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RESEARCH ARTICLE

A microfluidic thermometer: Precise

temperature measurements in microliter- and

nanoliter-scale volumes

Brittney A. McKenzie, William H. Grover*

Department of Bioengineering, Bourns College of Engineering, University of California Riverside, Riverside,

CA 92521, United States of America

* wgrover@engr.ucr.edu

Abstract

Measuring the temperature of a sample is a fundamental need in many biological and chem-

ical processes. When the volume of the sample is on the microliter or nanoliter scale (e.g.,

cells, microorganisms, precious samples, or samples in microfluidic devices), accurate mea-

surement of the sample temperature becomes challenging. In this work, we demonstrate a

technique for accurately determining the temperature of microliter volumes using a simple

3D-printed microfluidic chip. We accomplish this by first filling “microfluidic thermometer”

channels on the chip with substances with precisely known freezing/melting points. We then

use a thermoelectric cooler to create a stable and linear temperature gradient along these

channels within a measurement region on the chip. A custom software tool (available as

online Supporting Information) is then used to find the locations of solid-liquid interfaces in

the thermometer channels; these locations have known temperatures equal to the freezing/

melting points of the substances in the channels. The software then uses the locations of

these interfaces to calculate the temperature at any desired point within the measurement

region. Using this approach, the temperature of any microliter-scale on-chip sample can be

measured with an uncertainty of about a quarter of a degree Celsius. As a proof-of-concept,

we use this technique to measure the unknown freezing point of a 50 microliter volume of

solution and demonstrate its feasibility on a 400 nanoliter sample. Additionally, this tech-

nique can be used to measure the temperature of any on-chip sample, not just near-zero-

Celsius freezing points. We demonstrate this by using an oil that solidifies near room tem-

perature (coconut oil) in a microfluidic thermometer to measure on-chip temperatures well

above zero Celsius. By providing a low-cost and simple way to accurately measure temper-

atures in small volumes, this technique should find applications in both research and educa-

tional laboratories.

Introduction

The ability to accurately measure temperatures is a crucial need in many biological and chemi-

cal processes [1–4]. For milliliter-scale volumes, conventional thermometers and sensors like

PLOS ONE | https://doi.org/10.1371/journal.pone.0189430 December 28, 2017 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: McKenzie BA, Grover WH (2017) A

microfluidic thermometer: Precise temperature

measurements in microliter- and nanoliter-scale

volumes. PLoS ONE 12(12): e0189430. https://doi.

org/10.1371/journal.pone.0189430

Editor: Bing-Yang Cao, Tsinghua University, CHINA

Received: June 29, 2017

Accepted: November 25, 2017

Published: December 28, 2017

Copyright: © 2017 McKenzie, Grover. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by the National

Science Foundation (http://nsf.gov) Instrument

Development for Biological Research Program

under award DBI-1353974 (WHG). The funders

had no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0189430
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189430&domain=pdf&date_stamp=2017-12-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189430&domain=pdf&date_stamp=2017-12-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189430&domain=pdf&date_stamp=2017-12-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189430&domain=pdf&date_stamp=2017-12-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189430&domain=pdf&date_stamp=2017-12-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189430&domain=pdf&date_stamp=2017-12-28
https://doi.org/10.1371/journal.pone.0189430
https://doi.org/10.1371/journal.pone.0189430
http://creativecommons.org/licenses/by/4.0/
http://nsf.gov


thermocouples and thermistors are adequate for measuring the temperature of a substance.

However, these techniques are less suitable for measuring the temperature of microliter- or

nanoliter-scale volumes (which are commonly encountered with cells, microorganisms, pre-

cious samples, and samples inside microfluidic chips). Infrared (IR) thermometers can mea-

sure the temperature of a surface [5–7], but their sensitivity to a material’s emissivity and large

sensing area make IR thermometers less suitable for measuring the temperature of the fluid

inside a microfluidic chip [8, 9]. Similarly, thermocouples affixed to the surface of a microflui-

dic chip can measure the surface temperature, but there can be significant temperature differ-

ences between the surface of a chip and the fluid inside the chip [10]. Resistance temperature

detectors (RTDs) can be fabricated inside microfluidic channels [11–15], but RTDs complicate

the chip fabrication process and can be physically or chemically incompatible with on-chip flu-

ids. Finally, temperature-sensitive fluorophores, magnetic nanoparticles, and nanodiamond

probes can be added to a fluid to measure its temperature [16–19], but these methods require

lasers or magnetic fields to activate the probes and may not be chemically or biologically com-

patible with all samples. In summary, there is an unmet need for simple, broadly-applicable,

and label-free techniques for measuring temperatures in small fluid volumes.

