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ABSTRACT OF THE DISSERTATION
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Professor Stefano Soatto, Chair

Estimating the optimal representation from sensor data has been one of the most challenging

problems in computer vision research. Given a particular task, an optimal representation

should contain the right information for answering queries related to the task. To be specific,

such a representation should be a sufficient statistics of the data that is invariant to nuisance

factors irrelevant to the task yet affecting the data. Among all the sufficient statistics, we

desire the minimal that costs the least in terms of complexity. In terms of invariance, we

want to achieve the maximal so that nuisance will not affect the inference at test time.

In the first part of the dissertation, we show that it is possible to build such an optimal

local descriptor that is a minimal sufficient statistic of the data and is maximally invariant to

certain nuisance variables in the problem of establishing feature correspondence. Given only

one single image, such nuisance group is quite restricted as a single view does not afford the

ability to distinguish the intrinsic properties of the scene from the extrinsics. This restriction

is lifted once multiple views of the same underlying scene become available. A theoretical

framework is proposed to compute an optimal multiple-view local representation with view-

point change-induced domain deformation marginalized. In the second part, we investigate

the nuisance management ability of deep neural networks in the context of image classifi-

cation and show that an explicit sampling-based marginalization technique can improve its

performance significantly. This is in line with the principle developed in the previous part.
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Finally, we build a real-time system to estimate a visual-inertial-semantic representation of

the 3D scene from both imaging and inertial measurements. Evidence from the imaging and

inertial measurements are causally aggregated into the final estimate in a Bayesian filtering

framework. The geometric and semantic properties of the scene do not depend on the pose

and motion of the camera, and are persistent over time.
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(σ̂ − ŝ, σ̂ + ŝ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Average Precision for different magnitude of transformations. The left 9 pan-

els show (AP) for increasing magnitude of the 8 transformations in the Oxford

dataset [MS05]. The mean AP over all pairs with corresponding amount of trans-

formation are shown in the middle of the third row. The right 6 panels show the

same for Fischer’s dataset [FDB14]. . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Head-to-head comparisons. Similarly to [FDB14], each point represents one pair

of images in the Oxford (top) and Fischer (bottom) datasets. The coordinates

indicate average precision for each of the two methods under comparison. SIFT

is superior to RAW-PATCH, but is outperformed by DSP-SIFT and CNN-L4.

The right two columns show that DSP-SIFT is better than SLS and CNN-L4

despite the difference in dimensions (shown in the axes). The relative performance

improvement of the winner is shown in the title of each panel. . . . . . . . . . . 14

x



2.5 DSP-SIFT vs. SIFT-BOW. Similarly to Fig. 2.4, each point represents one pair of

images in the Oxford (left) and Fischer (right) datasets. The coordinates indicate

average precision for each of the two methods under comparison. The relative

performance improvement of the winner is shown in the title of each panel. DSP-

SIFT outperforms SIFT-BOW by a wide margin on both datasets. . . . . . . . . 15

2.6 Complexity-Performance Tradeoff. The abscissa is the descriptor dimension shown

in log-scale, the ordinate shows the mean average precision. . . . . . . . . . . . 16

2.7 The discriminative power of a descriptor (e.g., mAP of SIFT) increases with the

size of the domain, but so does the probability of straddling an occlusion and

the approximation error of the imaging model implicit in the detector/descriptor.

This effect, which also depends on the base size, is most pronounced when occlu-

sions are present, but is present even on the Oxford dataset, shown above. . . . 18

2.8 DSP-SIFT vs. SIFT-L. Similarly to Fig. 2.4, each point represents one pair of

images in the Oxford dataset. The coordinates indicate average precision for each

of the two methods under comparison. The relative performance improvement

of the winner is shown in the title of each panel. 2.8(a) shows that DSP-SIFT

outperforms SIFT computed at the largest domain size. This shows that the

improvement of DSP-SIFT comes from the pooling across domain sizes rather

than choosing a larger domain size. 2.8(b) shows that choosing a larger domain

size actually decreases the performance on the Oxford dataset. . . . . . . . . . . 19

2.9 Scale-space vs. Size-space. Scale-space refers to a continuum of images obtained

by smoothing and downsampling a base image. It is relevant to searching for

correspondence when the distance to the scene changes. Size-space refers to a

scale-space obtained by maintaining the same scale of the base image, but con-

sidering subsets of it of variable size. It is relevant to searching for correspondence

in the presence of occlusions, so the size (and shape) of co-visible domains are

not known. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

xi



2.10 Images reconstructed from dense DSP-SIFT. Each pair shows the original and

the reconstructed images from dense DSP-SIFT. . . . . . . . . . . . . . . . . . . 22

2.11 Images sampled from a learned descriptor-configuration model. (a) Original im-

age. (b) Image sampled from a single view. (c)-(d) show two instances sampled

from templates learned from multiple views. . . . . . . . . . . . . . . . . . . . . 22

2.12 The “uncertainty principle” links the size of the domain of a filter (ordinate)

to its spatial frequency (abscissa): As the data is analyzed for the purpose of

compression, regions with high spatial frequency must be modeled at small scale,

while regions with smaller spatial frequency can be encoded at large scale. When

the task is correspondence, however, the size of the co-visible domain is indepen-

dent of the spatial frequency of the scene within. While approaches using “dense

SIFT” forgo the detector and compute descriptors at regularly sampled locations

and scales, they perform spatial pooling by virtue of the descriptor, but fail to

perform pooling across scales, as we propose. . . . . . . . . . . . . . . . . . . . . 24

3.1 Scale, Domain-size and Base-size. 3.1(b), domain-size has to be searched over at

test time when occlusion is present. 3.1(c), self-occlusion caused by viewpoint

change in the cropped image patch. 3.1(a), patches with different domain sizes

are matched to the same base sizes where descriptors are to be computed. . . . 29

3.2 Mean Average Precision vs. Domain-Size. Top: Oxford dataset with MSER

detector. Bottom: Balzer dataset with SIFT detector. . . . . . . . . . . . . . . . 35

3.3 Mean Average Precision vs. Base-Size. Top: Oxford dataset with MSER detector.

Bottom: Balzer dataset with SIFT detector. . . . . . . . . . . . . . . . . . . . . 36

3.4 Domain-size Pooling Radius and the Number of Size Samples (Oxford). The

parameters that achieve the best performance are highlighted with markers. . . 37

xii



3.5 Head-to-head comparisons. Each point in the plot shows one pair of images from

Fischer dataset. The horizontal axis shows the Average Precision of the single-

scale descriptor (X), and the vertical axis shows that of DSP-X. The relative

improvement of DSP-X over X is shown in the title of each panel. . . . . . . . . 37

3.6 Effect of different detectors. Each curve is mAP as a function of Domain-size. Left

3 columns: Oxford, Right 3 columns: Balzer’s dataset. Top row: DSP-SURF,

Middle: DSP-HOG-DT and Bottom: DSP-BRIEF. . . . . . . . . . . . . . . . . 38

3.7 Effect of different detectors. Each curve is mAP as a function of Base-size. Left

3 columns: Oxford, Right 3 columns: Balzer’s dataset. Top row: DSP-SURF,

Middle: DSP-HOG-DT and Bottom: DSP-BRIEF. . . . . . . . . . . . . . . . . 39

3.8 Learned templates from DPM and DSP-DPM. The top row shows the “root” and

the “part” templates learned by the standard DPM. The bottom row shows the

same learned by DSP-DPM. The geometry of the cat (e.g., head) is more visible

in the templates learned via domain-size pooling, compared to the original DPM. 40

3.9 DSP-Scattering Transform (DSP-SC) vs. SC. Top (Left to Right): Oxford dataset

with Hessian-Affine, MSER and SIFT detector. Bottom: Same for Balzer dataset.

The results of Harris-Affine is similar to Hessian-Affine. . . . . . . . . . . . . . . 42

4.1 Dataset, Test Samples and Qualitative Match Visualization. (a): Samples from

the real and synthetic object dataset. (b): Positive test samples from the object;

negative samples are ten-fold more numerous. (c), (d) show correct (green) and

wrong (red) matches claimed by SV-SIFT (Top) and MV-HoG (Bottom). The

latter yields many more correct matches, similar to R-HoG. . . . . . . . . . . . 53

4.2 Precision-Recall Curves. Precisions (ordinate) over recall rates (abscissa) with

F1-scores in the legends. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

xiii



4.3 Distance Distribution. The horizontal axis indicates the distance between two

descriptors in increasing order from left to right. The distribution of distances

between corresponding features are shown in green and that of mismatches in

red. The error (overlapping area) in 4.3(b) is considerably smaller than 4.3(a).

This leads to a lower risk of misclassification in MV-HoG. . . . . . . . . . . . . 57

4.4 (a) Sufficient excitation. Left: Accuracy (maximum recall) as a function of

a proxy of sufficient excitation (see text). Right: Excitation as a function of

the number of frames. All results are averaged over multiple runs using frames

i, . . . , i + k − 1 where i is selected at random. (b) F1-score varies with spatial

aggregation parameter σ. (c) Time complexity as a function of the number of

features with FLANN precision at 0.7. Higher precision will further increase

computational load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1 The top-1 and top-5 classification errors in ImageNet 2014 as a function of the

rim size for AlexNet (above) and VGG16 (below) architecture. A 0 rim size

corresponds to the ground-truth bounding box, while 1 refers to the whole image.

A relatively small rim around the ground truth provides the best trade-off between

informative context and clutter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Visualizing different sampling strategies. Upper left: Object proposals. Generic

proposals using Edge Boxes [ZD14]. Upper right: Concentric domain sizes are

centered at the center of the image. Below: Regular crops [KSH12, SZ15, SLJ15]. 69

xiv



5.3 We show the top-5 error as a function of the number of proposals we average

to produce the final posterior. Samples are generated with Algorithm 1 and

classified with AlexNet. The blue curve corresponds to selecting samples with the

lowest-entropy posteriors. We compare our method with simple strategies such

as random selection, ranking by largest-size or highest confidence of proposals.

The random sample selection was run 10 times and we visualize the estimated

99.7% confidence intervals as error-bars. Empirically, the discriminative power

of the classifier increases when the samples are selected with the least entropy

criterion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4 Classification error as a function of the IoU error between the objects and the

regular and concentric crops. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5 Head to head comparison between CNN and DSP-CNN on the Oxford [MTS05]

(left) and Fischer’s [FDB14] (center) datasets. The layer-4 features of the un-

supervised network from [FDB14] are used as descriptors. The DSP-CNN out-

performs its CNN counterpart in terms of matching mAP by 15.1% and 5.0%,

respectively. Right: DSP-CNN performs comparably to the state-of-the-art DSP-

SIFT descriptor [DS15]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.1 Illustration of our system to detect objects-in-scenes. Top: state of the system

with reconstructed scene representation (cyan), currently tracked points (red),

viewer trajectory from a previous loop (yellow) and current pose (reference frame).

All cars detected are shown as point-estimates (the best-aligned generic CAD

model) in green, including those previously-seen on side streets (far left). Mid-

dle: visualization of the implicit measurement process: Objects in the state are

projected onto the current image based on the mean vehicle pose estimate (green

boxes) and their likelihood score is computed (visualized as contrast: sharp re-

gions have high likelihood, dim regions low). Cars in different streets, known to

not be visible, are visualized as dashed boxes and their score discarded. Bottom:

Top view of the state from the entire KITTI-00 sequence (best viewed at 5×). 82

xv



6.2 System Flow Chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3 Qualitative comparison with SubCNN. Top: Images with back-projected objects

from our method (Green), the same with SubCNN (Yellow). Bottom: top-view

of the corresponding portion of the scene. Ground truth is shown in Blue. . . . 93

6.4 Evolution of the state (Green) against ground-truth annotation (Blue) (best

viewed at 5×, images shown at the top for ease of reference). When first seen

(Leftmost) cars ‘A’ and ‘B’ are estimated to be side-by-side; after a few frames,

however, ‘A’ and ‘B’ fall into place, but a new car ‘C’ appears to flank ‘B’. As

time goes by, ‘C’ too falls into place, as new cars appear, ‘D’, ‘E’, ‘F.’ The error

in pose (position and orientation) relative to ground truth can be appreciated

qualitatively. Quantitative results are shown in Table 6.1. . . . . . . . . . . . . . 94

6.5 Class-specific scale prior. (a): A real car is detected by our system, unlike the

toy car, despite both scoring high likelihood and therefore being detected by an

image-based system (Yellow). As time goes by, the confidence on the real car

increases (best viewed at 5×) (b). See online video at [DFS17]. . . . . . . . . . 96

6.6 Occlusion management and short-term memory. (a): A chair is detected and later

becomes occluded by the monitor (b). Its projection onto the image is shown in

dashed lines, indicating occlusion. The model allows prediction of dis-occlusion

(c) which allows resuming update when the chair comes back into view. See

online video at [DFS17]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.7 Indoor sequences. Top: An office area. Bottom: A Lounge area. Both videos are

available at [DFS17]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

xvi



A.1 Detector specificity vs. descriptor sensitivity. (Left) Change of detector response

(red) as a function of scale, computed around the optimal location and scale

(here corresponding to a value of 245), and corresponding change of descriptor

value (blue). An ideal detector would have high specificity (sharp maximum

around the true scale) and an ideal descriptor would have low sensitivity (broad

minimum around the same). The opposite is true. This means that it is difficult to

precisely select scale, and selection error results in large changes in the descriptor.

Experiments are for the DoG detector and identity descriptor. Referring to the

notation in Appendix (see details therein), (middle) template ρ (red) and target

f (blue). (Right) corresponding scale-space [f ]. Note that the maximum detector

response may even not correspond to the true location. The jaggedness of the

response is an aliasing artifact. . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

A.2 Aliasing: (Top left) A random row is selected as the target f and re-scaled to

yield the orbit [f ]; a subset of f , cropped, re-scaled, and perturbed with noise,

is chosen as the template ρ. The distance E between ρ and [f ] is shown in

red (right) as a function of scale. The same exercise is repeated for different

sub-sampling of [f ], and rescaled for display either as a mesh (middle left) or

heat map (right) that clearly show aliasing artifacts along the optimal ridge.

Anti-aliasing scale (bottom) produces a cleaner ridge (left, right). The net effect

of anti-aliasing has been to smooth the matching score E (top-right, in blue)

but without computing it on a fine grid. Note that the valley of the minimum

is broader, denoting decreased sensitivity to scale, and the value is somewhat

higher, denoting a decreased discriminative power and risk of aliasing if the value

raises above that of other local minima. . . . . . . . . . . . . . . . . . . . . . . 112

xvii



LIST OF TABLES

2.1 Summary of complexity (dimension) and performance (mAP) for all descriptors

sorted in order of increasing complexity. The lowest complexities and the best

performances are highlighted in bold. We also report mAP for CNN descriptors

computed on 69 × 69 patches as in [FDB14]. The fourth row shows compari-

son with a bag-of-words of SIFT descriptors computed at the same location but

different domain sizes, described in detail in Sect. 2.4.4. . . . . . . . . . . . . . . 17

3.1 PASCAL VOC 2007 Detection Challenge. . . . . . . . . . . . . . . . . . . . . . 41

3.2 Average Precision for Classification. . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1 AlexNet’s and VGG16’s top-5 error on the ImageNet 2014 classification challenge when

the ground-truth localization is provided, compared to applying the model on the entire

image. We pad the ground truth with various rim sizes both isotropically and anisotrop-

ically. Then we show how averaging the class posteriors performs when applying the

network on concentric domain sizes around the ground truth. . . . . . . . . . . . . . 64

5.2 Top-1 and top-5 errors on the ImageNet 2014 classification challenge. The rows 2–

5 include the common data augmentation strategies in the literature [KSH12, SZ15,

SLJ15] (i.e., regular sampling). The next three rows use concentric domain sizes that

are uniformly sampled in the range [0.6, 1] with 1 being the normalized size of the

original image (c.f. Fig. 5.2). Finally, in the last seven rows, we introduce adaptive

sampling, which consists of a data-driven object proposal algorithm [ZD14] and an

entropy criterion to select the most discriminative samples on the fly based on the

extracted class posterior distribution. The last row shows results on the test set. #eval

stands for the number of samples that are evaluated for each method, while #ave is

the number of samples that are eventually element-wise averaged to produce one single

vector with class confidences. The previous top-reported with regular sampling and

our results are shown in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

xviii



5.3 Matching mean average precision for different approaches on Fischer’s dataset [FDB14]. 77

6.1 Quantitative evaluation on KITTI and comparison with SubCNN [XCL17]. The

number of true positives having positional error (row), and angular error (col-

umn) less than a threshold is shown, along with Precision and Recall. Scores are

aggregated across all 3501 ground-truth labeled frames in the dataset, with 498

annotated objects. The last 3 rows discard orientation error. . . . . . . . . . . . 93

xix



ACKNOWLEDGMENTS

I would like to first thank my advisor Professor Stefano Soatto for giving me the opportunity

to work with him at UCLA Vision Lab. His wisdom in science has inspired me from the

very beginning of my Ph. D. journey. During these years, his guidance was invaluable. The

discussions between us were full of creativity and insights. His support during my study and

stay in Los Angeles was unparalleled. He is not only my academic advisor, but a role model

in many aspects.

Many thanks go to the members of my doctoral committee, including Professor Joseph

DiStefano III, Professor Wei Wang and Professor Ying Nian Wu, for their valuable comments,

suggestions and support.

I am grateful to have the opportunity to work with many talented researchers at UCLA

Vision Lab. Special thanks go to Brian Taylor and Jason Meltzer, with whom I worked

during my visit to the lab when I was still an undergraduate. This first experience in formal

research increased my determination to start my Ph. D. at UCLA. I also would like to give

special thanks to former lab members Alper Ayvaci, Jonathan Balzer and Vasiliy Karasev

for their support for my research and guidance on pursuing my academic goals. Among

current lab members, I would like to give special thanks to Nikolaos Karianakis, my close

collaborator for these years. Shoulder to shoulder, we supported each other and overcame

many difficulties over the past few years. I also would like to thank Xiaohan Fei. Together

we made possible some of my most challenging works.

I also have the pleasure to work with other former and current members of the lab: Ganesh

Sundaramoorthi, Taehee Lee, Chaohui Wang, Avinash Ravichandran, Damek Davis, Joshua

Hernandez, Georgios Georgiadis, Virginia Estellers, Konstantine Tsotsos, Pratik Chaudhari,

Yanchao Yang and Alessandro Achille. Moments we shared together will be forever memo-

rable.

Last but not least, I would like to thank my parents, Xiujuan and Zhangxiong for their

unconditional support during my years of study abroad. Their patience and support were

extraordinary during all these years.

xx



VITA

2009 Visiting Student, Computer Science and Engineering, Hong Kong Univer-

sity of Science and Technology, Hong Kong.

2007-2011 B. Sc., Computer Science, Fudan University, Shanghai.

2014 Teaching Assistant, Computer Science, University of California, Los An-

geles.

2016 Research Scientist Intern, NVIDIA.

2011-2017 Graduate Student Researcher, Computer Science, University of California,

Los Angeles.

PUBLICATIONS

S. Soatto, J. Dong. “Visual Correspondence, the Lambert-Ambient Shape Space and the

Systematic Design of Feature Descriptors.” Registration and Recognition in Images and

Videos, Pages 63-93, 2014.

J. Dong and S. Soatto. “Domain-size Pooling in Local Descriptors: DSP-SIFT.” In Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2015.

J. Dong, N. Karianakis, D. Davis, J. Hernandez, J. Balzer and S. Soatto. “Multi-view

Feature Engineering and Learning.” In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2015.

xxi



S. Soatto, J. Dong and N. Karianakis. “Visual Scene Representations: Scaling and Occlusion

in Convolutional Architectures.” The International Conference on Learning Representations

(ICLR) Workshop, 2015.

N. Karianakis, J. Dong and S. Soatto. “An Empirical Evaluation of Current Convolutional

Architectures’ Ability to Manage Nuisance Location and Scale Variability.” In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

J. Dong, I. Frosio and J. Kautz. “Learning Adaptive Parameter Tuning for Image Process-

ing.” ArXiv preprint arXiv:1610.09414, 2016.

J. Dong, X. Fei and S. Soatto. “Visual Inertial Semantic Scene Representation for 3D

Object Detection.” In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2017.

xxii



CHAPTER 1

Introduction

Perceiving, interacting and creating the world around us display the power of human in-

telligence with which computer scientists want to endow machines. In the pursuit of such

machine intelligence, the first question to answer is how the world is represented? Repre-

sentation is the fundamental problem of machine perception, and addressing it successfully

makes possible the subsequent interactions and creations. In a visual perception system, we

are interested in answering questions about the scene which consists of objects each having

its own intrinsic properties such as shape, material and reflectance and extrinsic properties

dependent on vantage point, illumination and incidence relationship. The scene could be

further complicated by dynamics and interactions between objects and the perception could

be made even harder by imprecise measurement of sensors and other nuisances that are

neglected in the modeling process. The questions we want to answer for perception can be

the identity of the objects, their categorization, whereabouts and other high-level semantic

concepts.

In this dissertation, we focus on designing and learning the optimal representation of

the scene that is invariant to nuisance variabilities while retaining intrinsic properties of

the former. Depending on the tasks or questions we want to answer about the scene, the

definition of nuisance and information may change. For local representations in the task of

correspondence or recognition, we focus on nuisances that are induced by viewpoint change

and illumination change. We interpret the optimal representation as a likelihood function

conditioned on the scene with nuisances marginalized. For image classification, the intrinsic

property of the scene we are interested in is the semantic category the (dominant) object

belongs to, regardless of it position, orientation, scale, aspect ratio and class-dependent
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deformations in the image. These nuisance factors should be marginalized so that the pre-

diction of the image label is invariant to such extrinsic properties. When the task changes,

for instance, from image classification to object detection, the aforementioned nuisance fac-

tors become the information that we would like to retrieve, i.e., both the object semantic

identity and its whereabout are required to answer the question. For 3D object detection in

space, we are interested in recovering the scene properties including geometric and semantic

ones which are not dependent on the viewpoint and motion of the camera, as well as time

given that objects of interest are static.

