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Abstract

The widespread availability of high-dimensional biological data has made the simultaneous 

screening of many biological characteristics a central problem in computational and high-

dimensional biology. As the dimensionality of datasets continues to grow, so too does the 

complexity of identifying biomarkers linked to exposure patterns. The statistical analysis of 

such data often relies upon parametric modeling assumptions motivated by convenience, inviting 

opportunities for model misspecification. While estimation frameworks incorporating flexible, 

data adaptive regression strategies can mitigate this, their standard variance estimators are often 

unstable in high-dimensional settings, resulting in inflated Type-I error even after standard 

multiple testing corrections. We adapt a shrinkage approach compatible with parametric modeling 

strategies to semiparametric variance estimators of a family of efficient, asymptotically linear 

estimators of causal effects, defined by counterfactual exposure contrasts. Augmenting the 

inferential stability of these estimators in high-dimensional settings yields a data adaptive 

approach for robustly uncovering stable causal associations, even when sample sizes are limited. 

Our generalized variance estimator is evaluated against appropriate alternatives in numerical 

experiments, and an open source R/Bioconductor package, biotmle, is introduced. The proposal 

is demonstrated in an analysis of high-dimensional DNA methylation data from an observational 

study on the epigenetic effects of tobacco smoking.
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1 Introduction

High-dimensional biomarker data is now routinely collected in observational studies 

and randomized trials in the biomedical and health sciences. The statistical analysis of 

such data often relies on parametric modeling efforts that allow covariate adjustment 

to obtain inference in samples that are small or moderately sized relative to biomarker 

dimensionality. By treating each biomarker as an independent outcome, standard differential 

expression analyses fit biomarker-specific linear models while adjusting for potential 

baseline confounders in the model’s postulated form, capturing the effect of a common 

exposure on each biomarker when the parametric form is correctly specified. While the 

underlying asymptotic theory of linear models is robust, these techniques have been adapted 

for use in small-sample settings through variance moderation (or shrinkage) approaches, 

which stabilize inference on the relevant parameter of the linear model. Motivated by 

the high costs of sequencing experiments in the past, such methods improve inferential 

quality, which can be compromised by variance estimates that are too small on account of 

sample size limitations. The moderated t-statistic, the most popular among such approaches, 

uses shrinkage to stabilize standard error estimates across many target parameters1; its 

corresponding implementation in the limma software package for the R programming 

language2 has been heavily utilized in studies using microarray and next-generation 

sequencing data.3,4 We generalize this variance moderation strategy to a broad class 

of asymptotically efficient estimators compatible with machine learning, increasing their 

robustness in settings with a limited number of independent units.

Given a high-dimensional biological dataset, a standard differential expression analysis 

pipeline proceeds by fitting a common-form linear model individually to each of the 

many candidate biomarkers, using exposure status as the primary independent variable and 

adjusting for potential confounders of the exposure–outcome relationship by the addition 

of main terms to the parametric functional form. When sample sizes are small, the 

moderated t-statistic may be used to stabilize inference by shrinking the biomarker-specific 

variance estimates towards a common value across the many candidate biomarkers.1 This 

improves inference for each biomarker by preventing individual test statistics from spiking 

on account of overly low (and poor) variance estimates. Still, multiplicity corrections are 

also necessary to adjust for the testing of many hypotheses.5 Within this framework, the 

estimated coefficient of the exposure is taken as an estimate of the scientific quantity of 

interest—that is, the causal effect of the exposure on the expression of candidate biomarkers. 

While it is common practice, such an approach is rarely rooted in available scientific 

knowledge, requiring unfounded assumptions (e.g. postulating an exact linear form) to be 

introduced by the analyst. A common pitfall in standard practice is misspecification of this 

parametric form, which leads to the target estimand being misaligned with the motivating 

scientific question. Only recently have tools from modern causal inference6 been recognized 

as offering rigorous solutions to such issues in observational biomarker studies.7,8

A rich literature has developed around the construction of techniques that eschew 

parametric forms, relying instead on developments in non/semi-parametric inference 

and machine learning9,10 to avoid the pitfalls of model misspecification. By targeting 

nonparametric estimands and performing model fitting via automated, data adaptive 
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regression techniques,11,12 such non/semi-parametric procedures exhibit flexibility and 

robustness unavailable to approaches based on the general linear model. Unfortunately, 

a common limitation in their application is the mutual incompatibility of machine 

learning-based strategies, convergence rates required for asymptotic statistical inference, 

and the limited sample sizes often characteristic of biomarker studies. Since non/semi-

parametric estimators generally converge at much larger sample sizes than their parametric 

counterparts,10 these approaches can suffer from analogous variance estimation instability 

in even modestly sized studies and thus stand to benefit from variance moderation at larger 

sample sizes than parametric techniques.

Our principal contribution is an adaptation of a parametric shrinkage estimator of variance, 

or variance moderation, to derive stabilized inference for data adaptive estimators of 

nonparametric estimands. Specifically, through the comparison of four non/semi-parametric 

variance estimation strategies, we demonstrate that a generalized variance shrinkage 

approach can improve the stability of efficient, data adaptive estimation procedures in 

small and modestly sized biomarker studies. We introduce a modified reference distribution 

for hypothesis testing with moderated test statistics, further strengthening the Type-I error 

control of our biomarker identification strategy. We emphasize that our proposal need 

not be a competitor to other marginal variance stabilization strategies formulated for 

non/semi-parametric efficient estimators; rather, it may be coupled with such methods to 

further stabilize inference by directly improving the quality of individual, biomarker-specific 

variance estimates.

Our approach may be applied directly to a wide variety of parameters commonly of 

interest as long as an asymptotically linear estimator of the target parameter exists. Such 

estimators are characterized by their asymptotic difference from the target parameter 

admitting a representation as the sum of independent and identically distributed, mean-zero 

random variables (i.e. the estimator’s influence function). Asymptotically linear estimators 

have been formulated for both parametric estimands and nonparametric estimands defined 

in conjunction with causal models.10 While our variance moderation approach may be 

applied in a vast array of problems, its advantages are particularly noteworthy in high-

dimensional settings, when the sampling distributions of complex, non/semi-parametric 

efficient estimators can be erratic and prone to yielding high false positive rates.