In this work we present a “microfluidic thermometer”, a simple microfluidic chip that can

measure the temperature of microliter- and nanoliter-scale volumes of fluid with an uncer-

tainty of a quarter of a degree Celsius. The microfluidic thermometer shown in Fig 1 takes

advantage of the fact that when two phases of a substance (for example, liquid water and ice)

are both present at the same location, the temperature of that location at equilibrium is pre-

cisely known (in this example, 0˚C). By adding an array of channels to a microfluidic chip,

filling those channels with materials with known freezing/melting points, establishing a sta-

ble and linear temperature gradient perpendicular to the channels within a measurement

region on the chip, and locating the solid-liquid interfaces in the channels, one can visualize

the temperature gradient inside the chip and predict the temperature of a sample at any arbi-

trary point in the measurement region. Solid-liquid interfaces have previously been used for

adsorption of proteins [20–22], surfactants [23, 24], and polymers [25] and the formation of

lipid bilayers [26], metals and alloys [27, 28], and free radicals [29], but to our knowledge, no

previous study has used the locations of multiple solid-liquid interfaces as a tool to measure

temperature.

In this proof-of-concept, we created a prototype 3D-printed microfluidic thermometer

chip and a custom software tool that can measure the temperature of a 50 microliter sample.

We used this chip to measure the “unknown” freezing point of a sodium chloride solution. We

also created a 3D heat transfer model of the thermometer chip to visualize the temperature gra-

dient and isotherms inside the device. Finally, we also demonstrated the feasibility of this tech-

nique in even smaller (nanoliter-scale) volumes using a glass microfluidic chip. The design of

the thermometer chip in standard.STL format (S1 File) and source code for our software tool

(S2 and S3 Files) are available for download, meaning that anyone with access to a suitable 3D

printer can replicate our technique and use it to analyze their own samples.

Materials and methods

Designing and fabricating microfluidic thermometer chips

The microfluidic thermometer chip shown in Fig 1 was designed using SolidWorks (Dassault

Systèmes, Vélizy-Villacoublay, France). The chip is 50 mm long, 25 mm wide, and contains

five parallel channels with curved entries and exits to provide adequate space for fluid inlets

and outlets. Each channel is 1 mm wide, 1 mm deep, and 30 mm long (along the straight por-

tions) with 1.5 mm space between each channel. The chip design was exported as an.STL file
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Fig 1. Design and operation of the 3D-printed microfluidic thermometer chip. (A) The chip is placed

halfway on a thermoelectric cooler to establish a temperature gradient in the measurement region inside the

chip, and the chip is located inside a 3D-printed environmental chamber to eliminate condensation. (B) The

thermometer chip includes five channels (A–E) for containing samples and standards with known freezing/

melting points, and a measurement region in which the temperature gradient is roughly linear. (C) In a
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(S1 File) and printed using a stereolithography 3D printer (Form 1+, Formlabs, Cambridge,

MA) with clear resin (GPCL02; Formlabs). After printing, unpolymerized resin was rinsed

away by immersing the chip in isopropanol for 5 minutes, then the device was left to dry

overnight.

Additionally, to confirm that our technique can be used with even smaller volumes, a glass

microfluidic thermometer chip was fabricated that contains just 400 nL of each fluid. This chip

was designed using AutoCAD (Autodesk, San Rafael, CA) and a photomask containing the

design was printed using an overhead projector transparency and a conventional inkjet

printer. The photomask transparency was placed in contact with a chromium- and photore-

sist-coated glass photomask blank (Telic, Valencia, CA) and irradiated using ultraviolet light.

The exposed regions of photoresist were removed using a developer, and the exposed regions

of chromium were removed using a chrome etchant. The now-exposed regions of glass were

etched to the desired channel depth using 49% hydrofluoric acid. The remaining photoresist

and chromium regions were then removed using acetone and chrome etch, respectively. Fluid

inlet/outlet holes were drilled in the glass wafer using diamond-tipped drill bits, and the wafer

was bonded to a second (blank) glass wafer using thermal fusion bonding (668˚C for 8 hours).