1.1 Dissertation Outline

In Chapter 2, we focus on the representation at low-level, or local descriptor for a small

neighborhood of an image region (patch). We start with the most widely adopted local

feature representation – SIFT (Scale-invariant Feature Transform) descriptor, analyze its

invariant properties and introduce a new operator called domain-size pooling (or DSP for

short) which has deep roots in the classical sampling theory and is complementary to the

spatial (translational) and rotation pooling regularly performed in SIFT and its variants.

The resulting descriptor DSP-SIFT outperforms the original descriptor by a large margin in

the task of correspondence in which one wants to associate points in two or more images to

the same point in the physical world. In Chapter 3, we further investigate the same idea in

various (local) low level descriptors, mid-level representations and high-level architectures

for different tasks such as correspondence, classification and detection. Most of the existing

descriptors are computed from one single image. However, as we will point out in Chapter 4,

a single image does not afford the ability to distinguish intrinsic variabilities from extrinsic

ones. By using multiple images, one is able to construct an approximation of the optimal

local representation for the scene that is invariant to arbitrary domain deformation induced

by viewpoint change. From the theoretical and empirical evidence gathered from the con-

struction of the local level representations, we apply the similar idea to the problem of image

classification in Chapter 5. We compare the explicit way of marginalizing nuisance factors to
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the implicit approach inherent in the certain forms of the widely-used deep neural networks,

and show the effectiveness of explicit marginalization. Empirical results and discussions on

the current deep architectures’ ability to handle nuisance variability are provided. Chap-

ter 6 focuses on representations in 3D space. Given imaging and inertial sensors, we build

a visual-inertial-semantic scene representation for the 3D scene of interest given evidence

gathered from 2D images. Camera poses are marginalized in the underlying navigation sub-

system, and the intrinsic properties of the objects (e.g., pose, shape and semantic identity)

are causally updated in a Bayesian framework. Chapter 7 provides a summary of the findings

in previous chapters.
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CHAPTER 2

Domain-Size Pooling in Local Descriptors: DSP-SIFT

2.1 Introduction

In this chapter, we focus on building a local descriptor for a local image patch (region) for

the task of establishing correspondence in the context of wide-baseline matching. In wide-

baseline matching, we are asked to find corresponding (feature) points in multiple images that

are the projections of the same point in space. In the traditional feature matching pipeline,

local representations are computed at a set of local frames around the feature points returned

by a detector. A detector is a sampling mechanism which returns a set of local reference

frames within the image plane with certain types of nuisance factors eliminated. We deal

with the most common transformations such as planar similarity (translation, rotation and

scaling) and illumination change in this chapter and the next, and move on to investigate

more general deformations in Chapter 4. By centering the local frame at the feature point,

planar translation is by construction eliminated. The same normalization (or canonization)

can be applied to other nuisances such as rotation and scale by selecting a local frame with

its orientation and scale co-variant with the transformation. A regular sampling detector

returns a densely sampled frames independently of the underlying data. One can also use an

adaptive sampling detector which returns a subset of frames by computing a score function

whose response values are data-dependent. A representation or a descriptor is a deterministic

function of the data computed on the local image patch rectified according to the detector.

The descriptors are designed to be invariant and robust (or insensitive) to the residual

nuisances that are not removed by the detector.

Local image descriptors, such as SIFT [Low04] and its variants [DT05, BTG06, CTC09],
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Scale

Figure 2: Maxima and minima of the difference-of-Gaussian images are detected by comparing a
pixel (marked with X) to its 26 neighbors in 3x3 regions at the current and adjacent scales (marked
with circles).

Laplacian. The factor (k − 1) in the equation is a constant over all scales and therefore does
not influence extrema location. The approximation error will go to zero as k goes to 1, but
in practice we have found that the approximation has almost no impact on the stability of
extrema detection or localization for even significant differences in scale, such as k =

√
2.

An efficient approach to construction of D(x, y, σ) is shown in Figure 1. The initial
image is incrementally convolved with Gaussians to produce images separated by a constant
factor k in scale space, shown stacked in the left column. We choose to divide each octave
of scale space (i.e., doubling of σ) into an integer number, s, of intervals, so k = 21/s.
We must produce s + 3 images in the stack of blurred images for each octave, so that final
extrema detection covers a complete octave. Adjacent image scales are subtracted to produce
the difference-of-Gaussian images shown on the right. Once a complete octave has been
processed, we resample the Gaussian image that has twice the initial value of σ (it will be 2
images from the top of the stack) by taking every second pixel in each row and column. The
accuracy of sampling relative to σ is no different than for the start of the previous octave,
while computation is greatly reduced.

3.1 Local extrema detection

In order to detect the local maxima and minima ofD(x, y, σ), each sample point is compared
to its eight neighbors in the current image and nine neighbors in the scale above and below
(see Figure 2). It is selected only if it is larger than all of these neighbors or smaller than all
of them. The cost of this check is reasonably low due to the fact that most sample points will
be eliminated following the first few checks.

An important issue is to determine the frequency of sampling in the image and scale do-
mains that is needed to reliably detect the extrema. Unfortunately, it turns out that there is
no minimum spacing of samples that will detect all extrema, as the extrema can be arbitrar-
ily close together. This can be seen by considering a white circle on a black background,
which will have a single scale space maximum where the circular positive central region of
the difference-of-Gaussian function matches the size and location of the circle. For a very
elongated ellipse, there will be two maxima near each end of the ellipse. As the locations of
maxima are a continuous function of the image, for some ellipse with intermediate elongation
there will be a transition from a single maximum to two, with the maxima arbitrarily close to
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Image gradients Keypoint descriptor

Figure 7: A keypoint descriptor is created by first computing the gradient magnitude and orientation
at each image sample point in a region around the keypoint location, as shown on the left. These are
weighted by a Gaussian window, indicated by the overlaid circle. These samples are then accumulated
into orientation histograms summarizing the contents over 4x4 subregions, as shown on the right, with
the length of each arrow corresponding to the sum of the gradientmagnitudes near that direction within
the region. This figure shows a 2x2 descriptor array computed from an 8x8 set of samples, whereas
the experiments in this paper use 4x4 descriptors computed from a 16x16 sample array.

6.1 Descriptor representation

Figure 7 illustrates the computation of the keypoint descriptor. First the image gradient mag-
nitudes and orientations are sampled around the keypoint location, using the scale of the
keypoint to select the level of Gaussian blur for the image. In order to achieve orientation
invariance, the coordinates of the descriptor and the gradient orientations are rotated relative
to the keypoint orientation. For efficiency, the gradients are precomputed for all levels of the
pyramid as described in Section 5. These are illustrated with small arrows at each sample
location on the left side of Figure 7.

A Gaussian weighting function with σ equal to one half the width of the descriptor win-
dow is used to assign a weight to the magnitude of each sample point. This is illustrated
with a circular window on the left side of Figure 7, although, of course, the weight falls off
smoothly. The purpose of this Gaussian window is to avoid sudden changes in the descriptor
with small changes in the position of the window, and to give less emphasis to gradients that
are far from the center of the descriptor, as these are most affected by misregistration errors.

The keypoint descriptor is shown on the right side of Figure 7. It allows for significant
shift in gradient positions by creating orientation histograms over 4x4 sample regions. The
figure shows eight directions for each orientation histogram, with the length of each arrow
corresponding to the magnitude of that histogram entry. A gradient sample on the left can
shift up to 4 sample positions while still contributing to the same histogram on the right,
thereby achieving the objective of allowing for larger local positional shifts.

It is important to avoid all boundary affects in which the descriptor abruptly changes as a
sample shifts smoothly from being within one histogram to another or from one orientation
to another. Therefore, trilinear interpolation is used to distribute the value of each gradient
sample into adjacent histogram bins. In other words, each entry into a bin is multiplied by a
weight of 1 − d for each dimension, where d is the distance of the sample from the central
value of the bin as measured in units of the histogram bin spacing.
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to the keypoint orientation. For efficiency, the gradients are precomputed for all levels of the
pyramid as described in Section 5. These are illustrated with small arrows at each sample
location on the left side of Figure 7.

A Gaussian weighting function with σ equal to one half the width of the descriptor win-
dow is used to assign a weight to the magnitude of each sample point. This is illustrated
with a circular window on the left side of Figure 7, although, of course, the weight falls off
smoothly. The purpose of this Gaussian window is to avoid sudden changes in the descriptor
with small changes in the position of the window, and to give less emphasis to gradients that
are far from the center of the descriptor, as these are most affected by misregistration errors.

The keypoint descriptor is shown on the right side of Figure 7. It allows for significant
shift in gradient positions by creating orientation histograms over 4x4 sample regions. The
figure shows eight directions for each orientation histogram, with the length of each arrow
corresponding to the magnitude of that histogram entry. A gradient sample on the left can
shift up to 4 sample positions while still contributing to the same histogram on the right,
thereby achieving the objective of allowing for larger local positional shifts.

It is important to avoid all boundary affects in which the descriptor abruptly changes as a
sample shifts smoothly from being within one histogram to another or from one orientation
to another. Therefore, trilinear interpolation is used to distribute the value of each gradient
sample into adjacent histogram bins. In other words, each entry into a bin is multiplied by a
weight of 1 − d for each dimension, where d is the distance of the sample from the central
value of the bin as measured in units of the histogram bin spacing.
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weighted by a Gaussian window, indicated by the overlaid circle. These samples are then accumulated
into orientation histograms summarizing the contents over 4x4 subregions, as shown on the right, with
the length of each arrow corresponding to the sum of the gradientmagnitudes near that direction within
the region. This figure shows a 2x2 descriptor array computed from an 8x8 set of samples, whereas
the experiments in this paper use 4x4 descriptors computed from a 16x16 sample array.
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keypoint to select the level of Gaussian blur for the image. In order to achieve orientation
invariance, the coordinates of the descriptor and the gradient orientations are rotated relative
to the keypoint orientation. For efficiency, the gradients are precomputed for all levels of the
pyramid as described in Section 5. These are illustrated with small arrows at each sample
location on the left side of Figure 7.

A Gaussian weighting function with σ equal to one half the width of the descriptor win-
dow is used to assign a weight to the magnitude of each sample point. This is illustrated
with a circular window on the left side of Figure 7, although, of course, the weight falls off
smoothly. The purpose of this Gaussian window is to avoid sudden changes in the descriptor
with small changes in the position of the window, and to give less emphasis to gradients that
are far from the center of the descriptor, as these are most affected by misregistration errors.

The keypoint descriptor is shown on the right side of Figure 7. It allows for significant
shift in gradient positions by creating orientation histograms over 4x4 sample regions. The
figure shows eight directions for each orientation histogram, with the length of each arrow
corresponding to the magnitude of that histogram entry. A gradient sample on the left can
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A Gaussian weighting function with σ equal to one half the width of the descriptor win-
dow is used to assign a weight to the magnitude of each sample point. This is illustrated
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shift up to 4 sample positions while still contributing to the same histogram on the right,
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invariance, the coordinates of the descriptor and the gradient orientations are rotated relative
to the keypoint orientation. For efficiency, the gradients are precomputed for all levels of the
pyramid as described in Section 5. These are illustrated with small arrows at each sample
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A Gaussian weighting function with σ equal to one half the width of the descriptor win-
dow is used to assign a weight to the magnitude of each sample point. This is illustrated
with a circular window on the left side of Figure 7, although, of course, the weight falls off
smoothly. The purpose of this Gaussian window is to avoid sudden changes in the descriptor
with small changes in the position of the window, and to give less emphasis to gradients that
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figure shows eight directions for each orientation histogram, with the length of each arrow
corresponding to the magnitude of that histogram entry. A gradient sample on the left can
shift up to 4 sample positions while still contributing to the same histogram on the right,
thereby achieving the objective of allowing for larger local positional shifts.

It is important to avoid all boundary affects in which the descriptor abruptly changes as a
sample shifts smoothly from being within one histogram to another or from one orientation
to another. Therefore, trilinear interpolation is used to distribute the value of each gradient
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the region. This figure shows a 2x2 descriptor array computed from an 8x8 set of samples, whereas
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nitudes and orientations are sampled around the keypoint location, using the scale of the
keypoint to select the level of Gaussian blur for the image. In order to achieve orientation
invariance, the coordinates of the descriptor and the gradient orientations are rotated relative
to the keypoint orientation. For efficiency, the gradients are precomputed for all levels of the
pyramid as described in Section 5. These are illustrated with small arrows at each sample
location on the left side of Figure 7.

A Gaussian weighting function with σ equal to one half the width of the descriptor win-
dow is used to assign a weight to the magnitude of each sample point. This is illustrated
with a circular window on the left side of Figure 7, although, of course, the weight falls off
smoothly. The purpose of this Gaussian window is to avoid sudden changes in the descriptor
with small changes in the position of the window, and to give less emphasis to gradients that
are far from the center of the descriptor, as these are most affected by misregistration errors.

The keypoint descriptor is shown on the right side of Figure 7. It allows for significant
shift in gradient positions by creating orientation histograms over 4x4 sample regions. The
figure shows eight directions for each orientation histogram, with the length of each arrow
corresponding to the magnitude of that histogram entry. A gradient sample on the left can
shift up to 4 sample positions while still contributing to the same histogram on the right,
thereby achieving the objective of allowing for larger local positional shifts.

It is important to avoid all boundary affects in which the descriptor abruptly changes as a
sample shifts smoothly from being within one histogram to another or from one orientation
to another. Therefore, trilinear interpolation is used to distribute the value of each gradient
sample into adjacent histogram bins. In other words, each entry into a bin is multiplied by a
weight of 1 − d for each dimension, where d is the distance of the sample from the central
value of the bin as measured in units of the histogram bin spacing.
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Figure 7: A keypoint descriptor is created by first computing the gradient magnitude and orientation
at each image sample point in a region around the keypoint location, as shown on the left. These are
weighted by a Gaussian window, indicated by the overlaid circle. These samples are then accumulated
into orientation histograms summarizing the contents over 4x4 subregions, as shown on the right, with
the length of each arrow corresponding to the sum of the gradientmagnitudes near that direction within
the region. This figure shows a 2x2 descriptor array computed from an 8x8 set of samples, whereas
the experiments in this paper use 4x4 descriptors computed from a 16x16 sample array.

6.1 Descriptor representation

Figure 7 illustrates the computation of the keypoint descriptor. First the image gradient mag-
nitudes and orientations are sampled around the keypoint location, using the scale of the
keypoint to select the level of Gaussian blur for the image. In order to achieve orientation
invariance, the coordinates of the descriptor and the gradient orientations are rotated relative
to the keypoint orientation. For efficiency, the gradients are precomputed for all levels of the
pyramid as described in Section 5. These are illustrated with small arrows at each sample
location on the left side of Figure 7.

A Gaussian weighting function with σ equal to one half the width of the descriptor win-
dow is used to assign a weight to the magnitude of each sample point. This is illustrated
with a circular window on the left side of Figure 7, although, of course, the weight falls off
smoothly. The purpose of this Gaussian window is to avoid sudden changes in the descriptor
with small changes in the position of the window, and to give less emphasis to gradients that
are far from the center of the descriptor, as these are most affected by misregistration errors.

The keypoint descriptor is shown on the right side of Figure 7. It allows for significant
shift in gradient positions by creating orientation histograms over 4x4 sample regions. The
figure shows eight directions for each orientation histogram, with the length of each arrow
corresponding to the magnitude of that histogram entry. A gradient sample on the left can
shift up to 4 sample positions while still contributing to the same histogram on the right,
thereby achieving the objective of allowing for larger local positional shifts.

It is important to avoid all boundary affects in which the descriptor abruptly changes as a
sample shifts smoothly from being within one histogram to another or from one orientation
to another. Therefore, trilinear interpolation is used to distribute the value of each gradient
sample into adjacent histogram bins. In other words, each entry into a bin is multiplied by a
weight of 1 − d for each dimension, where d is the distance of the sample from the central
value of the bin as measured in units of the histogram bin spacing.
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Figure 7: A keypoint descriptor is created by first computing the gradient magnitude and orientation
at each image sample point in a region around the keypoint location, as shown on the left. These are
weighted by a Gaussian window, indicated by the overlaid circle. These samples are then accumulated
into orientation histograms summarizing the contents over 4x4 subregions, as shown on the right, with
the length of each arrow corresponding to the sum of the gradientmagnitudes near that direction within
the region. This figure shows a 2x2 descriptor array computed from an 8x8 set of samples, whereas
the experiments in this paper use 4x4 descriptors computed from a 16x16 sample array.

6.1 Descriptor representation

Figure 7 illustrates the computation of the keypoint descriptor. First the image gradient mag-
nitudes and orientations are sampled around the keypoint location, using the scale of the
keypoint to select the level of Gaussian blur for the image. In order to achieve orientation
invariance, the coordinates of the descriptor and the gradient orientations are rotated relative
to the keypoint orientation. For efficiency, the gradients are precomputed for all levels of the
pyramid as described in Section 5. These are illustrated with small arrows at each sample
location on the left side of Figure 7.

A Gaussian weighting function with σ equal to one half the width of the descriptor win-
dow is used to assign a weight to the magnitude of each sample point. This is illustrated
with a circular window on the left side of Figure 7, although, of course, the weight falls off
smoothly. The purpose of this Gaussian window is to avoid sudden changes in the descriptor
with small changes in the position of the window, and to give less emphasis to gradients that
are far from the center of the descriptor, as these are most affected by misregistration errors.

The keypoint descriptor is shown on the right side of Figure 7. It allows for significant
shift in gradient positions by creating orientation histograms over 4x4 sample regions. The
figure shows eight directions for each orientation histogram, with the length of each arrow
corresponding to the magnitude of that histogram entry. A gradient sample on the left can
shift up to 4 sample positions while still contributing to the same histogram on the right,
thereby achieving the objective of allowing for larger local positional shifts.

It is important to avoid all boundary affects in which the descriptor abruptly changes as a
sample shifts smoothly from being within one histogram to another or from one orientation
to another. Therefore, trilinear interpolation is used to distribute the value of each gradient
sample into adjacent histogram bins. In other words, each entry into a bin is multiplied by a
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weighted by a Gaussian window, indicated by the overlaid circle. These samples are then accumulated
into orientation histograms summarizing the contents over 4x4 subregions, as shown on the right, with
the length of each arrow corresponding to the sum of the gradientmagnitudes near that direction within
the region. This figure shows a 2x2 descriptor array computed from an 8x8 set of samples, whereas
the experiments in this paper use 4x4 descriptors computed from a 16x16 sample array.
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Figure 7 illustrates the computation of the keypoint descriptor. First the image gradient mag-
nitudes and orientations are sampled around the keypoint location, using the scale of the
keypoint to select the level of Gaussian blur for the image. In order to achieve orientation
invariance, the coordinates of the descriptor and the gradient orientations are rotated relative
to the keypoint orientation. For efficiency, the gradients are precomputed for all levels of the
pyramid as described in Section 5. These are illustrated with small arrows at each sample
location on the left side of Figure 7.

A Gaussian weighting function with σ equal to one half the width of the descriptor win-
dow is used to assign a weight to the magnitude of each sample point. This is illustrated
with a circular window on the left side of Figure 7, although, of course, the weight falls off
smoothly. The purpose of this Gaussian window is to avoid sudden changes in the descriptor
with small changes in the position of the window, and to give less emphasis to gradients that
are far from the center of the descriptor, as these are most affected by misregistration errors.

The keypoint descriptor is shown on the right side of Figure 7. It allows for significant
shift in gradient positions by creating orientation histograms over 4x4 sample regions. The
figure shows eight directions for each orientation histogram, with the length of each arrow
corresponding to the magnitude of that histogram entry. A gradient sample on the left can
shift up to 4 sample positions while still contributing to the same histogram on the right,
thereby achieving the objective of allowing for larger local positional shifts.

It is important to avoid all boundary affects in which the descriptor abruptly changes as a
sample shifts smoothly from being within one histogram to another or from one orientation
to another. Therefore, trilinear interpolation is used to distribute the value of each gradient
sample into adjacent histogram bins. In other words, each entry into a bin is multiplied by a
weight of 1 − d for each dimension, where d is the distance of the sample from the central
value of the bin as measured in units of the histogram bin spacing.
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Figure 7: A keypoint descriptor is created by first computing the gradient magnitude and orientation
at each image sample point in a region around the keypoint location, as shown on the left. These are
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keypoint to select the level of Gaussian blur for the image. In order to achieve orientation
invariance, the coordinates of the descriptor and the gradient orientations are rotated relative
to the keypoint orientation. For efficiency, the gradients are precomputed for all levels of the
pyramid as described in Section 5. These are illustrated with small arrows at each sample
location on the left side of Figure 7.

A Gaussian weighting function with σ equal to one half the width of the descriptor win-
dow is used to assign a weight to the magnitude of each sample point. This is illustrated
with a circular window on the left side of Figure 7, although, of course, the weight falls off
smoothly. The purpose of this Gaussian window is to avoid sudden changes in the descriptor
with small changes in the position of the window, and to give less emphasis to gradients that
are far from the center of the descriptor, as these are most affected by misregistration errors.

The keypoint descriptor is shown on the right side of Figure 7. It allows for significant
shift in gradient positions by creating orientation histograms over 4x4 sample regions. The
figure shows eight directions for each orientation histogram, with the length of each arrow
corresponding to the magnitude of that histogram entry. A gradient sample on the left can
shift up to 4 sample positions while still contributing to the same histogram on the right,
thereby achieving the objective of allowing for larger local positional shifts.

It is important to avoid all boundary affects in which the descriptor abruptly changes as a
sample shifts smoothly from being within one histogram to another or from one orientation
to another. Therefore, trilinear interpolation is used to distribute the value of each gradient
sample into adjacent histogram bins. In other words, each entry into a bin is multiplied by a
weight of 1 − d for each dimension, where d is the distance of the sample from the central
value of the bin as measured in units of the histogram bin spacing.
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keypoint to select the level of Gaussian blur for the image. In order to achieve orientation
invariance, the coordinates of the descriptor and the gradient orientations are rotated relative
to the keypoint orientation. For efficiency, the gradients are precomputed for all levels of the
pyramid as described in Section 5. These are illustrated with small arrows at each sample
location on the left side of Figure 7.

