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Abstract 
A three-dimensional (3D) nonlinear cyclic model for non-planar reinforced concrete walls is 

presented. The model uses 3D nonlinear Euler-Bernoulli fiber-section beam-column elements 

representing steel and concrete in the vertical and horizontal directions, and nonlinear trusses to represent 

the diagonal field of concrete in compression. The model represents the effects of flexure-shear 

interaction by computing the stress and strains in the horizontal directions, and accounts for bi-axial 

effects on the behavior of concrete diagonals in compression and mesh size effects. It is validated by 

comparing the experimentally measured and numerically computed response of three reinforced concrete 

wall  specimens  having  a  T-,  C-,  and  I-shape  section,  respectively,  with  the  response  of  the  latter  two  

characterized by crushing of the concrete in the diagonal direction. The computed response using the 

model developed here is compared with the computed response using Euler-Bernoulli fiber-section beam-

column models. The overall force-deformation and local strain responses are presented.  
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Introduction 
Reinforced concrete (RC) walls are one of the most common elements used in structures to resist 

loads and develop expected deformations during earthquake excitation. The computation of their 

nonlinear cyclic response is of significant interest to both practicing engineers and researchers. This task 

is particularly challenging for non-planar RC walls, commonly used in medium- and high-rise 

construction, because their response is affected more than planar walls by three-dimensional (3D) stress 

and strain state when subjected to uni-axial or multi-axial loading representative of earthquake excitation. 

The computation of the response of non-planar RC walls can be even more challenging when it is affected 

significantly by flexure shear interaction (FSI). Here, FSI is described as the combination of axial, 

flexural, and shear load on these structural elements, which results in a multi-axial stress and strain state 

and coupling of nonlinearities in the behavior of concrete in compression. The FSI may significantly 

affect the cyclic behavior of RC non-planar walls in terms of strength, stiffness, deformation capacity, 

softening response, and strains developed in steel and concrete.  

Modeling approaches for non-planar RC walls may be divided in five main categories: (i) lumped 

plasticity models; (ii) fiber-section beam-column (frame) element models; (iii) wide column models 

known also as equivalent frame models; (iv) truss or lattice models; (v) models with beams and trusses; 

and (vi) finite element (FE) models using either plane stress or solid elements. 

Lumped plasticity models (Giberson 1969) use beam elements that develop all the plasticity in 

nonlinear springs located at their ends and have been used to model non-planar walls in a two-

dimensional (2D) analysis (Hidalgo et al. 2002). In these models, flexure-shear interaction can be 

considered using empirically calibrated nonlinear springs. These models do not account for multi-axial 

force interaction. 

Stiffness-based nonlinear fiber-section beam element models (also called displacement-based 

nonlinear fiber-section beam element models), were first proposed in the 1970s (Taylor 1977, Kang 1977) 

and flexibility-based (also called force-based elements) were later developed (Zeris and Mahin 1988, 

Spacone et al. 1992). Force-based beam elements considering nonlinear geometry have also been 

developed (Neuenhofer and Filippou 1998). Two- (Petrangeli 1999a, 1999b) and three-dimensional 

(Martinelli 2008) fiber-section beam elements that model the inelastic behavior of the transverse steel 

reinforcement and represent FSI using equilibrium, specific assumptions for the shear strain field, and 

biaxial concrete material laws have also been developed. Such models have been used to model non-

planar walls experimentally tested under uni-axial cyclic loading. Nonlinear fiber-section beam models 

that use the plane-section-remain-plane assumption and a linear empirical relationship between shear 

force and shear deformations that is decoupled from axial and flexural deformations have been used in 2D 

analysis of T-shape walls subjected to uni-axial cyclic loading (Orackal and Wallace 2006). Fiber-section 
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beam elements considering linear elastic behavior in shear and torsion have been used to model the multi-

axial cyclic behavior of non-planar walls (Mazars et al. 2006). 

Linear elastic frame models have been developed for the analysis of planar and non-planar walls 

with openings or coupled with beams (Clough et al. 1964, MacLeod 1973). Beyer et al. (2008b) presented 

a nonlinear frame model used to reproduce the experimental response of RC wall with a U-shape section. 

This U-wall is also considered here. This model used nonlinear Euler-Bernoulli fiber-section vertical 

beam elements and rigid horizontal beam elements connected with linear shear and torsional springs. 

Nonlinear truss models have been used for 2D analysis of planar walls (To et al. 2003, Park and 

Eom 2007, Panagiotou et al. 2012). Three-dimensional truss models (also called lattice models) have been 

used to model RC columns, beams, and frames (Miki and Niwa 2004).  

Barbosa (2011) recently presented a 3D model for planar RC walls consisting of nonlinear fiber-

section Euler-Bernoulli beams and nonlinear truss elements. In this model, the nonlinear beam elements 

represented the boundary elements while nonlinear vertical truss elements were used to model the 

concrete and steel of the inner regions of the walls. In parallel to the vertical truss elements, linear elastic 

beam elements were used to model the out-of-plane flexural rigidity of the walls. In addition, truss 

elements were used to model the horizontal reinforcement and the diagonal stress field of concrete 

without accounting for the instantaneous biaxial effects on the behavior of concrete in compression. 

Nonlinear 2D monotonic (Cervenka and Gerstle 1971 and 1972) and cyclic (Vallenas et al. 1979) 

FE models of RC structures using plane-stress elements were first introduced four decades ago and were 

validated using experimental results. Nonlinear 2D FE models for RC that use monotonic or cyclic 

smeared crack, or/and discrete crack approaches, plasticity models, or non-local models have been 

developed (Bazant and Planas 1998, Maekawa et al. 2003, Koutromanos and Shing 2012). The 

complexity and computational effort required in nonlinear 3D FE modeling increases significantly 

compared to 2D models. These methods also have their limitations and are used mainly by academics and 

specialized consultants. Three-dimensional FE studies appeared for first time in the 1970s (Suidan and 

Schnobrich 1973) and thereafter have considered the monotonic behavior of flexural dominated or shear-

critical beams (Milford and Schnobrich 1985, Vidosa et al. 1991, Pagnoni et al. 1992, Barzegar and 

Maddipudi 1997). Nonlinear 3D cyclic FE models of shear-critical columns (Ozbolt et al. 2001) and 

beam-column sub-assemblages (Maekawa et al. 2003, Lykidis and Spiliopoulos 2008, Eligehausen et al. 

2009) have also been developed. The authors are not aware of any 3D discrete crack cyclic model of an 

experimentally tested shear-critical RC component (e.g., beam, column, wall, joint, etc.).   

There have been numerous 2D nonlinear FE studies of planar walls subjected to cyclic loading 

(Sittipunt and Wood 1995, Kwak and Kim 2004, Vecchio 2002, 2007). Vidosa et al. (1991) compared the 

experimentally measured and computed monotonic response, using a 3D nonlinear FE model, for a 
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flexural dominated planar RC wall. Palermo and Vecchio (2002, 2007) compared the experimentally 

measured and numerically computed cyclic response using a 2D nonlinear FE model of a squat non-

planar wall with wide flanges subjected to cyclic loading. El-Tawil et al. (2002) and Hassan and El-Tawil 

(2003) conducted 3D FE studies of planar walls as well as of a T-shape section wall subjected to uni-axial 

loading, also considered here, using plane-stress elements and reported very good agreement between 

computed and measured response in terms of strains along the flange of the wall; however, the force-

deformation response was not presented in their study. Mosalam et al. (2003) conducted 3D nonlinear FE 

monotonic analysis to verify the splitting failure caused planar lightweight concrete planar shear walls 

with embedded steel members. Balkaya and Kalkan (2004) conducted a 3D monotonic analysis of a RC 

wall building using nonlinear shell elements for the walls and the slabs; this study did not include any 

comparison with experimental results. Ile and Reynouard (2005) conducted a 3D FE analysis, using thin 

shell elements, of a C-shape wall subjected to bi-directional cyclic load reversals.  