Preparing liquids with known freezing points

As long as a substance has an identifiable interface between its solid and liquid phases and a

precisely-known freezing/melting temperature, the substance could in principle be used in a

microfluidic thermometer. In this work we used pure water (freezing point 0˚C), sodium chlo-

ride (NaCl) solutions with precisely-known freezing points down to −5.08˚C [30], and pure

coconut oil with a precisely-known solidification temperature of 24.1˚C [31]. To enhance

the visibility of the solid-liquid interface of the sodium chloride solutions, we added a small

amount of blue food coloring to each solution (final concentration 0.01% food coloring by

mass). Since coconut oil is transparent when liquid but opaque and white when solid, the

solid-liquid interface in coconut oil is easily identified and no food coloring or other additives

were needed to visualize this interface. Each channel of the 3D-printed microfluidic thermom-

eter chip received 50 μL of liquid, and each channel of the glass microfluidic thermometer chip

received 400 nL of liquid.

Establishing a temperature gradient across the measurement region on

the thermometer chip

A stable temperature gradient was formed across the measurement region on the microfluidic

thermometer chip by placing part of the chip on a thermoelectric cooler; the rest of the chip

was suspended in air (Fig 1A). The thermoelectric cooler (TEC1-12706, Hebei I.T. Co., Shang-

hai, China) is connected to a recirculating water line that removes excess heat from the back-

side of the cooler. To suppress water condensation on the chip (which makes the contents of

the chip difficult to visualize), the chip and cooler were placed inside a 3D-printed enclosure

that was gently purged with dry nitrogen at 10˚C. A glass lid on the enclosure allows for visual-

ization of the thermometer chip. In this manner, we created a stable temperature gradient

microscope image of the measurement region while the channels are filled with water, the solid-liquid

interfaces are visible and define an isotherm (T = 0˚C) inside the chip. (D) During use, the user locates solid-

liquid interfaces in four channels containing fluids with known freezing/melting points (0˚C and -5.08˚C in this

example), and our software uses these locations to calculate the linear temperature gradient along the

channels in this region. (E) Using this gradient, the temperature of the contents of the middle channel can be

determined at any point within the measurement region with an uncertainty of about a quarter of a degree

Celsius.

https://doi.org/10.1371/journal.pone.0189430.g001
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across the thermometer chip that spans from −20˚C (at the end of the chip nearest the cooler)

to 10˚C (at the suspended end of the chip). For experiments requiring temperature gradients

near room temperature (for example, using coconut oil that solidifies at 24.1˚C), we simply

reversed the polarity of the thermoelectric cooler to make it function as a heater.

Using the microfluidic thermometer chip

In a typical experiment, the five channels on the thermometer chip (labeled A–E in Fig 1B) are

filled with three different materials. Channels A and D contain a material with a known freez-

ing point T1, channels B and E contain a second material with a known freezing point T2, and

channel C contains a material whose temperature is to be measured. While the thermometer

chip allows for the measurement of the temperature at any location within channel C, in the

following analysis we are interested in measuring the temperature at the location where the

solid and liquid phases of the material in channel C touch—that is, the unknown freezing

point Tunk of the material in channel C. The chip is then placed on the cooler assembly as

shown in Fig 1A and given 20 minutes to reach thermal equilibrium. An inspection micro-

scope (SM-4TZ-144A, AmScope, Irvine, CA) is used to acquire an image of solid-liquid inter-

faces inside the five channels on the thermometer chip.