The remainder of the present article is organized as follows. First, we briefly introduce 

elements of non/semi-parametric theory for locally efficient estimation and variance 

moderation in the traditional modeling paradigm. Next, we detail the proposed approach, 

including an illustration of generalizing variance shrinkage to two common non/semi-

parametric efficient, doubly robust estimators of the average treatment effect, complete with 

a robustified, moderated test statistic. The results of interrogating the proposed technique 

in simulation experiments are then presented, demonstrating relative performance against 

a popular variance-moderated linear modeling strategy and non/semi-parametric efficient 

estimators without variance moderation. Having characterized the proposed procedure’s 

properties in numerical studies, we go on to demonstrate the application of our variance-

moderated doubly robust estimation procedure to evaluate evidence from an observational 

study13 on the epigenetic alterations to DNA methylation biomarkers causally associated 
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with tobacco smoking. We conclude by summarizing our findings and by identifying 

potential avenues for future investigation.

2 Preliminaries and background

2.1 Data, notation, and statistical model

We consider data generated by typical cohort sampling, where the data on a single 

observational unit is denoted by the random variable O = (W , A, Y ), where W ∈ ℝd is 

a d-dimensional vector of baseline covariates, A ∈ 0, 1  is a binary exposure, and 

Y = Y b, b = 1, …, B ∈ ℝb is a b-dimensional vector of outcomes (e.g. candidate biomarker 

measurements). We assume access to n independent copies of O, using P0 to denote 

the distribution of O. Further, we assume a nonparametric statistical model P0 ∈ M
composed of all distributions subject to some dominating measure, thereby placing no 

restrictions on the form of P0. Letting q0, Y  denote the conditional density of Y  given 

(A, W ), g0, A: = ℙ(A = 1 ∣ W ) the conditional probability of A given W , and q0, W  the density 

of W , the density of O, p0, evaluated on a typical observation o, may be expressed 

p0(o) = q0, Y(y ∣ A = a, W = w)g0, A(a ∣ W = w)q0, W (w).

A nonparametric structural equation model (NPSEM) allows for counterfactual quantities of 

interest to be described by hypothetical interventions on the data-generating mechanism of 

O.6 We assume an NPSEM composed of the following system of equations: W = fW UW , 

A = fA W , UA , Y = fY A, W , UY , where fW , fA, and fY  are deterministic functions, and UW , 

UA, and UY  are exogenous random variables. The NPSEM provides a parameterization 

of p0 in terms of the distribution of the endogenous and exogenous random variables 

modeled by the system of structural equations, implying a model for the distribution of 

counterfactual random variables generated by specific interventions on the data-generating 

process. For simplicity, we consider a static intervention, defined by replacing fA with a 

value a a ∈ A ≡ 0, 1 , the support of A. Such an intervention generates a counterfactual 

random variable Y (a) = Y b(a), b:1, …, B , defined as the values the B candidate biomarker 

outcomes would have taken if the exposure A had been set to level a ∈ A, possibly contrary 

to fact.

To proceed, we define the target parameter as a variable importance measure based on 

the statistical functional corresponding, under standard identification assumptions,6 to a 

causal parameter. The target parameter Ψ P0  is defined as a function Ψ mapping the true 

probability distribution P0 ∈ M of O into a target feature of interest. Letting Pn denote 

the empirical distribution of the observed sample, O1, …, On, an estimate ψn of the target 

parameter ψ0 ≡ Ψ P0  may be viewed as a mapping from M to the parameter space 

Ψ.10 By casting the target parameter as a feature of the (unobserved) true probability 

distribution P0, this definition allows a much richer class of target features of interest 

than the more restrictive view of considering only coefficients in possibly misspecified 

parametric forms. Throughout, we use the naught subscript to refer to features of the 

distribution P0 (e.g. expectation E0 w.r.t. P0, variance V 0 w.r.t. P0) and the n subscript to refer 

to features dependent on Pn. For clarity of notation and exposition, we focus on cases where 
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O1, …, On are i.i.d., noting that the proposed methodology generalizes, with only very minor 

modifications, to cases in which the observed units are clustered, such as when repeated 

samples on the same biological unit (i.e. technical replicates) are available.

2.2 Targeted variable importance measures

In the high-dimensional settings common in biomarker discovery studies, the tools of 

causal inference and non/semiparametric theory may be leveraged to develop efficient 

estimators of the effect of an exposure on an outcome while flexibly controlling for 

unwanted effects attributable to potential confounders. Commonly, variable importance 

analyses seek to derive rankings of the relative importance of candidate biomarkers based 

on their independent associations with another variable of interest, such as exposure 

to an environmental toxin or disease status.9,14,10 Related prior proposals9 defined a 

variable importance measure based on the average treatment effect (ATE), a constrast of 

counterfactual means, as

ψ0, b ≡ Ψb P0 : = E0 E0 Y b ∣ A = 1, W − E0 Yb ∣ A = 0, W

(1)

for a given biomarker b. The target parameter of equation (1) is the statistical functional 

corresponding to the ATE under the identification assumptions standard in causal inference, 

including no unmeasured confounding and positivity.6,15 When these assumptions hold, 

ψ0, b may be interpreted as the causal difference in the mean expression of the biomarker 

under two counterfactual contrasts defined by static interventions on the binary exposure 

A6; however, even when these assumptions are unsatisfied, the statistical target parameter 

is endowed with a straightforward interpretation: it is the adjusted mean difference in 

candidate biomarker expression across exposure contrasts, marginalized over strata of 

baseline confounders.10 Throughout, we use the ATE to contextualize our developments, 

as this parameter is ubiquitous in causal inference (and, accordingly, familiar to many); 

however, no aspect of our proposal is tied to the ATE.

In efficiency theory, the efficient influence function (EIF) occupies a prominent role, for 

its asymptotic variance is the non/semi-parametric efficiency bound (i.e. variance lower 

bound) for all regular and asymptotically linear estimators. Thus, efficient estimators may 

be constructed as solutions to an estimating equation based on the EIF D0 Oi . For the 

biomarker-specific ATE ψ0, b, the form of the EIF9,10 is

D0, b Oi = 2Ai − 1
g0 Ai ∣ W i

Y b, i − Q0, b Ai, W i + Q0, b 1, W i − Q0, b 0, W i − ψ0, b

(2)

In equation (2), D0, b Oi  is the EIF evaluated at a single observed data unit Oi, 

Q0, b(A, W ) = E0 Y b ∣ A, W  is the true outcome regression at P0 (with corresponding estimator 

Qn, b) evaluated at values of the intervention A ∈ 0, 1 , and g0 A ∣ W = ℙ0(A = 1 ∣ W ) is the 

true propensity score at P0 (with corresponding estimator gn). Classical estimators15 of the 
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ATE (based on, e.g. G-computation or inverse probability weighting) require access to either 

the propensity score or outcome regression, while non/semi-parametric efficient estimators 

based on the EIF generally require estimation of both nuisance parameters.