A Gaussian weighting function with σ equal to one half the width of the descriptor win-
dow is used to assign a weight to the magnitude of each sample point. This is illustrated
with a circular window on the left side of Figure 7, although, of course, the weight falls off
smoothly. The purpose of this Gaussian window is to avoid sudden changes in the descriptor
with small changes in the position of the window, and to give less emphasis to gradients that
are far from the center of the descriptor, as these are most affected by misregistration errors.

The keypoint descriptor is shown on the right side of Figure 7. It allows for significant
shift in gradient positions by creating orientation histograms over 4x4 sample regions. The
figure shows eight directions for each orientation histogram, with the length of each arrow
corresponding to the magnitude of that histogram entry. A gradient sample on the left can
shift up to 4 sample positions while still contributing to the same histogram on the right,
thereby achieving the objective of allowing for larger local positional shifts.

It is important to avoid all boundary affects in which the descriptor abruptly changes as a
sample shifts smoothly from being within one histogram to another or from one orientation
to another. Therefore, trilinear interpolation is used to distribute the value of each gradient
sample into adjacent histogram bins. In other words, each entry into a bin is multiplied by a
weight of 1 − d for each dimension, where d is the distance of the sample from the central
value of the bin as measured in units of the histogram bin spacing.

15

Image gradients Keypoint descriptor

Figure 7: A keypoint descriptor is created by first computing the gradient magnitude and orientation
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nitudes and orientations are sampled around the keypoint location, using the scale of the
keypoint to select the level of Gaussian blur for the image. In order to achieve orientation
invariance, the coordinates of the descriptor and the gradient orientations are rotated relative
to the keypoint orientation. For efficiency, the gradients are precomputed for all levels of the
pyramid as described in Section 5. These are illustrated with small arrows at each sample
location on the left side of Figure 7.

A Gaussian weighting function with σ equal to one half the width of the descriptor win-
dow is used to assign a weight to the magnitude of each sample point. This is illustrated
with a circular window on the left side of Figure 7, although, of course, the weight falls off
smoothly. The purpose of this Gaussian window is to avoid sudden changes in the descriptor
with small changes in the position of the window, and to give less emphasis to gradients that
are far from the center of the descriptor, as these are most affected by misregistration errors.

The keypoint descriptor is shown on the right side of Figure 7. It allows for significant
shift in gradient positions by creating orientation histograms over 4x4 sample regions. The
figure shows eight directions for each orientation histogram, with the length of each arrow
corresponding to the magnitude of that histogram entry. A gradient sample on the left can
shift up to 4 sample positions while still contributing to the same histogram on the right,
thereby achieving the objective of allowing for larger local positional shifts.

It is important to avoid all boundary affects in which the descriptor abruptly changes as a
sample shifts smoothly from being within one histogram to another or from one orientation
to another. Therefore, trilinear interpolation is used to distribute the value of each gradient
sample into adjacent histogram bins. In other words, each entry into a bin is multiplied by a
weight of 1 − d for each dimension, where d is the distance of the sample from the central
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Figure 7: A keypoint descriptor is created by first computing the gradient magnitude and orientation
at each image sample point in a region around the keypoint location, as shown on the left. These are
weighted by a Gaussian window, indicated by the overlaid circle. These samples are then accumulated
into orientation histograms summarizing the contents over 4x4 subregions, as shown on the right, with
the length of each arrow corresponding to the sum of the gradientmagnitudes near that direction within
the region. This figure shows a 2x2 descriptor array computed from an 8x8 set of samples, whereas
the experiments in this paper use 4x4 descriptors computed from a 16x16 sample array.
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Figure 7 illustrates the computation of the keypoint descriptor. First the image gradient mag-
nitudes and orientations are sampled around the keypoint location, using the scale of the
keypoint to select the level of Gaussian blur for the image. In order to achieve orientation
invariance, the coordinates of the descriptor and the gradient orientations are rotated relative
to the keypoint orientation. For efficiency, the gradients are precomputed for all levels of the
pyramid as described in Section 5. These are illustrated with small arrows at each sample
location on the left side of Figure 7.

A Gaussian weighting function with σ equal to one half the width of the descriptor win-
dow is used to assign a weight to the magnitude of each sample point. This is illustrated
with a circular window on the left side of Figure 7, although, of course, the weight falls off
smoothly. The purpose of this Gaussian window is to avoid sudden changes in the descriptor
with small changes in the position of the window, and to give less emphasis to gradients that
are far from the center of the descriptor, as these are most affected by misregistration errors.

The keypoint descriptor is shown on the right side of Figure 7. It allows for significant
shift in gradient positions by creating orientation histograms over 4x4 sample regions. The
figure shows eight directions for each orientation histogram, with the length of each arrow
corresponding to the magnitude of that histogram entry. A gradient sample on the left can
shift up to 4 sample positions while still contributing to the same histogram on the right,
thereby achieving the objective of allowing for larger local positional shifts.

It is important to avoid all boundary affects in which the descriptor abruptly changes as a
sample shifts smoothly from being within one histogram to another or from one orientation
to another. Therefore, trilinear interpolation is used to distribute the value of each gradient
sample into adjacent histogram bins. In other words, each entry into a bin is multiplied by a
weight of 1 − d for each dimension, where d is the distance of the sample from the central
value of the bin as measured in units of the histogram bin spacing.
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Figure 7: A keypoint descriptor is created by first computing the gradient magnitude and orientation
at each image sample point in a region around the keypoint location, as shown on the left. These are
weighted by a Gaussian window, indicated by the overlaid circle. These samples are then accumulated
into orientation histograms summarizing the contents over 4x4 subregions, as shown on the right, with
the length of each arrow corresponding to the sum of the gradientmagnitudes near that direction within
the region. This figure shows a 2x2 descriptor array computed from an 8x8 set of samples, whereas
the experiments in this paper use 4x4 descriptors computed from a 16x16 sample array.

6.1 Descriptor representation

Figure 7 illustrates the computation of the keypoint descriptor. First the image gradient mag-
nitudes and orientations are sampled around the keypoint location, using the scale of the
keypoint to select the level of Gaussian blur for the image. In order to achieve orientation
invariance, the coordinates of the descriptor and the gradient orientations are rotated relative
to the keypoint orientation. For efficiency, the gradients are precomputed for all levels of the
pyramid as described in Section 5. These are illustrated with small arrows at each sample
location on the left side of Figure 7.

A Gaussian weighting function with σ equal to one half the width of the descriptor win-
dow is used to assign a weight to the magnitude of each sample point. This is illustrated
with a circular window on the left side of Figure 7, although, of course, the weight falls off
smoothly. The purpose of this Gaussian window is to avoid sudden changes in the descriptor
with small changes in the position of the window, and to give less emphasis to gradients that
are far from the center of the descriptor, as these are most affected by misregistration errors.

The keypoint descriptor is shown on the right side of Figure 7. It allows for significant
shift in gradient positions by creating orientation histograms over 4x4 sample regions. The
figure shows eight directions for each orientation histogram, with the length of each arrow
corresponding to the magnitude of that histogram entry. A gradient sample on the left can
shift up to 4 sample positions while still contributing to the same histogram on the right,
thereby achieving the objective of allowing for larger local positional shifts.

It is important to avoid all boundary affects in which the descriptor abruptly changes as a
sample shifts smoothly from being within one histogram to another or from one orientation
to another. Therefore, trilinear interpolation is used to distribute the value of each gradient
sample into adjacent histogram bins. In other words, each entry into a bin is multiplied by a
weight of 1 − d for each dimension, where d is the distance of the sample from the central
value of the bin as measured in units of the histogram bin spacing.
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Figure 7: A keypoint descriptor is created by first computing the gradient magnitude and orientation
at each image sample point in a region around the keypoint location, as shown on the left. These are
weighted by a Gaussian window, indicated by the overlaid circle. These samples are then accumulated
into orientation histograms summarizing the contents over 4x4 subregions, as shown on the right, with
the length of each arrow corresponding to the sum of the gradientmagnitudes near that direction within
the region. This figure shows a 2x2 descriptor array computed from an 8x8 set of samples, whereas
the experiments in this paper use 4x4 descriptors computed from a 16x16 sample array.

6.1 Descriptor representation

Figure 7 illustrates the computation of the keypoint descriptor. First the image gradient mag-
nitudes and orientations are sampled around the keypoint location, using the scale of the
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Figure 2.1: In SIFT (top, recreated according to [Low04]) isolated scales are selected (a) and

the descriptor constructed from the image at the selected scale (b) by computing gradient

orientations (c) and pooling them in spatial neighborhoods (d) yielding histograms that are

concatenated and normalized to form the descriptor (e). In DSP-SIFT (bottom), pooling

occurs across different domain sizes (a): Patches of different sizes are re-scaled (b), gradi-

ent orientation computed (c) and pooled across locations and scales (d), and concatenated

yielding a descriptor (e) of the same dimension of ordinary SIFT.

are designed to reduce variability due to illumination and vantage point while retaining

discriminative power. This facilitates finding correspondence between different views of

the same underlying scene. In a wide-baseline matching task on the Oxford benchmark

[MS05, MTS04], nearest-neighbor SIFT descriptors achieve a mean average precision (mAP)

of 27.50%, a 71.85% improvement over direct comparison of normalized grayscale values.

Other datasets yield similar results [MP07]. In this chapter, we show that a simple mod-

ification of SIFT, obtained by pooling gradient orientations across different domain sizes

(“scales”), in addition to spatial locations, improves it by a considerable margin, also out-

performing the neural network descriptors learned from a large training dataset. We call the

resulting descriptor “domain-size pooled” SIFT, or DSP-SIFT.
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Pooling across different domain sizes is implemented in few lines of code, can be applied

to any histogram-based method (Sect. 2.3), and yields a descriptor of the same size that

outperforms the original essentially uniformly (Fig. 2.4). Yet combining histograms of images

of different sizes is counterintuitive and seemingly at odds with the teachings of scale-space

theory and the resulting established practice of scale selection [Lin98] (Sect. 2.1.1). It is,

however, rooted in classical sampling theory and anti-aliasing. Sect. 2.2 describes what we

do, Sect. 2.3 how we do it, and Sect. 2.5 why we do it. Sect. 2.4 validates our method

empirically.

2.1.1 Related work

A single, un-normalized cell of the “scale-invariant feature transform” SIFT [Low04] and its

variants [BTG06, CTC09, DT05] can be written compactly as a formula [DKD15, VF10]:

hSIFT(θ|I, σ̂)[x] =

∫
Nε (θ − ∠∇I(y))Nσ̂(y − x)dµ(y) (2.1)

where I is the image restricted to a square domain, centered at a location x ∈ Λ(σ̂) with size

σ̂ in the lattice Λ determined by the response to a difference-of-Gaussian (DoG) operator

across all locations and scales (SIFT detector). Here dµ(y)
.
= ‖∇I(y)‖dy, θ is the independent

variable, ranging from 0 to 2π, corresponding to an orientation histogram bin of size ε, and σ̂

is the spatial pooling scale. The kernel Nε is bilinear of size ε and Nσ̂ separable-bilinear of size

σ̂ [VF10], although they could be replaced by a Gaussian with standard deviation σ̂ and an

angular Gaussian with dispersion parameter ε. The SIFT descriptor is the concatenation of

16 cells (2.1) computed at locations x ∈ {x1, x2, . . . , x16} on a 4×4 lattice Λ, and normalized.

The spatial pooling scale σ̂ and the size of the image domain where the SIFT descriptor is

computed Λ = Λ(σ̂) are tied to the photometric characteristics of the image, since σ̂ is derived

from the response of a DoG operator on the (single) image.1 Such a response depends on the

reflectance properties of the scene and optical characteristics and resolution of the sensor,

1Approaches based on “dense SIFT” forgo the detector and instead compute descriptors on a regular
sampling of locations and scales (Fig. 2.12). However, no existing dense SIFT method performs domain-size
pooling.
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neither of which is related to the size and shape of co-visible (corresponding) regions. Instead,

how large a portion of a scene is visible in each corresponding image(s) depends on the shape

of the scene, the pose of the two cameras, and the resulting visibility (occlusion) relations.

Therefore, we propose to untie the size of the domain where the descriptor is computed

(“scale”) from photometric characteristics of the image, departing from the teachings of

scale selection (Fig. 2.9). Instead, we use basic principles of classical sampling theory and

anti-aliasing to achieve robustness to domain size changes due to occlusions (Sect. 2.5).

Pooling is commonly understood as the combination of responses of feature detectors

or descriptors at nearby locations, aimed at transforming the joint feature representation

into a more usable one that preserves important information (intrinsic variability) while

discarding irrelevant detail (nuisance variability) [BPL10, JHD12]. However, precisely how

pooling trades off these two conflicting aims is unclear and mostly addressed empirically in

end-to-end comparisons with numerous confounding factors. Exceptions include [BPL10],

where intrinsic and nuisance variability are combined and abstracted into the variance and

distance between the means of scalar random variables in a binary classification task. For

more general settings, the goals of reducing nuisance variability while preserving intrinsic

variability is elusive as a single image does not afford the ability to separate the two [DKD15].

An alternate interpretation of pooling as anti-aliasing [SC14] clearly highlights its effects

on intrinsic and nuisance variability: Because one cannot know what portion of an object or

scene will be visible in a test image, a scale-space (“semi-orbit”) of domain sizes (“receptive

fields”) should be marginalized or searched over (“max-out”). Neither can be computed

in closed-form, so the semi-orbit has to be sampled. To reduce complexity, only a small

number of samples should be retained, resulting in undersampling and aliasing phenomena

that can be mitigated by anti-aliasing, with quantifiable effects on the sensitivity to nuisance

variability. For the case of histogram-based descriptors, anti-aliasing planar translations

consists of spatial pooling, routinely performed by most descriptors. Anti-aliasing visibility

results in domain-size aggregation, which no current descriptor practices. This interpretation

also offers a way to quantify the effects of pooling on discriminative (reconstruction) power

directly, using classical results from sampling theory, rather than indirectly through an end-
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to-end classification experiment that may contain other confounding factors.

Domain-size pooling can be applied to a number of different descriptors or convolutional

architectures. We illustrate its effects on the most popular, SIFT, in this chapter and validate

its applications to other descriptors and architectures in the next chapter. However, we point

out that proper marginalization requires the availability of multiple images of the same scene,

and therefore cannot be performed in a single image (Chapter 4). While most local image

descriptors are computed from a single image, exceptions include [DKD15, LS11b]. Of course,

multiple images can be “hallucinated” from one, but the resulting pooling operation can only

achieve invariance to modeled transformations.

In neural network architectures, there is evidence that abstracting spatial pooling hier-

archically, i.e., aggregating nearby responses in feature maps, is beneficial [BPL10]. This

process could be extended by aggregating across different neighborhood sizes in feature space.

To the best of our knowledge, the only architecture that performs some kind of pooling across

scales is [SOP07], although the justification provided in [BRP09] only concerns translation

within each scale. The same goes for [BM11], where pooling (low-pass filtering) is only per-

formed within each scale, and not across scales. Other works learn the regions for spatial

pooling, for instance [JHD12, SVZ14b], but still restrict pooling to within-scale, similar to

[LeC12], rather than across scales as we advocate.

We distinguish multi-scale methods that concatenate descriptors computed independently

at each scale, from cross-scale pooling, where statistics of the image at different scales are

combined directly in the descriptor. Examples of the former include [HMZ12], where ordi-

nary SIFT descriptors computed on domains of different size are assumed to belong to a

linear subspace, and [SVZ14b], where Fisher vectors are computed for multiple sizes and

aspect ratios and spatial pooling occurs within each level. Also bag-of-word (BoW) methods

[SZ03], as mid-level representations, aggregate different low level descriptors by counting

their frequency after discretization. Typically, vector quantization or other clustering tech-

nique is used, each descriptor is associated with a cluster center (“word”), and the frequency

of each word is recorded in lieu of the descriptors themselves. This can be done for domain

size, by computing different descriptors at the same location, for different domain sizes,
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and then counting frequencies relative to a dictionary learned from a large training dataset

(Sect. 2.4.4).

Aggregation across time, which may include changes of domain size, is advocated in

[HLB11], but in the absence of formulas it is unclear how this approach relates to our work.

In [FCN12], weights are shared across scales, which is not equivalent to pooling, but still

establishes some dependencies across scales. MTD [LS11a] appears to be the first instance

of pooling across scales, although the aggregation is global in scale-space with consequent

loss of discriminative power. Most recently, [GWG14] advocates the same but in practice

space-pooled VLAD descriptors obtained at different scales are simply concatenated. Also

[BM01] can be thought of as a form of pooling, but the resulting descriptor only captures the

mean of the resulting distribution. In addition, [TH14] exploits the possibility of estimating

the proper scales for nearby features via scale propagation but still no pooling is performed

across scales.

2.2 Domain-Size Pooling

If SIFT is written as (2.1), then DSP-SIFT is given by

hDSP(θ|I)[x] =

∫
hSIFT(θ|I, σ)[x]Es(σ)dσ x ∈ Λ (2.2)

where s > 0 is the size-pooling scale and E is an exponential or other unilateral density

function. The process is visualized in Fig. 2.1. Unlike SIFT, that is computed on a scale-

selected lattice Λ(σ̂), DSP-SIFT is computed on a regularly sampled lattice Λ. Computed on

a different lattice, the above can be considered as a recipe for DSP-HOG [DT05]. Computed

on a tree, it can be used to extend deformable-parts models (DPM) [FMR08] to DSP-DPM.

Replacing hSIFT with other histogram-based descriptor “X” (for instance, SURF [BTG06]),

the above yields DSP-X. Applied to a hidden layer of a convolutional network, it yields a

DSP-CNN, or DSP-Deep-Fisher-Network [SVZ13]. These variants are explored in the next

chapter. The details of the implementation are in Sect. 2.3.

While the implementation of DSP is straightforward, its justification is less so. We report

9



the summary in Sect. 2.5. In Sect. 2.4 we compare DSP-SIFT to alternate approaches.

Motivated by the experiments of [MTS04, MP07] that compare local descriptors, we choose

SIFT as a paragon and compare it to DSP-SIFT on the standard benchmark [MTS04].

Motivated by [FDB14] that compares SIFT to both supervised and unsupervised CNNs

trained on ImageNet and Flickr respectively on the same benchmark [MTS04], we submit

DSP-SIFT to the same protocol. We also run the test on the new synthetic dataset introduced

by [FDB14], that yields the same qualitative assessment.

Clearly, domain-size pooling of under-sampled semi-orbits cannot outperform fine sam-

pling, so if we were to retain all the scale samples instead of aggregating them, performance

would further improve. However, computing and matching a large collection of SIFT de-

scriptors across different scales would incur significantly increased computational and storage

costs. To contain the latter, [HMZ12] assumes that descriptors at different scales populate a

linear subspace and fit a high-dimensional hyperplane. The resulting Scale-less SIFT (SLS)

outperforms ordinary SIFT as shown in Fig. 2.6. However, the linear subspace assumption

breaks when considering large scale changes, so SLS is outperformed by DSP-SIFT despite

the considerable difference in (memory and time) complexity.

2.3 Implementation and Parameters

Following other evaluation protocols, we use Maximally Stable Extremal Regions (MSER)

[MCM02] to detect candidate regions, affine-normalize, re-scale and align them to the domi-

nant orientation. For a detected scale σ̂, DSP-SIFT samples Nσ̂ scales within a neighborhood

(λ1σ̂, λ2σ̂) around it. For each scale-sampled patch, a single-scale un-normalized SIFT de-

scriptor (2.1) is computed on the SIFT scale-space octave corresponding to the sampled scale

σ. By choosing Es to be a uniform density, these raw histograms of gradient orientations at

different scales are accumulated and normalized2 (2.2). Fig. 2.2(a) shows the mean average

precision (defined in Sect. 2.4.2) for different domain size pooling ranges. Improvements

2We follow the practice of SIFT [Low04] to normalize, clamp and re-normalize the histograms, with the
clamping threshold set to 0.067 empirically.
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Figure 2.2: Mean Average Precision for different parameters. (a) shows that mAP changes

with the radius s of DS pooling. The best mAP is achieved at ŝ = σ̂/2; (b) shows mAP as

a function of the number of samples used within the best range (σ̂ − ŝ, σ̂ + ŝ).

are observed as soon as more than one scale is used, with diminishing return: Performance

decreases with domain size pooling radius exceeding σ̂/2. Fig. 2.2(b) shows the effect of

the number of size samples used to construct DSP-SIFT. Although the more samples the

merrier, three size samples are sufficient to outperform ordinary SIFT, and improvement

beyond 10 samples is minimal. Additional samples do not further increase the mean av-

erage precision, but incur more computational cost. In the evaluation in Sect. 2.4, we use

λ1 = 1/6, λ2 = 4/3 and Nσ̂ = 15. These parameters are empirically selected on the Oxford

dataset [MS05, MTS04].

2.4 Validation

As a baseline, the RAW-PATCH descriptor (named following [FDB14]) is the unit-norm

grayscale intensity of the affine-rectified and resized patch of a fixed size (91× 91).

The standard SIFT, which is widely accepted as a paragon [MS05, MP07], is computed

using the VLFeat library [VF10]. Both SIFT and DSP-SIFT are computed on the SIFT scale-

space corresponding to the detected scales. Instead of mapping all patches to an arbitrarily

user-defined size, we use the area of each selected and rectified MSER region to determine
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the octave level in the scale-space where SIFT (as well as DSP-SIFT) is to be computed.

Scale-less SIFT (SLS) is computed using the source code provided by the authors [HMZ12]:

For each selected and rectified patch, the standard SIFT descriptors are computed at 20 scales

from a scale range of (0.5, 12), and the standard PCA subspace dimension is set to 8, yielding

a final descriptor of dimension 8256 after a subspace-to-vector mapping.

To compare DSP-SIFT to a convolutional neural network, we use the top-performer

in [FDB14], an unsupervised model pre-trained on 16000 natural images undergoing 150

transformations each (total 2.4M). The responses at the intermediate layers 3 (CNN-L3)

and 4 (CNN-L4) are used for comparison, following [FDB14]. Since the network requires

input patches of fixed size, we tested and report the results on both 69 × 69 (PS69) and

91× 91 (PS91) as in [FDB14].