The image of the microfluidic thermometer chip is then opened in a custom Python pro-

gram (S2 and S3 Files). The user specifies the known freezing points T1 and T2 of the materials

in channels A/D and B/E, respectively. The program then instructs the user to click on the

locations of the solid-liquid interfaces in all five channels. This provides the program with the

(x, y) coordinates of these interfaces in units of pixels:

• (xA, yA): location of solid-liquid interface in channel A at temperature T1

• (xD, yD): location of solid-liquid interface in channel D at temperature T1

• (xB, yB): location of solid-liquid interface in channel B at temperature T2

• (xE, yE): location of solid-liquid interface in channel E at temperature T2

• (xC, yC): location of solid-liquid interface in channel C at temperature Tunk

The program then calculates the slope m1 and y-intercept b1 of the line between the solid-

liquid interfaces of channel A and channel D:

m1 ¼
yD � yA

xD � xA
b1 ¼ yA � m1xA ð1Þ

and the slope m2 and y-intercept b2 of the line between the solid-liquid interfaces of channel B
and channel E:

m2 ¼
yE � yB

xE � xB
b2 ¼ yB � m2xB ð2Þ

These two lines represent isotherms on the thermometer chip; the first line marks a region

of the chip at known temperature T1, and the second line marks a region of the chip at known

temperature T2. The program then calculates where these isotherms intersect channel C—in

other words, what location (xC(T1)
, yC(T1)

) in channel C is at temperature T1:

xCðT1Þ
¼ xC yCðT1Þ

¼ m1xCðT1Þ
þ b1 ð3Þ

and what location (xC(T2)
, yC(T2)

) in channel C is at temperature T2:

xCðT2Þ
¼ xC yCðT2Þ

¼ m2xCðT2Þ
þ b2 ð4Þ
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The program then plots temperature vs. y-coordinate for channel C and calculates the slope

m3 and y-intercept b3 of this line.

m3 ¼
T2 � T1

yCðT2Þ
� yCðT1Þ

b3 ¼ T1 � m3yCðT1Þ
ð5Þ

The equation of this line can be used to calculate the temperature of the contents of channel

C at any point along the channel. By solving this equation using the y-coordinate yC of the

solid-liquid interface in channel C, we can determine the unknown freezing point Tunk of the

solution in channel C:

Tunk ¼ m3yC þ b3 ð6Þ

The Python code available for download (S2 and S3 Files) automates this process and was

used to create Fig 1D and 1E as well as the figures in the Results and Discussion section.

Modeling the microfluidic thermometer chip

To further characterize the shape of the thermal gradient inside the thermometer chip, a 3D

model of the chip was created using finite element analysis (COMSOL Multiphysics, Burling-

ton, MA). The model replicates the geometry and temperature of the chip as well as the chip’s

orientation partly on the thermoelectric cooler. The “heat transfer physics” module with con-

vective heat flux and a stationary solver was used to model heat transfer between the microflui-

dic thermometer chip and its channel contents, the cooler, and the surrounding ambient air.

Heat transfer coefficients for natural convection normally range from 5 to 50 W m−2 K−1[32];

however, in the microfluidic thermometer, heat transfer by conduction via the thermoelectric

cooler dominates and convective losses are minimal, so we used a slightly lower estimate of the

heat transfer coefficient (1 W m−2 K−1).

Results and discussion

Modeling isotherm and thermal isocline shape in the thermometer chip

Our method for analyzing the data from the microfluidic thermometer chip makes two

assumptions about the shape of the temperature gradient in the measurement region of the

chip:

• First, we assume that if we draw a line between two solid-liquid interfaces that are at the

same known temperature in the measurement region on the chip, then all points on that line

are also at the same known temperature (the line is an isotherm).

• Second, we assume that if we draw a line between two points at different known tempera-

tures within the measurement region on the chip, then there is a linear gradient of tempera-

tures along that line (the line is a thermal isocline).

We tested the validity of each of these assumptions using both computer simulations and

experimental measurements.

Fig 2 shows the simulated behavior of the water-filled 3D-printed thermometer chip

obtained using COMSOL Multiphysics. In the measurement region on the chip (dotted rect-

angles in Fig 2A and 2B), the isotherms are straight (Fig 2C) and the temperature across the

five channels varies by no more than 0.13˚C in the channel region (Fig 2D). These results sup-

port our assumption that the isotherms perpendicular to the channels are linear within the

measurement region of the chip. Additionally, the temperature gradient is roughly linear

along the channel length in the roughly 6-mm-long measurement region (gray area in Fig 2E);
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this supports our assumption that temperature is a linear function of distance along the chan-

nel within the measurement region. Outside of the measurement region on the chip, the tem-

perature profile along the channels is no longer linear but much more complex (see region

outside the gray area in Fig 2E). Consequently, solid-liquid interfaces outside the measurement

region cannot be used to infer temperatures inside the measurement region.

