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HIGHLIGHTED ARTICLE
| INVESTIGATION

Adjusting for Principal Components of Molecular
Phenotypes Induces Replicating False Positives
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*Department of Medicine, University of California San Francisco, 94158 California, †Centre de Bioinformatique, Biostatistique et
Biologie Intégrative, Institut Pasteur, Paris, 75015 France, and ‡Department of Epidemiology, Harvard TH Chan School of Public

Health, Boston, 02115 Massachusetts

ORCID IDs: 0000-0001-6520-4766 (A.D.); 0000-0002-7554-6783 (H.A.)

ABSTRACT High-throughput measurements of molecular phenotypes provide an unprecedented opportunity to model cellular
processes and their impact on disease. These highly structured datasets are usually strongly confounded, creating false positives and
reducing power. This has motivated many approaches based on principal components analysis (PCA) to estimate and correct for
confounders, which have become indispensable elements of association tests between molecular phenotypes and both genetic and
nongenetic factors. Here, we show that these correction approaches induce a bias, and that it persists for large sample sizes and
replicates out-of-sample. We prove this theoretically for PCA by deriving an analytic, deterministic, and intuitive bias approximation.
We assess other methods with realistic simulations, which show that perturbing any of several basic parameters can cause false positive
rate (FPR) inflation. Our experiments show the bias depends on covariate and confounder sparsity, effect sizes, and their correlation.
Surprisingly, when the covariate and confounder have r2 � 10%, standard two-step methods all have . 10-fold FPR inflation. Our
analysis informs best practices for confounder correction in genomic studies, and suggests many false discoveries have been made and
replicated in some differential expression analyses.

KEYWORDS confounder; molecular trait; quantitative trait loci; eigenvector perturbation

ASSOCIATION studies of molecular phenotypes have
helped characterize basic biological processes, including

transcription, methylation, chromatin accessibility, transla-
tion, ribosomaloccupancy, andexpression response to stimuli.
These tests can be performed on cis and trans genetic variants
to search for functional quantitative trait loci [*QTL: eQTL
(Montgomery et al. 2010; Pickrell et al. 2010), mQTL
(Rakyan et al. 2011), caQTL (Degner et al. 2012), pQTL
(Albert et al. 2014), rQTL (Battle et al. 2015), sQTL (Rivas
et al. 2015; Li et al. 2016), reQTL (Fairfax et al. 2014; Lee
et al. 2014), and iQTL (Barry et al. 2017)]. Functional mea-
surements can also be tested against nongenetic covariates
with broad genomic effects, including cell type composition
(Houseman et al. 2012; Jaffe and Irizarry 2014; Rahmani

et al. 2017; Yao et al. 2017), disease status [e.g., cancer (van’t
Veer et al. 2002), autism (Parikshak et al. 2016), and obesity
(Horvath et al. 2014)], fetal developmental stage (Colantuoni
et al. 2011), and ancestry (Galanter et al. 2017). We mostly
refer to gene expression for simplicity, but our arguments apply
to any highly structured, high-dimensional measurements.

Unfortunately, unmeasured and unknown factors are com-
mon and often have large effects in functional genomic data,
reducing power and skewing null transcriptome-wide
P-values (Leek and Storey 2007; Gibson 2008). Conditioning
on known confounders—like technical batch—is invaluable
but incomplete. Because genetic effects are typically small,
even modest confounders can induce spurious genetic asso-
ciations that dwarf real signal (Leek and Storey 2007; Kang
et al. 2008).

Fortunately, strong confounders induce large, low-dimensional
structure in the transcriptome, which is exactly what
principal components (PCs) aim to capture (as do their vari-
ants, which we collectively call CCs, for confounding compo-
nents). This blessing of dimensionality motivates a two-step
approach where CCs are first estimated and then conditioned
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on downstream as surrogates for the confounders (Alter et al.
2000; Leek and Storey 2008). Domain-specific CCmethods, like
surrogate variable analysis (SVA) (Leek and Storey 2007) and
PEER (Stegle et al. 2010),make different assumptions about the
structure of the confounders, and often outperform PCA. Two-
step CC correction is an essential element of thousands of func-
tional genomics analysis pipelines (Leek et al. 2010; Rakyan
et al. 2011; Stegle et al. 2012, 2015; Albert and Kruglyak 2015).

Acknowledging the substantial benefits of CCs in many set-
tings, in this work, we explore their adverse impact on the false
positive rate (FPR). Theoretically, we derive an unappreciated
source of bias created by conditioning on two types of PCs. Our
results suggest the two step approach is biased whenever CCs
imperfectly partition the phenotype-covariate correlation. We
formalize this in a unifying, unidentified likelihood (1) that the
CC methods each resolve with distinct assumptions.