2.3 Data adaptive efficient estimation

Several approaches exist for constructing efficient estimators based on the EIF. Among 

these, two popular frameworks incorporate data adaptive regression: one-step estimation16 

and targeted minimum loss (TML) estimation.11,10 Both strategies begin by first estimating 

the nuisance parameters g0, Q0, b , proceeding to then employ distinct bias-correcting 

procedures in their second stages. As a property of the ATE’s EIF, the resultant estimators, 

regardless of the framework used, are consistent when either of the nuisance parameters is 

correctly estimated (i.e. doubly robust) and asymptotically achieve the non/semi-parametric 

efficiency bound when both are well-estimated in a rate-convergence sense.16,10,17

2.3.1 Constructing initial estimators—Both classes of efficient estimators 

accommodate flexible, data adaptive regression (i.e. machine learning) for the construction 

of initial estimates of the nuisance parameters g0, Q0, b , sharply curbing the risk for model 

misspecification. Considering the vast and constantly growing array of machine learning 

algorithms in circulation, it can be challenging to select a single algorithm or family 

of learning algorithms for optimal estimation of gn, Qn, b . Two strategies for addressing 

this challenge include model selection through a combination of cross-validation and loss-

based estimation18,19 and model ensembling.20 The Super Learner algorithm12 unifies these 

strategies by leveraging the asymptotic optimality of cross-validated loss-based estimation19 

to either select a single algorithm or produce a weighted ensemble from a user-specified 

candidate library via empirical risk minimization of an appropriate loss function. The result 

is an asymptotically optimal procedure for estimation of the nuisance parameters gn, Qn, b , 

more aptly capturing their potentially complex functional forms. A modern implementation 

of the Super Learner algorithm is available in the sl321 R package.

2.3.2 Efficient estimation—In one-step estimation, the empirical 

mean of the estimated EIF is added to the initial plug-

in estimator, that is, ψn, b
+ = n−1∑i = 1

n Qn, b 1, W i − Qn, b 0, W i + Dn, b Oi , where 

Dn, b Oi = 2Ai − 1 /gn Ai ∣ W i Y b, i − Qn, b Ai, W i + Qn, b 1, W i − Qn, b 0, W i − ψn, b is the EIF 

evaluated at the initial nuisance parameter estimates gn, Qn, b  and ψn, b is the 

substitution estimator implied by G-computation.15 TML estimation takes the alternative 

approach of tilting the nuisance parameters of the plug-in estimator to solve 

critical score equations based on the form of the EIF. The TML estimator is 

ψn, b
⋆ = n−1∑i = 1

n Qn, b
⋆ 1, W i − Qn, b

⋆ 0, W i , where Qn, b
⋆  is an updated version of the initial 

estimate Qn, b of the outcome regression. The updating procedure perturbs the initial 

estimate Qn, b via a carefully constructed one-dimensional parametric fluctuation model, 

that is, logit Qn, b
⋆ (A, W ) = logit Qn, b(A, W ) + ϵnℎ(A, W ), in which the initial outcome estimate 

Qn, b(A, W ) is treated as an offset (i.e. coefficient fixed to 1) and ϵn is the coefficient of 

the auxiliary covariate ℎ(A, W ) = (2A − 1)/gn(A ∣ W ), which incorporates inverse probability 

Hejazi et al. Page 6

Stat Methods Med Res. Author manuscript; available in PMC 2024 May 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



weights based on the initial propensity score estimate gn(A ∣ W ). When gn takes extreme 

values (close to the boundaries of the unit interval), the fluctuation model may instead 

include ℎ(A, W ) as a weight, which could improve estimation stability. The TML estimator 

ψn, b
⋆  of ψb is derived by plugging in the updated estimates Qn, b

⋆  into the substitution formula 

based on G-computation. Owing to their distinct bias-correcting steps, both the one-step 

estimator ψn, b
+  and the TML estimator ψn, b

⋆  share an asymptotically normal limit distribution

n ψn, b − ψ0, b D N 0, V0 D0, b(O)

(3)

where ψn, b denotes either ψn, b
⋆  or ψn, b

+ . Using this limit distribution, inference based on Wald-

style confidence intervals and compatible hypothesis tests is readily attainable.

2.3.3 Variance estimation based on the efficient influence function—Given 

their normal limiting distribution (3), a standard variance estimator for asymptotically linear 

estimators may be formulated based on the scaled empirical variance of the estimated EIF. 

This variance estimator, σn, b
2 : = V nDn, b = n−1∑I = 1

n Dn, b
2 Oi , uses the initial estimates of the 

nuisance parameters, and is a valid, occasionally conservative variance estimator for both 

the one-step and TML estimators. A popular alternative approach instead uses the empirical 

variance estimator based on a cross-validated estimate of the EIF, which can address issues 

of overfitting of nuisance function estimators while removing theoretical entropy conditions 

for asymptotic inference,22,23 both of which have contributed to the current prevalence 

of sample-splitting (i.e. cross-validation, “cross-fitting”). Though this approach improves 

marginal variance estimates σn, b
2 , it fails to take advantage of the benefits that pooled variance 

estimation provides in high-dimensional settings.

Since we advocate for the use of data adaptive regression techniques for nuisance parameter 

estimation, we wish to draw particular attention to the cross-validated variance estimator 

based on the EIF. Analogous to the full-sample variance estimator, this estimator is based 

on the empirical variance of the EIF evaluated at cross-validated initial estimates of the 

nuisance functions. To define such an estimator, consider the use of K-fold cross-validation, 

denoting by V 1, …, V K a random partition of the index set 1, …, n  into K validation sets 

of roughly the same size. That is, V k ⊂ 1, …, n , ∪k = 1
K V k = 1, …, n , and V k ∩ V k′ = ∅

for k ≠ k′. For each k, its training sample is Tk = 1, …, n ∖ V k. Let gn, k, Qn, k, b  be the 

estimators of g0, Q0, b  constructed by fitting a data adaptive regression procedure using 

only data available in the training sample Tk. Then, letting j(i) denote the index of the 

validation set containing observation i, the empirical variance of the cross-validated EIF is 

σn, CV, b
2 = V nDn, j(i), b, where Dn, j(i), b is the EIF evaluated at gn, j(i), Qn, ji(i), b . We explore the use of this 

variance estimator and any advantages it may confer in our context in the sequel.