To determine if the contents of the thermometer chip channels affect the thermal behavior

of the chip in the measurement region, we repeated the analysis in Fig 2 with the channels

filled with water, mineral oil, and toluene. These substances are commonly used in microflui-

dics and have different thermal properties like thermal conductivity and heat capacity. Fig 3

shows that the different contents of the microfluidic channels had minimal impact on the tem-

perature distribution across the channels in the measurement region.

Fig 2. Finite element analysis computer simulations of the 3D-printed microfluidic thermometer chip with all five channels

filled with water. (A) The simulated chip is oriented partway on a thermoelectric cooler (T = −20˚C) and the rest of the chip is

suspended in air (T = 10˚C). By slicing through the middle of the chip, the temperature gradient in the channel plane is visible (B).

Plotting the temperature profile in this plane across the five channels in the region where freezing measurements are obtained (C)

results in a nearly-flat line in this region; closer inspection (D) shows a variation of only 0.13˚C across the five channels, supporting

our assumption that isotherms are nearly linear in the measurement region. Plotting the temperature profile in the channel plane

along the middle channel (E) results in a fairly complicated temperature profile ranging from a constant −20˚C above the cooler to 0˚C

at the opposite end of the chip. However, in the region of the chip where freezing measurements are observed (corresponding to the

shaded region on the plot), the predicted temperature profile is nearly linear; this supports our assumption about the shape of the

temperature gradient along the channels in the measurement region.

https://doi.org/10.1371/journal.pone.0189430.g002
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Measuring isotherm and thermal isocline shape in the thermometer chip

To experimentally verify our assumption that isotherms in the thermometer chip are linear,

we filled all five channels in the thermometer chip with the same fluid (deionized water; freez-

ing point = 0˚C) and established a temperature gradient along the length of the channels using

the setup shown in Fig 1. A micrograph of the solid-liquid interfaces in the measurement

region of the thermometer chip is shown in Fig 4A. After importing this image into our cus-

tom software (S2 and S3 Files) and clicking on the locations of solid-liquid interfaces in each

channel, we found that the solid-liquid interfaces formed a reasonably straight isotherm; the

standard deviation of the interface locations in the vertical direction was only 122 μm. Plotting

the locations of the interfaces (inset plots in Fig 4A) shows that the vertical locations of the five

interfaces differ by less than 500 μm (across all five channels; a horizontal distance of 10 mm).

We repeated this experiment for a second solution, an 8% (m/m) NaCl solution with a known

freezing point of −5.08˚C. The resulting interfaces were again visible and linear (standard devi-

ation of vertical interface location = 130 μm; data not shown). These results further support

our assumption that isotherms are linear in the measurement region of the chip.

We also experimentally verified the linearity of isotherms in microfluidic chips with much

smaller channel volumes. Fig 5A shows a closeup of two solid-liquid interfaces in a borosilicate

glass chip containing 400 nL of water with a small amount of food coloring in each channel.

The solid-liquid interfaces are clearly visible, confirming that microfluidic thermometer chips

can be fabricated and used with nanoliter-scale volumes.

To experimentally verify our assumption that the temperature gradient along the chip is lin-

ear within the measurement region (and therefore a line along a channel in this region is a

thermal isocline), we filled each of the five channels with different fluids with precisely-known

freezing/melting points (8%, 6%, 4%, and 2% m/m NaCl solutions and deionized water in

channels A, B, C, D, and E, respectively) and established a temperature gradient along the chip.

The micrograph of the measurement region in Fig 4B shows that the solid-liquid interfaces

appear in different locations along the channels; the material with the lowest freezing point

(8% NaCl; channel A) has an interface near the bottom of the image, and the material with the

highest freezing point (deionized water; channel E) has an interface near the middle of the

image. After importing this image into our software and clicking on the location of each solid-

liquid interface, the software generates a plot of material freezing/melting point vs. vertical

location of the solid-liquid interface of the material (inset of Fig 4B). The plot is linear (solid

Fig 3. Finite element analysis computer simulations of the temperature profile across the five channels in the measurement

region inside the microfluidic thermometer chip, with the channels filled with water (left), mineral oil (center), and toluene (right).