This report describes a nonlinear beam-truss modeling approach for non-planar RC walls 

subjected to cyclic uni-axial or multi-axial loading. The main objective of the proposed model is as 

follows: (i) to compute the post cracking three-dimensional behavior of non-planar RC walls; and (ii) to 

model FSI accounting for mesh size effects. The model approximates FSI by modeling the effect of 

normal tensile strain on the stress-strain relationship of concrete in compression as reported by Vecchio 

and Collins (1986), but it incorporates the normal strain reduction factor as a function of the gage length 

as proposed by Panagiotou et al. (2012). Compared to the beam-truss model reported by Barbosa (2011) 

and the nonlinear frame model of Beyer et al. (2008b), the model developed here accounts for the 

instantaneous bi-axial strain field in the behavior of diagonal concrete in compression. Moreover this 

model uses nonlinear beam elements for all vertical and horizontal elements, and accounts for mesh size 

effects. To test the efficacy of the model, the experimentally measured and computed response of three 

case studies are considered: (i) a wall with a T-shape section subjected to uni-axial cyclic loading with 

significant contribution of the flange to the response; (ii) a U-shape section wall subjected to multi-axial 

cyclic loading, which failed by crushing of concrete in the diagonal direction; and (iii) an I-shape section 

wall subjected to uni-axial loading, which failed with diagonal crushing of the web. The global responses 

in terms of lateral force-lateral displacement as well as the more localized strain responses are presented. 
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Nonlinear Beam-Truss Modeling Approach 
The model approach developed herein uses nonlinear fiber-section Euler Bernoulli beam 

elements in the vertical and horizontal directions, termed beams from this point, and truss elements in the 

diagonals of the panels formed by the horizontal and vertical beam elements. Consider the T-section wall 

shown in Figure 1(a) where its length along the x- and y-axis is Lx and Ly, respectively. The thickness of 

the rectangular section segments of the wall parallel to the x- and y-axes is xt  and yt , respectively. The 

height of the wall is H. Figure 1(b) shows the beam-truss model of this wall. Nine lines of vertical beam 

elements were used, with five in each of the two segments of the T-wall. Line BF is common for the two 

segments. Each of the vertical and horizontal beam elements model the concrete and steel included in the 

section areas they represent. The nine sections of the corresponding vertical line of elements and the 

fifteen sections of the corresponding horizontal lines of elements are shown in Figure 1(a). Panel A 

parallel to x-axis is shown with bold lines in Figure 1(a), and the reinforcing details of this panel are 

shown in Figure 1(c). Figures 1(d) and (e) show the section areas of each of the vertical and horizontal 

beams. A minimum number of four vertical lines of elements were used along each segment of the non-

planar walls described below. The effect mesh refinement is presented in the section Effect of Mesh 

Refinement. In this study, each fiber section used 24 fibers in a 6 × 4 grid to represent the concrete, and a 

single fiber to represent each reinforcing steel bar. For each vertical and horizontal beam element, a linear 

elastic torsional rigidity equal to 0.01 Jg was  used,  where  Jg is the gross section torsional rigidity. The 

small value of torsional rigidity is used for better numerical stability of the model.  

In addition to the vertical and horizontal beam elements, concrete truss elements were used for all 

diagonals to model the compressive field of concrete in the corresponding direction. The angle of the 

diagonals in respect to the horizontals is d ,  see Figure 1(g). In this study, d  ranged between 40° and 

50°. The effect of d is discussed in section Effect of the Angle of the Diagonal Truss Elements. The 

tensile field of concrete in the diagonals is not modeled and the sensitivity to this is discussed in section 

Effect of Tension Strength of the Diagonal Truss Elements. The area of each diagonal is the product of the 

effective width beff, see Figure 1(f) and (g), and the thickness of the panel xt . The effective width of the 

diagonal beff depends on the dimensions of the panel and thus on the angle of the diagonal, d. 
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Figure 1. Three-dimensional view of the beam-truss model approach for a T-shape section wall. 

 



8 
 

Material Constitutive Stress-Strain Relationships 

 

Concrete Model for Vertical and Horizontal Beams Elements 

The stress-strain relation of concrete used in the vertical and horizontal beam elements is shown 

in Figure 2, where '
cf  is the compressive strength of unconfined concrete occurring at strain %2.00 . 

The compressive stress-strain relation up to 
'

cf  is based on the Fujii concrete model (Hoshikuma et al. 

1997); see Equation 1 in Figure 2. The initial concrete modulus is )(5000 ' MPafE cc . For 

unconfined concrete, after reaching '
cf ,  the  compressive  stress  decreases  linearly  to  zero  at  strain  u . 

The value of u  accounts for mesh size effects, as explained in section Mesh Size Effects, with 

%4.0u  for a reference element length LR = 600 mm. For confined concrete, the peak compressive 

stress ccf  occurring at strain co , and the strain cs  at which softening initiates is calculated based on 

Mander et al. (1983). The stress-strain relation of confined concrete during loading up to '
cf  is the same 

as the unconfined concrete.  During loading from '
cf  to ccf , the stress-strain relation is described by 

Equation 1. The confined concrete stress remains constant and equal to ccf  for strains between co  and 

cs . For strains larger than cs ,  the  stress  softens  linearly  to  zero  at  a  strain  cu . The value of cu  

accounts for mesh size effects, with %2.0cscu  for LR = 600 mm.  

The tension stress-strain relationship during loading is linear until it reaches the tensile strength of 

concrete '33.0 ct ff  in MPa. After this point, the concrete softens based on Equation 2, shown in 

Figure 2 (Stevens et al. 1991). The parameter 
b

s
t d

CM  controls the rate of softening, with tC  = 

75mm, s  the steel ratio in the direction parallel to the beam element, and bd  the diameter of the rebar 

of interest. The exponential decay factor t  is described in Equation 2. 

Upon unloading from a compressive strain, the tangent modulus is )/(5.05.0 fEE cu  

until reaching zero stress, which then reloads linearly to the point with the largest tensile strain that 

occurred before.  The unloading from a tensile strain is linear with a tangent modulus cE until reaching 

zero stress. After this, the material loads in compression and targets a stress equal to tf  at zero strain 

with 5.0a . Thereafter, the material loads linearly to the point where the peak compressive strain 

occurred. In the case where the stress of this target point is less than tf , the material reloads directly 
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to the point where peak compressive strain occurred without passing through the point with stress tf   

at zero strain.  

 

 
Figure 2. Stress-strain relationship of concrete material models. 

 

Concrete Model for Diagonal Truss Elements 

The  concrete  material  model  used  for  the  truss  elements  has  two  differences  compared  to  that  

used for the beam elements: (i) it has zero tensile strength; and (ii) it accounts for the bi-axial strain field 

on the concrete compressive behavior as described by Vecchio and Collins (1986). Thus, the compressive 

stress-strain behavior is dependent on the strain, n,  normal  to  the  axes  of  the  truss  element.  For  truss  

element e1 extending from node 1 to node 2 shown in Figure 3(a), n is computed using the zero-stiffness 

gauge element extending from the mid-length of the element to nodes 3 and 4, g1 and g2, respectively. The 

instantaneous compressive stress of element e1 is  multiplied  by  the  factor   determined from the 

instantaneous normal strain n , which is the average of the strain measured with the gauge elements g1 

and g2. The angle g is the angle formed between the truss and the gauge elements; values of g close to 

90° are suggested. When 0n , the relationship between  and n  is tri-linear as shown in Figure 3(b). 



10 
 

For this study, the relation between  and n  depends on the length of the gauge elements, as proposed by 

Panagiotou et al. (2012), and are discussed in section Mesh Size Effects. For a reference length of LR = 600 

mm, int = 0.3, int = 1%, res = 0.1, and res = 2.5%. 

 

 
Figure 3. (a) Truss model accounting for biaxial effects in the compressive stress-strain behavior of 

concrete; and (b) Relation between concrete compressive stress reduction factor, , and normal strain, n . 

 

Mesh Size Effects 

The computation of the nonlinear response of structural elements modeled using material models 

that include strength-degrading behavior strongly depends on the size of the elements used in the analysis. 

This problem is addressed by making the strength-degrading branch of the stress-strain relationships of 

the materials a function of the size of the elements or by nonlocal continuum modeling (Bazant and 

Ceolin 1979; Pietruszczak and Mroz 1981; Bazant and Planas 1998). Here, the concept of concrete 

fracture energy is used to determine the slope of the softening branch of the concrete compressive stress-

strain behavior. Figure 4(a) shows a concrete element subjected to uniaxial compression. Figure 4(b) 

shows the relationship of concrete stress fc after reaching '
cf  and the displacement  due to the inelastic 

deformations developed in a part of the element length along the axis of the element. The area under the 

fc-  diagram is defined as the fracture energy Gf of concrete in compression. Experimental work has 

shown that Gf has small dependence on the length of the element, and the majority of  is developed over 

a small region. Thus, the stress versus average strain along the length of the element, L,  is  shown  in  

Figure 4(c). Since Gf is a material constant, the ultimate strain u is determined based on the element 

length L. 
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The effect of element length is also accounted for in determining the - n relation with 

%1)/600(int gL  and %5.2)/600( gres L , where gL  is the average length of gauge elements g1 

and g2 shown in Figure 3(a).  

For the truss elements used in the model, L is the length of each truss element. To determine the 

stress-strain relationship of concrete used in the beam elements, a different stress-strain is assigned for 

each integration point, which is adjusted based on the weighted length corresponding to the integration 

point as proposed by Coleman and Spacone (2001). For example, for an element of length L with four 

integration points, the weighted length of the end and middle integration points is L /  12,  and  5L /  12, 

respectively. Values of u, int, and res used in the case studies presented below are listed in Table 1.   

