (m b)



T herefore, we nd

BMJ= N; 1)%[detm) ¢ 3P0 Dxflx)

j k
(m 1)if(x)+ N 1)xfox) WNe LBE 2@ 1) m i
(m B) (an B)
= Ny 1)Y[detm) Nt PN DyfO)
(am B)
E&)+ Mg 1)N: 3)xfx)): (14)

O ne of the equations ofm otion derived from W e + W gyn @, In poses
the follow ing relation : _
BM )= &y . (15)

1

T herefore,
Ne 1)%x 70 D) Fx)+ W 1DNe 3)xfx)I= 1:  (16)

This equation is special for N = 3, as the sscont term vanishes. W e
begin in the follow Ing subsection by analyzing this case, and defer the general
discussion to section 8. W e then give the m atrix m odel description of the
SU (2) theory and com pare the results.

3.2 SU () with three avors:Field T heory

ForN¢ = 3 the superpotential [@) is
0 ' .21
(om &) A

W= 2 frre
{detm ) 7 (detm )?

17

Letusnotice that the argum ent of £ (x) doesnotdepend on . Thisiseasy
to understand. Because of the Lie algebra identi cation SU (2) ¥ Sp(l), the
baryons can be interpreted asm esons in the Sp (1) theory. Them assm atrix
is !

ik i
S (18)
m F ijkB(

and its Pfa an can be perturbatively expanded around detm in inverse
powers ofm . The function f (x) m ust be precisely this expansion. T herefore
it is a polynom ialof x.



Indeed, equation [Id) reduces to
47 0% ) = 1: 19)

which i plies that £ (x) is given by
fx)= € =) (20)

T he Integration constant C is xed to unity by the boundary conditions {I0).
Then, the e ective superpotential becom es
0 o 14 N .
_ bm B i1
W = 2[detm) °7?€1 —2—A = 2 detm) (mDb) =2
detm

1)
T he com bination in the square bracket is precisely the Pfa an of the m ass
m atrix ncluding the baryon source term s. In the next section we w ill recover
this result from m atrix m odel com putations.

4 SU (2) with three avors; M atrix M odel

Tn this section we describe SU (2) supersymm etric QCD with 3 avors using
the m atrix m odel. Since the baryon operators in this theory are bilinear in
quarks, them atrix m odel free energy can be com puted directly. W ew ill nd
that, after integrating out the glueball super eld, the e ective superpotential
agrees w ith the el theory result given n Eq. ). °
A sbrie y stated in the previous section, for an SU (2) theory w ith three
avors the tree level superpotential is

Whe = m30307 + b ¥ 0200+ B 4 ook - (22)

To com pute the partition function it is usefiil to rew rite this expression as

1
W iree = EQTKWQ (23)
w here
|
b %, mk b QP
K = . @ and Q = k (24)
U (2) m]; 1; blijk ab Qv}jD

®For larger N . the m atrix m odel is su ciently com plicated to render challengig the
direct recovery of the eld theory results. W e w ill retum to these questions in sectiond.

10



T he 1Jboundary free energy is given by the logarithm of the determ inant
0fKy ). This can be easily com puted and it gives:

2 2
detKy ) = detm  (mB) 25)

where In the exponent the rst factor of 2 isdue to the fact that we integrated
over two types of elds, Q and Q°, while the second factor of 2 represents the
num ber of colors.

In principle one should worry about isolating the planar diagram con-—
tribution to the free energy. Fortunately, for SU (2), all the diagram s are
planar. ’

Com bining thisw ith the VenezianoY ankielow icz term yields the e ective
superpotential:

S 1
We =NoS 1 h—  Sh— detm (b (26)

To com pare with the eld theory result we must Integrate out S. This
gives
1=2
W, = 2 detm (mDb) 3=2 27)
which precisely m atches the eld theory result.

Perhaps this agreem ent should not appear surprising, since for a U (2)
gauge group the m esons and baryons have sin ilar structure. However, the
com putations which led to the two results are substantially di erent; this
Seam s to I ply that the agreem ent is som ew hat nontrivial. A nother point
worth em phasizing is that all m atrix m odel diagram s contrbuted to the
e ective superpotential. T he origin of this fairly surprising fact is again the
bilinearity of the baryons. T his w ill not happen in the general case to which
we retum in section [1.