Despite the different thermal properties of these fluids (with water being the most thermally conductive), the predicted temperatures differ by

less than 0.13˚C across the 10 mm wide measurement region. This supports our assumption that isotherms in the measurement region of

the thermometer chip are essentially linear, even when filling the channels with materials other than aqueous solutions.

https://doi.org/10.1371/journal.pone.0189430.g003
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Fig 4. (A) To characterize isotherm shape, all five channels of the microfluidic thermometer chip were filled

with water and a stable temperature gradient was formed along the channels using the setup in Fig 1. The

solid-liquid interfaces that form are roughly linear. After clicking on the locations of each interface, the

software draws an isotherm (0˚C) on the image and uses the parameters of this line to estimate the

uncertainty of our measurement. The inset shows that the vertical locations of the solid-liquid interfaces differ

by less than 500 μm across the entire 10 mm width of the measurement region; this supports our assumption

that isotherms are linear in the measurement region. (B) To characterize the thermal isocline shape, each of

the five channels were filled with a different solution with precisely-known freezing/melting points (deionized

water and 2%, 4%, 6%, and 8% m/m NaCl solutions in channels E, D, C, B, and A, respectively). After clicking

on the locations of each interface, the software plots the temperature at each interface vs. the vertical

locations of the interfaces. A linear fit (solid line; R2 = 0.97 and a maximum difference of only 0.48˚C between

predicted and actual temperatures) confirms our assumption that the temperature gradients are roughly linear

in the measurement region. For even higher precision, a second-order polynomial (dotted line) can be used

with a maximum difference of only 0.22˚C between predicted and actual temperatures). (C) To measure an

unknown freezing/melting point, four of the thermometer chip channels were filled with solutions with known

freezing points (water in channels A and D, and 8% (m/m) NaCl in channels B and E) and the remaining
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line; R2 = 0.97) with a maximum difference of 0.48˚C between the measured locations of the

solid-liquid interfaces and those predicted by a linear regression fit of the measured locations.

These results support our assumption that the temperature gradient is linear along the length

of the chip within the measurement region. If even higher precision is needed for an applica-

tion, the solid-liquid interface locations can be fitted to a second-order polynomial (dotted

line in Fig 4B inset) which decreases the maximum difference between actual and predicted

interface locations to just 0.22˚C. However, we used the linear temperature gradient assump-

tion in this work.

Measuring temperature of an “unknown” solution using the thermometer

chip

By utilizing the solid-liquid interface positions of two solutions with known freezing points,

we were able to use the microfluidic thermometer chip to measure the temperatures through-

out a sample of an “unknown” solution inside the measurement region. Specifically, we used

the chip to determine the freezing point of a sodium chloride solution in the chip. Fig 4C

shows a photograph of the thermometer chip filled with deionized water in channels A and D
(freezing point T1 = 0˚C), 8.0% (m/m) NaCl solution in channels B and E (freezing point T2 =

−5.08˚C), and a solution with a simulated unknown freezing point in channel C (4.0% (m/m)

channel C was filled with a NaCl solution with an “unknown” freezing point. After clicking on the locations of

each solid-liquid interface, the software draws isotherms between the known temperatures (0˚C at the

interfaces in channels A and D, and −5.08˚C at the interfaces in channels B and E), then calculates the linear

temperature gradient between the two isotherms in channel C and uses this gradient to determine the

temperature at the solid-liquid interface in channel C (−2.28 ± 0.26˚C). This agrees well with the known

literature value for the freezing point of this solution, −2.41˚C.

https://doi.org/10.1371/journal.pone.0189430.g004

Fig 5. (A) Using a glass microfluidic chip as a microfluidic thermometer. Solid-liquid interfaces in channels containing only 400 nL of water

mark the location of the T = 0˚C isotherm. (B) Using coconut oil (solidifying/melting point = 24.1˚C) in a 3D-pri crofluidic thermometer chip.

The interfaces between the solid oil (white) and liquid oil (transparent) are easily identified and form a stable linear isotherm in the chip.

Including an additional material with a different freezing/melting point in the thermometer chip would enable measurement of temperatures

well above zero Celsius.

https://doi.org/10.1371/journal.pone.0189430.g005
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NaCl solution). After loading the image into our custom software (S2 and S3 Files) and click-

ing on the locations of each solid-liquid interface, the software uses Eqs 1–6 to determine that

the freezing point T3 of the “unknown” 4% NaCl solution is −2.28 ± 0.26˚C (details in S3 File).