2.4 Parametric variance moderation

Variance moderation has been established as a promising and useful tool for stabilizing test 

statistics. The general methodology consists in the application of a shrinkage estimator to 
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the individual variance estimates across a large number of (related) hypothesis tests. The 

moderated t- and F-statistics1 are perhaps the most commonly used examples of variance 

moderation approaches in differential expression analysis, though their original formulation 

is tied to the general linear model. In that context, a typical differential expression analysis 

would fit B linear models Y b = β 0, b + β 1, bA + β 2, bW , using a standard or moderated test 

statistic to assess the association of A on each of the B biomarkers independently. This 

moderated t-statistic1 is

t b = β 1, b
σb

where σb
2 = d0σ0

2 + dbσb
2

d0 + db

(4)

in which db and d0 are the degrees of freedom for the bth biomarker and the remaining (B − 1)
biomarkers, respectively, and σb is the standard deviation for the bth biomarker while σ0 is the 

standard deviation across all of the other (B − 1) biomarkers.

The resultant test statistic has much the same interpretation as an ordinary t-statistic, though 

its standard error is now shrunken towards a common value (i.e. moderated) across all 

biomarkers. This form of moderation prevents the test statistic from spiking even when the 

variance estimate for the biomarker in question, σb
2, is too small. Accordingly, t b is said to 

be more stable than its non-stabilized analog tb. The process of generating p-values for the 

moderated t-statistic is analogous to that of the ordinary t-statistic, with the only difference 

being that the degrees of freedom may be inflated to offset the increased robustness induced 

by moderation.1 The approach was introduced in the limmaR package, available via the 

Bioconductor project3,24; it remains extremely popular for biomarker identification and 

differential expression analysis. Next, we adapt this approach for use with the efficient 

estimators previously described.

3 Semi-parametric variance moderation

Application of TML estimation to construct targeted variable importance estimates for a 

given set of biomarkers has been previously considered9; however, marginal estimates of 

variable importance are often insufficient or unreliable for deriving joint inference in high-

dimensional settings. Such approaches suffer significantly from the instability of standard 

error estimates in settings with limited sample sizes, erroneously identifying differentially 

expressed biomarkers. This considerably limits their utility in high-dimensional biomarker 

studies. In order to obtain stable joint inference on a targeted variable importance measure 

across many biomarkers b = 1, …, B, we propose the use of variance moderation, which may 

be achieved by applying the moderated t-statistic1 to shrink biomarker-specific estimates of 

sampling variability based on the estimated EIF towards a stabilized, pooled estimate across 

biomarkers.

As inference for ψb is based on individual variability estimates σn, b (each derived from the 

corresponding biomarker-specific EIF D0.b), our proposed generalization applies moderation 

to the estimated EIF Dn, b, yielding a moderated EIF Dn, b. The resultant moderated variance 
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estimate σn, b
2  is then the empirical variance of Dn, b. The resultant stabilized variability 

estimates σn, b may directly be used in the construction of Wald-style confidence intervals 

or the evaluation of hypothesis tests. Consider B independent tests with null and alternative 

hypotheses H0:ψ0, b = 0 and H1:ψ0, b ≠ 0, and let ψn, b denote either the one-step or TML 

estimator of ψ0, b; then, our proposal is as follows:

1. Optionally, reduce the set of hypotheses by a filtering procedure, which may 

reduce the computational burden imposed by using flexible regression strategies 

for nuisance parameter estimation across many biomarker outcomes. As long as 

this initial filtering procedure does not affect the candidate biomarker rankings, 

its effect may be readily accounted for in post-hoc multiple hypothesis testing 

corrections.25

2. For each biomarker, generate non/semi-parametric efficient estimates ψn, b of ψ0, b

and corresponding estimates of the EIF Dn, b Oi , evaluated at the initial estimates 

of the nuisance parameters gn, Qn, b .

3. Apply variance moderation across the biomarker-specific EIF estimates 

Dn, b:b = 1, …, B  (e.g. via the limma R package3), constructing moderated 

EIF estimates σn, b
2  for each biomarker. The moderated variance estimates 

are constructed by shrinking each σn, b
2  towards the group variance across all 

other (B − 1) biomarkers as per (4). Note that the variance moderation step 

is asymptotically inconsequential, that is, σn, b σn, b as n ∞, and the limit 

distribution (3) holds.

4. For each biomarker-specific estimate ψn, b of the target parameter ψ0, b, construct 

a moderated t-statistic t b:b = 1, …, B  based on the corresponding moderated 

standard error estimate σn, b. The test statistic t b = ψn, b/σn, b may be used to evaluate 

evidence for the null hypothesis H0:ψ0, b = 0 of no treatment effect against the 

alternative H1:ψ0, b ≠ 0. While the t-distribution with adjusted degrees of freedom 

was the originally proposed reference distribution1 for such a test statistic, 

we advocate instead for the use of a standardized logistic distribution (with 

zero mean and unit variance). This alternative reference distribution exhibits 

subexponential tail behavior, allowing for improved conservative inference. 

This is useful in high-dimensional settings, where the joint distribution of all 

t b:b = 1, …, B  test statistics may fail to converge quickly enough in n to a 

B-dimensional multivariate normal or t-distribution, thus thwarting attempts to 

appropriately control the joint error. By contrast, the heavier, subexponential 

tails of the logistic distribution provide more robust error control. Alternative 

approaches to conservative inference based on, for example, concentration 

inequalities26 or Edgeworth expansions,27 may also be suitable and are 

compatible with our proposal.

5. Use a multiple testing correction to obtain accurate simultaneous inference 

across all B biomarkers. A common approach is to use the Benjamini-Hochberg 

procedure to control the False Discovery Rate (FDR),28 which controls Type-I 
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error proportion in expectation in high-dimensional settings under conditions 

commonly considered acceptable in computational biology applications. This 

is not the only available choice and our proposal readily accommodates 

alternatives.

Intuitively, our proposed variance moderation procedure shrinks aberrant variability 

estimates towards the center of their joint distribution, with a particularly noticeable 

reduction of Type-I error when the sample size is small and variance estimates unstable. 