 

 

 
Figure 4. (a) Localization of damage in a concrete element subjected to uni-axial compression; (b) 

Compressive stress versus , the inelastic axial displacement within the region of damage concentration 

after reaching '
cf , and definition of concrete fracture energy in compression; and (c) average stress-strain 

behavior of concrete element of length L in compression and definition of fracture energy normalized to 

element length. 
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Table 1. Values of characteristic compressive strains of concrete accounting for size effects in the beam 

and truss elements of the different models. 

 reference length    
LR = 600 mm TW2-9 TUB-11 F1-11 

u  
(beam) 

0.4% 1.89% 1.75% 1.51% 

u  
(truss) 

0.4% 0.66% 0.60% 0.55% 

int 1.0% 1.7% 1.52% 1.43% 

res 2.5% 4.25% 3.8% 3.58% 

 

 

Reinforcing Steel 

The Giuffré-Menegotto-Pinto model (GMP) was used to model reinforcing steel. The stress-strain 

relation is shown in Figure 5, where sE  = 200 GPa is the initial elastic modulus, yf  is the yield strength, 

and sB  is the post-yield hardening ratio. The parameters controlling the transition between the elastic to 

plastic branches (Filippou et al. 1983) were: R0 = 18, cR1 = 0.925, and cR2 = 0.15 for all case studies. The 

effect of geometric nonlinearity (bar buckling) is not considered in this study. 

 

 
Figure 5. Stress-strain relationship of steel material model. 
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Computer Program Used and Implementation  

The model described in this report was implemented in the computer program OpenSees 

(McKenna et al. 2000). The existing in Opensees GMP model, Steel02, was used for the reinforcing steel. 

The concrete models used in the beams and trusses, respectively, were implemented into the program by 

the authors. For the beam elements, the existing Opensees nonlinear force-based beam-column elements 

were used with linear geometric transformation. The Gauss-Lobatto quadrature with two or four 

integration points was used for the beam elements. The effect of number of integration points is discussed 

in section Effect of Number of Integration Points. The four-node truss element with linear geometry used 

for the diagonals was programmed in Opensees by the authors. 

The response was computed using a displacement control algorithm. The details of the loading set 

up are described in each case study below. For case studies 1 and 3, uni-axial loading and static 

displacement control analysis was conducted. For case study 2, which involved bi-axial loading, the 

analysis was performed by controlling three degrees of freedom through pseudo-static multiple-support 

ground excitation.  

Six Newton-Raphson iterations were followed by 1000 iterations of Newton with Initial Tangent 

were used in the solution algorithms. For each iteration, the residual of error was computed using Energy 

Increment, and the relative tolerance was equal to 10-5.  For  case  studies  1  and  3,  a  time  step  of  0.051  

mm/step was used. For case study 2, the loading rate was 0.25 mm/sec. Translational and rotatory masses 

were assigned to all nodes, resulting in a first mode period of the model equal to 0.1 sec. This analysis 

was conducted at a time step of 0.125 sec/step. 

 

Model Validation 
 

Case Study 1 – Thomsen and Wallace (1995 and 2004) – Specimen TW2  

In this  case study,  a  T-shape section RC wall,  called TW2, was considered (see Figure 6).  The 

shear span ratio was 3/ wVLM , where M is the bending moment at the base of the wall, V the base 

shear force, and Lw the length of the wall in the direction of loading. The length of both the web and the 

flange of this wall was 1219 mm. The axial load ratio of the wall was 074.0/ '
gc AfN  where N  is the 

vertical load applied at the centroid of the section and gA  is the gross T-shape section area. The vertical 

load remained constant during the cyclic load reversals. The lateral and vertical load was applied through 

a steel beam that was placed at the top of the web in the direction of loading. The longitudinal and 

transverse reinforcing steel ratios, l  and t , respectively, were equal in each of the two segments of the  
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Figure 6. Case study 1 – TW2: Description of the specimen and TW2-9 beam-truss model. 
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wall. The steel ratios were equal to 0.45% in the web and 0.33% in the flange. The volumetric 

confinement ratio in the boundary elements, v , at the end of the web was equal to 1.31% in the plane 

and 0.61% out of the plane. The volumetric confinement ratio was 0.57% at the end of the flanges and 

0.43% at the intersection between the flange and web. The ratio between the spacing of the transverse 

reinforcement of the boundary elements, s , and longitudinal bar diameter, bd , was bds /  = 4.0 at the end 

of the web, 10.7 at the intersection, and 8.0 at the ends of the flange. 

Figure 7(a) shows the experimentally measured lateral force versus lateral displacement response 

of TW2. Positive displacement is in the direction in which the flange is in compression, and negative 

displacement is the direction in which the flange is in tension. The response was highly non-symmetric 

due to the non-symmetric shape of the section and distribution of the longitudinal reinforcement. The 

specimen was tested in both directions up to drift ratio %5.2 .  The drift  ratio  is  defined as  H/ , 

where  is the lateral displacement, and H is the height where the lateral load is applied. At the first cycle 

of peak drift ratio, %5.1 , spalling of the cover concrete was observed at the end of web at the base 

of the specimen. The specimen experienced lateral strength degradation during the second and third 

cycles, at peak drift ratio %5.2  for the direction of the response with the flange in tension due to 

extensive spalling and out-of-plane buckling of the confined core of the boundary region at the end of the 

web. The profile of tensile strains along the flange for the direction of loading where the flange is in 

tension  is  shown  in  Figure  8.  The  strain  profiles  were  more  uniform for  drift  ratios  up  to  1.5%,  while  

larger strains concentrate near the mid-length of the flange was observed for drift ratios of 2% and 2.5%. 

The experimentally measured compressive strain at the end of the web using a 229-mm-long 

displacement transducer was 0.52% and 1.04% at  = 1.0% and 1.5%, respectively. 

Three numerical models were developed for this case study. The first two were beam-truss 

models (BTM), shown in Figures 6 and 9, respectively, while the third was a model using only fiber-

section Euler Bernoulli beam elements, referred to as the “beam model” from now on. To investigate the 

effect of mesh refinement on the computed response, the two BTMs differed in the number of elements 

used. As shown in Figure 6(b), the first BTM, termed TW2-9, incorporated five lines of vertical beams in 

each of the web and the flange; thus, it had 9 nodes at its base. Horizontal beams were used every 232 

mm in both the web and the flange, resulting in diagonal trusses with angles ranging from 40° to 47°, see 

Figure 6(e) and (f). The tables in Figure 6 list the areas used in the truss elements. An elastic beam was 

used at the top of the model through which the lateral displacements were imposed. The second BTM, 

termed TW2-17 and shown in Figure 9, used 17 vertical lines of beam elements to represent the entire T-

section, resulting in almost two times finer mesh than this of TW2-9 with angles of diagonals ranging 

between 41° and 47°. 
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Figure 7. Case Study 1 – TW2: (a) Comparison of measured and computed response using the TW2-9 

model; (b) Comparison of experimental and computed response from the TW2-17 model; (c) Comparison 

of computed response using the TW2-9 and TW2-17 models; and (d) Comparison of computed response 

using TW2-9 and TW2-17b models with the latter not accounting for size effects. 

 

Figure 7(a) compares the experimentally measured and numerically computed response using the 

TW2-9 model. The numerical model computed the force-displacement response very satisfactorily. 

Compared to the measured experimental values, the computed peak lateral strength was in excellent 

agreement for the positive displacement response, and 1% smaller for negative displacement response. 

The model overestimates the lateral strength for positive displacement for drift ratios up to 1.5%. This is 

mainly due to the overlap of vertical and diagonal areas of concrete in this model. This was also observed 

for small drift ratios corresponding to small deformations in the 2D models of planar walls of Panagiotou 

et al. (2012). The computed lateral strength at %0.1  exceeds the experimentally measured response 

by 13%. The overestimation of lateral strength was 6% at %5.1 . The difference between the 
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computed and experimentally measured lateral strength was less than 6% for drift ratios larger than 1.5%. 