We also study the bias with a range of CCs and simulations
using real expression data from the GEUVADIS consortium
(Lappalainen et al. 2013). First, we find no nontrivial method
that avoids bias even in the simple scenario where the cova-
riate has a small effect on a single gene and is added to white
noise. In more complex data, this bias can be negligible com-
pared to confounder-induced miscalibration. Next, we per-
form a series of simulations varying the number and strength
of covariate effects and see substantial inflation in all CC
methods when their assumptions fail. Finally, we allow con-
founders to be correlated with the covariate—the ordinary
meaning of a confounder (Leek et al. 2010)—and find that all
CCs can be severely miscalibrated; further, we show these
false positives replicate out-of-sample.

Confounder Estimation and Correction

We write Pmolecular phenotypes measured on N samples as
Y 2 ℝN3 P; and let yp ¼ Y;p be the p-th phenotype. The pri-
mary covariate of interest is x 2 ℝN3 1. We assume x and the
yp are standardized to mean 0 and variance 1.

We stylize the standard two-step confounder correction as:

1. Estimate a rank-K confounder U by solving

Û :¼ arg min 
U

 min
a;V

 
����Y2xaT2UVT����2

F þ Pða;UÞ (1)

where k � kF is the Frobenius norm and P is some penalty
representing (potentially implicit) priors on the causal and
confounding patterns. Here, a and V are dummy variables.

2. Estimate the ap by regressing each gene yp on x given Û:

âp :¼ OLS
�
yp � x

��Û� (2)

where OLS indicates the regression coefficient on x from or-
dinary linear regression of yp on x, Û, and an intercept.

We call approaches “unsupervised” when P constrains
a ¼ 0 and “supervised” otherwise.

Solving (1)withPð�Þ ¼ 0 amounts tomaximum likelihood
(ML) estimation under an i.i.d. Gaussian noise model for
errors in Y (Leek and Storey 2007, 2008; Stegle et al.
2010). Standard ML inference for â would then (pseudo)-
invert the information matrix for asymptotic standard errors
that account for uncertainty in U and V. This exposes one
problem with two-step confounder correction: step two con-
ditions on a fixed Û as if it were known without error. Theo-
retically, this difficulty can be resolved by appealing to
assumptions that ensure Û perfectly estimates U so that there
is no uncertainty to propagate (Leek and Storey 2008; Wang
et al. 2017).

Another difficulty forML inference in (1) is that its solution
is not unique (even when requiring, e.g., VTV ¼ I), as

xaT þ UVT ¼ x

0
@aþ VD|fflfflfflffl{zfflfflfflffl}

a9

1
A
T

þ
0
@U2 xTD|fflfflfflfflffl{zfflfflfflfflffl}

U9

1
AVT      "D 2 ℝK31

Because U9 satisfies the rank-K constraint, a9 can obtain the
same likelihood as a: adding any vector in span(V) to any a

admits an equivalent solution. [We ignore the nonidentifi-
ability of ðU;VÞ from the product UVT because only spanðUÞ
is used in (2).]

This nonidentifiability means all (well-defined) CCs must
use nontrivial penalty functions P; below, we describe the
choices of P roughly made by several popular CC methods.
Moreover, this nonidentification means CCs depend heavily
on their chosen P capturing the true, unknown parameter
structure. In particular, we can easily design simulations
where any particular CC behaves badly. This means that
choice of CC method is important in practice and should be
dataset-specific.

We note that we do not claim to take significant steps
toward solving this identification problem, which has been
analyzed fromvarious theoretical perspectives elsewhere, e.g.
West 2003; Leek and Storey 2008; Gagnon-Bartsch and
Speed 2012; Sun et al. 2012; Gerard and Stephens 2017;
Wang et al. 2017.

Studied Confounder Estimation Methods

Unsupervised PCA takes Û as the top eigenvectors of YYT or,
equivalently, the top left singular vectors of Y. By definition,
PCA solves (1) if P solely constrains a ¼ 0. The key problem
is that the effect of x on Y leads PCs to partially capture x,
analogous to unshielded colliders in a directed graphical
model (Figure 1). That is, conditioning on genomic PCs
can cause, rather than remove, bias. Related concerns arise
when conditioning on heritable covariates in other contexts
(Aschard et al. 2015, 2017; Day et al. 2016). This bias creates
test misspecification even marginally, for each gene; in con-
trast, previous theory assumed marginal tests were valid and
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focused on correlations between tests of different genes
(Leek and Storey 2008).