5 Integrating-Out Two F lavors —The E legant W ay

A s discussed In section [, our goal is to m atch the gauge theory e ective
superpotential after integrating out two quarks w ith the m atrix m odel pre—
dictions. Let us therefore begin w ith the appropriate com putation on the

"This is due to the fact that both ? aswell as ., are invariant tensors. The non-
planarity can in principle arise due to Insertions of a baryonic operator in the Feynm an

diagram , but the antisym m etry of ., can be used to transform i into a planar one.

11



gauge theory side. There are two ways to achieve our goal. In this section,
using symm etry argum ents, we constrain the form of the e ective potential
after integrating out two quarks and then derive certain constraints on the
unknown fiinctions. Solving these constraints leads to our result. In the next
Ssection we rederive the sam e result by directly Integrating out the appropriate
elds.
Sincewe only givem ass to two of the avors, the tree level superpotential

is

W=mQQ +bB'+PB; ; (28)
where ; =N ;N .+ 1. Hereafter we distinguish the indices of the m assive
andmassless avors: ; =N N .+ 1,and §;7= 1; N 1 respectively.

T he superpotential has a tree level part
W=mM +bB +hbB'+BE + BB ; (29)

and a non-perturbatively generated part

w7 BMBy+B M'By+BM B +B M B detM : (30)

5.1 Prelim iInaries

Ourgoalisto nd the e ective superpotential after Integrating out the two
m assive avors. T his superpotentialis a function ofb , b, B, ¥, m and M ;.
In the absence of baryonic source tem s, it iseasy to nd the solution

B =B'=B =B,=0 ; (31)
Mi=M,=0; (32)
1 detm 2Nc: 1
Moo= i ); A) ; (33)
etM

where, m ') isthe nverse ofthe twoby-two m assm atrix, and M isthem e
son m atrix constructed out of the rem aining avors. T he resulting e ective
superpotential is

detm ) e !
- . (34)
detM

which is the expected A eck{D ine{Seiberg superpotential.

12



In the general case the quantum numbers under the SU (N ¢ 2)o
SU@2) U@d) SU (N¢) avor symm etry and its counterpart for Q, force
the superpotential to take the form

(detm ) e !

= ——x— Lt &;y); (35)
detM
w here the Invariants x and y are
B) detM )
_ (tm B) de ) ; 36)
(detm )2 2N 1
@ 'B)detM
y = : 37)
(detm )

with (m®) bm B and @ '®» b HIB. We require that the
superpotential be reqular In the lim it of no baryon sources and also at weak

coupling ! 0. Therefore, the function f (x;y) can be at m ost Iinear in x,
and hence
(detm ) 2N 1 (tm B) detM
= = gy)+ ———h() : (38)
detM detm

Tn order to obtain the explicit form sofg (y) and h (y) it isussfulto consider
several lin iting cases.

52 bi=d8=0wih $1=1; N 1

In thiscase, the SU W¢ 2)g SU N¢ 2); symmetry isunbroken. Hence,

Mt=M, =0; (39)
B'=8B,= 0: (40)
T he equations of m otion are
BB ™M ') detM)+ Me'lm =0; (41)
B =M ') b; (42)
B =bM™M Y : (43)

where M !) . is de ned only in the twoby-+wo block. Substituting the
solutions from the last two equations into the rst one, we nd

™ HBlbM H] ™ ') detMm)+ M lm = 0: (44)

13



This is an equation for two-by-two m atrices and hence there are four un-
knowns. On symm etry grounds we take the follow Ing ansatz:

M ') =m + mDP (m) (45)

where , are function of the invariants. Apparently this system is over—
constrained, as there are four equations for two unknow ns. H owever, a solu—
tion exists and is given by

_ (detM ) (detm ) - )
(tm B) detM )2 + (detm )2 e 1
_ detM )? . .
detm ) ((an B) detM )2 (detm )2 e 1) 3 N¢ °
U sing this solution, the superpotential is given by
2N 1 AN
w, = dem) @ ) B s

detM ) (detm )

which is precisely what we expected from the symm etry considerations, ex—
cept that we now determ ined the coe cient 1 for the second term . This
determ ines the boundary condition h(0) = 1.