TW2-9 computed crushing of the unconfined concrete in the vertical direction at the end of the web in the 

first cycle with peak drift ratio %0.2 , with 7% strength degradation computed at %5.2  . This 

model did not account for buckling, which was the predominant mode of failure of this wall. The peak 

diagonal compressive strain of the web computed for negative displacement was 0.3%, measured in 

element e1 shown in Figure 6(d). This was in good agreement with the observed response in the 

experiment where no crushing of the diagonal compression field was observed. The comparison of the 

computed responses using the TW2-9 and TW2-17 models is presented in the Effect of Mesh Refinement 

section. 
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Figure 8. Case Study 1 – TW2: Comparison of measured and computed steel tensile strains along the base 

of the flange for drift ratios (a) 1.0%; (b) 1.5%; (c) 2.0%; and (d) 2.5%. 
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Figure 9. Case Study 1 – TW2: Description of the specimen and TW2-17 beam-truss model. 
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Figure 8 compares the experimentally measured and numerically computed steel tensile strain 

profiles along the flange near its base. Strain gauges attached on the reinforcing steel bars 51 mm above 

the base were used to record tensile strains. The numerically computed strains at the bottom integration 

point correspond to an average strain over 232 mm. For %5.1 , the computed strains were in good 

agreement with the measured strain profile. For %0.2 , the computed strains using TW2-9 were in 

good agreement at the ends of the flange, but there was more than 50% underestimation of the tensile 

strains at the middle of the flange. The numerically computed compressive strain at the end of the web for 

TW2-9 was -0.43%, and -0.72% at %0.1  and %5.1 , respectively, and were in good agreement with 

the experimentally measured strains of -0.52% and -1.04%, respectively. The computed strain does not 

account for the effects of bond slip. The differences in computed strain profile between the coarser-mesh 

TW2-9 model and the finer-mesh TW2-17 model are discussed in the Effect of Mesh Refinement section. 

Figure 10(a) shows the comparison between the experimentally measured response and the 

computed response using the beam model, TW2-B2ip, which had elements of length equal to that of the 

vertical elements of the BTM TW2-9 and used two integration points per element. The beam model 

resulted in poor prediction of the response for negative displacement and overestimated the strength at 

%0.1  by 35%. In addition, the calculated peak lateral strength occurred at %0.1  and was 6.7% 

larger than the experimentally measured peak strength, which occurred at %5.2 . This was due to the 

uniform strain along the flange imposed by the plane-section-remain-plane assumption in the beam 

elements. Compared to the experimental response, the computed response showed a sudden loss of 

strength in the first cycle at peak drift ratio %0.2 , which was due to the higher contribution of flange 

in tension, resulting in a significantly larger compression force at the end of the web and crushing of the 

concrete. In the case of flange in compression, the computed response was in better agreement with the 

measured response in terms of lateral strength, but it computed higher unloading stiffness. 
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Figure 10. Case Study 1 – TW2: (a) Comparison of measured and computed, using beam model TW2-

B2ip, responses; and (b) Comparison of monotonic responses of the beam models TW2-B2ip, TW2-B4ip, 

and TW2-B4ipNS, which did not account for size effects. 

 

Case Study 2 – Beyer et al. (2008a) – Specimen TUB  

The test specimen of Case Study 2, called TUB, was a U-shape section wall with wVLM /  = 2.8 

in the E-W direction and 2.6 in the N-S direction, see Figure 11. The length of this wall in the N-S and E-

W direction was 1050 and 1300 mm, respectively, and the axial load ratio was 04.0/ '
gc AfN . The 

axial load remained constant during the cyclic load reversals and was applied through a steel beam 

parallel to the EW direction, passing from the centroid of the section. To apply the lateral load, a 300-

mm-thick collar was used at the top of the wall with the actuators attached to it. Three actuators were used 

for the experimental test, one in the E-W direction and two in the N-S direction. In all parts of the wall, 

the reinforcing steel ratios l  and t  were equal to 0.38% and 0.45%, respectively. Boundary elements 

were used at the ends of each of the three segments of the wall, see Figure 11(c). For the boundary 

elements at the south end of the wall, the volumetric confinement, v , was equal to 1.66%, and 0.85% in 

the N-S and E-W direction, respectively.  At the intersections of the wall segments, v  was equal to 

1.46%. The ratio bds / was equal to 4.2.   

The experimentally measured force-displacement response of TUB is shown in Figure 12. At 

each level of lateral displacement, the specimen was tested with one cycle in each of the E-W, N-S, and 

diagonal (SW – NE) directions as well as a sweep cycle resembling an hourglass shape in top view (Beyer 

et al. 2008). The recorded force-displacement responses are plotted separately in each of the E-W and N-S 
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Figure 11. Case Study 2 – TUB: Description of specimen and TUB-11 beam-truss model. 
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directions for each type of loading cycle. The specimen was tested up to drift ratios of %3  in all 

directions. The response of the E-W cycles was nearly symmetric, while the response of the N-S cycles 

was slightly asymmetric as were the responses in the diagonal and sweep cycles. Spalling of the boundary 

elements began at a drift ratio of 1% for loading in the N-S direction and spread to the regions without 

boundary elements. The specimen failed due to crushing of concrete compression diagonals at about 260 

mm from the base of the segment of the wall parallel to the E-W direction during the sweep cycle at peak 

drift ratio %3 . The peak lateral force in the E-W direction was '4.5 cw fA , where wA  is the total 

cross-sectional area of segment of the wall parallel to the EW direction, and '
cf  in psi. This is only 54% 

of the peak shear force that ACI (2011) allows. 

For this case study, two numerical models were developed: a BTM and a beam model. Figure 11 

shows the BTM, termed TUB-11, with four lines of vertical elements for each of the segments of the wall 

in the N-S direction and five lines for the third segment resulting in eleven lines of vertical elements in 

total. The section areas of the vertical elements are shown in Figure 11(d). The horizontal beams were 

placed every 265 mm, resulting in g ranging from 41° to 44°. The collar was also modeled with a BTM, 

see Figure 11(b). The horizontal elements were positioned to allow the application of lateral load at the 

same height as in the experiment. An elastic beam was placed at the top of the collar to model the steel 

spreader beam, see Figure 11(d). 

For the N-S and E-W cycles, the computed response using TUB-11 was in excellent agreement 

with the measured response, see Figure 12. The computed response overestimated the peak lateral force 

by 8.3% for the N-S cycles and underestimated by 2.7% for the E-W cycles. In the diagonal and sweep 

cycles, the peak lateral forces in the N-S direction were overestimated by 20% and 16%, respectively. The 

peak lateral forces in the E-W direction were underestimated by 6.4% and 2%, respectively. Overall, the 

cyclic computed response was in very good agreement with the experimentally measured for all cycles. In 

very good agreement with the experimentally observed diagonal crushing, the model computed crushing 

of the concrete 265 mm from the base at element e2, see Figure 11 (b), in the segment of the wall parallel 

to the EW direction during the sweep cycle at drift ratio %3 .  

However, the beam model overestimated the peak lateral force in the E-W direction by 22%, 

44%, and 24% during the E-W, diagonal, and sweep cycles, respectively, as shown in Figure 13. The 

model did not compute significant softening of confined concrete. The significant strength degradation 

observed at almost every cycle of the sweep cycles was due to the change of angle of loading during the 

sweep cycles. Due to its inherent inability to compute the stress and strain state in horizontal and diagonal 

directions, this model was not able to compute crushing of the concrete in the diagonal direction, which 

was the failure mode of this specimen.



23 
 

-500

-250

0

250

500

NS displacement (mm)

N
S 

La
te

ra
l f

or
ce

 (k
N

)
(2

.9
5 

m
 fr

om
 b

as
e)

-500

-250

0

250

500

NS displacement (mm)
-500

-250

0

250

500

NS displacement (mm)
-500

-250

0

250

500

NS displacement (mm)

-100 -50 0 50 100
-500

-250

0

250

500

EW
 L

at
er

al
 fo

rc
e 

(k
N

)
(3

.3
5 

m
 fr

om
 b

as
e)

EW displacement (mm)
-100 -50 0 50 100

-500

-250

0

250

500

EW displacement (mm)
-100 -50 0 50 100

-500

-250

0

250

500

EW displacement (mm)
-100 -50 0 50 100

-500

-250

0

250

500

EW displacement (mm)

-3 -2 -1 0 1 2 3
Drift ratio (%)

NS cycles

-3 -2 -1 0 1 2 3
Drift ratio (%)

EW cycles

-3 -2 -1 0 1 2 3
Drift ratio (%)

DIAG cycles

-3 -2 -1 0 1 2 3
Drift ratio (%)

SWEEP cycles

 

 
experimental
cyclic
monotonic
diagonal softening
diagonal crushing

 
Figure 12. Case Study 2 – TUB: Comparison of measured and computed response using the TUB-11 beam-truss model. 
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Figure 13. Case Study 2 – TUB: Comparison of measured and computed response using fiber-section beam model.
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Case Study 3 – Oesterle et al. (1976) – Specimen F1 

Case study 3 considered the I-shape section wall with 4.2/ wVLM  shown in Figure 14(a) and 

(b). The two parallel segments of this wall (termed flanges) were 914 mm long, while the third segment 

perpendicular to them (termed the web) was 1905 mm long. The specimen was subjected to uni-axial load 

reversals in the direction of the web. A 203-mm-thick slab was cast at the top of the specimen. No axial 

load was applied on the specimen. Two actuators applied lateral load at 4572mm from the base of the 

wall, passing through the centroid of the web. The longitudinal steel ratio in the flanges and the web was 

3.9%, and 0.24%, respectively. The transverse steel ratio was 0.63% both in the web and the flange. The 

volumetric ratio of confinement reinforcement of the flange was 0.28% and 1.12% in the direction 

parallel and perpendicular to the flange, respectively. The ratio between the spacing of the confinement 

transverse reinforcement in the flange s  and the longitudinal bar diameter bd  was bds /  = 7.0. 