We approximate the PC conditioning bias for small causal
effects with textbook eigenvector perturbation theory. Con-
ditioning on one phenotypic PC, our bias approximation
for gene p coincides with the bias that naively derived from
Figure 1

Biasp � 2 aVp1Vq1

where a is the causal effect, q is the causally affected gene,
and V are the right singular vectors of Y.

A similar result can be derived for conditioning on geno-
typic PCs in genome-wide association studies. In Figure 1, this
stylistically corresponds to replacing the phenotypes ðypÞ
with SNPs, the covariate (x) with the tested phenotype,
and reversing the arrow from x to y1. However, genotype
matrices typically contain three orders of magnitude more
variables than expression matrices, concomitantly reducing
the bias [entries of V are OðP21=2Þ]. Intuitively, causal SNPs
have much lower leverage on genetic PCs than causal genes
have on expression PCs.

We also test an approach we call supervised PCA, which
aims to protect Û from x by first residualizing Y on x. This
solves (1) when P constrains a to its unconditional estimate,
xTY . We show this method simply amplifies biases in the un-
conditional estimate: unsupervised PCs are too correlated
with x, but supervised PCs are too uncorrelated.

We study several other approaches through simulation.
SVA penalizes (1) by assuming a is sparse, which is often
plausible. We used the “two-step” and “irw” algorithms to
implement unsupervised and supervised SVA, respectively
(“irw” requires supervision, but “two-step” is infrequently
used). The “irw” version learns which genes are determined
by the signal a vs. the confounder V by testing with q-values.
These association strengths are used in turn to weight the
relative importance of each gene inside a singular value de-
composition, effectively weighting PCA toward more-
confounded genes to better estimate confounders. We also
tested a recent reimplementation, SmartSVA (Chen et al.
2017); we found that it performs very similar to SVA with
B ¼ 50 iterations, but much faster.

PEER explicitly penalizes U and a through priors on their
respective sizes. PEER uses automatic relevance determining
priors for the factors U and V and fits parameters with varia-
tional Bayes. In simulations, its default hyperparameters per-
form well when x explains � 1% of transcriptome-wide
variation but less well for larger a. PANAMA is a closely re-
lated approach that greedily adds the most relevant SNPs
while learning latent factors. While PANAMA can improve
performance over PEER for SNPs with large effects, it is more
computationally expensive and is rarely used in practice for
human datasets.

RUV and related methods estimate confounders by using
only a submatrix of Y that is known, a priori, to be unaffected
by the primary signal (Lucas et al. 2006; Gagnon-Bartsch and

Speed 2012; Gerard and Stephens 2017; Wang et al. 2017).
This prior information breaks the identifiability problem by
constraining aS ¼ 0 for some subset of genes S (correspond-
ing to a barrier penalty function for P). Latent factors can be
safely identified by restricting to the negative control data,
and then their effects on other genes can be extrapolated. We
assume control genes or samples are unavailable, which is
common, and do not study these approaches further.

We also assess LEAPP (Sun et al. 2012), a recent method
that uses sparsity assumptions to disentangle a and V. Unlike
other methods we study, LEAPP provably obtains oracle per-
formance, asymptotically and assuming that confounders are
strong, signals are sparse, and noise is independent across
genes modulo confounders (Wang et al. 2017).

Finally, we also test the linear mixed model-based method
ICE, which uses a random effect with covariance kernel 1P YY

T

to capture confounding, and tests the fixed effects of x against
each gene individually (Kang et al. 2008). Conceptually, ICE
seeks a few genes that are highly correlated with x compared
to typical genes. Like in RUV methods, control genes can be
used to improve power, which we did not study (Joo et al.
2014).

The bias for one unsupervised PC

In this sectionwe take Y as a *QTL plus somedeterministic Y0:

Y ¼ xaþ Y0 (3)

We assume x�iidNð0; 1Þ. We allow Y0 to be fully general to
capture all noise and confounding. This is closely related to
the spiked covariance model (Johnstone 2001), though we
use a general Y0 in place of i.i.d. Gaussian noise. We assume
aq ¼ a and ap ¼ 0 for p 6¼ q, andwe call x a local covariate for
gene q.

Ideally, the OLS step (2) would condition exactly on the
true, unknown confounders.We evaluate conditioning, instead,
on the top PCs of Y ðY0Þ, which we callU ðU0Þ and define as the
top left singular vectors of Y ðY0Þ. We compare conditioning on
U to U0 rather than the true confounders for two reasons. First,
Y0 is assumed independent of x, hence conditioning onU0 does
not cause bias. Second, this allows us not to assume any partic-
ular form for confounding, or even its existence.