Although no direct comparison with Multiscale Template Descriptors (MTD) [LS11a]

is performed, SLS can be considered as dominating it since it uses all scales without col-

lapsing them into a single histogram. The derivation in Sect. 2.5 suggests, and empirical

evidence in Fig. 2.2(a) confirms, that aggregating the histogram across all scales significantly

reduces discriminative power. Sect. 2.4.4 compares DSP-SIFT to a BoW which pools SIFT

descriptors computed at different sizes at the same location.

2.4.1 Datasets

The Oxford dataset [MS05, MTS04] comprises 40 pairs of images of mostly planar scenes

seen under different pose, distance, blurring, compression and lighting. They are organized

into 8 categories undergoing increasing magnitude of transformations. While routinely used

to evaluate descriptors, this dataset has limitations in terms of size and restriction to mostly

planar scenes, modest scale changes, and no occlusions. Fischer et al. [FDB14] recently

introduced a dataset of 400 pairs of images with more extreme transformations including

zooming, blurring, lighting change, rotation, perspective and nonlinear transformations.
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Figure 2.3: Average Precision for different magnitude of transformations. The left 9 panels

show (AP) for increasing magnitude of the 8 transformations in the Oxford dataset [MS05].

The mean AP over all pairs with corresponding amount of transformation are shown in the

middle of the third row. The right 6 panels show the same for Fischer’s dataset [FDB14].

2.4.2 Metrics

Following [MS05], we use precision-recall (PR) curves to evaluate descriptors. A match

between two descriptors is called if their Euclidean distance is less than a threshold τd.

It is then labeled as a true positive if the area of intersection over union (IoU) of their

corresponding MSER-detected regions is larger than 50%. Both datasets provide ground

truth mapping between images, so the overlapping is computed by warping the first MSER

region into the second image and then computing the overlap with the second MSER region.

Recall is the fraction of true positives over the total number of correspondences. Precision is

the percentage of true matches within the total number of matches. By varying the distance

threshold τd, a PR curve can be generated and average precision (AP, a.k.a area under the

curve, AUC) can be estimated. The average of APs provides the mean average precision

(mAP) scores used for comparison.
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Figure 2.4: Head-to-head comparisons. Similarly to [FDB14], each point represents one

pair of images in the Oxford (top) and Fischer (bottom) datasets. The coordinates indicate

average precision for each of the two methods under comparison. SIFT is superior to RAW–

PATCH, but is outperformed by DSP-SIFT and CNN-L4. The right two columns show that

DSP-SIFT is better than SLS and CNN-L4 despite the difference in dimensions (shown in

the axes). The relative performance improvement of the winner is shown in the title of each

panel.

2.4.3 Comparison

Fig. 2.3 shows the behavior of each descriptor for varying degree of severity of each trans-

formation. DSP-SIFT consistently outperforms other methods when there are large scale

changes (zoom). It is also more robust to other transformations such as blur, lighting and

compression in the Oxford dataset [MTS04], and to nonlinear, perspective, lighting, blur

and rotation in Fischer’s [FDB14]. DSP-SIFT is not at the top of the list of all compared

descriptors in viewpoint change cases, although “viewpoint” is a misnomer as MSER-based

rectification accounts for most of the viewpoint variability, and the residual variability is

mostly due to interpolation and rectification artifacts. The fact that DSP-SIFT outperforms

CNN in nearly all cases in Fischer’s dataset is surprising, considering that the neural network

is trained by augmenting the dataset using similar types of transformations.
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Figure 2.5: DSP-SIFT vs. SIFT-BOW. Similarly to Fig. 2.4, each point represents one

pair of images in the Oxford (left) and Fischer (right) datasets. The coordinates indicate

average precision for each of the two methods under comparison. The relative performance

improvement of the winner is shown in the title of each panel. DSP-SIFT outperforms

SIFT-BOW by a wide margin on both datasets.

Fig. 2.4 shows head-to-head comparisons between these methods, in the same format

of [FDB14]. DSP-SIFT outperforms SIFT by 43.09% and 18.54% on Oxford and Fischer

respectively. Only on two out of 400 pairs of images in Fischer dataset does domain-size

pooling negatively affect the performance of SIFT, but the decrease is rather small. DSP-

SIFT improves SIFT on every pair of images in the Oxford dataset. The improvement of

DSP-SIFT comes without increase in dimension. In comparison, CNN-L4 achieves 11.54%

and 11.53% improvements over SIFT by increasing dimension 64-fold. On both datasets,

DSP-SIFT also consistently outperforms CNN-L4 and SLS despite its lower dimension.

2.4.4 Comparison with Bag-of-Words

To compare DSP-SIFT to BoW we computed SIFT at 15 scales on concentric regions with

dictionary sizes ranging from 512 to 2048, trained on over 100K SIFT descriptors computed

on samples from ILSVRC-2013 [DDS09]. To make the comparison fair, the same 15 scales
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Figure 2.6: Complexity-Performance Tradeoff. The abscissa is the descriptor dimension

shown in log-scale, the ordinate shows the mean average precision.

are used to compute DSP-SIFT. By doing so, the only difference between these two methods

is how to pool across scales rather than what or where to pool. In SIFT-BOW, pooling

is performed by encoding SIFTs from nearby scales using the quantized visual dictionary,

while DSP-SIFT combines the histograms of gradient orientations across scales directly. To

compute similarity between SIFT-BOWs, we tested both the intersection kernel and `1 norm,

and achieved a best performance with the latter at 20.62% mAP on Oxford and 39.63% on

Fischer. Fig. 2.5 shows the direct comparison between DSP-SIFT and SIFT-BOW with the

former being a clear winner.

2.4.5 Complexity and Performance Tradeoff

Fig. 2.6 shows the complexity (descriptor dimension) and performance (mAP) tradeoff. Table

2.1 summarizes the results. In Fig. 2.6, an “ideal” descriptor would achieve mAP = 1 by

using the smallest possible number of bits and land at the top-left corner of the graph.

DSP-SIFT has the same lowest complexity as SIFT and is the best in mAP among all the

descriptors. Looking horizontally in the graph, DSP-SIFT outperforms all the other methods

at a fraction of complexity. SLS achieves the second best performance but at the cost of

a 64-fold increase in dimension. In general, the performance of CNN descriptors is worse
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Method Dim.
mAP

Oxford Fischer

SIFT 128 .2750 .4532

DSP-SIFT 128 .3936 .5372

CNN-L4-PS69 512 .3059 .4779

SIFT-BOW 2048 .2062 .3963

CNN-L3-PS69 4096 .3164 .4858

CNN-L4-PS91 8192 .3068 .5055

SLS 8256 .3320 .5135

RAW-PATCH 8281 .1600 .3479

CNN-L3-PS91 9216 .3056 .4899

Table 2.1: Summary of complexity (dimension) and performance (mAP) for all descriptors

sorted in order of increasing complexity. The lowest complexities and the best performances

are highlighted in bold. We also report mAP for CNN descriptors computed on 69 × 69

patches as in [FDB14]. The fourth row shows comparison with a bag-of-words of SIFT

descriptors computed at the same location but different domain sizes, described in detail in

Sect. 2.4.4.

than DSP-SIFT but, interestingly, their mAPs do not change significantly if the network

responses are computed on a resampled patch of size 69 × 69 to obtain lower dimensional

descriptors.

2.4.6 Comparison with SIFT on Larger Domain Sizes

Descriptors computed on larger domain sizes are usually more discriminative, up to the point

where the domain straddles occluding boundaries (Fig. 2.7). When using a detector, the size

of the domain is usually chosen to be a factor of the detected scale, which affects performance

in a way that depends on the dataset and the incidence of occlusions. In our experiments,

this parameter (dilation factor) is set at 3, following [MS05], and we note that DSP-SIFT

is less sensitive than ordinary SIFT to this parameter. Since DSP-SIFT aggregates domains

of various sizes (smaller and larger) around the nominal size, it is important to ascertain
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whether the improvement in DSP-SIFT comes from size pooling, or simply from including

larger domains. To this end, we compare DSP-SIFT by pooling domain sizes from 1/6th

through 4/3rd of the scale determined by the detector, to a single-size descriptor computed

at the largest size (SIFT-L). This establishes that the increase in performance of DSP-SIFT

over ordinary SIFT comes from pooling across domain sizes, not just by picking larger domain

sizes. In the example in Fig. 2.8, the largest domain size yields an even worse performance

than the detection scale (Fig. 2.8(b)). In a more complex scene where the test images exhibit

occlusion, this will be even more pronounced as there is a tradeoff between discriminative

power (calling for a larger size) and the probability of straddling an occlusion (calling for a

smaller size).
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Figure 2.7: The discriminative power of a descriptor (e.g., mAP of SIFT) increases with the

size of the domain, but so does the probability of straddling an occlusion and the approxima-

tion error of the imaging model implicit in the detector/descriptor. This effect, which also

depends on the base size, is most pronounced when occlusions are present, but is present

even on the Oxford dataset, shown above.

2.5 Derivation

In this section we describe the trace of the derivation of DSP-SIFT, which is reported in

Appendix A. Crucial to the derivation is the interpretation of a descriptor as a likelihood
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Figure 2.8: DSP-SIFT vs. SIFT-L. Similarly to Fig. 2.4, each point represents one pair of

images in the Oxford dataset. The coordinates indicate average precision for each of the two

methods under comparison. The relative performance improvement of the winner is shown

in the title of each panel. 2.8(a) shows that DSP-SIFT outperforms SIFT computed at the

largest domain size. This shows that the improvement of DSP-SIFT comes from the pooling

across domain sizes rather than choosing a larger domain size. 2.8(b) shows that choosing a

larger domain size actually decreases the performance on the Oxford dataset.

function [SC14].

1. The likelihood function of the scene given images is a minimal sufficient statistic of the

latter for the purpose of answering questions on the former [Bah54]. Invariance to nuisance

transformations induced by (semi-)group actions on the data can be achieved by representing

orbits, which are maximal invariants [Sha98]. The planar translation-scale group can be used

as a crude first-order approximation of the action of the translation group in space (viewpoint

changes) including scale change-inducing translations along the optical axis. This draconian

assumption is implicit in most single-view descriptors.

2. Comparing (semi-)orbits entails a continuous search (non-convex optimization) that has to

be discretized for implementation purposes. The orbits can be sampled adaptively, through

the use of a co-variant detector and the associated invariant descriptor, or regularly – as
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customary in classical sampling theory.

3. In adaptive sampling, the detector should exhibit high sensitivity to nuisance transforma-

tions (e.g., small changes in scale should cause a large change in the response to the detector,

thus providing accurate scale localization) and the descriptor should exhibit small sensitivity

(so small errors in scale localization cause a small change in the descriptor). Unfortunately,

for the case of SIFT (DoG detector and gradient orientation histogram descriptor), the

converse is true.

4. Because correspondence entails search over samples of each orbit, time complexity in-

creases with the number of samples. Undersampling introduces structural artifacts, or

“aliases,” corresponding to topological changes in the response of the detector. These can

be reduced by “anti-aliasing,” an averaging operation. For the case of (approximations of)

the likelihood function, such as SIFT and its variants, anti-aliasing corresponds to pooling.

While spatial pooling is common practice, and reduces sensitivity to translation parallel to

the image plane, scale pooling – which would provide insensitivity to translation orthogonal

to the image plane – and domain-size pooling – which would provide insensitivity to small

changes of visibility, are not. This motivates the introduction of DSP-SIFT, and the rich the-

ory on sampling and anti-aliasing could provide guidelines on what and how to pool, as well

as bounds on the loss of discriminative power coming from undersampling and anti-aliasing

operations.

2.5.1 Generative and Discriminative Power

According to the above derivation, one would expect that images can be sampled from SIFT

or DSP-SIFT, as interpreted as a likelihood function. Fig. 2.11 shows that this is indeed

the case. We compute descriptors at the detected SIFT locations and scales, and then

draw samples of gradient orientations from the histograms. Local image patches are then

reconstructed from their gradient. With these patches put back to the detected locations,

the object is clearly visible (Fig. 2.11(b)). Given multiple views of the same object, e.g., from

Moreels’ dataset [MP07], one can also learn a likelihood of configurations in addition to the
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Figure 2.9: Scale-space vs. Size-space. Scale-space refers to a continuum of images obtained

by smoothing and downsampling a base image. It is relevant to searching for correspondence

when the distance to the scene changes. Size-space refers to a scale-space obtained by

maintaining the same scale of the base image, but considering subsets of it of variable size.

It is relevant to searching for correspondence in the presence of occlusions, so the size (and

shape) of co-visible domains are not known.

appearance. For instance, a simple model can be a Gaussian over the locations of tracked

features over multiple views. Fig. 2.11(c) and (d) show the instances sampled from both

geometric and photometric likelihood. These sampled images resemble what have been

visualized by others in the context of CNNs learned from millions of images of the same

object category [MV15].

Fig. 2.10 shows the images reconstructed from regularly sampled DSP-SIFT. We follow

the procedure of [MV15] with dense DSP-SIFT replacing SIFT. It is remarkable to notice

that the reconstructed images are sharper than one would have expected by thinking that

pooling across different domains will lead to a blurry reconstruction. These qualitative results

suggest that the loss in discriminative power is very limited after domain-size pooling.
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(a) (b) (c)

Figure 2.10: Images reconstructed from dense DSP-SIFT. Each pair shows the original and

the reconstructed images from dense DSP-SIFT.

(a) (b) (c) (d)

Figure 2.11: Images sampled from a learned descriptor-configuration model. (a) Original

image. (b) Image sampled from a single view. (c)-(d) show two instances sampled from

templates learned from multiple views.

2.6 Discussion

Image matching under changes of viewpoint, illumination and partial occlusions is framed

as a hypothesis testing problem, which results in a non-convex optimization over continuous
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nuisance parameters. The need for efficient test-time performance has spawned an industry

of engineered descriptors, which are computed locally so the effects of occlusions can be

reduced to a binary classification (co-visible, or not). The best known is SIFT, which has

been shown to work well in a number of independent empirical assessments [MS05, MP07],

that however come with little analysis on why it works, or indications on how to improve it.

We have made a step in that direction, by showing that SIFT can be derived from sampling

considerations, where spatial binning and pooling are the result of anti-aliasing operations.

However, SIFT and its variants only perform such operations for planar translations, whereas

our interpretation calls for anti-aliasing domain-size as well. Doing so can be accomplished

in few lines of code and yields significant performance improvements. Such improvements

even place the resulting DSP-SIFT descriptor above a convolutional neural network (CNN),

that had been recently reported as a top performer in the Oxford image matching bench-

mark [FDB14]. Of course, we are not advocating replacing large neural networks with local

descriptors. Indeed, there are interesting relations between DSP-SIFT and convolutional

architectures, explored in [SC14, SDK14].

Domain-size pooling, and regular sampling of scale “unhinged” from the spatial frequen-

cies of the signal is divorced from scale selection principles, rooted in scale-space theory,

wavelets and harmonic analysis. There, the goal is to reconstruct a signal, with the focus

on photometric nuisances (additive noise). In our case, the size of the domain where images

correspond depends on the three-dimensional shape of the underlying scene, and visibility

(occlusion) relations, and has little to do with the spatial frequencies or “appearance” of the

scene. Thus, we do away with the linking of domain size and spatial frequency (“uncertainty

principle”, Fig. 2.12).

DSP can be easily extended to other descriptors, such as HOG, SURF, CHOG, including

those supported on structured domains such as DPMs [FMR08], and to network architectures

such as convolutional neural networks and scattering networks [BM11], opening the door to

multiple extensions of the present work. In addition, a number of interesting open theoretical

questions can now be addressed using the tools of classical sampling theory, given the novel

interpretation of SIFT and its variants introduced in this chapter.
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Figure 2.12: The “uncertainty principle” links the size of the domain of a filter (ordinate)

to its spatial frequency (abscissa): As the data is analyzed for the purpose of compression,

regions with high spatial frequency must be modeled at small scale, while regions with

smaller spatial frequency can be encoded at large scale. When the task is correspondence,

however, the size of the co-visible domain is independent of the spatial frequency of the scene

within. While approaches using “dense SIFT” forgo the detector and compute descriptors

at regularly sampled locations and scales, they perform spatial pooling by virtue of the

descriptor, but fail to perform pooling across scales, as we propose.
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CHAPTER 3

Sampling and Pooling in Local, Mid-Level and

High-Level Representations

3.1 Introduction

In Chapter 2, detector/descriptor ensembles are interpreted as sampled representations,

whereby the detector selects elements of a group of transformations to which we desire in-

variance (translation, in the simplest case), and the descriptor is a function defined on that

group, that has additional desirable properties, for instance being insensitive to other nui-

sance variability such as contrast transformations, while maintaining discriminative power.

Extensions of classical sampling theory [SZ05] then suggest that one should anti-alias the

descriptors, i.e., average them against local group transformations. What should be stored

at the samples is not the value of the function (descriptor) at that sample, but rather a local

average of group transformations around that sample, a process known as anti-aliasing. The

results in Chapter 2 indicate that this may be indeed beneficial.

However, even considering the same detector, different descriptors have different aver-

aging (pooling) mechanisms, so the benefits anti-aliasing gives to SIFT may not extend to

other descriptors. Considering the magnitude of such benefits as reported in Chapter 2,

however, it is important for us to test whether anti-aliasing with respect to an undesired

group of transformations improves performance in other low- and mid-level vision methods.

Accordingly, our goal is to test the effects of anti-aliasing on a variety of low- and mid-level

vision methods, including other histogram-based descriptors such as HOG [DT05], SURF

[BTG06], DAISY [TLF10], binarized descriptors such as BRIEF [CLS10], mid-level data
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structures such as DPMs [FMR08] and BoWs [KWB14], and global hierarchical descriptors

such as Convolutional Neural Networks [KSH12, SZ15] and Scattering Transform [BM11].

We test our hypothesis empirically in Sect. 3.6 by using common benchmarks for wide-

baseline matching such as the Oxford [MS05, MTS04] and PASCAL VOC [EGW10], as

well as more recently introduced benchmarks such as Fischer’s [FDB14] and Balzer’s [BS13].

Concerning the chosen group, we limit ourselves to the isotropic translation-scale semi-group,

as done in Chapter 2. Extension to anisotropic scales (changes of aspect ratio) and more

general finite-dimensional Lie groups such as similarity, affine, projective are conceptually

straightforward but beyond our scope in this dissertation. To explore the role of confounding

factors in the evaluation, we also test descriptors relative to different choices of base size,

i.e., the area in pixels to which all detected regions are mapped in order to compute the

descriptor. This tests quantization and interpolation artifacts that were not explored in

Chapter 2.

The conclusion of our investigation is that the benefits from anti-aliasing vary by de-

scriptor, but are present in varying degree in each of them. The biggest aggregate benefit is

observed in histogram-based descriptors, where anti-aliasing can be interpreted as marginal-

ization of local deformations, and the smallest is observed in binarized descriptors, where the

metric of the embedding space does not lend itself to straightforward averaging and concepts

such as anti-aliasing do not extend in a straightforward manner.

3.2 Related Work

Many local feature detectors and descriptors have been proposed in the past two decades.

The most well-known is SIFT [Low04] which detects keypoints as local extrema of Difference

of Gaussian response, which is an approximate of Laplacian of Gaussian, once normalized is

invariant to scale changes [Lin98]. A SIFT descriptor is computed at the same level where the

detector fires. Other descriptors vary by how they build a scale-space and how they compute

different descriptors in the octave levels [BTG06, LCS11], but there is a common trait among

all these local descriptors developed so far. They are all computed from a cropped region

26



centered at the detected spatial location with a fixed domain size related to the detected

scale. The detector is designed to be sensitive to scale changes, thus having high localization

accuracy, which in turn grants the descriptor the property of “scale-invariant” even if the

descriptor per se is not invariant to scale changes. The residual deformation induced by the

viewpoint change is handled by the insensitivity of the descriptor to such nuisance.

One way to handle the residual deformation is through spatial pooling which is widely used

in low level descriptor design and also popular among convolutional neural networks. Spatial

pooling aggregates statistics from nearby locations to achieve invariance (or “insensitivity”)

to translational group nuisance. However, as to be discussed in Sect. 3.3, the assumption

behind the philosophy of combining scale selection by the detector with residual nuisance

handling in descriptor breaks when there exist occlusions or the viewpoint change induced

self-occlusions. In hindsight, this is a natural consequence of such detector/descriptor ensem-

bles because a detector, by construction, is incapable of handling the residual deformations,

otherwise there is no need for a descriptor.

Two lines of approaches have been developed to handle scale selection failure. Multi-

scale methods include [SVZ14b] which computes Fisher vectors at multiple scales and aspect

ratios and spatial pooling of these features happens within each level. [HMZ12] assumes

that descriptors, e.g., SIFT, computed from all scales live in a low dimensional space and

a Principal Component Analysis (PCA) representation encodes descriptors at all scales.

On the other end of the spectrum, [DS15] proposes pooling SIFT computed from nearby

scales around detection to achieve anti-aliasing of domain sizes. Also, Bag of Words (BoW)

[KWB14, SZ03] can be considered as pooling descriptors computed at different locations and

scales. By enforcing descriptors to be computed from nearby locations or scales, BoW can

be thought of a way of spatial or scale pooling. In network architectures, [PML11] proposes

averaging responses of filters of neighboring sizes and [KSJ14] performs cross scale pooling

by filtering resized images or intermediate responses and averaging responses. Cross scale

pooling has also been used in the direct image-to-image matching algorithm [YLS15] where

local patches are averaged around nearby points in the affine space which includes both

translational, scale and aspect ratio changes.
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3.3 Scales, Domain Sizes and Base Sizes

“Scale” has been used interchangeably in many contexts [Lin98, KD84]. In automatic scale

selection [Low04], scale refers to the standard deviation of the Difference of Gaussian (DoG)

used to detect blob structures in the image. Once a scale is detected, a descriptor is computed

from a neighborhood around the detected location. The size of the neighborhood, also known

as domain, where the descriptor is computed is usually a deterministic function (typically

a multiple) of the detected scale. To deal with scale change, descriptors are not computed

at the native image resolution, but on the octave in scale-space where it is detected. The

neighborhood is downsampled from the native resolution to the octave level. We call the

size on the octave base size, which is also a function of the DoG detected scale. Therefore

in scale selection, domain size and base size are tied with the photometric property of the

image irrespective of the viewpoint and co-visibility relation between different views.