Figure 15(a) shows the experimentally measured force-displacement response of F1. The 

specimen was tested up to %2.2  with 3 cycles at each level of displacement. Spalling in the diagonal 

direction was first observed during the second cycle at 1.1% peak drift ratio. The specimen experienced 

significant loss of the lateral strength during the first cycle of 2.2% drift ratio due to crushing of concrete 

of the web in the diagonal direction at 300 mm from the base of the wall. The peak lateral strength of this 

specimen was '6.8 cw fA , where wA  is the total section area of the web. 

Four numerical models were developed. Three of them were beam-truss models, and one is a 

beam model.  The  first  two  BTMs had  eleven  lines  of  vertical  beams,  see  Figure  14(c).  The  first  BTM 

(termed F1-11-45) had horizontal beams every 298 mm, resulting in g ranging from 44° to 46°, see 

Figure 14(d). The second BTM (termed F1-11-45) had horizontal beams every 373 mm, resulting in g 

around 50°, see Figure 14(h). The third BTM (termed F1-19-45) had almost two times more refined mesh 

than that of F1-11-45, and had nineteen lines of vertical beams and horizontal beams every 179 mm, 

resulting in g around 45°, as shown in Figure 16. The top slab of each BTM was modeled with an elastic 

beam element.  

Figure 15(a) compares the experimentally measured and numerically computed response using 

the F1-11-45 model. The computed response was in very good agreement with the experimental response 

in terms of peak strength and the general hysteretic response. The BTM underestimated the peak lateral 

strength by 5%. The model, in very good agreement to the experimentally observed response, computed 

diagonal crushing of concrete at the first cycle with peak drift ratio %2.2  in the diagonal truss 

element, e3, at the base of the web, shown in Figure 14(d). Following the crushing of diagonal, the beam-

truss model does not show as much lateral strength degradation as shown in the experimental response. 

The comparison of response with the BTM F1-11-50 is presented in the section Effect of the Angle of the  
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Figure 14. Case Study 3 – F1: Description of specimen and beam-truss models F1-11-45 and F1-11-50. 
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Figure 15. Case Study 3 – F1: Comparison of experimental and computed responses using (a) F1-11-45; 

(b) F1-11-50; (c) F1-11-45-4ip; (d) F1-19-45; and (e) comparison between computed responses using F1-

11-50 and F1-11-50NS.
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Diagonal Truss Elements of the discussion. Comparison of the computed responses using the F1-11-45 

and F1-19-45 models is presented in the Effect of Mesh Refinement section. Figure 17 shows the 

experimentally measured response using strain gauges attached on the steel bars and computed strains, 

using  three  BTMS,  versus  lateral  force.  The  response  was  plotted  up  to  the  first  cycle  of  %2.2  

(where experimentally measured strain data exist). The locations of the strain gauges are shown in Figure 

14(d) for the F1-11-45 model. The strains computed from this model were in fair agreement with the 

measured  longitudinal  and  transverse  strains  at  the  base.  For  the  %2.2  cycles, the maximum 

computed strains at the locations of sg1, sg2, and sg3 were 55% smaller,  61% smaller,  and 10% larger  

than the measured strains, respectively. This was partially because the model does not account for bond 

slip and because the computed strains were smeared over the length of the element and did not account 

for effects of strain localization that may have occurred in the experimental response. The effective length 

over which the strains were computed was 149 mm for sg1 and sg2, and 153 mm for sg3. The effect of 

using four integration points for the computed strain values is discussed in the Effect of Number of 

Integration Points section while the strains computed using the F1-19-45 model is discussed in the 

section Effect of Mesh Refinement. 

 The comparison of the experimentally measured and numerically computed responses using a 

beam model, termed F1-B2ip with elements of length equal to that of the vertical elements of BTM F1-

11-45, is presented in Figure 18(a). The model overestimated the peak strength of the specimen by 20%. 

The computed hysteretic behavior demonstrated that the shape of the computed response was governed by 

the  large  amount  of  reinforcing  steel  in  the  flanges  and  their  hysteretic  behavior.  This  resulted  in  

significantly higher hysteretic energy dissipation per cycle than the measured response. The beam model, 

due to its fundamental limitation, did not calculate the inelastic strains of the horizontal reinforcement as 

well as the crushing of the concrete diagonals, which was the governing failure mode of this specimen. 
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Figure 16. Case Study 3 – F1: Description of refined beam-truss model F1-19-45. 
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Figure 17. Case Study 3 – F1: Comparison of measured and computed lateral force versus strain using models F1-11-45, F1-11-45-4ip, and F1-19-

45. The locations of all strain gauges sg1, sg2, sg3 are shown in Figure 14 and Figure 16 for BTMs F1-11-45 and F1-19-45 respectively. 
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Figure 18. Case Study 3 – F1: (a) Comparison of measured and computed response using beam model F1-

B2ip; and (b) Comparison of monotonic response using beam models F1-B2ip and F1-B4ip. 

 

 

Discussion 
Comparison of the experimentally measured and numerically computed responses using the 

beam-truss model developed in this study demonstrated that the latter computes very satisfactorily the 

force-displacement of the three non-planar walls considered subjected to uni- and multi-axial cyclic load 

reversals. By considering the horizontal stress and strain field of steel and concrete in the horizontal 

directions and coupling the effect of normal strain to the compressive behavior of diagonal concrete in 

compression, the model captured the important effect of flexure-shear interaction in Case Studies 2 and 3, 

where the experimentally observed failure mode was due to diagonal crushing of concrete.  The model 

also fairly computed strains in the vertical as well as the horizontal directions compared to the 

experimentally measured response.  

For the nonlinear fiber-section Euler-Bernoulli beam models, the plane-sections-remain-plane 

assumption resulted in significant overestimation of the stiffness and strength of non-planar walls. Due to 

its inherent limitation to calculate strains in any direction other than the vertical, these models were not 

able to capture the effects of FSI or the failure mode of the Case Studies 2 and 3 specimens. The 

following sections investigate the effect of some parameters of the numerical models, especially the 

beam-truss models presented. 
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Effect of Mesh Refinement 

The effect of mesh refinement was investigated for Case Studies 1 and 3. For each model 

developed in this study, Table 2 summarizes the range of the ratio of length of different elements to the 

length of the walls, Lr , as well as the ratio of the length of the elements to the height of the walls, Hr . 

The ratio Lr  ranged between 9% and 38.1% while Hr  was between 3.3% and 13.6%.  

Figure 7(c) compares the computed force-displacement response of the TW2 specimen using the 

TW2-9 and TW2-17 models. The two models computed similar peak strength at each cycle. At 1.0% and 

1.5% drift ratios, the lateral strength of model TW2-17 is 1.2% and 1.3% smaller than that of TW2-9, 

respectively, which corresponds to a 4% and 11% overestimation of the experimental results. The overall 

peak lateral strength of model TW2-17 is 0.3% smaller than that of TW2-9. Both models computed the 

first crushing of the vertical concrete at the end of the web and during the same cycle at similar 

displacements. The TW2-17 model, with the finer mesh, computed a more pinched response. 

Figure 8 compares the experimentally measured steel strains at the bottom of the flange with the 

computed strains using the TW2-9 and TW2-17 models. For both of the models, the computed strains 

were these computed at the integration point at the base of the element. Both models used two integration 

points per element; thus the effective length of each integration point in TW2-17 was half of the 

corresponding of TW2-9 model. Figure 8 also shows the average strain over two integration points of 

TW2-17, so that the length over which the strains were measured was similar to that in TW2-9. For 

%0.2 , the strains profiles computed by TW2-9 and TW2-17, which took the average strain of the 

two  integration  points  for  the  second  model,  were  similar.  As  expected,  the  strain  profile  of  TW2-17  

computed at the base integration point was larger than the corresponding strain profile using TW2-9. The 

computed strain at the base integration point of TW2-17 exceeded the corresponding strain of TW2-9 by 

about 44% for %0.2  and 51% for %5.2  near the mid-length of the flange, where peak strains 

were computed at all drift ratios. The strains near the mid-length of the flange computed at the base 

integration point base on TW2-17 were in better agreement with the experimentally measured response. 

At 2% and 2.5% drift ratio, the peak computed strain was 24% and 43% smaller than the experimentally 

measured response, respectively.   