53 b =B =0with ; =N ;N.+1

Thenextsmplcassisb = B = 0,when the only param eters in thee ective
superpotential arem , by, ¥, M TT. Hence there are no doublkt breaking
param eters 0o£SU (2), SU (2)Q . This Inm ediately gives

T he equations of m otion can be easily solved,

By= e poed O (50)
By= e 1CMA 1)1@?; (51)
L. (detm) e !
M =W ") ———; (52)
detM )
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where M  is the m eson m atrix for the rem ainingN¢ 1 avors. Substituting
the solutions to the superpotential, we nd

(detm ) MNe ! R
We = .y, Melpd HIY (53)
(S

and therefore g(y) = 1 y. The only ram aining function to be determ ined
ish(y).

54 GeneralC ase

Putting together what we have leamed so far, the superpotential is

(detm ) MNe ! ~ (o B) detM’
e = — Mot ')+ ————"—h(y); (54)
detM detm
withh@©)= 1 and
@ 1B)detM
y= : (55)
(detm )

From this superpotentialwe can obtain the vacuum expectation valiesofthe
M mesons and of the baryons:

QW . m 1) detm) ¥ !  ®ODB)detM

oS em detM’ ’ detm o)

m ) %ﬁ:ﬂfhm %dftwyho(y)m Y ;o (56)
B = @Zg = e il Yy —(mfe)j:tw h%y)%; 67)
B - @gg - %dftMAh(y); (58)

The one piece of inform ation we cannot obtain from this superpotential is
the vacuum expectation value of the o -diagonal mesons. By symm etry
considerations it m ust be of the form

M "= &;y)b ¥; (59)
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and sin ilarly forM , . To detemm ine the unknown functions (x;y) and h (y)
one m ust use the equations of m otion. W e start w ith

QW M B +M B,

0 = @B = 2N. 1 + b
( N
1 (om B) detM )?
= b Melhg)+ b ho(y)h
2N 1 ) detm )2 yh'(y)h )
" R #)
A D) detM
+ et 'Bb + Lyho(y)b +Db: (60)
detm
T his leads to the di erential equation
0 detm 0
1+ h(y)+ xyh h )+ ~[ y+ xyh'(y)]= 0: 61)
detM

Another ussful equation is

W M,B +MiTB”¢+

0 = @B 1 - 2No 1 b
( N
b (m B) detM o 1
= h c
Ne 1 detm v)
~ )
(m B) detM
——yh°ly) + b (62)
detm M 1B)
T his leads to another di erential equation
detm 0
—~h{)+ h'(y)= 0: (63)
detM

Solwing for from the second equation and substituting it into the wst
one, we obtain

1+h@) xyh’GhE)+ ¢ xyhoF)) = 0: 64)

Because this equation has to hold for any x, it gives two equations for h (y),

ho(y)
1+ h + = 0; 65
V) yh(y) (65)
hO
vhoy)h (y) + yh%y)ﬁ = 0: 66)
h (y)

16



Tt is non—rivial that two di erent non-linear di erential equations have a
consistent solution. The rst equation gives

dh dy
= ©7)
h?+ h y
and hence
1+ h(y) .
log ——— = log jyj+ const: (68)
h(y)
Together w ith the boundary condition h (0) = 1, this leads to the solution
1
hy)= ——: (69)
1y

and hence
hy)= —: (71)

Both equations give the sam e solution, which con m s our result. ® There-
fore, the e ective superpotential after integrating out two quarks is

n # N
detm A (fam B) detM

Ww, = ANel — @ 'p - —: (74)
detM detm W™ 1B) detM

6 Integrating-O ut F lavors — T he Laborious W ay

In this section we will recover the results of the previous section using a
di erent m ethod: instead of using sym m etries to constrain the nal form of

8W e can also determm e (x;y):

x;y) ~ = ; (72)
detM 1 vy
and hence . .
. b B detM b detM
M= ; M, = — (73)
1 vydetm 1 vydetm

T hese expressions are necessary for ntegrating the two  avors back in.
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the e ective superpotential, we w ill just directly solve the classical equations
of m otion and then evaluate the iniial superpotential at these values of the
elds. Starting from (29, [30)

We =M m +bB'+8B,+bB +DBF (75)
i
+

h
B™M/B,+B™M,B +B M'By+B M B  detM
2N. 1 1 1

the equations of m otion are:
BBI MJ+ml @l = 0 (76)

i

BMi+B et = 0 (77)

where ;= 1aN_ + 1,Mij is the cofactor, and only m & 0. W e solit the
Ne+1) N+ 1l)matrikM ) ntoa2 2blbbckM ,anda N. 1) ©N. 1)
block M ;. Theo diagonalblocksareM " and M, respectively.

