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Abstract

Incremental clustering is a type of categorization in
which learning is unsupervised and changes to
category structure occur gradually. While there has
been little psychological research on this subject,
several computational models for incremental
clustering have been constructed. Although these
models provide a good fit to data provided by some
psychological studies, they overlook the importance
of selective attention in incremental clustering. This
paper compares the performance of two models,
Anderson’s (1990) rational model of categorization,
and Fisher’s (1987) COBWEB, to that of human
subjects in a task which stresses the importance of
selective attention. In the study, subjects were shown
a series of pictorial stimuli in one of two orders. The
results showed that subjects focussed their attention
on the first extreme feature they saw, and later used
this feature to classify ambiguous stimuli. Both
models fail to predict human performance. These
results indicate the need for a selective attention
mechanism in incremental clustering as well as
provide one constraint on how such a mechanism
might work.

Introduction

Imagine trying to acclimate yourself to a city you
have never visited before. As you wander through the
streets, you may begin to notice similarities and
differences between the styles of some of the houses.
Each new house may remind you of a few others,
leading you to group them together. Eventually, you
may form fairly well defined categories. The process
through which these categories are devised is called
incremental clustering. Incremental clustering may
be characterized by two qualities. First, leaning is
unsupervised. In the example above, the houses were
divided into categories without feedback from a
teacher. Second, changes to the category
representation are made incrementally Each new
cxcmplar is incorporated into an already existing
category structure. This is in contrast to non-
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incremental categorization, in which the entire
category structure is reconsidered whenever a new
exemplar is encountered.

Surprisingly, incremental clustering has received
little attention from the cognitive psychology
community. While both supervised, incremental
category learning (e.g. Posner & Keele, 1968, Smith
& Medin, 1981), and unsupervised, non-incremental
category learning (e.g. Ahn & Medin, in press,
Bersted, Brown & Evans, 1969) have been studied in
detail, there have been few experiments on
unsupervised, incremental category learning (Fried &
Holyoak, 1984, Homa & Cultice, 1984).

In the machine learning literature, on the other
hand, incremental clustering has received a good deal
of attention. The combinatoric explosions that result
in computer systems that try to organize categories in
a non-incremental fashion have lead machine learning
researchers to study incremental learning. This,
coupled with the need for systems that learn without
constant and consistent feedback, has lead to several
models of incremental clustering. I will briefly
describe two of the more recent computational models
of incremental clustering, Anderson’s (1990) rational
model of categorization, and Fisher's (1987)
COBWEB model. These descriptions will be
followed by a study that demonstrates a flaw shared
by these models.

The first model I will describe is Anderson's
rational model of categorization. Anderson provides a
Bayesian analysis of category structure goodness.
When presented with a new stimulus, the model
calculates the goodness of the whole category scheme
for each possible categorization of the new stimulus.
For example, if the model has already constructed
three categories, it determines the goodness of four
different category structures: one structure for when
the new item is placed in each of the already existing
categories, and one structure for when a new category
containing only the new item is created.

Although the actual formula Anderson uses to
determine category structure goodness is not
important for the purposes of this paper, it is
important to note that goodness is determined by
feature counts within each category. Information
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Figure 1: The two orders of the stimuli. The first order is meant to stress ears, the second is meant to
stress tails. The stimuli have been reduced to approximately 30% of their actual size.

about the order in which the items were classified is
lost. Information about why an item was classified
the way it was is also lost. Another interesting
limitation of Anderson’s model is that it cannot
change its partitionings. Once an item is classified,
it cannot be reclassified unless it is seen again

While Fisher's COBWEB does allow for
reclassification of stimuli, and uses a different
category structure goodness function, it is in other
ways very similar to Anderson’s model. When
COBWEB is shown a new stimulus, it, like
Anderson's model, considers the goodness of placing
the item in each of its categories, or a new category.
In addition, COBWEB considers either merging the
two best categories, and placing the item in the
merged category, or splitting the single best category
into two, and placing the item into one of them.
Although the model can reclassify items, it shares the
information reduction limitations of Anderson’s
model. All information other than the present
membership of each category is lost.
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People, however, may represent information
beyond category membership. They may, for
example, remember why they categorized an exemplar
the way they did. Consider two people who have
sorted a set of items into the same categories, but
have done so for different reasons. Although these
different reasons may not have manifested themselves
yet, there may be a point in the future where these
two people will react differently to a new exemplar.
Consider, on the other hand, two runs of COBWEB
or Anderson's model. Because these models only
represent the current membership of each category,
two runs which have formed the same categories will
categorize a new exemplar the same way.