For Case Study 3, Figure 15(a) and (d) show the comparison of the experimentally measured and 

computed response using models F1-11-45 and F1-19-45 BTMs, respectively. Both models result in good 

agreement with the experimental response, but F1-19-45 computes significant softening of the diagonal 

concrete of the specimen without crushing. The peak lateral strength computed by the F1-19-45 model is 

3.3% larger than that computed by the F1-11-45 model. The computed strains using model F1-19-45 are 

shown in Figure 16. Compared to F1-11-45, the F1-19-45 model results in slightly better agreement of the 
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strains with the peak strain measured. For the gauges sg1, sg2, and sg3, the strains computed by F1-19-45 

are 54%, 56%, and 42% smaller than the experimentally measured strains. 

 

Table 2. List of ranges of ratio of element length to wall length Lr  and to wall height Hr . 

 Lr  Hr  
 Min max Min max 

TW2-9 18.8% 30.8% 6.3% 10.3% 

TW2-17 9.9% 16.5% 3.3% 5.5% 

TUB-11 19.7% 38.1% 8.0% 13.6% 

F1-11-45 15.3% 22.4% 6.5% 9.5% 

F1-19-45 9.0% 13.7% 3.8% 5.9% 

 

 

Mesh Objectivity  

As discussed in section Mesh Size Effects, the softening branches of the concrete compressive 

stress-strain relationship depend on the length of the elements and the number of integration points.  

Figure 7(d) compares the computed response of the specimen of Case Study 1 using the TW2-9 and 

TW2-17b models. The TW2-17b model had a mesh identical to TW2-17 but used stress-strain 

relationships for concrete in compression identical to these used in TW2-9 model. The TW2-17b model 

computed crushing of the vertical concrete at a displacement level 21% smaller than that computed by the 

TW2-9 and TW2-17 models. The TW2-17b model also resulted in a 27% decrease of strength after the 

computation of crushing as compared to 7% computed by TW2-9; The TW2-17b model computed 2.2 

times greater strength degradation following the first vertical crushing compared to TW2-9. The peak 

computed vertical compressive strains, at the end of the web, computed with TW2-9, TW2-17, and TW2-

17b were 5.2%, 10.4%, and 17.7%, respectively.  

The effect of not considering mesh size effects was also investigated for the beam model of 

specimen TW2 of Case Study 1. Figure 10(b) compares the response of the beam models using two and 

four integration points, termed TW2-B2ip and TW2-B4ip, respectively. The stress-strain relationships of 

these two models were adjusted for size effects. A second model with four integration points was 

considered (termed TW2-B4ip-2) using the same stress-strain relationships used in the model with two 

integration points. As expected, the model TW2-B4ip-2 computed significant strength degradation at 2.3 
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times smaller drift ratio than the other two models.  When the size effects are considered, the TW2-B2ip 

and TW2-B4ip models resulted in similar responses.  

Figure 15(e) compares the computed monotonic response of the specimen of Case Study 3 using 

the F1-11-50 and F1-11-50NS models. Here, the F1-11-50NS model had a mesh identical to that of F1-

11-50, but uses stress-strain relationships for concrete without accounting for size effects in the concrete. 

Thus it used the stress-strain relationships corresponding to an element with length of LR = 600mm. As 

expected, the F1-11-50NS model computed initiation of strength degradation much earlier than F1-11-50 

at drift ratio equal to 1.2%, as well as much more brittle behavior. Model F1-11-50NS computed 41% 

loss of strength at 1.5% drift, which is not observed in the F1-11-50 model. 

 

Effect of the Angle of the Diagonal Truss Elements 

For Case Study 3, models F1-11-45 and F1-11-50 had diagonal truss angles of about 45° and 50°, 

respectively. Figure 15(a) and (b) compares the computed response using these two models. The response 

of F1-11-50 model computed 3.4% smaller peak strength than the F1-11-45 model. The F1-11-50 model 

computed the first instance of web crushing during the first cycle at peak drift ratio of 2.2% at 

%28.1 , while the F1-11-45 model computed diagonal crushing during the first cycle at peak drift 

ratio of 2.2% at %0.2  which is in better agreement with the instance of web crushing in the 

experimental response. The F1-11-50 model computed 38% strength degradation after computation of the 

first crushing of the diagonal trusses, which is in better agreement with the experimentally measured 

response than the 8% computed by the F1-11-45 model. Similar observations that increase of the angle of 

the diagonals resulted in softening of the diagonals at smaller displacement level as well as more strength 

degradation was made in the 2D model of Panagiotou et al. (2012). 

 

Effect of Tension Strength of the Diagonal Truss Elements 

In all case studies presented so far, zero tensile strength was used in the concrete material models 

of the diagonal truss elements. Figure 19 compares the monotonic computed response for the TW2-9 and 

F1-11-45 models of Case Studies 1 and 3, respectively, with and without tension strength in the diagonal 

elements. After tensile cracking, the concrete stress reduces linearly with increase of strain and becomes 

zero at strain )/600(2 Lcr , where cr the cracking strain of the concrete in tension and L is the diagonal 

element of length in mm. Both cases demonstrate that considering the tensile strength in the diagonal 

elements increased the initial stiffness by less than 40% for small lateral deformations corresponding to 

drift ratios less than 0.25%. For drift ratios larger than 0.5%, the effect was negligible. 
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Figure 19. Effect of considering the tensile strength of the concrete diagonals in monotonic response: (a) 

Case Study 1 – TW2-9; and (b) Case Study 3 – F1-11-45. 

 

Effect of Number of Integration Points 

Figure 20 compares the monotonic computed force-displacement response of models TW2-9, 

TW2-17, and F1-11-45models using two or four integration points in the beam elements. The stress-strain 

relationship of concrete in each beam element was adjusted to account for the mesh size effect (as 

described in the Mesh Size Effect section). BTMs TW2-9-4ip, TW2-17-4ip, and F1-11-45-4ip with four 

integration points resulted in 5.6%, 8.1, and 7.2% larger peak strength, respectively, than the 

corresponding models with two integration points.  

Since a fine mesh was used in all models in this study, two integration points are suggested, 

resulting in faster computation and less problems in terms of numerical convergence. The error in 

accuracy by using two integration points is not an issue for the level of mesh refinement used. As also 

presented in Neuenhofer and Filippou (1997) when the number of integration points decreases the 

increase of error in accuracy of computation decreases significantly with increase of number of elements 

used to represent a component of specific length. Large number of integration points in the short-length 

beam elements may result in localization issues.  

Figure 17(c) compares the computed strain histories of Case Study 3 using the F1-11-45 model 

and the F1-11-45-4ip model that used four integration points in the beam elements. The strains shown 

were taken from the integration point closest to the base for longitudinal strains, and the integration point 

closest to the center of the web for transverse strains. As expected, the maximum computed strains at the 

location of gauges sg1, sg2, and average of sg3 and sg4 at the first cycle of 2.2% drift ratio using the F1-

11-45-4ip model were 19.6%, 15.7%, and 49.1% larger than these of the F1-11-45 model because of the 

smaller effective lengths used in the former. 
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The effect of number of integration points for the fiber-section beam models was also 

investigated for specimen TW2, see Figure 10(b). The effect of number of integration points was not as 

important as was found in the beam-truss model. The four integration point model resulted in 2.3% larger 

peak strength and slightly larger deformations at initiation of the sudden strength degradation. Shown in 

Figure 18(b), the number of integration points had a negligible effect in the computed response for the 

beam model of Case Study 3.  

 

 
Figure 20. Effect of number of integration points in beam elements of the beam-truss models for 

monotonic response: (a) Case Study 1 – TW2-9; (b) TW2-17; and (c) Case Study 3 – F1-11-45. 
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Figure 21. Effect of using truss elements, instead of vertical and horizontal beams, only in the web, for 

specimen TW2 of Case Study 1: (a) TW2-9 monotonic response; (b) TW2-17 monotonic response; (c) 

TW2-9 cyclic response; and (d) TW2-17 cyclic response. 

 

Effect of Flexural Rigidity of Beams  

The effect of using truss elements instead of beams for some of the vertical and horizontal 

elements was investigated for BTMs TW2-9 and TW2-17 of Case Study 1. A variation of the beam-truss 

models for TW2-9 and TW2-17 was considered, termed TW2-9-truss and TW2-17-truss, respectively, 

using truss elements for the vertical and horizontal elements in the web. Both models retained the 

horizontal and vertical beams in the flange to capture the out-of-plane contribution of the flange. 

Figure 21 shows the computed monotonic and cyclic response for TW2-9-truss and TW2-17-truss 

compared to the experimental results and to the response of the original BTMs. Comparing Figure 21(a) 

and (b), it can be seen that using truss elements instead of beam elements in the web had a greater effect 

on the model with coarser mesh, which was expected. Using vertical truss elements in the TW2-9-truss 
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model resulted in 3.6% and 12.1% smaller peak lateral strength compared to TW2-9 model for the 

positive and negative direction of the monotonic response, respectively. For the cyclic response, the 

corresponding reduction in lateral strength was 6.4%, and 7.6%, respectively. The TW2-17-truss model 

resulted in 3.3% and 2.5% smaller peak lateral strength compared to the TW2-17 model for the positive 

and negative direction of monotonic response, respectively. The effect of using vertical truss elements in 

TW2-17 was negligible for the cyclic response.  