Practically, this approach limits the number of statistically significant findings driven by 

unstable estimates of the variance of ψn, b, for the exact same reason discussed earlier.

What’s more, our proposal is convenient on account of its straightforward application to 

existing variance estimators based on the EIF and valid in all cases where asymptotically 

linear estimators may be constructed. Since our proposed procedure consists in a moderated 

variance estimator based on the empirical variance of the estimated EIF, we stress that 

providing enhanced Type-I error rate control is only guaranteed for multiple testing 

procedures that are based on marginal hypothesis tests, as opposed to alternative techniques 

(e.g. permutation and resampling methods) that directly target the joint distribution of 

test statistics.5 To enhance accessibility, we have made available an open source software 

implementation, the biotmle package,29,30 available for the R language and environment 

for statistical computing2 through the Bioconductor project24 for computational biology and 

bioinformatics.

4 Simulation studies

We evaluated our variance moderation strategy based on its Type-I error control as assessed 

by the FDR.28 We focus on the FDR owing to its pervasive use in addressing multiple 

hypothesis testing in high-dimensional biology; however, our approach is equally compatible 

with most post-hoc multiple testing corrections (e.g. Bonferroni’s method to control the 

family-wise error rate). We assessed the relative performance of several data adaptive non/

semi-parametric estimators of the ATE, each using identical point estimation methodology 

but different marginal variance estimators, and a single linear modeling strategy in terms of 

their accuracy for joint inference. We considered the performance of five variance estimation 

strategies (colors and shapes reference the figures appearing later): (1) “standard” variance 

moderation using σb
2 via the limma R package3 with a main terms linear model (red circle); 

(2) a TML estimator ψn, b
⋆  coupled with the empirical variance of the full-sample EIF σn, b

2

(yellow triangle); (3) a TML estimator ψn, b
⋆  coupled with the empirical variance of the cross-

validated EIF σn, CV, b
2  (cyan triangle); (4) a TML estimator ψn, b

⋆  using our variance moderation 

of the full-sample EIF σn, b
2  (yellow square); and (5) a TML estimator ψn, b

⋆  using our variance 

moderation of the cross-validated EIF σn, CV, b
2  (cyan square). For the cross-validated variance 

estimators, we chose two-fold cross-validation based on a conjecture that larger validation 

fold sizes would yield more conservative variance estimates. We note that the one-step and 

TML estimators are asymptotically equivalent and share a variance estimator, yet we use 

the TML estimator on account of there being some evidence of enhanced finite-sample 

performance.10 The TML estimators and their corresponding variance estimators were based 

on the implementations in the drtmle31,32 and biotmle29,30 R packages. To isolate the effect 
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of variance moderation on FDR control, all efficient estimator variants used the logistic 

reference distribution.

For these experiments, we simulated data from the following data-generating mechanism. 

First, two baseline covariates are independently drawn as W 1 ∼ Uniform(0, 1) and 

W 2 ∼ Uniform(0, 1). Next, the exposure A is drawn, conditionally on W 1, W 2 , from 

A ∣ W ∼ Bernoulli expit 0.5 + 2.5W 1 − 3W 2 . Finally, biomarker expression Y b is generated, 

conditionally on A, W 1, W 2 , by either Y null ∣ A, W = 2 + W 1 + 0.5W 2 + W 1 ⋅ W 2 + ϵ1 or 

Y strong ∣ A, W = 2 + W 1 + 0.5W 2 + W 1 ⋅ W 2 + 5A + ϵ2. Throughout, expit(x) = 1 + exp( − x) −1, 

ϵ1 ∼ Normal(0, 1), and ϵ2 ∼ Normal(0, 0.2). The data on a single observational unit are denoted 

by the random variable O = W 1, W 2, A, Y b:1, ⋯, B , where each biomarker Y b:1, ⋯, B  is 

generated from Y strong or Y null depending on the setting. Note the shared functional form 

of the outcome models, in particular that the interaction term between W 1, W 2  gives 

rise to model misspecification issues when linear regression is employed out-of-the-box. 

This design choice draws attention to the advantages of relying upon non/semi-parametric 

efficient estimation frameworks capable of incorporating data adaptive regression strategies 

(i.e. machine learning) in nuisance estimation.

For applications in which the exposure mechanism exhibits a lack of natural experimentation 

(i.e. positivity violations), estimation of the exposure mechanism gn(A ∣ W ) can yield 

values extremely close to the boundaries of the unit interval. Such extreme estimates 

compromise the performance of data adaptive non/semi-parametric estimators,33 in part 

due to the instability of estimated inverse probability weights. Often, practical violations 

of the positivity assumption occur when the exposure A is strongly related to the baseline 

covariates W , which manifests as an apparent lack of experimentation of the exposure 

across covariate strata. To assess the impact of such violations on variance estimation, we 

replace the exposure mechanism with A ∣ W ∼ Bernoulli expit 0.5 + 2.5W 1 − 3W 2 − 2  in a 

few scenarios. Unlike the exposure mechanism above, which allows a minimum exposure 

probability of 0.076, this exposure mechanism allows a minimum exposure probability of 

0.011, leading to positivity issues that may exacerbate bias and variance instability in high 

dimensions.

To ensure compatibility of each of the efficient estimator variants, initial estimates of the 

nuisance functions gn(A ∣ W ) and Qn, b(A, W ) were constructed using the Super Learner12 

algorithm. The SuperLearner R package34 was used to construct ensemble models from a 

library of candidate algorithms that included linear or logistic regression, regression with 

Bayesian priors, generalized additive models,35 multivariate adaptive regression splines,36 

extreme gradient boosted trees,37 and random forests.38

Here, we consider settings in which the exposure affects 10% or 30% of all biomarkers. 

In each scenario, B = 150 biomarkers are drawn from the equations for Y null and Y strong

in differing proportions. In any given simulation, we consider observing n i.i.d. copies 

of O for one of four sample sizes n ∈ 50, 100, 200, 400 . Overall, we consider scenarios 

in which the number of biomarkers exceeds the sample size as well as settings outside 

the high-dimensional regime, that is, n/p = 1/3, 2/3, 4/3, 8/3 . The former set of scenarios 

Hejazi et al. Page 11

Stat Methods Med Res. Author manuscript; available in PMC 2024 May 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



emphasizes the utility of variance moderation when p > n, while the latter demonstrates its 

negligible effect in larger samples.