In terms of discriminative power, one wants to choose a larger domain size where descrip-

tors are computed. On the other hand, the possibility of straddling occlusion boundaries

and therefore include mixtures of unrelated objects in the descriptor calls for the domain

size to be small (“locality of descriptors”). At test time, which portions of the transformed

image are co-visible with the base image is unknown, which requires domain size selection

independent of the detection scale (Fig. 3.1(b)). Matching descriptors requires searching over

size-space, which carries a high cost. This can be partly mitigated by under-sampling, and

accordingly anti-aliasing the domain size (DS), a technique developed in the previous chap-

ter. Domain-size pooling around a detected scale corresponds to anti-aliasing the descriptors

around the (adaptively) sampled size determined by the detectors.

Even if there is no occlusion, computing descriptors on cropped image patches associated

with the detection scale can cause self-occlusion, or obscuration, by the cropped window,

illustrated in Fig. 3.1(c). The DoG isotropic filter returns an extreme value with respect to

location and scale that co-varies with the translational component of the vantage point, but

with poor scale localization accuracy. If even a small percentage of the patch is outside the

domain where the descriptor is computed, regions from other parts of the image intrude in
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Domain-size
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Figure 3.1: Scale, Domain-size and Base-size. 3.1(b), domain-size has to be searched over at

test time when occlusion is present. 3.1(c), self-occlusion caused by viewpoint change in the

cropped image patch. 3.1(a), patches with different domain sizes are matched to the same

base sizes where descriptors are to be computed.

the domain, thus making the resulting descriptors highly sensitive to errors in scale selection.

Self-occlusions prevail in almost every local descriptor as long as they are computed from a

local region cropped from the image. This issue is addressed by domain-size pooling.

To achieve invariance to scale, descriptors of different domain sizes have to be computed

after first downsampling the patch to the same base size (Fig. 3.1(a)). This is critical for

descriptors computed by finite difference, e.g., histogram-based descriptors. Ideally one

should compute statistics using the metric unit defined on the “scene” not on the image

(pixel). Alternatively, both patches can be resampled to the base size where descriptors are

computed. Too small of a base size leads to a loss in discriminative power because of the

loss in details, while too large a base size forces every feature with a domain size less than

it to be computed at the native image resolution, thus losing scale invariance. Base size

is the tradeoff between discriminative power and the degree of scale invariance. In Sect.

3.6, we compare domain-size pooled descriptors with the single-scale descriptors at different

domain sizes and base sizes to provide insight in the effects of DS pooling in various low-

and mid-level descriptors.

3.4 Pooling Domains

Domain-size pooling, as described in Chapter 2, can be decomposed into two major steps –

a pooling step followed by a normalization step. A more detailed recipe to apply DSP to
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a single scale descriptors around a detected scale is i) patches with different domain sizes

are sampled within a local neighborhood of the detected scales, ii) patches are re-sized to

the base size, iii) single-scale descriptors are computed from each sample individually and

averaged with a base measure kernel and iv) properly normalized. In terms of a histogram

based descriptor, DSP corresponds to marginalization over scales (Sect. 3.4.1). Sect. 3.4.2

and 3.4.3 extends the idea further to binary and network descriptors.

3.4.1 Histogram-based Descriptors

Histograms of gradient orientation are widely used in the design of local descriptors [BTG06,

DT05, Low04, TLF10]. Typically image patches are divided into cells or grids on a rectangle

or a circular lattice, and a histogram of gradient orientation is built in each cell as

h(θ|Iσ) =

∫
κε(θ − ∠∇Iσ(x))κσ(y − x)‖∇Iσ(x)‖dy (3.1)

a formula reported by [VF10], where θ is a free variable of gradient orientation over a unit

circle, x is the detected feature location, and Iσ(x) is the image in the scale space correspond-

ing to the detected scale σ(x). The kernel κε controls the quantization of the orientations

around the unit circle and kernel κσ is the spatial anti-aliasing which averages nearby pixel

locations. Various descriptors vary by what kernels to use and how histograms are combined.

For example, HOG [DT05] and SIFT [Low04] uses bilinear function in both orientations and

spatial locations, but differs in how they are normalized. SIFT normalizes the whole de-

scriptors by `2 norm, while HOG combines nearby cells into blocks and normalizes each cell

by the norm of the enclosing blocks. Most recently, we proposed pooling domains in SIFT

[DS15] simply by averaging

h(θ|I) =

∫
h(θ|Iσ)E(σ)dσ (3.2)

over the scale (semi-)group with some prior E . This can be extended to any other histogram-

based descriptors, in principle. However, due to the various form of combining histograms

from different cells, normalization methods (globally, block-wise, per-cell) and thresholding

(“clamping”), it is not clear how much improvement can be expected from descriptors other

than SIFT. To this end, we empirically evaluate these variants in Sect. 3.6. Also, among all
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these histogram-based descriptors, DAISY computes each cell at different scales according

to the deviation of the cell center to the patch center. Cells that are far away from the

center are smoothed with a Gaussian kernel of larger standard deviation. This is equivalent

to computing histograms on a larger domain size but downsampled to a smaller base size

similar to the center cells. In this sense, DAISY can be considered a way of pooling gradient

orientations across different domain sizes, with a spatially-varying prior E . But it is different

from DSP in that the pooling comes from different locations (cell centers) and the resulting

histograms are concatenated rather than aggregated (averaged).

3.4.2 Binary Descriptors

In this section, we show how to extend domain-size pooling to binary descriptors by inter-

preting each bit of the descriptor as a probability conditioned on the domain size. Then

similar marginalization as in Eq. (3.2) can be applied directly. A binary descriptor is a 0-1

string constructed by comparing the intensity ordering between pairs of pixels {(xi, yi)}Ni=1

within the patch. Computed on a single domain size, the i-th bit of the binary descriptor

can be thought of a Bernoulli probability

p(Iσ(xi) > Iσ(yi)|σ) (3.3)

which takes value 1 if Iσ(xi) > Iσ(yi) or 0 otherwise. The probability is conditioned on the

domain-size (“scale”) σ. By marginalizing against a base measure E(σ) on the domain-size,

a domain-size pooled version of Eq. (3.3) can be computed as∫
p(Iσ(xi) > Iσ(yi)|σ)E(σ)dσ (3.4)

Note that the above can be applied to most binary descriptors such as [AOV17, CLS10,

LCS11, RRK11] to obtain DSP-BRIEF, DSP-ORB, DSP-BRISK and DSP-FREAK. For

instance, the simplest binary descriptor is BRIEF [CLS10] which randomly samples a set

of pairs of pixels within the patch and compares the intensity order of two pixels. Pooling

over domain-sizes produces DSP-BRIEF which improves the matching performance of the

standard BRIEF uniformly on different datasets as shown in Sect. 3.6. However, note that
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DSP-BRIEF (also other DSP binary descriptors) is no longer binary. To binarize it, we

threshold each bit at 0.5 and call the binarized descriptor DSP-BRIEF-BIN. But after the

binarization, the interpretation of Eq. (3.4) no longer stands. In Sect. 3.6, we test both

DSP versions against the original.

3.4.3 Convolutional Network Architectures

Convolutional network architectures convolve an image (or patch) with a fixed filter bank.

These filters are either hand-picked (engineered) or trained (learned) from a vast amount of

data. Regardless of how these filters are obtained, the domain size (receptive field) of the

filters are pre-defined. These receptive fields are typically small (e.g., 11 × 11 in the first

layer of the convolutional neural network in [KSH12]) to lower the risk of straddling occlusion

boundaries. One can expect that anti-aliasing by domain-size pooling in the individual filter

response can further improve the performance of these networks. On the other hand, these

convolutional networks are usually trained in an end-to-end fashion and there are conjectures

that by stacking multiple convolutional and pooling layers, invariance (or “insensitivity”) to

planar similarity, as well as visibility, can be achieved. We defer the investigation of the nui-

sance management ability of the end-to-end learned neural networks until Chapter 5 where

DSP has also been applied to CNNs to yield DSP-CNN. In this chapter, in order to remove

the bias in filter learning in evaluating the effects of domain-size pooling, we consider a spe-

cial convolutional network architecture – the Scattering Transform [BM11] which convolves

a patch with a Gabor filter bank at different rotations and dilations, takes the modulus of

the responses, and applies an averaging operator to yield the scattering coefficients. This is

repeated to produce coefficients at different layers and the final descriptor is the concatena-

tion of these coefficients. Domain-size pooling can be applied to each intermediate layers of

the network by convolving the patch with various sized filters and averaged, which is a costly

operation. Alternatively, one can apply DSP to the image plane as in SIFT and other local

descriptors by sampling nearby domain sizes of the image, propagating each size-sampled

patch through the entire network and averaging the responses. This is motivated by the

fact that, as shown by [BM11], most of the energy in the scattering coefficients is exhausted
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after the second layer, and therefore there would be diminishing return in manipulating the

convolutional structure beyond that. Since the responses are normalized at each layer of the

network, there is no post-normalization. We call the resulting descriptor DSP-SC.

3.5 Evaluation Criteria

3.5.1 Datasets

Following Chapter 2, we use Oxford [MTS04] and Fischer’s [FDB14] datasets for descriptor

evaluation. Empirical results show that descriptors achieve consistent performance on both

Oxford and Fischer datasets [DS15, FDB14]. Datasets with more complicated scenes include

[BS13, MP07] with the latter has more complicated pose relations between cameras and ob-

jects, thus more (self-)occlusion phenomena. [BS13] has 15 synthetic objects from MeshLab,

wrapped with random images as textures. A training video is provided for each object and

5 testing views are captured from different viewpoints uncovered by the training trajectory.

Both DSP and single scale descriptors under evaluation are computed on a single image, so

we only use the first frame of the training video as the base image. We use all three datasets

in our evaluation, and as the results shown in Sect. 3.6, occlusion play a critical role in the

behavior of descriptor performance.

3.5.2 Metrics

Following Chapter 2, we use Precision-Recall Curve (PR-Curve) to evaluate the performance

of descriptors. Precision is the fraction of true matches among all declared matches. A

match is claimed between two descriptors if they are nearest neighbors in terms of descriptor

distance and the distance is smaller than a threshold τd. A match is labeled as true match if

two features correspond according to the ground truth. Recall is the the ratio of the number

of true matches over the total number of correspondences. By varying the distance threshold

τd, a PR-Curve can be drawn and the Average Precision (AP) can be computed by the area

under PR-Curve. For the entire dataset, an average of AP, Mean Average Precision (mAP)

is reported and used to compare domain-size pooled and single size descriptors.
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3.6 Comparison and Discussion

We evaluate descriptors by pairs – DSP-X vs. X where X includes histogram-based HOG

(both UoCTTI [FMR08] and DT [DT05] variants), SURF [BTG06], DAISY [TLF10], bi-

nary representative BRIEF, and a convolutional architecture scattering network (SC). We

use MSER [MCM02] to select regions from both base and transformed images in Oxford

and Fischer’s [FDB14] datasets and SIFT [Low04] detector on Balzer’s [BS13]. Alternate

detectors are also tested and results are presented in Fig. 3.6, 3.7.

3.6.1 Effect of Domain Size

Fig. 3.2 shows Mean Average Precision as a function of domain size (as a dilation of the

detected scale). In general, domain-size pooling improves HOG-TTI, HOG-DT, SURF and

BRIEF, but not DAISY on Oxford dataset. This is because DAISY computes histograms

at different scales at different locations and concatenates them into the same descriptor.

This grants DAISY a certain degree of robustness to the scale localization inaccuracy of

the detection. However, when there are more occlusions, e.g., on Balzer dataset, DSP-

DAISY improves DAISY by a large margin when domain size is large. An improvement

is also observed in the larger Fischer dataset shown in Fig. 3.5. When there are more

self-occlusions presented in the dataset due to the more complex-shaped objects, there is a

tradeoff between discriminative power (towards larger size) and being local to avoid occlusion

(towards smaller size). In the bottom row of Fig. 3.2, all the curves have a turning point at a

certain dilation factor of the detected scale. This is not observed in Oxford dataset because it

does not contain occlusions. The improvements of the DSP versions are much more obvious

when the domain size is large which leads to a higher risk of hitting the occlusion boundaries

(most obvious in the right half of the curves). Fig. 3.2 also shows that the benefit of DSP is

from pooling across nearby domain-sizes, not just using a larger domain, as it is clear from

the curve that the mAP of a DSP descriptor with a small domain size can be much higher

than its plain version computed at a (single) larger domain. Despite the large improvement

over BRIEF, DSP-BRIEF is no longer a binary descriptor. We also tested DSP-BRIEF-BIN
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Figure 3.2: Mean Average Precision vs. Domain-Size. Top: Oxford dataset with MSER

detector. Bottom: Balzer dataset with SIFT detector.

which is thresholded at 0.5 to turn DSP-BRIEF into binary. However, this makes DSP-

BRIEF-BIN almost the same as BRIEF at a single scale. This is because binarization can

be thought of scale-selection (selecting a scale from nearby scales, and test intensity ordering

there), so the binarized descriptor has the performance similar to BRIEF which tests ordering

at the detected scale. Therefore, we forgo further testing of DSP-BRIEF-BIN.

3.6.2 Effect of Base Size

Fig. 3.3 shows the performance of each descriptor as a function of base size. Base size affects

the degree of improvement of DSP-X over X. Both DSP-HOGs perform best on a small

base size (21 × 21). This explains why small base sizes are commonly used in dense HOG

computation to describe the whole image. A small base size captures details of the image at

each location. As discussed in Sect 3.3, due to scale changes, a small base size is preferred

so that larger patches can be downsampled to the base size and descriptors computed there.

Patches with sizes smaller than the base size have to be computed at the native image

resolution. Upsampling to large sizes causes aliasing introduced in interpolation. This is

most obvious when there are large scale changes in the image, but it is already observable

here (e.g., both HOGs). Also, it is interesting to see that SURF and BRIEF are less sensitive

to the selection of base size, and therefore the improvement of the DSP version is consistent

over different base sizes.
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Figure 3.3: Mean Average Precision vs. Base-Size. Top: Oxford dataset with MSER detec-

tor. Bottom: Balzer dataset with SIFT detector.

3.6.3 Effect of DSP Radius and Sampling

Fig. 3.4 shows the performance of each DSP descriptor with varying domain-size pooling

radius shown as a fraction of the domain size. The domain size and base size used for each

descriptor are selected from Fig. 3.2 and 3.3. The domain-size is 3× the detected MSER

scale, and the base size is 21 × 21 for DSP-HOG-TTI and DSP-HOG-DT and 31 × 31 for

other descriptors shown. The maximum performance is highlighted with the marker. In

general, the best pooling radius is between 1/3rd and 2/3rds of the domain size with specific

values varying for different descriptors. Obviously the curves also show that pooling over

all scales decrease the performance. In the right panel, we further fix the DS pooling radius

and test the effect of the number of size sampled. It is observed that even 3 samples used,

the performance is boosted from that of the corresponding single scale descriptor. It is not

surprising that the more samples, the better the performance. But increase after 10 samples

are marginal, so there is a tradeoff between computational complexity and performance.

Figs. 3.5 shows head-to-head comparison between DSP-X and X with the best parameters

obtained on Oxford and tested on Fischer’s dataset.
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Figure 3.4: Domain-size Pooling Radius and the Number of Size Samples (Oxford). The

parameters that achieve the best performance are highlighted with markers.
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Figure 3.5: Head-to-head comparisons. Each point in the plot shows one pair of images

from Fischer dataset. The horizontal axis shows the Average Precision of the single-scale

descriptor (X), and the vertical axis shows that of DSP-X. The relative improvement of

DSP-X over X is shown in the title of each panel.
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3.6.4 Effect of Detector

Fig. 3.6 and 3.7 shows the performance of several DSP descriptors with different feature

detectors. The choice of detector affects the performance of both DSP-X and X. However,

regardless of the detector, the margin between DSP-X and X remains similar. The anti-

aliasing effect of DSP is effective as long as there exist occlusions (including self-occlusions

caused by cropping) in image (sub)regions and undersampling over the domain-size space in

scale selection or detection.
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Figure 3.6: Effect of different detectors. Each curve is mAP as a function of Domain-size.

Left 3 columns: Oxford, Right 3 columns: Balzer’s dataset. Top row: DSP-SURF, Middle:

DSP-HOG-DT and Bottom: DSP-BRIEF.

3.7 Mid-level Descriptors

Descriptors are not only used for correspondence, but also heavily used as the first building

block of many object detection model. For instance, HOG-TTI has been proposed and used

in deformable-part models (DPMs) [FMR08]. Although there are so many components in the

end-to-end detection system that they become confounders in evaluating the benefits of using

better descriptors, nevertheless, we plug in DSP-HOG-TTI into the same DPM architecture,

thus the name DSP-DPM for simplicity, and test object recognition performance on PASCAL
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Figure 3.7: Effect of different detectors. Each curve is mAP as a function of Base-size.

Left 3 columns: Oxford, Right 3 columns: Balzer’s dataset. Top row: DSP-SURF, Middle:

DSP-HOG-DT and Bottom: DSP-BRIEF.

VOC 2007 detection challenge [EGW10]. We sampled 10 domain sizes ranging from 0.5σ

to 1.5σ where σ is the original size used for HOG-TTI computation. By average pooling

of the HOG-TTIs computed from each domain sizes, we obtain a dense DSP-HOG-TTI

response for the whole image. They are used to train the deformable model for each object

in the challenge. The results are reported in Table 3.1. DSP-DPM wins 16 out of 20 object

categories in terms of mean average precision. Among the winning categories, we found they

are mostly classes of animals whose configurations are more variable and thus more likely to

incur occlusions. In other cases when objects are less “deformable”, the performance of the

two DPMs is close. Fig. 3.8 shows two models for the Cat class learned by DPM and DSP-

DPM respectively. The benefits of DSP can be visually appreciated where the boundary of

the cat is enhanced in the root template, and details are more regular in the part template,

compared to the noisier appearance in the standard DPM. At test time, the original DPM

samples scale very densely (10 levels between two octaves), which is observed to be critical to

achieve a good performance [FMR08]. When the scale-orbit is (regularly) densely sampled,

the effect of anti-aliasing of DSP decreases as expected. Nevertheless, the improvement of

DSP-DPM over the standard version is nontrivial. On the other hand, at test time, the
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original DPM samples scale very densely (10 levels between two octaves), which is observed

to be critical to achieve a good performance [FMR08]. When the scale space is (regularly)

densely sampled, the effect of anti-aliasing of DSP decrease as expected.

(a) (b) (c)

(d) (e)

Figure 3.8: Learned templates from DPM and DSP-DPM. The top row shows the “root”

and the “part” templates learned by the standard DPM. The bottom row shows the same

learned by DSP-DPM. The geometry of the cat (e.g., head) is more visible in the templates

learned via domain-size pooling, compared to the original DPM.

To add one more mid-level representation example, we extend DSP to Bag-of-Words

model for classification tested on four datasets: Flickr Material Dataset (FMD) [SRA09],

Caltech 101 (CAL) [FFP04], MIT Scene (SCN) [QT09] and PASCAL VOC 2007 classification

challenge (VOC) [EGW10]. DSP-SIFT is used in DSP-BoW and standard SIFT in BoW. We

fix the DSP radius and the number of size samples for all four datasets. Table 3.2 shows that

DSP improves plain BoW on CAL, SCN and VOC. The categories in FMD are materials,

most of which are textures. DSP does not improve BoW when the same parameters are used

as in the other three datasets which consist of common objects. However, if we reduce the

pooling radius by half, the average precision of DSP-BoW rises to .3383.
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Aero. Bike Bird Boat Bottle

DPM .3221 .5814 .0835 .1212 .2931

DSP-DPM .3526 .5951 .1070 .1377 .3022

Car Cat Chair Cow Bus

DPM .5733 .2221 .2101 .2447 .5241

DSP-DPM .5679 .2668 .2281 .3042 .5246

Table Dog Horse Motor Person

DPM .2803 .1215 .6078 .4604 .4020

DSP-DPM .2760 .1329 .6149 .4634 .4127

Sheep Sofa Train TV Plant mAP

DPM .1745 .3248 .4243 .4470 .1246 .3271

DSP-DPM .2005 .3193 .4538 .4318 .1345 .3413

Table 3.1: PASCAL VOC 2007 Detection Challenge.

FMD CAL SCN VOC

BoW .3021 .2991 .1428 .1906

DSP-BoW .3012 .3731 .1664 .2147

Table 3.2: Average Precision for Classification.

3.7.1 DSP-Scattering Transform

In this section, we compare domain-size pooled scattering network with the plain version of

[BM11]. It has been established by the authors of [BM11] that the first level of the scattering

transform is equivalent to a continuous extension of a histogram descriptor a’ la SIFT.

Therefore, pooling in the first level of the SC is equivalent to pooling gradient histograms

in regions of the image domain. However, the second layer averages frequency components,

so the extension of the interpretation is less straightforward. In our experiments, we limit

the pooling to the first layer, and show that already it induces an increase in performance

(Fig. 3.9) regardless of the detectors used to extract the image regions.

3.8 Conclusion

We have conducted an empirical exploration of the effects of pooling different domains in the

construction of low-level descriptors, both histogram-based and binary, mid-level descriptors,

and global architectures. We have found that the effects of pooling domain sizes, even when
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Figure 3.9: DSP-Scattering Transform (DSP-SC) vs. SC. Top (Left to Right): Oxford

dataset with Hessian-Affine, MSER and SIFT detector. Bottom: Same for Balzer dataset.

The results of Harris-Affine is similar to Hessian-Affine.

using simplistic pooling schemes such as uniform sampling with respect to uniform weights,

are measurable improvements in performance. The degree of improvement depends on the

particular method, and is largest for histogram-based descriptors, and smallest for binary

descriptors. Pictorial structures that already densely sample domain sizes exhibit modest

improvements that are probably not sufficient to justify their modification. Otherwise, for

local descriptors, the algorithmic and computational changes are minimal and therefore

warrant the adoption of domain-size pooling.
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CHAPTER 4

Beyond Single-View Descriptors

4.1 Introduction

For visual data, a “feature descriptor” is a function of images designed to be “insensitive” to

nuisance variability and yet “discriminative” with respect to intrinsic properties of the scene

or object of interest. Nuisance variability may be due to changes of viewpoint and illumina-

tion, and intrinsic properties include three-dimensional shape and material properties of the

scene, or object-specific deformations. The best-known local descriptors are SIFT [Low04],

HOG [DT05] and their variants [BTG06], which we refer to collectively as HoG (histogram

of gradient) in this chapter. For an image region centered at a point, they are histograms of

the orientation of its gradient in that region, variously normalized.