M ultplying [78) by M | and using the fact thatM /M ¥=detM ,we nd
after a few straightforward steps:

M,m = DbB (78)
Mm = ¥p (79)
M m = bB + detm @e D (80)
M m = BB + detM @Ne 1) (81)

Equations [80) and {8ll) give B Bm =B bm ,whith imples

B = Bm B @D (82)
B Bm b @&l ., (83)

where B is a param eter.

W e will rst express all the expectation valies in term s of B, and then
use som e of the ram aining equations of m otion to relate B and detM . The
m esons are given by:

M = bb B @Dy m 'y detm  @e D (84)
M' = ppB @D (85)
M, = bp B *@e D (86)
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C om bining these equations w ith equation [74) one nds the baryonsB *:

B = of Hi¥a+xB?) Mot 87)
By = br(MA 1)¥(1+ XBZ) 2Nc 1 88)

w here
X (an) 3(2N ¢ 1): (89)

Substituting everything back mtoW . we nd

We — 2N ¢ l(kj.v.[/\ lb)(BZX + 1)2
1 h

+
2Nc 1

i
B?X + 1)detM + BX B%X + 3) (90)

where asbefore (@ 'B) isa shorthand forb, M 1)1,

T he next step in our evaluation isto nd the relation between detM and
B . Using the block decom position of the m eson m atrix we outlined in the
beginning, it isnot hard to nd that detM can be expressed as:

detM = detM )dett M '¢f NHM,) (91)

A fter expressing all its com ponents in term s of B, one can easily com pute
the determ inant of the 2 2 m atrix to be:
i

h
detM 2+ X B 2@Ne D2 @f 1B) detM

22N 1) detm

dett M '¢f Hlm,)=
92)
W e should note that ifk avors were integrated out, the num erator on the
right-hand-side of the equation above should be replaced with detM * +
X B B’ '®)detM * !. Thus, the rst equation relating B and detM
is:
(detM ) (detm ) 2@Ne 1

@etM )* = o QetM )X B 2@ Vp2@d ')
etM

93)
To nd the other relations between B and detM we use the equation of
m otion:
h i

detM .. @det M Mol HiMf
Mo 1 _ 7@@6 — @et')) . L 94)
M M

B B +m
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M ultiplying this equation by M ' )M, ) and using the fact that
M J8dtM _ gerM ¥ we obtah after a fow steps:

1 @M] 1

1 N
detM = BX ot 2@eNe D2y + 1y@f B : (95)

Agaln this relation is independent of the num ber of avors Integrated out.
O ne can also evaluate by hand the cofactors in [©4), sum them withm ,and

obtain
detm 22N 1) X A
detM = e 2+ B%X) E(B 2N Dp2m@f 'p))  (96)
(S)

T he equations [@3,[83,[Bd) have a unigue solution

detm 2@Nc 1) h . i
detM = _ X B Z@Ne 2@ 1p)
detM
2@Nc D detM
B = — — 97)
M 1B)detM detm
which gives
" # N
detm A B) detM
W 5 — 2Nc 1 7/\ (ld\/l lb) (bn )/\ — (98)
detM detm ™ 1B) detM

W e have thus recovered the e ective superpotential (74) constructed in sec—
tion[[. W e now tum to the m atrix m odel analysis of the theory and recover
the sam e resuls.