The simulations and experiment that follow will
demonstrate that this limitation of the models is
indeed a problem. Eight pictures of mice with
different sized tails and ears were used as stimuli. The
mice were actually eight pictures of the same mouse,
scanned into a Macintosh computer, and modified
using a graphics program. In six out of the eight
mice, the ear size and tail size were positively



correlated; mice with big ears also had big tails, mice
with small ears had small tails, Of these six, four
had one relatively extreme feature, either ears that
were very big or very small, or a tail that was very
big or very small. In the remaining two mice, ear
size and tail length were negatively correlated; one
mouse had big ears and a small tail, the other had
small ears and a big tail. See Figure 1 for a graphical
representation of the stimuli.

The mice were put into two orders, each of which
is represented in the Figure. The first two mice (mice
1 and 2) were the same in both orders. These were
the two mice that maintained a positive correlation
between ear size and tail length, but had moderately
sized features. The next four mice were either ordered
such that the two mice with the extreme ear sizes
came next, or the two mice with the extreme tail
sizes came next. The next two mice in each order
were the other two mice with extreme features. The
final mice (mice 7 and 8) were those in which the
features violated the positive correlation. One of
these mice had a long tail but short ears, the other had
a short tail and long ears.

The stimuli were ordered to induce human subjects
to pay attention to ears in one condition and tails in
the other. The hypothesis was that subjects would
attend to the first extreme feature they saw and then
focus most of their attention on that feature
throughout the sorting. During the sorting of the
first six mice, however, this attention weighting has
no effect on performance. Because the features of
these mice were positively correlated, the sorting will
be the same regardless of which feature was more
important; mice with big ears and big tails will be
sorted into one category, mice with small ears and
small tails will be sorted into the other. In terms of
the models described above, both orders will produce
the same category structure.

The test of the models comes during the sorting of
the final two mice. Because the features of these
mice violate the positive correlation, the way in
which they are sorted provides important information
about the subject’s sorting strategy. If the subject
thinks ear size is more important, he or she will put
the mouse with small ears, but a large tail, into the
category of mice with small ears and small tails. If
tail size is more important, the subject will put the
same mouse into the other category. However, the
two models can not account for this result. Because
the models base their sortings entirely on the current
category structure, the order by which that structure
was created has no effect. Therefore, because the two
orderings produce the same categories, the different
ordering of the stimuli should have no effect on the
models’ sortings.
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The preceding observation was supported by
simulations using Fisher's and Anderson’s models!.
Both models took two features as input, the size of

each mouse’'s ears (in cmz} and tail (in cm). The
stimuli were presented to the models in the two
different orders described above. As can be scen in
Table 1, neither Fisher's COBWEB, nor Anderson's
rational model showed any effect of order.
COBWEB? sorted the last two mice according to tail
length regardless of the order. Anderson's model3,
which outputs the probability of sorting a stimulus
into each possible category, provided the same
probabilities regardless of the order.

In summary, neither model was affected by the
different orderings of the stimuli. The remainder of
the paper compares these results with those of human
subjects.

Method

Thirty-five University of Michigan undergraduates
participated in the study as part of an introductory
psychology course requirement. The subjects, who
were tested individually, were told that they would be
shown pictures of different mice. They were told that
their task was to sort the mice into two different
kinds, but that it was up to them to decide how to
divide them. They were also told that at any point
they could reclassify any of the mice. This
reclassification was permitted for two reasons. First,
in early stages of categorization, reclassification
should be expected (Fried and Holyoak, 1984).
Second, the models being tested both take into
account the need for reclassification. Fisher's
COBWEB model explicitly allows reclassification
through its merging and dividing operations.
Anderson’s rational model requires that the mean and
variance of each feature of the stimuli be
predetermined, reducing the amount of reclassification
necessary.

The experiment proceeded with the experimenter
presenting the mice to the subjects one by one. After
each mouse was shown, subjects classified it by
verbally responding either A or B. The mouse was
then placed in front of the subject in a way that
allowed subjects to see how each mouse had been
classified. Subjects were permitied to see all their

lyersions of both models were kindly provided by
their authors.