On the other hand, representation learning via neural networks [LHB04] constructs func-

tions that are insensitive to nuisance variability by training a convolutional architecture

supported on the entire image domain. There have been several studies of the empirical

performance of local feature descriptors, including their comparison [MTS04], and their gen-

erative abilities [VKM13, SVZ14b]. However, efforts to elucidate their relationships have

only recently begun to appear [BM11, BRP09].

But what is an ideal representation? In terms of being “discriminative” of the intrinsic

properties of the scene, such as its shape and reflectance, one could do no better than a

(minimal) sufficient statistic, for instance the likelihood function [SC14]. In terms of being

“insensitive” to nuisance factors, such as viewpoint and illumination, one could do no better

than a (maximal) invariant to their action on the data. So, an ideal representation would be

a minimal sufficient statistic that is maximally invariant to nuisance factors [SC14]. Does
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such a representation exist? If so, can it be computed? If not, can it be approximated?

Can existing descriptors be related to it? If so, under what conditions? If not, how can we

construct better approximations of an ideal representation? In this chapter, we aim to begin

addressing these questions. Naturally, their answer depends on a model of image formation

as well as assumptions on the underlying scene.

4.1.1 Related Work

There are many engineered descriptors of one image [Low04, DT05, BTG06, TLF10], that

differ on where and how the local histograms are aggregated and normalized, with many

implementation details affecting performance [CLV11]. Some entail learning [WB07, LLF05]

to minimize classification (correspondence) error. Relatively few local descriptors aggregate

multiple views: [DNO07] combines spatial (averaged SIFT) and temporal statistics; [GB05]

performs feature selection from trajectories of key points. Deformable parts models [FMR08]

are also learned from multiple views to capture intrinsic variability.

One could also learn away nuisance variability through a neural network architecture

[LHB04, RHB07]. This approach has been steadily improving performance in large-scale

pattern recognition [DDS09], but not in correspondence, where it is outperformed by engi-

neered descriptors, even some built using a single image [DS15]. Rather than performing

direct comparison between different descriptors, we instantiate an ideal local representation

relative to a simple image-formation (Lambert-Ambient, or LA) model, and relate various

descriptors to it.

4.1.2 Summary

To quantify how “discriminative” a descriptor is, we characterize its dependency on intrinsic

properties of the scene, namely shape S and reflectance1 ρ. To quantify how “insensitive”

it is, we describe its dependency on nuisance factors such as viewpoint and illumination.

1In the LA model S ⊂ R3 is a multiply-connected piecewise smooth surface in Euclidean space, and
ρ : S → R+ is a positive-valued scalar function called “albedo.” As we model illumination via contrast
transformations of the albedo, we interpret ρ modulo contrast changes as the reflectance of the surface S.
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In [MSK03] the LA model is described as the simplest to capture the phenomenology of

image formation for the purpose of correspondence. Local illumination changes are mod-

eled, to first-order approximation, as monotonic continuous transformations of the range of

the image, also known as contrast transformations. They form a group2, and under certain

conditions [SDK14] the gradient orientation is a maximal invariant. So we can eliminate

first-order dependency on illumination by replacing the image3 I with its gradient orien-

tation θ(x) = ∠∇I(x)
.
= ∇I(x)/‖∇I(x)‖, at locations x where ∇I(x) 6= 0. For a local

neighborhood B ⊂ R2, the likelihood function, computed at a location x ∈ B and condi-

tioned on a given shape S and reflectance ρ, is a minimal sufficient statistic [SC14], and can

be thought of as a probability density on θ, pB(θ|ρ, S) with marginals4 px(θ|ρ, S). If there

are additional groups G acting on the scene (for instance changes of spatial position and

orientation, G = SE(3)) they can be marginalized, thus obtaining a density

px,G(θ|ρ, S). (4.1)

The marginalized likelihood is a maximal contrast-invariant that is also G-invariant. With

respect to this ideal representation, our goals are to: (i) Instantiate the formal notation

above using the LA model and derive an expression for (4.1) suitable for computation (Sec.

4.2.1). (ii) Show that HoG approximates an ideal descriptor when the scene is planar and

the viewer is constrained to translating parallel to it (Sec. 4.2.1). (iii) Derive a sampling

approximation of (4.1), which we call MV-HoG, where the scene (S, ρ) is replaced with a

collection of images of it, captured from multiple viewpoints {It}Tt=1 (Sec. 4.3.1). (iv) Derive

a point-estimate based approximation of (4.1), which we call R-HoG, where the scene (S, ρ)

is replaced with a point estimate (Ŝ, ρ̂) reconstructed from a finite sample {It}Tt=1, possibly

using structured illumination (Sec. 4.3.2).

2If strictly monotonic, lest they form a monoid.

3Here I : D ⊂ R2 → R+; x 7→ I(x) is a gray-scale image, x ∈ D is a point on the plane. In practice, I
takes a finite number of values on a quantized domain, extended to the entire plane by zero-padding.

4If we knew the viewpoint, under the assumptions of the LA Model, the conditional density would
be spatially independent, (4.10); otherwise, marginalizing viewpoint introduces spatial dependency, so the
product of the marginals is only an approximation, (4.12).
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4.2 Engineered Features Revisited

A “cell” of the HOG/SIFT descriptor5 h of an image I in a region centered at a pixel x is a

histogram of the orientation of its gradient, θ, around x. If the histogram is not normalized,

we call it uHoG (un-normalized HoG) and indicate it with

hx(θ|I) uHoG. (4.2)

Given one image I, this un-normalized histogram returns a positive number for each ori-

entation θ, related to the number of pixels around x where the image gradient orientation

is close to θ. Variants of HoG differ in where they compute and how they aggregate and

normalize such histograms. For instance, SIFT [DT05] evaluates the histogram above on a

4× 4 grid B = {xi, i = 1, . . . , 16}, and concatenates the result into a vector [hx1 , . . . , hx16 ],

that is then normalized, clamped, and re-normalized. Discrete bins are computed using a

bilinear interpolation kernel κε with ε = 2π/# bins, and a linear spatial weighting kernel

κσ with σ the area of each cell in the 4 × 4 grid, further weighted by the magnitude of the

image gradient ‖∇I‖. If we extend the sum to the continuum, we can write the histogram

in each cell as [VF10, DKD15]

hx(θ|I) =

∫
κε
(
θ − ∠∇I(y)

)
κσ(x− y)‖∇I(y)‖dy (4.3)

where the argument of the orientation kernel is intended modulo 2π. Alternatively, his-

tograms can be normalized independently at each location x:

h̄x(θ|I) =
hx(θ|I)∫

S1 hx(θ|I)dθ
, h = [hx1 , hx2 , . . . , hxi , . . . ]. (4.4)

Note that in HoG, described above, the nuisance group G is absent. We introduce it next.

4.2.1 Ideal descriptor of one view and its HoG

As a preliminary step to computing the minimal sufficient invariant statistic (4.1), and

to understand its relation to single-view descriptors, consider a special case obtained by

5Here θ ∈ S1 is an angle (the free variable) and h : D × S1 → R+; (x, θ) 7→ hx(θ) for a fixed image I.
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assuming that the scene is a plane parallel to the image plane, with albedo equal to the

image irradiance. Then, conditioning on the image I, we have px,G(θ|I), which we wish to

relate to uHoG (4.2).

To guarantee contrast-invariance, one could replace the intensity I(x) ∈ R+ with the

curvature of the iso-contours [AGL93], or with its dual, the orientation of the gradient,

∠∇I(x) ∈ S1 where ∇I(x) 6= 0. Let (G,P ) be a probability space, with G a group and P

a probability distribution on the group, and suppose that to each g ∈ G we can associate

a “transformed” image Ig. For each pixel x ∈ R2 where ∇Ig(x) 6= 0, we can then define a

(marginal) probability density function over θ, for instance:

px,G(θ|I, g)
.
= Nε (θ − ∠∇Ig(x)) (4.5)

where the difference is intended in S1, and correspondingly Nε denotes an angular Gaussian

[Wat83]. Kernels κ other than Gaussian can also be considered without significant changes

to the arguments that follow. Using P , we can marginalize6 this distribution to eliminate

its dependency on g ∈ G:

px,G(θ|I)
.
=

∫
G

px,G(θ|I, g)dP (g). (4.6)

To understand the relationship with uHoG, we restrict G to be the group of planar trans-

lations, G = R2, and choose a particular measure for R2, dµ(v|I)
.
= ‖∇Iv(x)‖dv where, if

v ∈ G, Iv(x) = I(x+ v) is the transformed image. We then marginalize with respect to the

(un-normalized) distribution dP (v) = Nσ(v)dµ(v|Iv). This corresponds to assuming that

the scene is flat, parallel to the image-plane (fronto-parallel) and constrained to translate

parallel to it. The likelihood function is given by px,G(θ|I, v) = Nε(θ−∠∇Iv(x)). Integrating

6The integral is well defined by Fubini’s theorem; px,G(θ|I, g) is a measurable function of g and bounded
so the marginalization converges. Thus, we can integrate over θ and exchange the integrals. But while
marginalization guarantees invariance to g ∈ G, it does not yield a maximal invariant, which is instead
described in [SC14].
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against dP (v), we obtain

hx(θ|I) =

∫
G

px,G(θ|I, v)dP (v) =

=

∫
R2

Nε(θ − ∠∇Iv(x))Nσ(v)dµ(v|Iv)

=

∫
R2

Nε(θ − ∠∇I(y))Nσ(y − x)‖∇I(y)‖dy, (4.7)

which is one cell of uHoG (4.3) once we restrict to the discrete lattice and replace the

Gaussian kernels with (bi-)linear ones. The full descriptor is just the concatenation of a

number of cells, suitably normalized; for the case of a single cell,

px,G(θ|I) =
hx,G(θ|I)∫
hx,G(θ|I)dθ

(4.8)

which leads us to conclude that HOG/SIFT approximates the ideal representation at a

point under the assumption that the scene is flat and fronto-parallel, undergoing purely

translational motion parallel to the image plane.

4.3 Ideal Descriptor Approximations

To move one step closer to the ideal representation, and to relax the stringent assumptions

implicit in HOG/SIFT, suppose for now that we have complete knowledge of the underlying

scene (S, ρ). A pinhole camera projects each point on the scene to the image plane via7

π : S → D ⊂ R2 and its associated inverse π−1
S : D → S, where π−1

S (x) is the point of the

first intersection of the pre-image (a line) of x with the scene S. Under the assumptions of

the LA model, there exists an open subset G0 ⊆ SE(3) with compact closure and – after a

suitable change of reference frame – containing the identity, such that each g ∈ G0, with the

action

Ig(x) = ρ ◦ g ◦ π−1
S (x) (4.9)

can be associated with a domain diffeomorphism wg : R2 → R2, with Ig(x) = I(wg(x)).

Here “◦” denotes function composition. When emphasizing the dependency of wg on shape,

7π incorporates the projection by dividing the coordinates of a point in S by the third component and
applying a planar affine transformation depending on the intrinsic calibration of the camera [MSK03].
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we indicate it with wg(x|S). Let P be a probability measure on G0, e.g., the normalized

restriction of the Haar measure on SE(3) to G0, which is no longer a group, but a subset of

G, where the probability of actions outside G0 is assigned to zero. Then the marginalized

descriptor, for a known scene, is given by

px,G0(θ|ρ, S) =

∫
G0

Nε(θ − ∠∇ρ ◦ g ◦ π−1
S (x))dPG0(g)

=

∫
G0

Nε(θ − ∠∇I(wg(x|S)))dPG0(g). (4.10)

The first approximation step is to reduce the dimensionality of G0 ⊂ SE(3) = SO(3) × R3

to simplify marginalization. This can be done locally around a point π−1
S (x) through the use

of a co-variant detector, a function of the image that returns multiple isolated elements of

subsets of G0 that co-vary with g. For instance, a translation-scale detector [Low04] returns

isolated locations on the image plane, xi, and their corresponding scales σi, which can be

used to define a local reference frame centered at xi with unit σi. To first approximation,

as we qualify in the next paragraph, these co-vary with the translation component of G0:

A spatial translation parallel to the image plane induces a planar translation of xi, and a

spatial translation orthogonal to the image plane induces a change of scale σi. Thus, locally

around π−1
S (xi), we can annihilate the effects of spatial translation simply by canonizing the

location-scale group, i.e., imposing xi = 0, σi = 1, by applying the inverse transformation

of that determined by the co-variant detector. This procedure can be applied to any planar

group transformation, including the entire group of diffeomorphisms [SPV09]. In particular,

planar rotation can be canonized using the direction of gravity as a reference [JS11], leaving

only “out-of-plane” rotations to be marginalized in (4.10).

In reality, spatial translations do not co-vary with planar translation-scale transforma-

tions, for the former induces (shape-dependent) deformations of the image domain (4.9) in

addition to non-invertible transformations due to occlusions, which are absent in the latter.

Such shape-dependent image variability is lost in any descriptor computed from a single

image: Any finite-dimensional planar group-covariant detector co-varies with spatial trans-

lations only when the scene is flat and the neighborhood of size σi centered in xi, Bσi(xi),
does not straddle occluding boundaries. Fortunately, we are not constrained to building
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descriptors using a single image; instead, we can capture residual deformations after can-

onization by marginalizing with respect to out-of-plane rotations in SO(3). In addition, we

can also marginalize small residual changes in translation v and scale σ using some prior

PNσ × PEs , where8 dPNσ(v) = Nσ(v)dµ(v) and dPNs(σ) = Es(σ)dσ with E a unilateral den-

sity (e.g., exponential) to ensure σ > 0. Thus, our un-normalized conditional distribution

becomes:

hx,G(θ|ρ, S) =

∫
G0

Nε(θ − ∠∇Ig(x))dPG0(g) ' (4.11)∫
Nε(θ − ∠∇I(wg(y)))dPSO(3)(g)Nσ(y − x))Es(σ)dµ(y)dσ.

If out-of-plane rotations are neglected, or if the scene is planar, one image is sufficient to

construct an idea descriptor, which then reduces to DSP-SIFT, introduced in Chapter 2 and

[DS15]. To obtain the ideal descriptor of a region B, we must consider the joint distribution

of all pixels within: hx1,...,xk,G(θ1, . . . , θk|ρ, S). Aggregating histograms in high dimensions is

challenging but the joint distribution can be approximated by a collection of one-dimensional

marginals. The simplest approximation is to neglect spatial correlations altogether: From

(4.10),

px1,...,xk,G0(θ1, . . . , θk|ρ, S) =

=

∫
G0

k∏
i=1

Nε(θi − ∠∇I(wg(xi|S)))dPG0(g)

'
k∏
i=1

hxi,G(θi|ρ, S). (4.12)

As already pointed out4, under the assumptions of the LA model, if the vantage point

g ∈ SE(3) was known, then the conditional density above would indeed factorize into the

product of marginals computed independently at each pixel. However, marginalizing view-

point introduces spatial dependencies, so the above is just an approximation.9 Even this

8It should be noted that this approximation step does not reduce the generality of the approach: In
practice, one would have to discretize the group G0 anyway in order to perform the marginalization in
(4.10), and co-variant detectors are just an adaptive discretization mechanism. A trivial detector is one
that returns regular samples of the group, for instance a discretization of planar translations and scales
as customary in “dense SIFT.” Indeed, this discretization is necessary also to compactify the translational
component of G0, that otherwise would have to be marginalized with respect to an improper measure.

9Coarse as it seems, this is nevertheless the approximation implicit in most single-view descriptors, that
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approximation, however, requires knowledge of the scene (S, ρ) to be computed. We now

address how to cope with absence of such knowledge.

4.3.1 Sampling approximation: MV-HoG

If we do not have complete knowledge of the scene, (S, ρ), but we have a collection of

images of it {It}Tt=1, we can approximate (4.11) by Monte-Carlo sampling, after noticing

that It(x) = ρ ◦ gt ◦ π−1
S (x) = I(wgt(x)) with {wgt|t = 1, · · · , T} and gt ∼ PG0 with the

restriction G0 determined by visibility. Under sufficient excitation conditions on the sample

{It}Tt=1, asymptotically for T →∞, we can approximate the integral with

hx,G(θ|{It}Tt=1)
.
=

1

T

T∑
t=1

∫
R2

Nε(θ − ∠∇It(y))Nσ(y − x)dµ(y).

Scale σ can also be marginalized as in (4.11). Sufficient excitation conditions mean that the

orbit in SE(3) is sampled along all directions (in the Lie Algebra), which is a tall order, as

it requires every surface element to be seen from all vantage points, at all distances, while

gt remains in G0. This requirement can be mitigated by restricting the marginalization to

SO(3) or even to just out-of-plane rotations, using (4.11) in conjunction with a co-variant

detector or other sampling mechanism.

Alternatively, we can use whatever data is available to reconstruct a model (a point

estimate) of the scene, which can then be used to render synthetic samples from the orbits

of SE(3).

4.3.2 Point-estimate approximation: R-HoG

Samples {It} can be used to compute an approximation of ρ, S, for instance in the sense of

maximum-likelihood, with suitable regularization [FK96, GBS15]

ρ̂, Ŝ = arg max
ρ,S,gt

p({It}|ρ, S) + λR(S) subject to It = ρ ◦ gt ◦ π−1
S + nt (4.13)

consider the concatenation of (independently aggregated, scalar) histograms. Some single-view descriptors
attempt to recapture some of the lost spatial correlations by joint (re)-normalization [DT05].
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where R(S) is, for instance, surface area
∫
S
dA, nt is white and Gaussian, and λ is a scalar

multiplier, and then compute (4.10) restricted to out-of-plane rotations:

hx,G(θ|ρ̂, Ŝ) =

∫
SO(3)

Nε(θ − ∠∇ρ̂ ◦ g ◦ π−1

Ŝ
(x))dPSO(3)(g) (4.14)

or its spatially regularized version:

hx,G(θ|ρ̂, Ŝ) =

∫
SO(3)×R2

Nε(θ − ∠∇ρ̂ ◦ g ◦ π−1

Ŝ
(y))dPSO(3)(g)Nσ(y − x)dµ(y)

or its scale-marginalized version as in (4.11). Convergence and unbiasedness of the maximum-

likelihood estimator ensures convergence of R-HoG to (4.11). Note that it is possible for

the reconstruction to be significantly different from S and yet R-HoG be similar to the ideal

descriptor, so long as the re-projections ρ̂◦g◦π−1

Ŝ
(x) are compatible with wgt(x|S). This can

happen, for instance, when Ŝ differs from S in regions where ρ is constant. Also note that, in

theory, two views with non-trivial baseline are sufficient to reconstruct an approximation of

Ŝ and ρ̂, locally in the co-visible region. Therefore, R-HoG is preferable when T is small and

the sample It is unlikely to be sufficiently exciting. Normalized versions of each descriptor

are obtained as

p(θ|X) =
hx,G(θ|X)∫
hx,G(θ|X)dθ

, (4.15)

where X = I for HOG, X = {It} for MV-HoG, X = {ρ̂, Ŝ} for R-HoG, and X = {ρ, S} for

the ideal descriptor that marginalizes the nuisance assuming a known scene.

While MV-HoG had a stringent sampling requirement, R-HoG has its own challenges, in

that obtaining a reliable, dense reconstruction of a scene and its photometry can be a tall

order. However, an estimate of the surface is only needed locally, where smooth surfaces can

be approximated with parametric models of low order. Also, calibrated reconstruction is not

necessary, so a projective reconstruction can be obtained through solving systems of linear

equations [MSK03]. Alternatively, a structured model can be inferred through factorization

methods such as principal component analysis or sparse coding, whereby S is represented

by the coefficients of a linear combination of a collection of “basis elements” {Si}.
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(a) Sample objects

TrainTest

PositiveNegative

(b) Test samples (c) Cereal (d) Robot

Figure 4.1: Dataset, Test Samples and Qualitative Match Visualization. (a): Samples from

the real and synthetic object dataset. (b): Positive test samples from the object; negative

samples are ten-fold more numerous. (c), (d) show correct (green) and wrong (red) matches

claimed by SV-SIFT (Top) and MV-HoG (Bottom). The latter yields many more correct

matches, similar to R-HoG.

4.4 Dataset and Ground Truth

Since our focus here is to leverage on multiple views to build better descriptors, which

can then be matched to single-images in wide-baseline tests, to perform comparisons we

need a dataset where multiple training images (of the same scene) are available, whereas

correspondence testing can be performed on single images.

Many datasets are available to test image-to-image matching, e.g., [MTS04], where both

training and test sets are individual images, each of a different scene. Testing our approach on

such datasets would require forgoing marginalization of out-of-plane rotation, thus reducing

our approach to DSP-SIFT, which has been tested on [MTS04] by [DS15].

Fewer datasets are available for testing multi-view descriptors [MP07, WB07]. The latter

contains three scenes: Trevi, Half Dome and Notre Dame and provides pixel-level correspon-

dence by back-projecting 3D reconstructed keypoints onto images, which can be used for

evaluation. To enable the comparison, we extract a subset containing only features having

more than 10 samples. We randomly hold out 5 samples for testing and use the rest for

descriptor aggregation. Negative samples are randomly selected from the other scenes.

Almost perfect results are obtained on [WB07] (Fig. 4.2), thus limiting the value of the

dataset; we have therefore constructed a new dataset, similar in spirit to [MP07], but with a

53



separate test set and dense ground truth for validation, using a combination of 31 real and 15

synthetic objects. The latter are generated by texture-mapping random images onto surface

models available in MeshLab. The former are household objects of the kind seen in Fig. 4.1.

Some with significant texture variability, others with little; some with complex shape and

topology, others simple. In each case, a sequence of (training) images per object is obtained

by moving around the objects in a closed trajectory. For real objects, a 400-frame-trajectory

circumnavigates them to reveal most visible surfaces; for synthetic ones, 100 frames span a

smaller orbit.