7 SUWN.) with N+ 1 avors; M atrix M odel

T he tree level superpotential of the theory under consideration was described
in section 31, Since the goal is summ ing all diagram s containing two  avor
elds, it isusefill to rew rite it in the follow ing fom :

Wie = m Q°Q, + bQ%v, + Qo v
+ b Q*Q°vi+® QVaQvaqab
where and takethevaliesN and N .+ 1, and
vV, = NeNc+ i, 1 aa sy 1Q%1 :::QaNc 1

freif, 1= LN 1 agyiiiay, 1= 170N (99)



and sim ilarly for ve. A Iso,
K — NN+ 144 alr .. WNe 2
Vi, = ' D marnmy, 2Q% 100
ittt 2= LNy 1 by by agsiisay, 1= 1::0:N(100)

and sin iarly V,2°.
For Jatter convenience let us point out that:

Qiv, =0 olve =0 (101)

where fand 7 take values only from 1 to N, 1. There is no constraint of
this sort for Q $V_}, etc. However, one can see that

V.V °= 0 and VAVPV = B8) f= 1;:::5;N. 1 : (102)

To system atically com pute the integral it is useful to write the tree level
superpotential as a quadratic form . T his is easily done by introducing

P !
o= 2 vo pm DV (103)
o YL BV
and
!
K = bivallaz m Sf KT =K = 01 : (104)
m & BV 4, 1o

Then, the tree kevel superpotential  them atrix m odelpotential  can be
w ritten as:

1
EQTKQ +Q" v

1 1¢, T 1 1 o 1
=§Q+K \Y4 K Q+K 'V EVK Vv (105)

thee

T herefore, the partition finction is
z

7 — DQ /TD QVT © . Qf? M’\{)e%VTK v %]ndetK . (106)
planar+ 1 boundary

The exponent of the integrand can be easily analyzed; fairly standard

m atrix m anipulations lead to:

h i,
detK = det. Zdetm + bRVv® (107)
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w here det . denotes a determ inant over the color indices a;b, while introduc—
ing the notation V.. bV} and sin ilarly for V, the iverse of K is given
by:
|
V (ILdetm + VV) ! m ! + Ly
x 1= (I ) L+ =) . (108)

m '+ 5=t V (detm + VV) *

Let us now analyze in som e detail the combination (VV + ILdetm ) !.
Equation {IQJ) in plies that we need to com pute only the term s proportional
to the dentity m atrix. The other tem s w ill vanish upon contracting w ith
V. It isnot hard to see that

Wv)e= Bl ‘mdetM 2+ xJof)020); (109)
where we have already used the -function constraint from the path integral
to replace 207! with M. This in tum inplies that

h b

1
(VV + detm) 2= R —+v/0o50] - (110)
detm ™ 1B)detM
The precise value of Y is irrelevant, since the last term always cancels due
to contractions with V, or V°
Thus

2 (an B 2 (an B) detM’
vik v = (bfl ) VoV, = (b )A —:(111)
detm ™ 1B)detM detm M 1) detM
Combining all pieces together we nd that the gauge theory e ective

superpotential is given by:

S detM
w e = S 1 h —3 + S ]rl m (112)

+ B Ad etht —  Indet detm 2+ b{bT\/';CVfb
detm M 1B)detM

The unit coe cient In front of the Veneziano-Y ankielow icz term arises as the

di erence between the num ber of gauge theory colors N . and the num ber
of masskess avor eldds N :. Before we proceed, let us point out that the
last term 1n the equation above has an im plicit dependence on the glueball
super eld. Indeed, as the determ nant is taken over the m atrix m odel color
indices, the argum ent of the logarithm is of the order m 2° . Exposing the
part arising from the relevant planar diagram s is potentially com plicated; we
w ill retum to it shortly, after gaining som e con dence in the power of the
m atrix m odel
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7.1 Comparison for b= 0= I

U nder this assum ption the last term in equation [I12J) sim pli es considerably,
and the e ective superpotential reduces to:
detM’ (tm B) detM' detm

S
We =S 1 h=  Sh——— .t Sh—;

(113)

To com pare w ith the gauge theory e ective superpotentialwe m ust integrate
out the glieball super eld.

W S 2Nc 1)
— =0 ) - - (114)
S detm detM

and thus the e ective superpotential is given by:

2N 1
¢ *detm B A
W. = = (kn )detM ; (115)
detM detm

which reproduces the eld theory result. The rsttemm can be recognized as
the AD S superpotential upon noticing that M¢ 'detm is the scale of the
theory obtained from the initial one by integrating out two quarks w ith m ass
matrix m .