Results are reported based on aggregation across 300 Monte Carlo repetitions for each 

scenario. In aggregate, these scenarios are used to evaluate the degree to which each of the 

five variance estimation strategies controls the FDR. Throughout, we restrict our attention 

to control of the FDR at the 5% level, as this is most commonly used in practice and the 

choice of threshold has no impact on our proposed procedure. A few additional scenarios 

are considered in the Supplemental Materials, including the relative estimator performance 

in cases with no exposure effect and when there is a weaker exposure effect than in the 

presently considered setting.

We begin with a scenario in which the effect of the exposure on biomarker expression 

is strong, when the effect is either relatively rare (10% of biomarkers) or fairly common 

(30% of biomarkers). In the rare effect setting, expression values for the affected 10% 

of biomarkers are generated by Y strong while the values for the remaining 90% arise from 

Y null. Here, we expect the efficient estimators with EIF-based variance estimation strategies 

(whether moderated or not) to exhibit FDR control approaching the nominal rate with 

increasing sample size while reliably recovering truly differentially expressed biomarkers. 

Due to bias arising from misspecification of the outcome model, the moderated linear model 

is expected to perform poorly. The performance of the estimator variants is presented in 

Figure 1.

As expected, variance-moderated hypothesis tests based on linear modeling fail to control 

the FDR at the 5% rate due primarily to model misspecification. The efficient estimators 

based on the EIF exhibit reasonable performance, with the full-sample variance estimators 

achieving the nominal rate by n = 400 and the cross-validated variants consistently 

controlling the FDR more stringently than the nominal rate. Examination of the false 

discovery proportions reveals that variance moderation provides some benefit in improving 

FDR control at n = 50, though this disappears quickly with increasing sample size. While 

the true positive rates indicate good performance of all candidate procedures (though 

the cross-validated variants are less reliable at smaller sample sizes), the true negative 

rates demonstrate the consistent performance of the cross-validated variants, performance 

improving with sample size for the full-sample estimators, and degrading performance for 

the linear model.

We now turn to a setting in which the exposure mechanism is prone to positivity violations. 

In this case, the full-sample EIF-based variance estimators are expected to exhibit relatively 

poor performance due to estimation instability in the inverse probability weights; however, 

the cross-validated variants are expected to provide FDR control at the nominal rate without 

sacrificing power. Figure 2 presents the estimator performance.

As before, linear model-based hypothesis testing fails to control the FDR at the 5% 

rate (owing to model misspecification). Positivity violations in the exposure mechanism 

result in the full-sample EIF-based estimators yielding poor FDR control as well. Their 

cross-validated counterparts fare significantly better, achieving control at the nominal rate 
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by n = 200. Both the FDR and false discovery proportion panels illustrate that variance 

moderation of the efficient estimators modestly but uniformly improves their FDR control, 

regardless of the use of sample-splitting in nuisance estimation. Consideration of the 

true positive rates reveals good performance of all candidate procedures (again, the cross-

validated variants are slightly over-conservative). The true negative rates show very strong 

control from the cross-validated variants and worse but improving performance from the 

full-sample estimators; the linear model displays unreliable, degrading performance. The 

protective effect of variance moderation is made clear by the true negative rates.

Next, we turn to a setting in which the exposure has a strong effect on a larger proportion 

of biomarkers. This scenario is constructed by generating expression values for 30% of 

biomarkers from Y strong and the remaining 70% from Y null. We begin with the exposure 

mechanism not prone to positivity violations, in which case both the full-sample and cross-

validated efficient estimators are expected to exhibit FDR control near the nominal rate, 

regardless of variance moderation. Due to model misspecification, the moderated linear 

model is expected to exhibit poor FDR control. Figure 3 visualizes the performance of the 

candidate procedures.

Given that the exposure effect on biomarkers is more common, all of the estimator 

variants fare comparatively better than in the rarer effect scenario considered previously. 

As before, the poor performance of the linear modeling strategy is caused by model 

misspecification bias. In comparison, the efficient estimators all exhibit better performance, 

with the full-sample variance estimators controlling the FDR at nearly the nominal rate 

and the cross-validated variants providing more stringent control. As with the prior setting 

summarized in Figure 1, the effect of variance moderation on FDR control is subtle, though 

examination of the lower panel of Figure 3 reveals the stronger error rate control that 

variance moderation achieves. While the true positive rates reveal good performance from 

all candidate estimators by n = 100, the true negative rates show slightly better control from 

the cross-validated variants (relative to their full-sample counterparts); the linear model 

shows poor performance at n = 50 and only degrades considerably thereafter.

Finally, we again consider an analogous setting in which the exposure mechanism has 

positivity issues. As before, the linear modeling procedure is expected to perform poorly. 

The efficient estimators with full-sample EIF-based variance estimation ought to perform 

relatively poorly due to estimation instability (from positivity violations) while the cross-

validated variants are expected to provide close-to-nominal FDR control. Figure 4 presents 

the results of examining the estimator variants in this setting.

The upper panel of Figure 4 corroborates our expectations about the linear modeling 

strategy’s potential to yield erroneous discoveries. While the linear model outperforms a 

subset of the efficient estimators at n = 50, its performance degrades sharply thereafter. The 

efficient estimators using full-sample EIF-based variance estimation display relatively poor 

control of the FDR, failing to achieve the nominal rate but maintaining their performance 

across sample sizes (unlike the linear model). The estimator variants using cross-validated 

EIF-based variance estimation exhibit far improved control of the FDR, nearly achieving 

the nominal rate in smaller sample sizes and controlling the FDR more stringently in larger 
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samples. A quick examination of the lower panel of the figure makes clear the modest 

improvements to error rate control that variance moderation provides. In particular, the 

true positive rates are quite reliable for all candidate estimators, though the cross-validated 

estimator variants are somewhat over-conservative in smaller samples. By comparison, the 

true negative rates reveal the stronger control that variance moderation confers for both 

the cross-validated and full-sample estimator variants, and highlights the predictably poor 

performance of the linear modeling strategy. Echoing results of the experiments presented 

in Figure 2, variance moderation improves FDR control irrespective of whether sample-

splitting is used.