Ground Truth: We compare descriptors built from the (training) video and test single

frames, by first selecting test images where a sufficient co-visible area is present. To es-

tablish ground truth, we reconstruct a dense model of each (real) object using an RGB-D

(structured light) range sensor with YAS [BPS14]. The reconstructed surface enables dense

correspondence between co-visible regions in different images by back-projection. This is

further validated with standard tools from multiple-view geometry by epipolar RANSAC.

Occlusions are determined using the range map. Further implementation details are de-

scribed in [DKD15].

Detection and Tracking: We use FAST [RD06] as a mechanism to (conservatively) elimi-

nate regions that are expected to have non-discriminative descriptors, but this step could be

forgone. Scale changes are handled in a discrete scale-space, i.e., images are downsampled

by half up to 4 times and FAST is computed at each level. Short-baseline correspondence

is established with standard MLK [LK81]. A sequence of image locations is returned by the

tracker for each region, which is then sampled in a rectangular neighborhood at the scale of

the detector. We report experiments on two window sizes, 11×11 and 21×21, illustrative of

a range of experiments conducted. The sequence of such windows is then used to compute

the descriptors.
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Figure 4.2: Precision-Recall Curves. Precisions (ordinate) over recall rates (abscissa) with

F1-scores in the legends.

4.5 Evaluation and Comparison

We briefly describe the descriptors and classifiers involved in the evaluation and refer to

[DKD15] for the implementation details, parameter selections and training procedures.

Single-View Descriptors: We use SIFT from [VF10] as baseline (SV-SIFT), computed

on each patch at each frame as determined by the detector and tracker. We also compare

single-view descriptor representatives DAISY [TLF10] and SURF-128 [BTG06] computed on

the individual images.

Multiple-View Descriptors: MV-HoG is implemented according to Sect. 4.3.1 using the

tracks returned by the MLK tracker. We also tested Random Forest [LLF05] as an alter-

native way of utilizing multiple samples. We present to the RFs the training samples, and
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refer to this as A-RF. Deformable parts models would be too slow to test on our dataset, so

we forgo that comparison.

Reconstructive Descriptors: To compute an approximation of R-HoG in Sect. 4.3.2, we

compute dense 3-D reconstructions both from some tracked sequences and using a structured-

light sensor. Where visual reconstruction was successful, performance was similar, but dense

reconstruction was laborious and the quality was not consistent across samples, so to make

the evaluation independent of reconstruction methods, we report the results using a struc-

tured light sensor only. We use the keyframe where features are first extracted, and sample

a viewing hemisphere with 576 vantage points. The R-HoG is built upon these synthesized

samples. As in the multiple view case, we also feed synthesized patches to the Random

Forest (R-RF).

Classifier and Strategies: Given a descriptor database, the simplest method to match a

test query is via nearest neighbor (NN) search. We compare five combinations using the same

NN search method: (i) single view SV-SIFT, SURF and DAISY – computed on a random

image from the training sequence, (ii) Ave-SIFT [DNO07] – averaged SIFT of all frames,

(iii) Orb-SIFT – all of the SV-SIFTs stored to represent the orbit which includes the best

possible exemplar for each feature [GB05], (iv) MV-HoG and (v) R-HoG.

Network Architecture: We also compare our methods with a simple network architecture

in the form of a gated restricted Boltzmann machine (G-RBM) [Mem13, TFL10, SMH11],

employed by the authors in correspondence tasks similar to those considered in this chapter.

We use the same matching strategy as Orb-SIFT, so we call the network Orb-GRBM. Details

of the G-RBMs are in [DKD15].

4.5.1 Metrics

We use precision-recall curves (PR-curves) to quantitatively evaluate the descriptors pro-

posed and compare them to existing methods. For each query patch, nearest neighbor

search returns a predicted label and its associated distance. By changing a distance thresh

τd, a precision-recall curve can be generated. Precision and recall are defined as p =

#true matches
#false matches+#true matches

, r = #true matches
#positive samples

. The positive samples are the test queries that
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(a) SV-HoG (b) MV-HoG

Figure 4.3: Distance Distribution. The horizontal axis indicates the distance between two

descriptors in increasing order from left to right. The distribution of distances between

corresponding features are shown in green and that of mismatches in red. The error (over-

lapping area) in 4.3(b) is considerably smaller than 4.3(a). This leads to a lower risk of

misclassification in MV-HoG.

have correspondences in the training databases as opposed to the negative samples which

are never seen in training. The matches are the queries that pass the distance threshold

test. A match is considered to be a true match if the predicted label is correct according

to the ground truth. As only one predicted label is obtained for each query, r could remain

< 1 once any predicted label is wrong. We report the F1-score
(

2pr
p+r

)
for each PR curve.

Similarly, random forests (A-RF and R-RF) return an averaged probability as a confidence

score for the predicted label. A precision-recall curve can be generated by changing a belief

threshold τp.

4.5.2 Empirical Results

Qualitative results are shown in Fig. 4.1. In Fig. 4.2, PR curves are shown for all the

datasets on two different patch sizes. R-HoG and MV-HoG are comparable on 11 × 11

patches and outperform other methods. On 21×21 patches, the 3D-reconstruction generates

artifacts in the view-set generation, so the performance of R-HoG decreases below that of

MV-HoG in both the real and synthetic datasets. It should not be surprising that Orb-

SIFT performs the best among all the other methods, as it entails exhaustive search over
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the orbit of transformed views. However, its precision drops sharply when the number of

negatives is large, as it inherits the vulnerability of SV-SIFT to outliers. Also, MV-HoG

is consistently better than Ave-SIFT across all datasets. Note that both involve averaging

histograms, but Ave-SIFT averages normalized descriptors computed in each frame, and

then re-normalized, whereas MV-HoG aggregates gradient orientation over time, and only

normalizes the descriptor at the end, using the same procedure and clamping threshold as

Ave-SIFT. This shows that temporal aggregation improves performance compared to simply

averaging single-view descriptors computed independently.

Fig. 4.3 shows the distance distributions between descriptors of corresponding and non-

corresponding patches. SV-HoG is computed from a random single sample from each track,

and MV-HoG is aggregated over the whole track. The overlapping area between the two

distributions indicates the probability of making a classification error in descriptor matching.

The distributions in Fig. 4.3(b) have much less overlapping area than that in Fig. 4.3(a).

It shows that the discriminative power of the descriptor is improved by aggregating over

multiple views.
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Figure 4.4: (a) Sufficient excitation. Left: Accuracy (maximum recall) as a function of a

proxy of sufficient excitation (see text). Right: Excitation as a function of the number of

frames. All results are averaged over multiple runs using frames i, . . . , i + k − 1 where i

is selected at random. (b) F1-score varies with spatial aggregation parameter σ. (c) Time

complexity as a function of the number of features with FLANN precision at 0.7. Higher

precision will further increase computational load.
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4.5.3 Support Region, Spatial Aggregation, Sample Sufficiency and Complexity

The size of the domain where descriptors are computed impacts performance (Fig. 4.2): the

larger, the better, so long as the domain remains co-visible (i.e., gt ∈ G0). Fig. 4.4(b) shows

the effect of the spatial parameter σ in MV-HoG (Sect. 4.3.1). A slight spatial aggregation

enhances robustness until σ reaches a critical value, beyond which discriminative power

drops. Multiple view descriptors perform scene-dependent blurring, and therefore remain

more discriminative, as long as sufficient excitation conditions are met. Clearly, if a sequence

of identical patches is given (video with no motion), the descriptor will fail to capture the

representative variability of images generated by the underlying scene. In this case, MV-HoG

reduces to DSP-SIFT [DS15], which differs from SV-SIFT because of domain-size aggregation

(averaging over σ). In Fig. 4.4(a) we explore the relation between performance gain and

excitation level of the training sequence. As a proxy of the latter, we measure the variance

of the intensity relative to the mean using the `2 distance. The right plot shows that the

variance reaches the maximum when most frames are seen. We normalize the variance so

that 1 means maximum excitation. The left plot shows accuracy increases with excitation.

The fact that accuracy does not saturate is due to the fact that the sufficient excitation

is only reachable asymptotically. At test time, all descriptors of n features have the same

storage complexity O(n) except that Orb-SIFT stores every instance (O(kn)). The search

can be done in approximate form using approximate nearest neighbors [DBS13]. Fig. 4.4(c)

shows the training time using the fast library for approximate nearest neighbors (FLANN)

vs MV-HoG on a commodity PC with 8GB memory and Xeon E3-1200 processor. MV-HoG

scales well and is more memory-efficient while Orb-SIFT requires more training time and

occupies more than 60% of the available memory. Another advantage of MV-HoG is that the

descriptor can be updated incrementally, and does not require storing processed samples.

4.6 Discussion

By interpreting the SIFT/HOG family as the probability density of sample images condi-

tioned on the underlying scene, with nuisances marginalized, and observing that a single
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image does not afford proper marginalization, we have been able to extend it using nuisance

distributions learned from multiple training samples of the same underlying scene. The re-

sult is a multi-view extension of HoG that has the same memory and run-time complexity

as its single-view counterpart, but better trades off sensitivity with discriminative power, as

shown empirically, even with the classifier trivialized.

Our method has several limitations: It is restricted to static (or slowly-deforming) objects;

it requires correspondence in multiple views to be assembled (although it reduces to DSP-

SIFT if only one image is available), and is therefore sensitive to the performance of the

tracking (MV-HoG) or reconstruction (R-HoG) algorithm. The former also requires sufficient

excitation conditions to be satisfied, and the latter requires sufficiently informative data for

multi-view stereo to operate, although if this is not the case (for instance in textureless

scenes), then by definition the resulting descriptor is insensitive to nuisance factors; it is

also, of course, uninformative, as it describes a constant image, and therefore this case is

of no interest. It also requires the camera to be calibrated, but for the same reason, this is

irrelevant as what matters is not that the reconstruction be correct in the Euclidean sense,

but that it yields consistent reprojections.

Our empirical evaluation of R-HoG yields a performance upper bound, as we use a

better approximation of the reconstruction (from a structured light sensor or ground truth)

rather than multi-view stereo that, while possible, yielded inconsistent results across different

samples. As the quality (and speed) of the latter improve, the difference between the two

will shrink. We have also neglected the effects of sampling artifacts in the approximation

of the ideal descriptor. However, in practice we have found them to be of second-order,

compared to the approximation implicit in the spatial independence of the locally-aggregated

histograms. Also, we wish to point out that ideal representations, in the sense of sufficient

statistics that are (maximally) invariant, are not unique. However, they are equivalent from

the informational standpoint [SC14]. Analytical evaluation of our approach is forthcoming

[SDK14].
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CHAPTER 5

Nuisance Management in Convolutional Architectures

5.1 Introduction

Convolutional neural networks (CNNs) are the de-facto paragon for detecting the presence of

objects in a scene, as portrayed by an image. CNNs are described as being “approximately

invariant” to nuisance transformations such as planar translation, both by virtue of their

architecture (the same operation is repeated at every location akin to a “sliding window”

and is followed by local pooling) and by virtue of their approximation properties that, given

sufficient parameters and transformed training data, could in principle yield discriminants

that are insensitive to nuisance transformations of the data represented in the training set.

In addition to planar translation, an object detector must manage variability due to scaling

(possibly anisotropic along the coordinate axes, yielding different aspect ratios) and (partial)

occlusion. Some nuisances are elements of a transformation group, e.g., the (anisotropic)

location-scale group for the case of position, scale and aspect ratio of the object’s support.1

The fact that convolutional architectures appear effective in classifying images as containing

a given object regardless of its position, scale, and aspect ratio [KSH12, SZ15] suggests that

the network can effectively manage such nuisance variability.

However, the quest for top performance in benchmark datasets has led researchers away

from letting the CNN manage all nuisance variability. Instead, the image is first pre-processed

to yield proposals, which are subsets of the image domain (bounding boxes) to be tested for

the presence of a given class (Regions-with-CNN [GDD14]). Proposal mechanisms aim to

remove nuisance variability due to position, scale and aspect ratio, leaving a “Category

1The region of the image the objects projects onto, often approximated by a bounding box.
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CNN” to classify the resulting bounding box as one of a number of classes it is trained with.

Put differently, rather than computing the posterior distribution2 with nuisance transforma-

tions automatically marginalized, the CNN is used to compute the conditional distribution

of classes given the data and a sample element that approximates the nuisance transforma-

tion, represented by a bounding box. If the goal is the nuisance itself (object support, as

in detection [DDS09]) it can be found via maximum-likelihood (max-out) by selecting the

bounding box that yields the highest probability of any class [GDD14, HZR14]. If the goal

is the class regardless of the transformation (as in categorization [DDS09]), the nuisance can

be approximately marginalized out by averaging the conditional distributions with respect

to an estimation of the nuisance transformations2.

Now, if a CNN was an effective way of computing the marginals with respect to nuisance

variability, there would be no benefit in conditioning and averaging with respect to (inferred)

nuisance samples. This is a direct corollary of the Data Processing Inequality (DPI, Theorem

2.8.1 in [CT12]). Proposals are subsets of the whole image, so in theory less informative even

after accounting for resolution/sampling artifacts (Fig. 5.1). A fortiori, performance should

further decrease if the conditioning mechanism is not very representative of the nuisance

distribution, as is the case for most proposal schemes that produce bounding boxes based

on adaptively downsampling a coarse discretization of the location-scale group [HBD15].

Class posteriors conditioned on such bounding boxes discard the image outside it, further

limiting the ability of the network to leverage on side information, or “context”. Should

the converse be true, i.e., should averaging conditional distributions restricted to proposal

regions outperform a CNN operating on the entire image, that would bring into question the

ability of a CNN to marginalize nuisances such as translation and scaling or else go against

2One can think of the conditional distribution of a class c given an image x, p(c|x), as defined by a CNN,
as the class posterior

∫
G
p(c|x, g)dP (g|x) marginalized with respect to the nuisance group G. If the nuisances

are known, one can use the class-conditionals p(c|x, gr) at each nuisance gr ∈ G in order to approximate
p(c|x) with a weighted average of conditionals, i.e., p(c|x) '∑r p(c|x, gr)p(gr|x).

When a CNN is tested on a proposal r ⊆ x determined by a reference frame xr, it computes p(c|x|r ) (x
restricted to r), which is an approximation of p(c|x, gr). Then, explicit marginalization (assuming uniform
weights) computes 1

|r|
∑
r p(c|x|r ) which is different from 1

|r|
∑
r p(c|x, gr) which in turn is different from∑

r p(c|x, gr)p(gr|x). This approach is therefore, on average, a lower bound on proper marginalization, and
the fact that it would outperform the direct computation of p(c|x) is worth investigating empirically.
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the DPI. In this chapter we test this hypothesis, aiming to answer to the question: How

effective are current CNNs to reduce the effects of nuisance transformations of the input

data, such as location and scaling?

To the best of our knowledge, this has never been done in the literature, despite the

keen interest in understanding the properties of CNNs [GLL09, GSS15, NYC15, SVZ14a,

SZS14, YCB14, ZF14] following their empirical success. We are cognizant of the dangers of

drawing sure conclusions from empirical evaluations, especially when they involve a myriad

of parameters and exploit training sets that can exhibit biases. To this end, in Sect. 5.2

we describe a testing protocol that uses recognized existing modules, and keep all factors

constant while testing each hypothesis.

5.1.1 Contributions

We first show that a baseline (AlexNet [KSH12]) with single-model top-5 error of 19.96% on

ImageNet 2014 Classification slightly decreases in performance (to 20.41%) when constrained

to the ground-truth bounding boxes (Table 5.1). This may seem surprising at first, as it

would appear to violate Theorem 2.6.5 of [CT12] (on average, conditioning on the true value

of the nuisance transformation must reduce uncertainty in the classifier). However, note

that the restriction to bounding boxes does not just condition on the location-scale group,

but also on visibility, as the image outside the bounding box is ignored. Thus, the slight

decrease in performance measures the loss from discarding context by ignoring the image

beyond the bounding box. When we pad the true bounding boxes with a 10-pixel rim, we

show that, conditioned on such “ground-truth-with-context” indeed does decrease the error

as expected, to 17.65%. In Fig. 5.1 we show the classification performance as a function of

the rim size all the way to the whole image for AlexNet and VGG16 [SZ15]. A 25% rim

yields the lowest top-5 errors on the ImageNet validation set for both models. This also

indicates that the context effectively leveraged by current CNN architectures is limited to a

relatively small neighborhood of the object of interest.

The second contribution concerns the proper sampling of the nuisance group. If we
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Method AlexNet VGG16

Whole image 19.96 13.24

Ground-Truth Bounding Box (GT) 20.41 12.44

Isotropically Anisotropically Isotropically Anisotropically

GT padded with 10 px 17.66 17.65 10.91 10.30

Ave-GT, 4 domain sizes (padded with [0,30] px) 15.96 16.00 9.65 8.90

Ave-GT, 8 domain sizes (padded with [0,70] px) 14.43 14.22 8.66 7.84

Table 5.1: AlexNet’s and VGG16’s top-5 error on the ImageNet 2014 classification challenge when

the ground-truth localization is provided, compared to applying the model on the entire image. We

pad the ground truth with various rim sizes both isotropically and anisotropically. Then we show

how averaging the class posteriors performs when applying the network on concentric domain sizes

around the ground truth.

interpret the CNN restricted to a bounding box as a function that maps samples of the

location-scale group to class-conditional distributions, where the proposal mechanism down-

samples the group, then classical sampling theory [Sha01] teaches that we should retain not

the value of the function at the samples, but its local average, a process known as anti-

aliasing. Also in Table 5.1, we show that simple uniform averaging of 4 and 8 samples of the

isotropic scale group (leaving location and aspect ratio constant) reduces the error to 15.96%

and 14.43% respectively. This is again unintuitive, as one expects that averaging conditional

densities would produce less discriminative classifiers, but in line with recent developments

concerning “domain-size pooling” (Chapter 2, [DS15]).

To test the effect of such anti-aliasing on a CNN absent the knowledge of ground truth

object location, we follow the methodology and evaluation protocol of [FDB14] to develop

a domain-size pooled CNN and test it in their benchmark classification of wide-baseline

correspondence of regions selected by a generic low-level detector (MSER [MCU04]). Our

third contribution is to show that this procedure improves the baseline CNN by 5–15% mean

AP on standard benchmark datasets (Table 5.3 and Fig. 5.5 in Sect. 5.2.3).

Our fourth contribution goes towards answering the question set forth in the preamble:

We consider two popular baselines (AlexNet and VGG16) that perform at the state-of-the-art

in the ImageNet Classification challenge and introduce novel sampling and pruning methods,
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as well as an adaptively weighted marginalization based on the inverse Rényi entropy. Now,

if averaging the conditional class posteriors obtained with various sampling schemes should

improve overall performance, that would imply that the implicit “marginalization” performed

by the CNN is inferior to that obtained by sampling the group, and averaging the resulting

class conditionals.2 This is indeed our observation, e.g., for VGG16, as we achieve an overall

performance of 8.02%, compared to 13.24% when using the whole image (Table 5.2). There

are, however, caveats to this answer, which we discuss in Sect. 5.3.

Our fifth contribution is to actually provide a method that performs at the state of

the art in the ImageNet Classification challenge when using a single model. In Table 5.2

we provide various results and time complexity. We achieve a top-5 classification error of

15.82% and 8.02% for AlexNet and VGG16, compared to 17.55% and 8.85% error when they

are tested with 150 regularly sampled crops [SZ15], which corresponds to 9.9% and 9.4%

relative error reduction, respectively. Data augmentation techniques such as scale jittering

and an ensemble of several models [HZR15, SZ15, SLJ15] could be deployed along with our

method.

5.1.2 Related work

The literature on CNNs and their role in Computer Vision is rapidly evolving. Attempts

to understand the inner workings of CNNs are being conducted [CSV14, GLL09, GSS15,

LXG15, NYC15, SVZ14a, SZS14, YCB14, ZF14], along with theoretical analysis [ARP15,

BM13, CW14, SC16] aimed at characterizing their representational properties. Such intense

interest was sparked by the surprising performance of CNNs [CSV14, DHG15, GDD14,

HZR15, KSH12, RHG15, SEZ14, SZ15, SLJ15] in Computer Vision benchmarks [DDS09,

EGW10], where many couple a proposal scheme [ADF12, CS12, CZL14, EST14, HBD15,

HLR14, KK14, MGG13, RKB11, USG13, ZD14] with a CNN. As our work relates to a vast

body of work, we refer the reader to references in the papers that describe the benchmarks

we adopt, namely [CSV14], [KSH12] and [SZ15].

Bilen et. al. [BPT14] also explore the idea of introducing proposals in classification.
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However, their approach leverages on a significantly larger number of candidates and focuses

on sophisticated classifiers and post-normalization of class posteriors. Our investigation

targets selecting a very small subset of the most discriminative candidates among generic

object proposals, while building on popular CNN models.

5.2 Experiments

5.2.1 Large-scale Image Classification

What if we trivialize location and scaling? First, we test the hypothesis that elimi-

nating the nuisances of location and scaling by providing a bounding box for the object of

interest will improve the classification accuracy. This is not a given, for restricting the net-

work to operate on a bounding box prevents it from leveraging on context outside it. We use

the AlexNet and VGG16 pretrained models, which are provided with the MatConvNet open

source library [VL15], and test their top-1 and top-5 classification errors on the ImageNet

2014 classification challenge [DDS09]. The validation set consists of 50, 000 images, where at

each of them one “salient” class is annotated a priori by a human. However, other ImageNet

classes appear in many of the images, which can confound any classifier.

We test the classifier in various settings (Table 5.1); first, by feeding the entire image to

it and letting the classifier manage the nuisances. Then we test the ground-truth annotated

bounding box and concentric regions that include it. We try both isotropic and anisotropic

expansion of the ground-truth region. We observe similar behavior, which is also consistent

for both models.