7.2 G eneral analysis

W e now tum to analyzing the last term In equation {[1J) and isolating the
part arising from planar and single boundary (in the sense of [34]) diagram s.

Tt iseasy to reorganize this term using equation {I09). To avoid cluttering
the equations, let us ntroduce

A=detm @ 'B)detM (116)

Then the last tetm in {I03) becom es:

1
ndet Pdetm + bPV.IVS® = TrhA [+ Trh [+ —X %01

a

ShA + Indet: |+

tp &
eox My

1
A
where, as before, we identi ed the %t Hooft coupling w ith the glieball su-

per eld and the m atrix whose determ inant is com puted in the second term
carries avor indices.
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W emust now identify the leading term s in thisequation —term s generated
by planar diagram s w ith as m any gauge index loops as the diagram s w ith
one boundary. For this purpose it is In portant to notice that the com pu-
tations in the previous section yield the sum of all 1-loop n-point fiinctions.
Furthem ore, the planar, 1-boundary contribution m ust be proportional to
the num ber of colorsN . S, since there is one gauge index loop in such dia—
gram s. Tt is therefore clear that only the rst term i equation (I14) should
be kept since the determ nant in the second term isin  avor space and there
isno term In its expansion which is proportional to the num ber of colors.
T hus, the gauge theory e ective superpotential is given by:

S detM
W e = S 1 ]rl —3 S ]rl m (118)
B) detM’ 1 N N
. )A ~+Sh— detm (M 'B)detM
detm M 1B) detM

Integrating out S leads to:

n #
%: 2. 2 QMo ay (119)
detM

which In tums In plies that the e ective superpotential is:

n #

detm N (on B) detM’
W . — 2Nc 1 (b.v_[ 15)

detM detm (@M !B)detM

(120)

T his reproduces the eld theory result (74,[29).

8 Vacua

A Tthough it is already clear that there is an exact agream ent between the
m atrix m odel and gauge theory, ket us brie y discuss the vacua of the gauge
theory and their construction from the m atrix m odel. In gauge theory we
need to Integrate out all m esons and baryons, whik on the m atrix m odel
side we nead to compute the full partition function. W e begin with the
gauge theory discussion. W e w ill discuss the construction in the lJanguage of
section @ and relate it at the end w ith section [@.

24



8.1 Integrating out all elds in gauge theory

Let us recall equation (Id), which determ ines the low energy e ective su—
perpotential for a generalN¢ & 3:

Ne 1)°x 7% Dxffc)F &)+ Ne 1N 3)xf'x)]=  1:

Besides this equation, there are other equations f (x) obeys, obtained from
varying the dynam ical superpotential w ith respect to the m esons:

BiB“j detM )M l); fmi=o0: (121)

2N. 1 J

U sing various equations from section 3.1 this equation can written as:

BBy (@etM )M ')i= mi el
i ' 0
_ m B) (bn)j(Nf 12 Ny  1)°x£%x)[detm ) 2e Lp-0: nxE )
(o B) (lan B)

+ Mo TEx) 20 Dxfle))NE CEE)F Ne 1N 3)xfOx))

mi e MEx) 20 LxECE)YT PEX)+ N DN 3)x£0x)]:
(122)

To satisfy this equation, the coe cient of m B); (famn )5 In the square bracket
must vanish, and the coe cient of m § must agree on both sides. T herefore
we nd

Ne  1)%x 7% Dyl + (Fx) 20 DxfOx)VE 4 = 0 ;(123)
(fx) 20: DLxffe))Ve 2(Ex+ Ne 1N 3)xf'x)) = 1 :(124)

Thus, there seem to be three equations for a single function; it tums out
however that one of them can be obtained from the other two. In general,
we cannot expect to nd a consistent solution fortwo rst-order di erential
equations for one function. In the N¢ = 3 case, the two di erential equa-
tionswere selfconsistent, and their com bined e ect wasto x the integration
constant in £ (x) °. W e expect the sam e to happen here.

In general, we can solve for £0(x) using Eq. [[d), and substitute it to one of
the other equations. Sihce Eq. [[8) isquadratic in £°(x), it hastwo solutions.