Figure 1 Graphical model suggesting CC conditioning causes bias. u1 is
the top PC, which is indirectly captures x. Although x affects only
y1, conditioning on the collider u1 induces spurious correlation with all
other yp.

Adjusting for Functional Genomic PCs 1181



We aim to quantify the error at gene p 6¼ q from condition-
ing on the top feasible PC, u1, instead of the top oracle PC, u01:

Errorp :¼ âp2 â0
p

where â ðâ0Þ solves (2) given u1 ðu01Þ. Since yp ¼ y0p for p 6¼ q,
any error can only be caused by the effect of x on U.

The bias is the expected error over x, the only randomness:

Biasp :¼ E
�
Errorp

� ¼ E

�
âp 2 â0

p

�
¼ E

�
âp

�
2ap

We study Errorp rather than Biasp to focus away from the
ordinary regression error due to noise and the onto the error
caused by x’s perturbation ofU. This enables stronger results—
particularly, that Errorp � Biasp deterministically. Because of
this, we often refer to this perturbed PC conditioning error
as the bias, i.e., the randomness in Errorp is negligible.

We assume a is small so that we can use a standard ap-
proximation to the perturbed eigenvector [e.g., (Allez and
Bouchaud 2012), Sec. II]: for any small E, the first eigenvec-
tor of 1=P; YTY þ E is approximately

u1 ¼ u01 þ
XN
j¼2

u0
T

1 Eu0j
l01 2 l0j

u0j þ O
�
jjEjj2

�
(4)

where l0j is the j-th eigenvalue of 1
PY

0Y0T .
Under our assumption on a, E ¼ ayqxT þ axyTq þ a2xxT ,

giving the perturbation approximation

u1 ¼ u01 þ a
X
j.1

~y1q~xj þ ~yjq~x1
l01 2 l0j

u0j þ O
�
a2
�

(5)

This uses simplifying definitions based on rotating with U:

~Y :¼ UTY ; ~x :¼ UTx

Note that ~x is still a spherical Gaussian random variable.
We show in Supplemental Material, Section S1.1 that this

approximation can be combined with the standard two-step
least squares expression for â to give

Errorp � 2 2a�c
XN
j¼1

~Yjp~Yjqwj
~x (6)

�c is a condition number for Y0 and w~x are random weights:

�c :¼ 1
N2 1

X
j.1

1
l01 2 l0j

wj
~x :¼ 1

2ðN2 1Þ�c
~x21

l012 l0j
ðfor  j 6¼ 1Þ

wi
~x :¼ 1

2ðN2 1Þ�c
X
k.1

~x2k
l012 l0k

The w~x partition the perturbation among PCs and are pro-
portional to the (random) squared correlations between x

and the PCs (i.e., ~x2). The w~x are nonnegative and sum to
one in expectation.�c is deterministic—depending only on the
spectrum of Y0—and quantifies the susceptibility of the first
PC to perturbation.

These properties of w~x mean the error in (6) is a (ran-
domly) weighted correlation between the projections of
genes p and q—the tested and the causal genes—onto the
eigen-axes, i.e.

Errorp � 22a�crw
~x�
~yp; ~yq

�
(7)

where rp is the correlation weighted by somep. In particular,
if 1N is a vector of 1s, r1N ð~yp; ~yqÞ ¼ rðyp; yqÞ is the ordinary
correlation between the two genes. In contrast, rw

~x
randomly

weights the eigen-axes, but with far greatest weight on axis
1 and successively less expected weight on subsequent axes.

rw
~x
is the only remaining randomness, so the error de-

pends on x only through this (random) notion of correlation.
And even this randomness is often negligible. First,w~x

1 � wj
~x

for j. 1 (the former is the sum over theN2 1 latter), and this
gap grows for increasingly confounded data (Figure S1). Sec-
ond, w~x

1 should be very well approximated by its expectation
because it is an average over N2 1 variables.

Together, this suggests the approximations w~x
1 � 1

2 and
wj

~x � 0 for j. 1, giving a deterministic approximation to
the random error. Because the error is approximately deter-
ministic, it can immediately be recognized a bias approxima-
tion, as well:

Biasp � Errorp � 2 aVp1Vq1 (8)

This uses the approximation�c � 1=l01 (Equation S3). We find
(8) is accurate in a realistic simulation (Figure S2).