2Instead of COBWEB, Fisher's CLASSIT program
was used. CLASSIT is a version of COBWEB which
allows for features with real values. COBWEB only
allows nominal values. Acuity in this simulation
was set to 0.5.

3The coupling parameter in these runs was set to 0.3.



Table 1

Percentage of Simulated Subjects Who Sorted by Ear Size, Tail Length, or Something Else

Fisher's COBWEB
Sorted by
Order Ears Tall Other
Ears 0 100 0
Tail 0 100 0
Anderson’s Rational Model
Sorted by
Order Ears Tail Other
Ears 27 23 50
Tail 27 23 50

classifications in order to diminish reliance on
memory. The models of incremental clustering being
tested both assume that the system has full memory
of the stimuli it has seen. If subjects were not
allowed to see the mice they had classified, they
would have been working with less information than
the models being tested. After all the mice {rom one
order had been presented and classified, the
experimenter asked the subject if he or she was
satisfied with the sorting, and then asked the subject
to describe the categories that were formed.

Results

Table 2 shows the percentage of subjects in each order
condition who sorted the mice by ear size, tail length,
or something else. As described in the introduction,
the stimuli were constructed such that one sorting
clearly indicated that the subject was sorting by tail
length, and another sorting clearly indicated that the
subject was sorting by ear size. Only six of the 35
subjects provided sortings different from the two that

Table 2

were anticipated. These subjects are represented in the
‘other’ column of Table 2. Most of the subjects who
fell into this condition put a mouse that had an
extreme feature (such as the mouse with the smallest
ears) into one category and the rest of the mice in the
other category.

The manipulation clearly had the expected effect,

xz(z, N=35) = 10.6, p < 0.005. Subjects who were
presented with the stimuli that were ordered o
emphasize ear size did in fact sort by ear size. Those
who were presented with the stimuli that were ordered
to emphasize tail length were more likely to sort by

tail length.

Discussion and Conclusion

The results summarized above indicate that models of
incremental clustering need to take the role of
selective attention into account. Neither Fisher's
COBWEB, nor Anderson's rational model provide
mechanisms by which different features can become

Percentage of Subjects in Each Order Who Sorted by Ear Size, Tail Length, or Something Else

Sorted by
Order Bars Tail Other
Ears 72 0 28
Tail 4] 53 6
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more or less important in the midst of a
categorization task apart from the straight
accumulation of features. Although both models can
preset the salience of the different features, neither can
change feature weights on-line.

The results further provide one constraint on how
a selective attention mechanism should work.
Subjects in this task focussed on the first feature that
clearly differentiated between two categories and later
used this feature when classifying ambiguous
examples.‘

How this feature weighting occurs in people has
yet to be determined. One simple explanation for the
results of this study is that once the subjects found a
salient feature along which to classify, they ignored
all other features. If, for example, ear size seemed
like a diagnostic feature, a subject could simply look
at the ears of each stimulus and ignore the other
features. This mechanism might be implemented as a
rule-like system (if big ears, then category A), which
would obviate the need for the Anderson and Fisher
models once a satisfactory feature was discovered.

Although this approach to selective attention
would fit the results of this study, it is unlikely that
subjects completely ignore all but the most
diagnostic features. If this were true, people could
not adapt to changing circumstances. In addition,
there is evidence (Medin, Wattenmaker and Michalski,
1987) that people include redundant information when
devising classification rules. An alternative approach
would involve learning feature weights across
dimensions. While there has been a great deal of
work on feature weighting models when feedback is
immediate, few models (cf. Gennari, 1991, Kohonen,
1982, Rumelhart and Zipser, 1985, Grossberg, 1987)
have been developed which apply to unsupervised
learning. Future research will involve applying these
models to the present task, and extending them or
positing new models where necessary.

In conclusion, current models of incremental
clustering must be extended 1 take into account on-
line learning of feature weighting. Although the
mechanisms involved in this weighting are still
uncertain, this study has provided one constraint;
salient differences between features are weighted more
heavily when they occur in early examples.

4Recenl.ly. Gennari (1991) described CLASSWEB, an
extension of COBWEB that includes a selective
attention mechanism. CLASSWEB's selective
attention mechanism, however, mainly acts to focus
attention away from irrelevant features. In the study
described here, both features are relevant.
Consequently, CLASSWEB does not predict the
results provided by human subjects. [nstead, in this
situation, CLASSWEB behaves exactly like
COBWEB.
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