P
?Indeed, if one did not x the integration constant ¢ in f (x) = ¢ x'?2 using the
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Only one of them is consistent with the boundary condition F (0)j = 1.
K egping only the consistent solution, we nd

0 q In: 2
. Neg 1HWNe 2)E Ne 1)°f2 4@0¢ 1)N¢ 3)ZA
N 3)Ng 1)
q
z ! N DEf+ @O 1)2f2 4N 1)N¢ 3)z
s — 0;(126)
2N  3)

where z = x'"®¢ 1) This equation determ ines the fiinction f (x) i plicitly.

The sam e results can be obtained follow ing the steps In section @. In
particular, when allN¢ = N_.+ 1 avors are integrated out, equations (@3)
and @) becom e:

1
B
£

detM

BX 1z27)

detM ¢ '+ X B detM ¥f 2 = detm Ne@Ne D (128)

T he e ective superpotential is then obtained by substituting the solutions of
these equations in the superpotential [20)

MNelyw o= B?X + Ny 1)detM + B°X 2+ 3BX : (129)

Tt is not hard to check that this reproduces the results in chapter 3 for the
case of an SU (2) gauge group with 3 avors; it is, however, som ew hat m ore
challenging to see that it agrees w ith [I24) as well.

8.2 TheM atrix M odelFree Energy

Let us now consider the m atrix integral we considered before, but with all
avorsm assive. In this case, we can reinterpret the -function as arising from
the change of variables

Z Z Z
DQODQ = DM DODQ ©QQ M) (130)
boundary conditions, equation [[24):
i
P 1y 122 ' p
c x¥¥?2 dxpi—— c x¥=2=1; (125)

would x thisconstanttobec= 1.
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Thus, to nd the e ective superpotential as a function of the glieball su-
per ed (), we must supplm ent the results of the previous section with a
m ass term  for the rem aining m esons and then com pute the integral over M
aswell. W e recall that we are Interested only in the 1Jboundary free energy.
Thus, the integral can be com puted by a saddlepoint approxin ation. A -
tematively, it is easy to see that the oneboundary free energy is given by
the sum of all treelevel Feynm an diagram s arisihg from the superpotential
{I18). This in plies that, as expected, the e ective superpotential is unique
even when expressed in tem s of the glueball super eld. The vacua of the
theory arise In this lJanguage as the critical points of W o (S).
W enow illustrate this sim ple observation for the SU (2) theory w ith three

avors, laving to the reader the exercise of recovering the m ore involved

results of section [Bl.

8.3 Back to SU (2)

C onsider the equation [[18) forthe caseofan SU (2) theory w ith three avors.
Since M is 1-din ensional, the superpotential is:

S M
We = S 1 ]n—3 Sh— (131)

(om B)M 1 N
————————+Sh— detm (B) +nM
detm b))

where b and B are the sources w ith indices along the m eson which was not
Integrated out in the previous section. T he saddle point equation is:
S (tm B) detm (n B) m

— =m = where m = 0 (132)
M detm  (©OF) detm  ([©Ob) 0 m

and b and B are understood as 3-com ponent vectors. Then, the e ective
superpotential as a function of the glueball super eld is:

3

S
We (S) = 25 1 :In—3 Sh (133)
detm (om B)

A s argued before, the vacua are now described by the critical points of
W (S),and are given by

S detm  (mB) k!

2h— = . , S = detm (mbB) % (134)
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T he superpotential at the critical points is therefore:
a
We = 2 detm (mb) 2 (135)

Cr.

W e thus recover the m atrix m odel result found directly In equation [274) of
section [, aswellas the eld theory resul.

9 Baryons and G eom etric Transitions

In this section we discuss the baryons in the context of the geom etric tran—
sitions. T he gauge theory is engineered by wrapping D 5 branes on ssveral
com pact P! cycles of a geom etry which locally, around each cycl, is the
geom etry of the sm all resolution of the conifold. A fematively, it can be de-
scribed using the T dualbrane con guration, where the D 5 branes w rapped
on P’ cycles are m apped Into D 4 branes stretched between N S branes [18],
51,52, 53).