While âp is biased conditional on q and p, this conditional
bias itself has mean zero on average over q or p (V;1 is mean
zero). Nonetheless, our conditional definition of bias conveys
the fact that p and q are biologically meaningful and replica-
ble indices. Moreover, even random biases with mean zero
introduce overdispersion that still causes false positive
inflation.

We have not generalized these calculation to K. 1 PCs,
though we suspect an analogous result will hold after appro-
priately modifying w. If correct, rw will move toward r1N as K
grows, suggesting the correlation between causal and tested
traits is a good intuitive proxy for the bias.

The bias for supervised PCs

An apparent solution is to project out x before computing PCs,
which we call supervised PCA.We show this is deeply flawed,
even when x has no causal effect, supporting existing simu-
lation results (Leek and Storey 2007).

First, after residualizing x from Y, x is the bottom super-
vised PC, hence orthogonal to the others. Thus the uncondi-
tional OLS estimates for ap are unchanged by conditioning on
supervised PCs. Similarly, the ratio of the conditional and
unconditional SEs is just the ratio of the overall regression

1182 A. Dahl et al.



error estimates, i.e., ŝ2
cond=ŝ

2
uncond. Together, the ratio of t-

statistics testing ap ¼ 0 is

tcond
tuncond

¼ âcond=ŝcond

âuncond=ŝuncond
¼ ŝuncond

ŝcond
(9)

By definition, U explains large amounts of variance in Y, mak-
ing ŝcond smaller than ŝuncond. Formally, the ratio (9) is
inflated on average (over genes and x) and, in practice, is
usually inflated (Figure S3 and Section S1.4).

Local covariate simulations with white noise

We now demonstrate the CC conditioning bias in a simplistic
simulation using (3): the background expression Y0 is drawn
i.i.d. standard normal; the xi are (independently) i.i.d. stan-
dard normal; and a ¼ aeq, so that x is a local *QTL for gene q;
finally, q is drawn, independently of x and Y, uniformly from
f1; . . . ; Pg, and its effect a is varied over f0; :3; :6; :9g. We
chose ðN; PÞ ¼ ð375; 13120Þ to match the GEUVADIS data
(see below for details).

After simulating Y and x, we test for ap ¼ 0 using either
PCA, SVA, PEER, or their supervised versions to estimate Û.
We also test the mixed model implemented in ICE (which
failed to converge in a few simulated datasets).

For 1000 independently simulated datasets, we perform
one-sided Kolmogorov-Smirnov (KS) tests for deflation in the
regression P-values at noncausally affected genes. A two-
sided test should be used in the first step when testing for
general miscalibration (Leek and Storey 2007, 2008); we,
however, are testing for estimator bias, which decreases
P-values, and discriminates inflation from deflation.

Figure 2 presents the QQ plots for the resulting KS P-
values. Unsurprisingly, excluding all CCs (None) delivers well-
calibrated P-values because we did not simulate confounders.
Confirming our theory, unsupervised PCs cause noticeable bias
for large a; however, no bias is detected for small a, emphasizing
that the bias can be negligible for local covariates. Unsupervised
PEER results are similar for small a, but for large a PEER
becomes conservative (such observations require one-sided KS

Figure 2 Confounder correction causes P-value miscalibration in simulations with a local effect and white noise. QQ plots show one-sided KS test P-
values for the nominally null regression P-values in 5000 simulations. 2-sided KS tests of the KS P-values are in the legends. Variation explained in the
causal gene is 0% (black), 30% (red), 60% (green), or 90% (blue).

Adjusting for Functional Genomic PCs 1183



tests for the regression P-values). ICE is mostly conservative,
especially when using REML and a. 0. Unsupervised SVA cor-
rectly declaresK ¼ 0 [with the permutation test from (Buja and
Eyuboglu 1992)] and is thus equivalent to “None”; although
this is ideal behavior, any CC method could use this (or other)
tests to choose K, and analysts in practice often turn to a differ-
ent method in this situation (e.g., Pierce et al. 2014).

The three supervised methods qualitatively share a differ-
ent type of bias, growingwith K and depending little on a. We
theoretically characterized this for supervised PCA, but PEER
and, especially, SVA seem less biased.

Overall, Figure 2 shows that all tested (nontrivial) CC
methods create P-value miscalibration even in the complete
absence of confounding, though the problem is small for small a.