 

 

Conclusions 
This  report  described  a  three-dimensional  (3D)  beam-truss  model  (BTM)  for  non-planar  RC  

walls. The model used nonlinear fiber section Euler-Bernoulli beam-column elements in the vertical and 

horizontal directions to represent concrete and reinforcing steel in the corresponding directions, and 

nonlinear truss elements to represent the diagonal field of concrete in compression. The model accounted 

well for the effects of flexure-shear interaction by computing the stresses and strains of steel and concrete 

in the vertical, horizontal, and diagonal directions, and by accounting for the effect of normal tensile 

strain on the compressive behavior of the concrete diagonals. The model also accounted for mesh size 

effects by having the softening branches of the concrete stress-strain material models dependent on the 

length of the elements. The efficacy of the model was investigated comparing the computed response 

using the BTM with the experimentally measured response of three non-planar RC walls subjected to 

cyclic loading having a T- U-, and I-shape section, respectively. The experimentally observed failure 

mode of the latter two walls was due to diagonal web crushing, while the contribution of the flange was 

important for the response of the first wall. The response of the three walls using existing nonlinear fiber-

section Euler-Bernoulli beam models was also computed. The following conclusions were drawn: 

1. The BTM computed very satisfactorily the cyclic force-displacement response of the three 

specimens. The difference between the computed and experimentally measured peak lateral strength was 

less than 1%, 3%, and 5% for the specimens of Case Studies 1, 2, and 3, respectively. The model in very 

good agreement with the experimental response, computed crushing of the diagonal concrete of the U- 

and I-shape section walls of Case Studies 2 and 3, respectively, for cycles with peak drift ratios equal to 

3% and 2.2%, respectively. 

2. The TW2-17 and F1-19-45 models computed strain histories that were in satisfactory agreement 

with the experimentally measured response. For the T-shape section wall, the computed and measured 

strains along the flange were compared and the TW2-17 model computed strains less than 24% different 

than the measured response for drift ratios up to 2.0%. At 2.5% drift ratio, the computed strain in the 

middle of the flange was 43% smaller than the experimentally measured response. For the I-shape section 



39 
 

wall, the F1-19-45 model computed strains in the vertical and horizontal directions, which differed less 

than 56%, and 42%, respectively, than the experimentally measured response at the first cycle with peak 

drift ratio 2.2%. A specific level of mesh refinement was required to achieve this level of accuracy in the 

computation of strains. The ratios of element lengths to the length of the wall, Lr , ranged between 9.9% 

and 16.5% for TW2-17 and between 9.0% and 13.7% for F1-19-45. The ratios of element lengths to the 

height of the wall, Hr , ranged between 3.3% and 5.5% for TW2-17 and between 3.8% and 5.9% for F1-

19-45. The lower level agreement between measured and computed strains, than the level of agreement 

observed for the force-displacement response, it was partially due to the effect of bond slip which was not 

considered in the model.  

3. For the T-shape section wall, the beam-truss models resulted in strength overestimation for drift 

ratios up to 1.5% for the direction of the response with flange in tension. The overestimation was equal to 

13% and  6% at  drift  ratios  1.0% and  1.5%,  respectively.  This  is  mainly  due  to  the  overlap  of  areas  of  

concrete in the vertical, horizontal, and diagonal elements of this model. Overestimation of strength and 

stiffness  was also observed in the other  two cases studies,  but  it  was negligible  (less  than 5%) for  drift  

ratios larger than 0.5%.  

4. Mesh size effects were important for the computation of the force-displacement and strain 

responses when softening of materials was a factor. For the T-shape section wall of Case Study 1, refining 

the mesh by two times without changing the stress-strain relation of concrete resulted in computation of 

diagonal web crushing at a displacement 21% smaller than computed by the coarse mesh and 2.2 times 

more abrupt strength degradation. 

5. The effect of magnitude of the angle of the diagonals, considered only for Case Study 3, affected 

the displacement level at which softening and crushing of the concrete diagonals occurred as well as on 

the level of brittleness of the force-displacement response. The angles of the diagonals of the models 

considered in the three Case Studies ranged between 41o and 50o. 

6. Use of fiber-section Euler Bernoulli beam models resulted in 6.7%, 22%, and 20% larger lateral 

strength than the experimentally measured response for Case Studies 1, 2, and 3, respectively. Due to the 

inherent limitation to compute strains and consider equilibrium in the horizontal and diagonal directions, 

this model could not compute the failure mode of diagonal concrete crushing that occurred in the U- and 

I-shape sections walls of Case Studies 2 and 3. For the T-shape section wall, this model resulted in 35% 

overestimation of strength at 1.0% drift ratio for the direction of the response with the flange in tension 

and computed initiation of lateral strength degradation at a 50% smaller drift ratio than what is 

experimentally observed. Significant differences were observed between experimentally measured and 

computed cyclic responses at all displacement levels, especially for the T- and I-shape section walls. 



40 
 

References 
1. American Concrete Institute (ACI). (2011). “Building code requirements for structural concrete,” ACI 

318-11, Farmington Hills, Mich., 503 pp. 

2. Balkaya, C., and Kalkan, E. (2004). “Three-dimensional effects on openings of laterally loaded pierced 

shear walls.” Journal of Structural Engineering, 130(10), 1506-1514. 

3. Barbosa, A. R. (2011). “Simplified vector-valued probabilistic seismic hazard analysis and 

probabilistic seismic demand analysis: application to the 13-story NEHRP reinforced concrete frame-wall 

building design example.” Ph.D. Thesis, Department of Structural Engineering, University of California, 

San Diego.  

4. Barzegar, F., and Maddipudi, S. (1997). “Three-dimensional modeling of concrete structures. II: 

Reinforced concrete.” Journal of Structural Engineering, 123 (10), 1347–1356. 

5. Bazant, Z.P. and Ceolin L. (1979). “Blunt crack propagation in finite element analysis.” Journal of the 

Engineering Mechanics Division, ASCE, 105(2), 297-315. 

6. Bazant, Z. P. and Planas, J. (1998). “Fracture and size effect in concrete and other quasibrittle 

materials.” Boca Raton, FL: CRC Press. 

7. Beyer,  K.,  Dazio,  A.,  and  Priestley,  M.  J.  N.  (2008a).  “Quasi-static  cyclic  tests  of  two  U-shaped  

Reinforced Concrete Walls.” Journal of Earthquake Engineering, 12(7), 1023-1053. 

8. Beyer, K., Dazio, A., and Priestley, M. J. N. (2008b). “Inelastic Wide-Column Models for U-Shaped 

Reinforced Concrete Walls.” Journal of Earthquake Engineering, 12(S1), 1-33. 

9. Cervenka, V., and Gerstle, K. H. (1971). “Inelastic analysis of reinforced concrete panels: theory.” 

IABSE Publications, 31-II, 31-45.  

10. Cervenka,  V.,  and  Gerstle,  K.  H.  (1972).  “Inelastic  analysis  of  reinforced  concrete  panels:  

experimental verification and application.” IABSE Publications, 32, 25-39.  

11. Clough, R. W., King, I. P., and Wilson, E. L. (1964). “Structural analysis of multistory buildings.” 

Journal of the Structural Division, ASCE, 90(ST3), 19-34. 

12. Coleman, J. and Spacone, E. (2001). “Localization issues in force-based frame elements.” Journal of 

Structural Engineering, 127(11), 1422-1425. 

13. El-Tawil, S., Kuenzli, C. M., and Hassan, M. (2002). “Pushover of hybrid coupled walls. I: design 

and modeling.” Journal of Structural Engineering, 128(10), 1272-1281. 

14. Eligehausen, R., Genesio, G., Ožbolt, J., and Pampanin, S. (2009). “3D analysis of seismic response 

of RC beam-column exterior joints before and after retrofit.” In Alexander et al (eds) Concrete Repair, 

Rehabilitation and Retrofitting II. London: Taylor & Francis Group. 



41 
 

15. Filippou, F. C., Popov, E. P., and Bertero, V. V. (1983). "Effects of bond deterioration on hysteretic 

behavior of reinforced concrete joints". Report EERC 83-19, Earthquake Engineering Research Center, 

University of California, Berkeley. 

16. Giberson, M. F. (1969). “Two Nonlinear Beams with Definitions of Ductility.” Journal of the 

Structural Division, ASCE, 95(2), 137-157. 

17. Hassan, M. and El-Tawil, S. (2003). “Tension flange effective width in reinforced concrete shear 

walls.” ACI Structural Journal, 100(3), 349-356. 