This value is only 0.13˚C higher than the known literature value for the freezing point of a 4%

(m/m) NaCl solution (−2.41˚C [30]).

Using the microfluidic thermometer at temperatures well above 0˚C

The experiments above use water and aqueous sodium chloride solutions to measure tempera-

tures at or below 0˚C. However, there are obviously many applications for temperature mea-

surements over a wide range of temperatures, not just below zero Celsius. To demonstrate that

the microfluidic thermometer chip is also capable of measuring temperatures well above 0˚C,

we filled all five channels with coconut oil (which has a precise solidifying/melting point at

24.1˚C [31]) and created a stable temperature gradient along the channels as described above.

Since the freezing/melting point of coconut oil is slightly above ambient temperature, we

heated (not cooled) one end of the microfluidic thermometer chip by reversing the polarity on

the thermoelectric cooler and did not need dry nitrogen to prevent condensation.

Fig 5B shows the results from using our custom software (S2 and S3 Files) to analyze the lin-

earity of the isotherm in the microfluidic thermometer chip while filled with coconut oil. The

interfaces between the solid oil (white) and liquid oil (transparent) are very easy to locate, and

the standard deviation of the locations of these interfaces along the channels, 81 μm, is actually

lower than that observed using water in Fig 4A. This shows that the solid-liquid interfaces in

coconut oil form stable linear isotherms in the thermometer chip. By also using e.g. a second

oil with a slightly different freezing/melting point, one can use the microfluidic thermometer

chip to measure temperatures well above zero Celsius.

Conclusions

In this work, we demonstrated a simple technique for making precise measurements of the

temperatures of microliter- and nanoliter-scale volumes. This technique requires minimal

equipment and no probes, labels, or other modifications to the sample being measured. We

used this technique to measure the freezing point of a simulated unknown solution. By using

materials with different known freezing/melting points, our technique can be tailored for mea-

surements at many different temperatures. Additionally, by using 3D printing to fabricate our

thermometer chip, any researcher can download the design of the chip (S1 File) and fabricate

and use the chip. As the glass microfluidic thermometer chip in Fig 5 shows, this method is

not limited to 3D-printed microfluidic devices and is suitable for use in any fabrication

method that provides optical access to the channel contents. Finally, since the freezing point of

a substance is an intrinsic property of that substance, our technique could be used as a simple

way to identify a substance (or rule out other substances) by accurately measuring its freezing

point.

In its current form, the thermometer chip is limited to making temperature measurements

within the measurement region (the area of the chip where the temperature gradient is linear;

dotted boxes in Fig 2A and 2B and gray region in Fig 2E). This roughly 6-mm-long region

contains a linear temperature gradient that spans about 5 degrees Celsius. The location of this

temperature range on the temperature scale can be set at will by loading the microfluidic ther-

mometer channels with materials with different freezing/melting points (for example, using

aqueous sodium chloride solutions to measure temperatures around 0˚C as in Figs 4 and 5A,

or using coconut oil to measure temperatures around 24˚C as in Fig 5B). However, we cannot

use sodium chloride solutions and coconut oil simultaneously in the thermometer chip because
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the freezing/melting points of these substances differ by over 24˚C—that means that at least

one of the substances’ solid-liquid interfaces would lie far outside the measurement region. If

one of the solid-liquid interfaces forms outside of the region where the temperature gradient is

linear, we would not be able to accurately predict the temperatures between the different solid-

liquid interfaces. Therefore, our technique is more suited for precisely measuring temperatures

in a narrow range using similar materials, not measuring temperatures in a wide range using

dissimilar materials.

Supporting information

S1 File. Design of the microfluidic thermometer chip in the standard.STL format used by

most 3D printers.

(STL)

S2 File. microfluidic_thermometer.py, a custom Python program that automates

the data analysis required when using the microfluidic thermometer chip. Used to generate

Figs 1D and 1E, 4 and 5B.

(ZIP)

S3 File. User guide for microfluidic_thermometer.py. Step-by-step description of

using microfluidic_thermometer.py to perform the analyses in Fig 4.

(PDF)
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