Data availability

We used a high-quality RNA-sequencing dataset from the
GEUVADIS consortium (Lappalainen et al. 2013) as a realistic
simulation baseline. We aligned the raw transcript reads
from the European individuals to the reference hg19 tran-
scriptome using RSEM (Li and Dewey 2011). We removed
perfectly correlated genes and quantile-normalized the rest
to standard normal. The final matrix has N ¼ 375 samples
(rows) and P ¼ 13; 120 genes (columns) and column-means
and -variances equal to 0 and 1. Its spectrum is shown in
Figure S10. Supplemental material available at Figshare:
https://doi.org/10.25386/genetics.7040186.

Global Covariate Simulations with Real Traits

We now simulate a global effect, meaning a is much denser
and larger. We set 90% of its entries to 0 and the others to

i.i.d. Gaussian with mean zero and variance such that x ex-
plains 1% of transcriptome-wide variation. Nongenetic x can
easily have these sorts of effects, e.g., even early studies with
small sample sizes found broad expression profiles that still
inform breast cancer treatment (Sparano et al. 2015; Cardoso
et al. 2016). If xwere genetic, it would be an extremely strong
trans-*QTL.

We now use the GEUVADIS expression for the noise
Y0 to make the simulation more realistic, and let xi �iid
Binomial(2,20%). Finally, as we do not aim to match the
perturbation theory here, we adopt standard practice and
normalize x and columns of Y to mean 0, variance 1.

We assess empirical FPR and true positive rate (TPR) at the
nominal p ¼ :01 level and average over 250 independently
simulated datasets (averaging before log-transforming, Fig-
ure 3, a and d). All unsupervised methods and supervised
PCA are badly miscalibrated for K$ 10, while other super-
vised CC methods, ICE, and LEAPP were calibrated. These
calibrated methods had power similar to Oracle, which uses
PCs of the pure noise term Y0, except ICE.

We then decrease the sparsity of a from 90% zeros to 5%
zeros, violating the sparsity assumptions of supervised
(Smart)SVA and LEAPP. This leads (Smart)SVA to roughly
10-fold FPR inflation atK ¼ 10 (Figure 3b) and LEAPP to lose
essentially all power (Figure 3e). Supervised PEER, however,
retains near-oracle power and calibration.

Next,we return to90%sparsity inabut increase its variance
explained from 1 to 25%. This apparently violates PEER’s as-
sumptions as it is �five-fold inflated at K ¼ 10 (Figure 3c).

These conclusions qualitatively remain when using a
q ¼ :01 threshold (Storey 2003) or p ¼ :001 (Figures S4
and S5).

Figure 3 Mean FPR (a–c) and TPR (d–f) (on log scale) for a simulated global a added to GEUVADIS expression using three settings. The oracle is always
calibrated and often covered by other lines. Two-step CC methods are at top-right; others are bottom-right. ICE has essentially 0 FPR and is omitted from
the top plots.
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Confounders Correlated with a Global Covariate

The previous simulations only added a causal x effect to some
independent Y0. We now add confounders correlated with x,
which we feel is common in practice for nongenetic x (genetic
x can only be confounded by population structure). For ex-
ample, even within-tissue, PEER factors had r2 ranging from
10% to 60% with known covariates (GTEx Consortium et al.
2015). Further, experimental procedures are often correlated
with biological factors (Gilad and Mizrahi-Man 2015). And
correlation between technical confounders and primary bi-
ological signal can be pernicious: tissue dissociation in quies-
cent muscle stem cells can resemble cellular activation from
muscle injury (van den Brink et al. 2017).

We now add a confounder, u, that has correlation rwith x:

Y ¼ xaþ ubþ Y0

We draw each ðxi; uiÞ pair i.i.d. from a bivariate Gaussianwith
mean zero, variances equal to 1 and correlation r. We re-
peated our above pipeline, simulating 250 independent data-
sets and plotting the FPR in Figure 4. Here, we always take
K ¼ 12 CCs, because K ¼ 10 was used originally for Y0

(Lappalainen et al. 2013) and we have added two rank-one
effects.

We draw a as in Figure 3a: 10% of its entries are nonzero,
drawn i.i.d.Gaussian with mean zero and variance such that
s2
x ¼ 1% is the transcriptome-wide fraction of variance

explained. Because u represents a confounder, we draw b

i.i.d. Gaussian with variance such that s2
u ¼ 10%. This is

roughly in line with GTEx (Aguet et al. 2017), where the
top 15–35 PEER factors collectively explained 59278% of
transcriptome-wide variation. We vary r2 from 0 to 1 (r
and 2r are equivalent).