18. Hidalgo,  P.  A.,  Jordan,  R.  M.,  and  Martinez,  M.  P.  (2002).  “An  analytical  model  to  predict  the  

inelastic seismic behavior of shear-wall, reinforced concrete structures.” Engineering Structures, 24 (1), 

85-98. 

19. Hoshikuma,  J.,  Kawashima,  K.,  Nagaya,  K.,  and  Taylor,  A.  W.  (1997).  “Stress-strain  model  for  

confined reinforced concrete in bridge piers.” Journal of Structural Engineering, 123(5), 624-633.  

20. Kang, Y. J. (1977). “Nonlinear geometric, material and time dependent analysis of reinforced and 

prestressed concrete frames.” UC-SESM Report No. 77-1, University of California, Berkeley. 

21. Koutromanos, I. and Shing, P. B. (2012). “A cohesive crack model to simulate cyclic response of 

concrete and masonry structures.” ACI Structural and Materials Journal. Accepted for publication. 

22. Kwak, H. G. and Kim D. Y. (2004). “Material nonlinear analysis of RC shear walls subject to cyclic 

loadings.” Engineering Structures, 26(11), 1426-1436. 

23. Lykidis, G. C., and Spiliopoulos, K. V. (2008). “3D solid finite-element analysis of cyclically loaded 

RC structures allowing embedded reinforcement slippage.” Journal of Structural Engineering, 134(4), 

629-638.  

24. MacLeod, I. A. (1973) “Analysis of shear wall buildings by the frame method.” Proceedings of the 

Institution of Civil Engineers, 55(2), 593-603. 

25. Maekawa, K., Pimanmas, A., and Okamura H. (2003). “Nonlinear mechanics of reinforced 

concrete.” New York, NY: Spon Press. 721 pp.  

26. Mander, J. B., Priestley, M. J. N., and Park, R. (1988). “Theoretical stress-strain model for confined 

concrete,” Journal of Structural Engineering, 114(8), 1804-1826. 

27. Martinelli, L. (2008). “Modeling shear–flexure interaction in reinforced concrete elements subject to 

cyclic lateral loading.” ACI Structural Journal, 105(6), 675-684. 

28. Mazars, J., Kotronis, P., Ragueneau, F., and Casaux G. (2006) “Using multifiber beams to account 

for shear and torsion. Applications to concrete structural elements.” Computer Methods in Applied 

Mechanics and Engineering, 195(52), 7264-7281. 

29. McKenna, F., Fenves, G. L., Scott, M. H., and Jeremic, B. (2000). “Open system for earthquake 

engineering simulation.” <http://opensees.berkeley.edu> 



42 
 

30. Miki, T. and Niwa, J. (2004). “Nonlinear analysis of RC structural members using 3D lattice 

model,” Journal of Advanced Concrete Technology, 2 (3), 343-358.  

31. Milford, R.V. and Schnobrich, W. C. (1985) “The application of the rotating crack model to the 

analysis of reinforced concrete shells.” Computers & Structures, 20 (1-3), 225-234. 

32. Mosalam,  K.,  Mahin,  S.  A.,  and  Rojansky,  M.  (2003).  “Evaluation  of  seismic  performance  and  

retrofit of lightweight reinforced concrete shearwalls.” ACI Structural Journal, 100 (6), 1-11. 

33. Neuenhofer, A. and Filippou, F. C. (1997). “Evaluation of nonlinear frame finite-element 

models.” Journal of Structural Engineering, 123(7), 958–966. 

34. Neuenhofer, A. and Filippou, F. C. (1998). “Geometrically nonlinear flexibility-based frame finite 

element.” Journal of Structural Engineering, 124(6), 704-711. 

35. Oesterle, R. G., Fiorato, A. E., Johal, L. S., Carpenter, L. S., Russell, H. G., and Corley, W. G. 

(1976). “Earthquake-resistant structural walls - tests of isolated walls.” Report to the National Science 

Foundation, Construction Technology Laboratories, Portland Cement Association, Skokie, Illinois. 

36. Orakcal, K., Wallace, J. W., and Conte, J. P. (2004). “Nonlinear modeling and analysis of slender 

reinforced concrete walls.” ACI Structural Journal, 101(5), 455-465. 

37. Ozbolt, J., Li, Y.-J., and Kozar, I. (2001). “Microplane model for concrete with relaxed kinematic 

constraint.” International Journal of Solids and Structures, 38, 2683-2711 

38. Pagnoni, T., Slater, J., Ameur-Moussa, R., and Buyukozturk, O. (1992). “A nonlinear three-

dimensional analysis of reinforced concrete based on a bounding surface model.” Journal of Computers 

and Structures, 43(1), 1-12. 

39. Palermo, D., and Vecchio, F. J. (2002b). “Behavior of three-dimensional reinforced concrete shear 

walls.” ACI Structural Journal, 99(1), 81-89.  

40. Palermo, D. and Vecchio, F. J. (2007). “Simulation of cyclically loaded concrete structures based on 

the finite-element method.” Journal of Structural Engineering, 133(5), 728-738. 

41. Panagiotou, M., Restrepo, J.I., Schoettler, M., and Kim G. (2012). "Nonlinear cyclic truss model for 

reinforced concrete walls." ACI Structural Journal, 109(2), 205-214. 

42. Park, H., and Eom, T. (2007). “Truss model for nonlinear analysis of RC members subject to cyclic 

loading.” Journal of Structural Engineering, 133(10), 1351-1363. 

43. Petrangeli, M., Pinto, P. E., and Ciampi, C. (1999a). “Fiber element for cyclic bending and shear of 

RC structures. I: Theory.” Journal of Engineering Mechanics, 125(9), 994-1001.  

44. Petrangeli, M. (1999b). “Fibre element for cyclic bending and shear of RC structures. II: 

verification.” Journal of Engineering Mechanics, 125(9), 1002-1009. 

45. Pietruszczak, S. and Mroz, Z. (1981). “Finite element analysis of deformation of strain softening 

materials,” International Journal for Numerical Methods and in Engineering, 17(3), 327-334. 



43 
 

46. Sittipunt, C. and Wood, S. L. (1995). “Influence of web reinforcement on the cyclic response of 

structural walls.” ACI Structural Journal, 92(6), 745-756. 

47. Spacone, E., Ciampi, V., and Filippou, F. C. (1992). “A beam element for seismic damage analysis.” 

EERC Report 92/08 Earthquake Engineering Research Center, University of California, Berkeley. 

48. Stevens,  N.  J.,  Uzumeri,  S.  M.,  Collins,  M.  P.,  and  Will,  T.  G.  (1991).  “Constitutive  model  for  

reinforced concrete finite element analysis.” ACI Structural Journal, 88(1), 49-59. 

49. Suidan M. and Schnobrich W. C. (1973). "Finite element analysis of reinforced concrete." Journal of 

the Structural Division, ASCE, 99 (10), 2109-2122. 

50. Taylor, R. G. (1977). “The nonlinear seismic response of tall shear wall structures.” Ph.D. Thesis, 

Department of Civil Engineering, University of Canterbury, 207 pp. 

51. Thomsen, J. H. and Wallace, J. W. (1995). “Displacement-based design for reinforced concrete 

structural walls: an experimental investigation of walls for rectangular and T-shaped cross-sections.” 

Report No. CU/CEE-95-06, Clarkson University. 

52. Thomsen, J. H. and Wallace, J. W. (2004). “Displacement-based design of slender reinforced 

concrete structural walls - experimental verification.” Journal of Structural Engineering, 130(4), 618-630. 

53. To, N. H. T., Ingham, J. M., Davidson, B. J., and Sritharan S. (2003). “Cyclic strut-and-tie modeling 

of reinforced concrete structures.” Pacific Conference on Earthquake Engineering, Paper No. 102, 

Christchurch, New Zealand, 2003, 9 pp. 

54. Vallenas, J. M., Bertero, V. V., and Popov, E. P. (1979). “Hysteretic behavior of reinforced concrete 

structural walls.” Report No. UCB/EERC-79/20, Earthquake Engineering Research Center, University of 

California, Berkeley. 

55. Vecchio, F. J., and Collins, M. P. (1986). “The modified compression field theory for reinforced 

concrete elements subjected to shear.” Journal of the American Concrete Institute, 83(2), 219-231. 

56. Vidosa, F. G., Kotsovos, M. D., and Pavlovic, M. N. (1991). “Nonlinear finite-element analysis of 

concrete structures: performance of a fully three-dimensional brittle model.” Computers & Structures, 

40(5), 1287-1306. 

57. Zeris, C. and Mahin, S.A. (1988). “Analysis of reinforced concrete beam-columns under uniaxial 

excitation.” Journal of Structural Engineering, 114, 80. 

 

 

 