Let us begin by brie v review ing the resuls of |54, 53], conceming the
baryonic degrees of freedom n M QCD .F irst, we neaed to com m ent on having
an SU (N ) rather than an U (N ) gauge group. The Type IIA brane con g-
uration as well as the Type IIB geom etric construction describe a classical
U (N ) gauge theory. The M theory lin it describes a quantum SU (N ), where
the U (1) factor decouples. A s explained in [21l], the U (1) factor is recovered
after the geom etric transition, when the SU (N ) part con nes. T herefore, the
approach of [18] cannot be applied for the case of baryons, as the quantities
n m atrix m odels were obtained from the param eters of brane con gurations
via lifting to M theory.

Tt is nevertheless possible to collect som e Inform ation about the vacuum
expectation values of the baryon operators in M QCD . A s described in [B4],
In the case N¢ = N, the di erence between a baryonic and a non-baryonic
branch is that the asym ptotic regions of the form er intersect, and the ones
of the latter do not. Indeed, the asym ptotic regions for the non-Joaryonic
branch are given by:

2

t = W+ f]:l)chz ; v=20
t = 2N ;i w=0 (136)
while the ones for the baryonic branch are given by:
t = wle ; v=0
t= M, w=0: (137)

28



Tt is clear that the tw o branches intersect in [I34), but are separated in {I37).
T he distance between the asym ptotic regions in {I31) is the value of BB .

In M theory tem s the geom etric transition corresponds to a transition
from an M 5 brane w ith a worldvolum e containing a R iem ann surface In the
(v;w ;t) plane to an M 5 brane w ith two dim ensions em bedded in (v;w ), for
constant t. The equation In (v;w ) represents an NS brane which is T dual
to the deform ed conifold.

In the case of {I38)-{I37), v and w are decoupled so the above discussion
does not apply. In the language of [18], this can be understood by starting
with D 4, branes corresponding to m assive avors, taking the m ass to zero
and combining with a color D 4 brane to get a D4y brane which describes
a avor with an expectation valie. Therefore, In the geom etrical picture,
there are no D5 branes on the com pact p* cycles and there are only D5
branes on the noncom pact 2-cycles. W e then see that the duality between
m atrix m odels and eld theory fails in this case.

The only way to use the resuls of [3, 14, 159] is to give m ass to one of
the avors, which m eans decom posing one D 4y brane into a D 4, brane
and a color brane. This is exactly the procedure discussed in detail in [34]
where a m ethod to deal w ith this case was stated. T herefore, we see that
the di culties w ith them atrix m odel analysis of the baryon operators have a
geom etric counterpart. T his should probably be expected, since the geom etry
is underlying the m atrix m odels.

10 Conclusions

In thispaperwe further analyzed the extension ofthe D ikgraafVafa proposal
to theories containing elds in the fundam ental representation. W hile this
extension was thoroughly analyzed in situations in which the gauge theory
was described sokly In term s of m esons, the m atrix m odel description of
baryonic deform ation rem ained untilnow Jlargely unexplored. Them ain goal
of ourwork wasto 1lthisgap.

W e have started with the N = 1 SQCD with gauge group SU (N.) and
N.+ 1 avorswhose e ective superpotential was conpctured in [4] and de-
form ed the theory by adding baryon sources aswell asm ass temm s for either
two or all avor elds. W e compared the resulting e ective superpoten—
tial obtained by integrating out the appropriate m esons and baryons w ith
the one com Ing from the m atrix m odel com putations and we found perfect
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agreem ent. O f essential im portance has been the correct denti cation of
Feynm an diagram s contributing to the superpotential.

W e expect that the e ective superpotential for other s-con ning theories
is com putable using m atrix m odel techniques along the lines describbed here,
after suitable deform ations by m ass term s and other sources.

SQCD theories with N ¢ N. + 2 are usually analyzed using Seiberg’s
duality. One m ay ask whether the m atrix m odel techniques can shed light
on their e ective superpotential. U sing t Hooft’s anom aly m atching condi-
tions it was shown that the m esons and baryons are not the only low energy
degrees of freedom . However, the com plte set of low energy elds is not
known. Nevertheless, by Inserting sources for the known elds in the tree
level superpotential, the m atrix m odel perturbation theory should allow one
to recover the truncation of the fulle ective superpotential to these elds.
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