The results in Figure 4 show that supervised PCA badly
inflates FPR, even at r ¼ 0. The other supervisedmethods are
nearly as inflated for r.0, except PEER for larger s2

u and
modest r. Unsupervised CCs also inflate FPR for s2

u ¼ 1%,
though this diminishes as s2

u grows and u becomes near-
perfectly captured. In particular, the apparently naive approach
of simply ignoring confounding (None) can be less inflated
than all CC methods, particularly for small r2 or s2

u. This
shows that, even when confounding exists, CC adjustment
can cause more harm than good. Qualitatively similar pat-
terns hold using q ¼ :01 or p ¼ :001 thresholds (Figures S6
and S7).

We found that ICE was always calibrated and LEAPP was
always close to calibrated, with a maximum of roughly three-
fold inflation. The LEAPP inflation occurred for smallers2

u and
larger r2, scenarios excluded by assumptions in Wang et al.
(2017). LEAPP was often more powerful than ICE, but these
were typically settings where CC methods also performed
well. For example, LEAPP was similar to supervised PEER/
(Smart)SVA when r2 ¼ 0, and LEAPP was similar to unsu-
pervised CCs and supervised PEER when s2

u ¼ 10% (though
better calibrated). In the intermediate range (e.g., s2

u ¼ 3%
and :1, r2 , :5), however, LEAPP outperformed all compet-
itors. LEAPP was far slower than the other methods, taking
�2 hr on average over simulated datasets in Figure 4, com-
pared to�1–5min for two-stepmethods and�10min for ICE
(Figure S8) nonetheless, recent re-implementations of LEAPP
are faster (Wang et al. 2017).

Similar simulations can be found in Figure S2 of Leek and
Storey (2008), but they reached the opposite conclusion, i.e.
that SVA is calibrated even when r2 . 0. To test if this dis-
crepancy is due to their smaller tested data dimensions,
ðN; PÞ ¼ ð20; 1000Þ, we repeated our simulations in Figure

Figure 4 FPR and TPR at a nominal p ¼ :01 level for testing a strong covariate x correlated with a confounder u. x and u have squared correlation r2,
and their respective variances explained are s2

x ¼ 1% and s2
u ¼ 1% (a and d), 3% (b and e), or 10% (c and f). Two-step CC methods are in the top

legend; others are in the bottom legend.
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4 after downsampling to 20 samples and 1000 genes (uni-
formly without replacement, and independently downsam-
pling for each simulation). This reduced FPR for SVA, though
SVA can still be inflated (e.g., �10-fold for r2 � 50% and
s2
u ¼ 10%, Figure S9). This remaining discrepancy is likely

partially because there is, in fact, inflation in Figure S2 of
Leek and Storey (2008): e.g., row 2, column 4 visually seems
miscalibrated.

False positive replication

Assuming a and q are biologically determined and universal,
the PCA bias we derived depends only on the top PCs of Y. As
N grows large, the bias remains, precision grows, and the null
is rejected for every gene if x affects even one.

Analogously, biases will be similar between datasets with
similar top PCs, which occurs in the presence of strong and
similar confounders, e.g. batch effects (Leek et al. 2010),
population structure (Listgarten et al. 2010), cell type com-
position (Jaffe and Irizarry 2014), or the signal x itself if it is
strong.

We empirically assess replication rates by simulating as in
Figure 4 with s2

x ¼ 1%, r2 ¼ :25, and 10% of a’s entries
drawn i.i.d. Gaussian. We then split the data (x and Y) into
halves, test each separately, compute the replication rate as
the fraction of false positive discoveries from the first half that
are deemed positive in the second half, and repeat after trans-
posing the splits. We use a significance level of p ¼ :01 in
each split. We independently repeat the process 250 times,
ignoring initial splits without false discoveries. Splitting an
existing dataset simulates worst-case confounder sharing be-
tween discovery and replication cohorts.

The left panel of Figure 5 shows the average (positive)
false replication rate. Unsupervised methods perform reason-
ably well and supervised SmartSVA and PEER are calibrated.
Either performing no confounder correction or using super-
vised SVA or PCA creates severe spurious replication, with
nearly all false positives replicating when s2

u is large (e.g.,
. 20%). In this section, we do not assess ICE as it has low
total positive rates.

We then increased the signal to s2
x ¼ 10%. Unsupervised

methods performed worse, as they more readily capture the

larger x effect, and supervised PEER became miscalibrated,
especially for larger s2

u. Next, we reduced the confounder
correlation to 0: unsupervised methods performed slightly
better, while supervised methods (except PCA) became
roughly calibrated. Finally, we increased the density of a to
90%, causing supervised SmartSVA to suffer similarly to
PEER.