Additional simulation experiments and their results are presented in the Supplemental 

Materials. There, we consider two distinct scenarios, one in which there is no effect of 

exposure at all (i.e. the “global null”) and another in which the effect of the exposure is 

attenuated relative to the scenario considered here. In the former setting, we find that the 

cross-validated variance estimators provide error rate control in line with the nominal rate of 

5% (though, at times, they are conservative) while the full-sample analogs break down under 

positivity violations. In the latter scenario, the cross-validated estimators are uniformly 

conservative while their full-sample counterparts provide control at or very near the nominal 

rate, regardless of positivity violations. Overall, variance moderation improves error rate 

control uniformly across these scenarios too, just as it does in the results discussed above. 

Altogether, our numerical investigations demonstrate the advantages conferred by applying 

variance moderation to non/semi-parametric efficient estimators in settings with limited 

sample sizes and a relatively large number of outcomes. In our experiments, the efficient 

estimators have access to an eclectic library of machine learning algorithms for nuisance 

estimation, significantly reducing the risk of model misspecification bias. Generally, the full-

sample EIF-based variance estimators exhibit poorer FDR control than their cross-validated 

counterparts, suggesting a stabilizing effect of sample-splitting on variance estimation, 

which itself pairs with variance moderation. Our results reveal that variance moderation can 

have substantial benefits in settings with positivity issues, which occur often in observational 

studies. Overall, our findings suggest that variance moderation can prove a useful and, 

at times, powerful tool for modestly improving FDR control in high-dimensional settings, 

without adversely affecting the recovery of truly differentially expressed biomarkers, and is 

especially useful in high-dimensional settings when paired with cross-validation.

5 Application in an observational smoking exposure study

We now apply our variance-moderated efficient estimation strategy to examine evidence 

for differential methylation of CpG sites in whole blood as a result of voluntary smoking 

exposure. Data for this illustrative application come from an observational exposure study 

that enrolled 253 healthy volunteer participants between 1993 and 1995 from the general 

population in Chapel Hill and Durham, North Carolina. Among these participants, 172 

self-reported as smokers and 81 as nonsmokers (defined as having smoked fewer than 

100 cigarettes in their lifetime). For all participants, a limited set of baseline covariates (a 

mix of continuous and discrete variables), including biological sex, race/ethnicity (minority 

status), and age, were recorded. The study protocol and details on processing of biological 

samples have been previously detailed39,40,13; we encourage the interested reader to refer 
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to these publications for further details. DNA methylation levels of patients’ whole blood 

DNA samples were measured with the Infinium Human Methylation 450K BeadChip 

(Illumina, Inc.), designed to measure methylation at ≈450,000 CpG sites across the human 

genome. Prior analytic efforts13 normalized the raw DNA methylation data via the ChAMP 

procedure41,42 and deposited the processed β-values on the NCBI’s Gene Expression 

Omnibus (accession no. GSE85210). In our re-analysis of this study, we used these publicly 

available DNA methylation data, paired with phenotype data provided by the study team.

For our differential methylation analysis, we used the aforementioned baseline covariates 

as well as “pack-years” (self-reported packs of cigarettes multiplied by years spent 

smoking) to adjust for potential baseline confounding of the effect of smoking on DNA 

methylation. That DNA methylation varies strongly across cell types has been well-studied 

and documented. Accordingly, we followed standard practice in adjusting for cell-type 

composition of samples from which DNA was collected by normalization against “gold 

standard” reference datasets,43,44 accounting for the relative abundance of CD4+ and CD8+ 

T-cells, natural killer cells, B-cells, monocytes, and granulocytes. This form of adjustment 

disentangles the effect of smoking on DNA methylation from the unwanted variation 

in DNA methylation across cell types from which DNA samples were harvested. Our 

differential methylation analysis strategy is summarized as follows.

First, the set of roughly 450,000 CpG sites was narrowed down by applying the moderated 

linear modeling strategy of the limma R package 3 to assess any association of differential 

methylation with smoking, controlling for baseline covariates in the adjustment set; the 2537 

CpG sites with unadjusted p-values below the 5% threshold were advanced to the following 

stage. Next, using the biotmleR package,29,30 our variance-moderated non/semi-parametric 

efficient TML estimator was applied to evaluate evidence for differential methylation 

attributable to smoking (based on the ATE), again adjusting for the set of potential 

baseline confounders. Estimation of the nuisance parameters gn, Qn, b  was performed 

using two-fold cross-validation, and the Super Learner ensemble modeling algorithm12,34 

was used to generate out-of-sample predictions from a library of candidate algorithms 

that included main-terms GLM regression, multivariate adaptive regression splines,36 and 

random forests,38 among others.

Moderated test statistics were constructed to evaluate the null hypothesis of no ATE at each 

CpG site, and testing multiplicity was accounted for by adjusting the marginal p-values 

via Holm’s procedure,45 thereby controlling the family wise error rate (FWER). Marginal 

p-values for each CpG site were generated by using the standardized normal distribution 

as reference for the site-specific test statistics (the centered logistic distribution proved 

too conservative when paired with the FWER metric); moreover, Holm’s procedure was 

chosen over alternative FWER-controlling procedures as its rank-based nature satisfies 

previously outlined requirements for error rate control in multi-stage analyses.25 Our choice 

of FWER prioritizes conservative joint inference, complementing the more lenient reference 

distribution and highlighting our proposal’s flexibility. Our analysis tagged 1173 CpG sites 

as differentially methylated by voluntary smoking exposure.
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The significantly differentially methylated CpG sites are located within the AHRR, 
ALPPL2/ALP1, MYO1G, F2RL3, GFI1, IER3, HMHB1, ITGAL, LMO7, GPR15, NCOR2, 
RARA, SPOCK2, HOX cluster, and RUNX3 genes, among others, agreeing with a prior 

analysis of these data.13 Many of these genes have been linked to disease ontology 

categories like hemotologic cancer, cardiovascular system disease, hematopoietic system 

disease, and nervous system cancer.13 In particular, the most significantly differentially 

methylated CpG site, cg05575921, located in the AHRR gene, has been identified in 

over 30 epigenome-wide association studies on smoking exposure in both blood and lung 

tissues.46Decreased methylation at this site is widely viewed as a robust biomarker of 

smoking exposure46 and is associated with increased lung cancer risk.47–50. Table S1 in the 

Supplemental Materials presents the top 50 differentially methylated CpG sites.