Discussion

We have evaluated unappreciated sources of bias induced by
conditioning on estimated confounders in functional genomic
association tests. We used a combination of theory and sim-
ulation to cover different cases of interest. Overall, no two-
step CC method we evaluated generally had calibrated FPR;
moreover, most studies use PCA, one of the worst-performing
methods inour simulations.Althoughallmethodsbehavewell
when their assumptionshold, and these assumptions areoften
reasonable in practice, confounders evenmodestly correlated
with the primary signal can cause substantial bias. We also
showed these false positives can replicate at a high rate.

*QTL studies are often performed only within local geno-
mic windows, which are called cis-*QTL studies. In this con-
text, genetic effects are small and restricted to nearby genes,
and our results suggest that the bias induced from CC condi-
tioning is minimal. However, unlike in our Figure 2 simula-
tions, cis-windows may contain many highly correlated
genes, and cis-*QTL often causally affect genes other than
the nearest one (Zhu et al. 2016), both of which serve to
inflate FPR.

*QTL studies can also be performed genome-wide, which
are called trans-*QTL studies. While such *QTL are biologi-
cally central, they are difficult to reliably uncover because the
signals tend to be dispersed across the transcriptome and
genome. Unlike cis-*QTL, trans-*QTL can have much larger
effects on CCs, which has led modern studies to diametrically
opposed methodology for testing trans-*QTL. For example,
Brynedal et al. (2017) do not use CCs, despite the fact that
“all [significant] gene sets were significantly correlated to ...
the top 20 PEER factors.”On the other hand, Yao et al. (2017)
adjust for 20 PEER factors and cell type composition, and

Figure 5 False positive replication rate at a nominal p ¼ :01 level. s2
u is the confounder strength. The signal strength s2

x is either 1% (baseline) or 10%
(others). The squared signal-confounder correlation r2 is 25%, or 0 for the third panel.
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many of the resulting “hotspot” signals are in fact loci known
to affect cell type composition1. Similar to (Yao et al. 2017),
(Aguet et al. 2017) adjust for PEER factors computed per
tissue. We have proposed GBAT to address these and other
limitations by testing gene-level trans associations (Liu et al.
2018). GBAT uses supervised SmartSVA, which performs
best in our simulations without correlated confounders.
This is feasible because we test only thousands of genes
rather than millions of SNPs, though SNPs could be pre-
screened with unsupervised CCs. More generally, we recom-
mend ICE or LEAPP when feasible: ICE was more reliably
calibrated but had low power than LEAPP, while two-step
CCs could perform very poorly when their assumptions are
violated.

Our global covariate simulations are relevant for differen-
tial expression studies performed with linear regression
and/or CC correction. Such tests have been broadly applied,
including to differences between tissues, sexes, or ages. These
factors can easily correlate with latent confounders when
experiments are not randomized and can substantially affect
the expression of many genes. This is the setting in our
simulations underlying Figure 4, where no approach (except
ICE) generally gives calibrated P-values and CC correction
can be worse than a completely uncorrected analysis.

A key limitation of two-step approaches is that step 1 un-
certainty is not propagated to the test in step 2. To address
this, a multiple imputation-style approach can be used,
performing step 2 on several draws from the step 1 CC
posterior. We have not evaluated this concept as it is cur-
rently developed only within the RUV framework (Gerard
and Stephens 2017). Related, the two steps can be inte-
grated, which analytically conveys first-step uncertainty,
though this has much greater computational cost when
run genome-wide (Stegle et al. 2010; Fusi et al. 2012;
Sun et al. 2012; Wang et al. 2017).

In the future, it may be useful to pursue other assumptions
on Y0 in the bias calculation we derived for unsupervised
PCA. For example, we could use a spiked covariance model
for Y0, using results from Nadler (2008) to approximate the
perturbed eigenvector (e.g., replacing our Equation 5 with
their Equation 2.15). An advantage of our approach, how-
ever, is that we allow general correlations between traits.

In more complex scenarios, the appropriate covariate and
confoundingmodel canbeunclear. For example, coexpression
studies learn complex and subtle graphical models from
(partial) covariance (Horvath 2011; Shin et al. 2014). But
uncorrected confounders (or biased corrections) will yield
statistically significant, biologically meaningless networks.
Latent variable graphical models may suit this problem
(Chandrasekaran et al. 2012), and a related two-step approx-
imation was recently proposed for genomics (Parsana et al.
2017). Finally, mixed models that learn specifically-genetic
graphical models may be adaptable to adjust for low-
dimensional confounding (Dahl et al. 2013).
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