Despite the close agreement between the top set of differentially methylated CpGs revealed 

by our analysis and those identified in prior analyses, we questioned the stability of 

our proposal for real-world data analysis. To assess this, we designed and conducted an 

empirical sensitivity analysis that subsampled study units to capture the effect of data 

removal on the ranking of differentially methylated CpG sites. The procedure was carried 

out by sampling without replacement {25%, 50%, 75%} of study units, performing our 

proposed analysis (as described above) to generate a ranked list of CpG sites, and comparing 

these top CpG sites against those identified in the complete-data analysis. Since the 

sensitivity of the preliminary filtering step to subsampling does not relate directly to our 

procedure’s stability, we restricted each of these analyses only to the 2537 CpG sites that 

passed the filtering step of the complete-data analysis. For each subsampling proportion, this 

sensitivity analysis strategy was repeated 10 times, allowing for the frequency with which 

CpGs were tagged as differentially methylated to be evaluated. Figure 5 displays the results 

of our sensitivity analysis.

Cursory examination of Figure 5 reveals that our findings concerning the top 30 

differentially methylated CpG sites are robust to a loss of 25% of study units, as the 

median adjusted p-values of all of these CpG sites exceed the 5% detection threshold at the 

75% subsampling level. Upon further reductions in sample size, the differential methylation 

signal is still fairly reliable: the median adjusted p-values for ≈75% of the CpG sites (the 

top 23) exceed the detection threshold even when 50% of study units have been removed. 

Finally, this form of evidence for differential methylation shows that the top 6 CpG sites 

identified by our analysis are robust to a loss of as much as 75% of the data, meaning 

that these same CpGs could have been tagged as differentially methylated had the study 

included as few as 64 units (instead of the 253 units actually enrolled). Note that while the 

adjusted p-values reported for each of the 30 CpGs in the figure are the medians across the 

10 iterations for each of the subsampling schemes, those for the complete-data analysis are 

not medians (i.e. that analysis was only run once). Figure S5 in the Supplemental Materials 

presents an extension of Figure 5, showing how the minimum, median, and maximum 

adjusted p-values vary across subsampling schemes for the top 30 differentially methylated 

CpGs. Altogether, this sensitivity analysis demonstrates that our differential methylation 

procedure reliably recovers evidence for biologically meaningful findings, with power only 

beginning to degrade significantly with major losses in sample size.
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6 Discussion

We have proposed a novel procedure for stabilizing non/semi-parametric efficient estimators 

of scientifically relevant statistical parameters, combining distinct lines of inquiry on 

variance moderation and sample-splitting principles in the process. Our variance moderation 

procedure may be applied directly to the standard variance estimator of regular and 

asymptotically linear estimators in the nonparametric model, that is, the empirical variance 

of the estimated efficient influence function. Such asymptotically efficient estimators 

are capable of incorporating machine learning in nuisance estimation, curbing risks of 

model misspecification bias, which imposes a significant limitation upon the reliability 

of parametric modeling approaches. Our variance moderation technique improves the 

inferential stability of hypothesis testing based on these efficient estimators in high-

dimensional settings, and, when combined with cross-validation, it is capable of providing 

reliably conservative joint inference. Our proposal amounts to a semi-automated procedure 

for using these state-of-the-art estimators to obtain valid joint inference in high-dimensional 

biomarker studies while circumventing the pitfalls of model misspecification bias, sampling 

distribution instability, and anti-conservative variance estimation. Despite its being near-

automated, our proposal leaves several key decisions to the data analyst, including the 

choice of variance estimator (i.e. empirical variance of full-sample versus cross-validated 

efficient influence function), reference distribution (i.e. multivariate normal or logistic), and 

multiple testing correction metric (i.e. FDR vs. FWER).The exact choices of these must be 

made based on the motivating scientific application and the degree to which the analysis in 

question fulfills exploratory aims.

Our demonstration of this proposal focused on efficient estimators of the average treatment 

effect; however, the outlined procedure can be readily adapted to any regular and 

asymptotically linear estimator, accommodating extensions to a wide variety of parameters 

of scientific interest. Notable areas for future adaptation of this methodology include 

recently developed estimators of the causal effects of continuous exposures51,52 and those of 

causal mediation effects tailored for path analysis.53,54 Our simulation experiments highlight 

the benefits conferred by our strategy, both in conjunction with and in the absence of 

sample-splitting, showing that variance moderation can modestly but uniformly improve 

Type-I error control in several common scenarios. In a secondary re-analysis of DNA 

methylation data from an observational study on the epigenetic effects of smoking, we show 

our procedure to be capable of recovering differentially methylated CpG sites identified 

in prior analyses and validated in biological experiments; moreover, a sensitivity analysis 

reveals the findings of our approach to be highly stable even with artificially diminished 

sample sizes. Given the utility of the procedure, we have developed the free and open source 

biotmle R package29,30 and contributed it to the Bioconductor project,24 making this novel 

strategy easily accessible to the computational biology scientific community.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Control of the False Discovery Rate (FDR) across hypothesis testing procedures in a setting 

with strong exposure effect in 10% of biomarkers and no positivity issues in the exposure 

mechanism. Upper panel: Control of the FDR using the Benjamini-Hochberg correction. 

Lower panel: Empirical distributions of false discovery proportions and negative predictive 

values, as well as of the true positive and true negative rates.
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Figure 2. 
Control of the False Discovery Rate (FDR) across hypothesis testing procedures in a setting 

with strong exposure effect in 10% of biomarkers and notable positivity issues in the 

exposure mechanism. Upper panel: Control of the FDR using the Benjamini-Hochberg 

correction. Lower panel: Empirical distributions of false discovery proportions and negative 

predictive values, as well as of the true positive and true negative rates.
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Figure 3. 
Control of the False Discovery Rate (FDR) across hypothesis testing procedures in a setting 

with strong exposure effect in 30% of biomarkers and no positivity issues in the exposure 

mechanism. Upper panel: Control of the FDR using the Benjamini-Hochberg correction. 

Lower panel: Empirical distributions of false discovery proportions and negative predictive 

values, as well as of the true positive and true negative rates.
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Figure 4. 
Control of the False Discovery Rate (FDR) across hypothesis testing procedures in a setting 

with strong exposure effect in 30% of biomarkers and notable positivity issues in the 

exposure mechanism. Upper panel: Control of the FDR using the Benjamini-Hochberg 

correction. Lower panel: Empirical distributions of false discovery proportions and negative 

predictive values, as well as of the true positive and true negative rates.
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Figure 5. 
Evaluation of the top 30 differentially methylated CpGs (orderd left to right) from 

the complete analysis in terms of median {−log10 (adj. p − value)}’s across the three 

subsampling schemes.
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