Only for AlexNet at Table 5.1 using the object’s ground-truth support performs slightly

worse than using the whole image. After we pad the object region with a 10-pixel rim, the

top-5 classification error decreases fast. However, there is a trade-off between context and

clutter. Providing too much context has diminishing returns. In Fig. 5.1 we show how the

errors vary as a function of the rim size around the object of interest. Performance starts

dropping down when we add more than 25% rim size. This padding gives 15.08% and 8.37%

top-5 error for AlexNet and VGG16, as opposed to 19.96% and 13.24% respectively, when
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Figure 5.1: The top-1 and top-5 classification errors in ImageNet 2014 as a function of the

rim size for AlexNet (above) and VGG16 (below) architecture. A 0 rim size corresponds to

the ground-truth bounding box, while 1 refers to the whole image. A relatively small rim

around the ground truth provides the best trade-off between informative context and clutter.

classifying the whole image.

To ensure that this improvement is not due to downsampling, we repeat the experiment

with fixed resolution for the whole image and every subregion. We achieve this by shrinking

each region with the same downsampling factor that we apply to the whole image to pass

to the CNN. Finally we rescale the downsampled region to the CNN input. These results

appear with the label “same resolution” in Fig. 5.1.

Finally, we apply domain size average pooling on the class posterior (i.e., the network’s

softmax output layer) with 4 and 8 domain sizes that are concentric with the ground truth.

The added rim has the declared size either at both dimensions (for the anisotropic case)

or only along the minimum dimension (for the isotropic case), and it is uniformly sampled

in the range [0, 30] and [0, 70], respectively. The latter one further reduces the top-5 error

to 14.22% for AlexNet, which is lower than any single domain size (c.f. Fig. 5.1). This

suggests that explicitly marginalizing samples can be beneficial. Next we test whether the

improvement stands when using object proposals.
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Introducing object proposals. We deploy a proposal algorithm to generate “object”

regions within the image. We use Edge Boxes [ZD14], which provide a good trade-off between

recall and speed [HBD15].

First, we decide the number of proposals which will provide a satisfactory cover for the

majority of objects present in the dataset. In a single image we search for the highest

Intersection over Union (IoU) overlap between the ground-truth region and any proposed

sample and in turn we evaluate the network’s performance on the most overlapping sample.

We repeat this process for various number of proposals N in a small subset of validation

set and finally choose N = 80, which provides a satisfactory trade-off between classification

performance and computational cost.

Among the extracted proposals, we choose the most informative subset for our task,

based on pruning criteria that we introduce later. Next we discuss what other samples we

use, which are also drawn in Fig. 5.2.

Domain-size pooling and regular crops. We investigate the influence of domain-size

pooling at test time both as stand-alone technique and as additional proposals for the final

method which is described in Algorithm 1. We deploy domain-size aggregation of the net-

work’s class posterior over D sizes that are uniformly sampled in the range [r, 1], where 1

is the normalized size of the original image. After parameter search, we choose D = 5 and

r = 0.6. We use both the original and the horizontally flipped area, which gives 10 samples

in total.

Finally, we use standard data augmentation techniques from the literature. As customary,

the image is isotropically rescaled to a predefined size, and then a predetermined selection

of crops is extracted [KSH12, SZ15, SLJ15].

Pruning samples. Continuing to sample patches within the image has diminishing re-

turn in terms of discriminability, while including more background patches with noisy class

posterior distribution. We adopt an information-theoretic criterion to filter the samples that

we use for the subsequent approximate marginalization.
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Figure 5.2: Visualizing different sampling strategies. Upper left: Object proposals. Generic

proposals using Edge Boxes [ZD14]. Upper right: Concentric domain sizes are centered at

the center of the image. Below: Regular crops [KSH12, SZ15, SLJ15].

For each proposal n ∈ N we evaluate the network and take the normalized softmax

output vn ∈ RC, where vni ∈ [0, 1], i = {1, . . . , C} and C = 1, 000 on ILSVRC classification.

The output is a set of non-negative numbers which sum up to 1. We can interpret the vector

vn as a probability distribution on the discrete space of classes {1, . . . , C} and compute the

Rényi entropy as Hα(vn) = 1
1−α log(

∑C
i=1(vni )α).

Our conjecture is that more discriminative class distributions tend to be more peaky

with less ambiguity among the classes, and therefore lower entropy. In Fig. 5.3 we show

how selecting a subset of image patches whose class posterior has lower entropy improves

classification performance.

We extract N candidate object proposals3 [ZD14] and evaluate the network for both the

original candidates and their horizontal flips. Then we keep a small subset E, whose posterior

distribution has the lowest entropy. We use Rényi entropy with relatively small powers

3We introduce a prior encouraging the largest proposals among the ones that the standard setting in
[ZD14] would give. To this end, instead of directly extracting, for example, N = 80 proposals, we generate
200 and keep the 80 largest ones (Algorithm 1).
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Figure 5.3: We show the top-5 error as a function of the number of proposals we average

to produce the final posterior. Samples are generated with Algorithm 1 and classified with

AlexNet. The blue curve corresponds to selecting samples with the lowest-entropy posteri-

ors. We compare our method with simple strategies such as random selection, ranking by

largest-size or highest confidence of proposals. The random sample selection was run 10

times and we visualize the estimated 99.7% confidence intervals as error-bars. Empirically,

the discriminative power of the classifier increases when the samples are selected with the

least entropy criterion.

(α = 0.35), as we found that it encourages selecting regions with more than one highly-

confident candidate object. While the parameter α increases, the entropy is increasingly

determined by the events of highest probability. Larger α would be more effective for images

with a single object, which is not the case in most images in ILSVRC.

Finally we introduce a weighted average of the selected posteriors as
∑

r p(c|x|r)p(x|r),
where x|r is the support of sample r and p(x|r) is the weight of its posterior2. We try both

uniform weights and weights proportional to the inverse entropy of the posterior p(c|x|r).
The latter is expected to perform better, as it naturally gives higher weight to the most

discriminative samples.
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Method AlexNet VGG16
#eval #ave

# crops # sizes # proposals top-1 top-5 t (s/im) top-1 top-5 t (s/im)

− D = 1 − 43.00 19.96 0.01 33.89 13.24 0.06 1 1

C = 10 − − 41.50 18.69 0.06 27.55 9.29 0.48 10 10

C = 50 − − 41.01 18.05 0.66 27.44 9.12 1.34 50 50

C = 10× 3 − − 40.58 17.97 0.16 27.23 8.88 1.26 30 30

C = 50× 3 − − 40.41 17.55 0.82 27.14 8.85 3.48 150 150

− D = 10 − 40.00 17.86 0.08 28.16 9.46 0.60 10 10

C = 10 D = 10 − 39.38 17.08 0.22 26.94 8.83 1.08 20 20

C = 10× 3 D = 10 − 39.36 17.07 0.46 26.76 8.68 1.88 40 40

− − E = 40 40.18 17.53
1.26

25.60 8.24
3.02

160 40

C = 10 − E = 20 38.91 16.63 25.28 7.91 170 30

− D = 10 E = 12 38.05 16.19
1.34

25.19 8.11
4.38

170 22

C = 10 D = 10 E = 12 37.69 15.83 25.11 8.01 180 32

C = 10 D = 10 E = 12 (fast) 37.71 15.88 0.94 25.12 8.08 3.70 180 32

C = 10 D = 10 E = 12 (W, fast) 37.57 15.82 1.28 25.11 8.02 3.80 180 32

C = 10 D = 10 E = 12 (test set) 37.417 16.018 − 25.117 7.909 − 180 32

Table 5.2: Top-1 and top-5 errors on the ImageNet 2014 classification challenge. The rows 2–5

include the common data augmentation strategies in the literature [KSH12, SZ15, SLJ15] (i.e., reg-

ular sampling). The next three rows use concentric domain sizes that are uniformly sampled in the

range [0.6, 1] with 1 being the normalized size of the original image (c.f. Fig. 5.2). Finally, in the

last seven rows, we introduce adaptive sampling, which consists of a data-driven object proposal

algorithm [ZD14] and an entropy criterion to select the most discriminative samples on the fly

based on the extracted class posterior distribution. The last row shows results on the test set.

#eval stands for the number of samples that are evaluated for each method, while #ave is the

number of samples that are eventually element-wise averaged to produce one single vector with

class confidences. The previous top-reported with regular sampling and our results are shown in

bold.
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Algorithm 1 Regular & adaptive sampling in classification.

• Object proposals. We extract several object proposals from the image x (e.g., 200 Edge

Boxes [ZD14] and keep the N largest ones). Among them we choose E proposals whose

class posterior has the lowest Rényi entropy with parameter α. After hyper-parameter

search, we choose N = 80, E = 12 and α = 0.35.

•D concentric domain sizes around the center of x (including their horizontal flip). We use

5 sizes that are uniformly extracted in the normalized range [0.6, 1], where 1 corresponds

to the whole image (D = 10).

• C crops. Regular crops; e.g., C = 10 or C = 50 in 1 or 3 scales, as in [KSH12, SZ15,

SLJ15].

• The class conditionals are approximated as
∑

r p(c|x|r)p(x|r), where p(x|r) is either uni-

form or equals to the inverse entropy of the posterior p(c|x|r).

Comparisons. To compare various sampling and inference strategies, we use the AlexNet

and VGG16 models. All classification results in Table 5.2 refer to the validation set of the

ILSVRC 2014 [DDS09], except for the last row which demonstrates results on the test set. On

the rows 2–5 we show the performance of popular multi-crop methods [KSH12, SZ15, SLJ15].

Then we compare them with strategies that involve concentric domain sizes (rows 6–8) and

object proposals (rows 9–14).

Before extracting the crops and in order to preserve the aspect ratio of each single image,

we rescale it so that its minimum dimension is 256. The proposals are extracted at the orig-

inal image resolution and then they are rescaled anisotropically to fit the model’s receptive

field. Additionally, some multi-crop algorithms resize the image in S different scales and

then sample C patches of fixed size 224×224 densely over the image. Szegedy et al. [SLJ15]

use S = 4 scales and C = 36 crops per scale, which yields 144 patches in all. Following

the methodology from Simonyan et al. [SZ15], it is comparable to deploy S = 3 scales and

extract C = 50 crops per scale (5× 5 regular grid with flips), for a total of 150 crops over 3

scales (row 5 in Table 5.2).

The results, presented in Table 5.2, indicate as expected that scale jittering at test time
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improves the classification performance for both 10-crop and 50-crop strategies. Additionally,

the 50-crop strategy is better than the 10-crop strategy for both models. The results on row

5 in bold are the lowest errors that can be achieved with these specific single models4 using

only regular crops.

Then we present our methods and observe that using the AlexNet network with D = 10

concentric domain sizes outperforms most multi-crop algorithms even if it only evaluates

and averages 10 patches. Furthermore, combining it with 10 common crops achieves the

best results for both networks, even without using 3-scale jittering. One interpretation for

these improvements is that the concentric samples serve a natural prior for the majority of

ILSVRC images, i.e., the object of interest lies most probably at the center than at the image

boundaries. This is a common assumption in the literature that also appears in large-scale

video segmentation [KTS14].

Following, we introduce the adaptive sampling mechanism with Algorithm 1 and reduce

the top-5 error to 15.83% and 8.01% for AlexNet and VGG16 respectively. To set this

in perspective, Krizhevsky et al. [KSH12] report 16.4% top-5 error when they combine 5

models. We improve this performance with one single model. The relative improvement

for the deployed instances of AlexNet and VGG16, compared to the data-augmentation

methods used in [SZ15, SLJ15], is 9.9% and 9.4%, respectively. Row 14 shows results where

the marginalization is weighted based on the entropy (notated as W ), while the methods in

rows 9–13 use uniform weights (c.f. Algorithm 1). At the last row we show results from the

ILSVRC test server for our top-performing method (row 13).

Regular and concentric crops assume that objects occupy most of the image or appear

near the center. This is a known bias in the ImageNet dataset. To analyze the effect of

adaptive sampling, we calculate the intersection over union error between the objects and

4Specifically, we use the VGG16 model which is trained without scale jittering at training and appears on
the first row of D area in Table 3 in [SZ15]. Pre-trained models for both AlexNet and VGG16 are publicly
available with the MatConvNet toolbox [VL15]. Simonyan et al. in their evaluation with 50 crops and 3
scales report 8.6% top-5 error on ImageNet 2014 validation. In contrast our implementation produces 8.85%,
which can be attributed to using a different pre-trained model, as the initial weights are sampled from a
zero-mean Gaussian distribution with standard deviation 0.01 and there might also be minor differences in
the training process.
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Figure 5.4: Classification error as a function of the IoU error between the objects and the

regular and concentric crops.

the regular and concentric crops, and show in Fig. 5.4 the performance of various methods

as a function of the IoU error. The improvement of using adaptive sampling (via proposals)

over only regular and concentric crops is increased as IoU error grows, indicating that objects

occupy less domain or are far away from the center.

5.2.2 Comparison between Marginalization and Max-out.

In the task of classification, nuisance variability of factors such as translation, scale and as-

pect ratio is explicitly handled by the use of crops, concentric domains and proposals. Each of

them represents an element g in the nuisance group G. Conditioned on g, a “Category” con-

volutional neural network returns a conditional posterior probability of the learned classes,

p(c|x, g) where x is the test image. To obtain a prediction independent of the nuisance G,

one can either marginalize

p(c|x) =

∫
p(c|x, g)dP (g), (5.1)

and extract the classes c with maximum posterior or max-out

ĉ = arg max
g,c

p(c|x, g). (5.2)

over all possible elements g and classes c. The former has been extensively evaluated in

the previous experiments. The latter has an additional benefit that allows to identify the
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nuisance element g which corresponds to the predicted class c via

ĝ = arg max
g
p(c|x, g). (5.3)

This helps to “localize” the object(s) of interest up to translation, scale and aspect ratio

changes that are modeled by G. In this section, we evaluate the performance of max-out on

the ILSVRC benchmark using the same networks (AlexNet and VGG).

As a comparison, we use the same number of crops, concentric domains and proposals as

in the penultimate row of Table 5.2 (C = 10, D = 10 and E = 12). Instead of averaging the

conditional posteriors, we find the maxima according to Eq. 5.2. Max-out achieves a top-1

error 40.22% and a top-5 error 17.44%. After inspecting the images where max-out fails, we

observe that some of the failure cases are caused by the fact that ILSVRC only allows one

class annotation while regions of proposals can contain other objects that are not considered

the “ground-truth” class.

Time complexity. In Table 5.2 we show the number of evaluated samples (#eval) and

the subset that is actually averaged (#ave) to extract a single class posterior vector. The

sequential time needed for each method is linear to the number of evaluated patches #eval.

We run the experiments with the MatConvNet library and parallelize the load for VGG16

so that the testing is done in batches of B = 20 patches. We report the time profile5 for

each method in Table 5.2. A few entries cover two boxes, as their methods are evaluated

together. Extracting the proposals is not a major bottleneck if using an efficient algorithm

[HBD15], such as Edge Boxes [ZD14]. In rows 13–14 we report results of our faster version,

where the Edge Boxes do not leverage edge sharpening and use one decision tree. Overall,

compared to the 150-crop strategy, the object proposal scheme introduces marginal compu-

tational overhead.

5We use a machine equipped with a NVIDIA Tesla K80 GPU, 24 Intel Xeon E5 cores and 64G RAM
memory.
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Figure 5.5: Head to head comparison between CNN and DSP-CNN on the Oxford [MTS05]

(left) and Fischer’s [FDB14] (center) datasets. The layer-4 features of the unsupervised

network from [FDB14] are used as descriptors. The DSP-CNN outperforms its CNN coun-

terpart in terms of matching mAP by 15.1% and 5.0%, respectively. Right: DSP-CNN

performs comparably to the state-of-the-art DSP-SIFT descriptor [DS15].

5.2.3 Wide-Baseline Correspondence

We test the effect of domain-size pooling in correspondence tasks with a convolutional archi-

tecture, as done by [DS15] for SIFT [Low04], using the datasets and protocols of [FDB14].

This is illustrated in Fig. 5.2 (upper right), but here the domain sizes are centered around

the detector. We expect that such averaging will increase the discriminability of detected

regions and in turn the matching ability, similar to the benefits that we see on the last rows

of Table 5.1.

We use maximally-stable extremal regions (MSER) [MCU04] to detect candidate regions,

affine-normalize them, align them to the dominant orientation, and re-scale them for head-

to-head comparisons. For a detected scale σ at each MSER, the DSP-CNN samples D

domain sizes within a neighborhood [λ1σ, λ2σ] around it, computes the CNN responses on

these samples and averages the posteriors. The deployed deep network is the unsupervised

convolutional network proposed by [FDB14], which is trained with surrogate labels from an

unlabeled dataset (see the methodology in [DSR14]), with the objective of being invariant

to several transformations that are commonly observed in images captured from different
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viewpoints. As opposed to network-classifiers, here the task is correspondence and the

network is purely a region descriptor, whose last two layers (3 and 4) are the representations.

Method Dim mAP

Raw patch 4,761 34.79

SIFT [Low04] 128 45.32

DSP-SIFT [DS15] 128 53.72

CNN-L3 [FDB14] 9,216 48.99

CNN-L4 [FDB14] 8,192 50.55

DSP-CNN-L3 9,216 52.76

DSP-CNN-L4 8,192 53.07

DSP-CNN-L3-L4 17,408 53.74

DSP-CNN-L3 (PCA128) 128 51.45

DSP-CNN-L4 (PCA128) 128 52.33

DSP-CNN-L34 (concat. PCA128) 256 52.69

Table 5.3: Matching mean average precision for different approaches on Fischer’s dataset [FDB14].

In Fig. 5.5 (left) we show the comparison between CNN and DSP-CNN on Oxford dataset

[MTS05]. CNN’s layer 4 is the representation for each MSER and DSP-CNN simply averages

this layer’s responses for all D domain sizes. We use λ1 = 0.7, λ2 = 1.5 and D = 6 sizes

that are uniformly sampled in this neighborhood. There is a 15.1% improvement based on

the matching mean average precision.

Fischer’s dataset [FDB14] includes 400 pairs of images, some of them with more extreme

transformations than those in the Oxford dataset. The types of transformations include

zooming, blurring, lighting change, rotation, perspective and nonlinear transformations. In

Fig. 5.5 (center) and Table 5.3 we show comparisons between CNN and DSP-CNN for layer-3

and layer-4 representations and demonstrate 7.7% and 5.0% relative improvement. We use

λ1 = 0.5, λ2 = 1.4 and D = 10 domain sizes. These parameters are selected with cross-

validation. In Table 5.3 we show comparisons with baselines, such as using the raw data and

DSP-SIFT [DS15]. After fine parameter search (λ1 = 0.5, λ2 = 1.24) and concatenating the

layers 3 and 4, we achieve state of the art performance as shown in Fig. 5.5 (right), observing
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though the high dimensionality of this method compared to local descriptors.

Given the inherent high-dimensionality of CNN layers, we perform dimensionality re-

duction with principal component analysis to investigate how this affects the matching

performance. In Table 5.3 we show the performance for compressed layer-3 and layer-4

representations with PCA to 128 dimensions and their concatenation. There is a modest

performance loss, yet the compressed features outperform the single-scale features by a large

margin.

5.3 Discussion

Our empirical analysis indicates that CNNs, that are designed to be invariant to nuisance

variability due to small planar translations – by virtue of their convolutional architecture

and local spatial pooling – and learned to manage global translation, distance (scale) and

shape (aspect ratio) variability by means of large annotated datasets, in practice are less

effective than a naive and in theory counter-productive practice of sampling and averaging

the conditionals based on an ad-hoc choice of bounding boxes and their corresponding planar

translation, scale and aspect ratio.

This has to be taken with the due caveats: First, we have shown the statement empirically

for few choices of network architectures (AlexNet and VGG), trained on particular datasets

that are unlikely to be representative of the complexity of visual scenes (although they may

be representative of the same scenes as portrayed in the test set), and with a specific choice

of parameters made by their respective authors, both for the classifier and for the evaluation

protocol. To test the hypothesis in the fairest possible setting, we have kept all these choices

constant while comparing a CNN trained, in theory, to “marginalize” the nuisances thus

described, with the same applied to bounding boxes provided by a proposal mechanism.

To address the arbitrary choice of proposals, we have employed those used in the current

state-of-the-art methods, but we have found the results representative of other choices of

proposals.

In addition to answering the question posed in the introduction, along the way we have
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shown that by framing the marginalization of nuisance variables as the averaging of a sub-

sampling of marginal distributions we can leverage of concepts from classical sampling theory

to anti-alias the overall classifier, which leads to a performance improvement both in cat-

egorization, as measured in the ImageNet benchmark, and correspondence, as measured in

the Oxford and Fischer’s matching benchmarks.

Of course, like any universal approximator, a CNN can in principle capture the geometry

of the discriminant surface by “learning away” nuisance variability, given sufficient resources

in terms of layers, number of filters, and number of training samples. So in the abstract

sense a CNN can indeed marginalize out nuisance variability. The analysis conducted show

that, at the level of complexity imposed by current architectures and training set, it does so

less effectively than ad-hoc averaging of proposal distributions.

This leaves researchers the choice of investing more effort in the design of proposal mech-

anisms [Gir15, RHG15], subtracting duties from the Category CNN downstream, or invest

more effort in scaling up the size and efficiency of learning algorithms for general CNNs so

as to render the need for a proposal scheme moot.
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CHAPTER 6

Visual-Inertial-Semantic Scene Representation

for 3D Object Detection

6.1 Introduction

In this chapter, we describe a system to detect objects in three-dimensional space using video

and inertial sensors (accelerometer and gyrometer), ubiquitous in modern mobile platforms

from phones to drones. Inertials afford the ability to impose class-specific scale priors for

objects, and provide a global orientation reference. A minimal sufficient representation, the

posterior of semantic (identity) and syntactic (pose) attributes of objects in space, can be

decomposed into a geometric term, which can be maintained by a localization-and-mapping

filter, and a likelihood function, which can be approximated by a discriminatively-trained

convolutional neural network. The resulting system can process the video stream causally in

real time, and provides a representation of objects in the scene that is persistent: Confidence

in the presence of objects grows with evidence, and objects previously seen are kept in

memory even when temporarily occluded, with their return into view automatically predicted

to prime re-detection.

We deem an “object detector” to be a system that takes as input images and produces

as output decisions as to the presence of objects in the scene. We design one based on the

following premises: (a) Objects exist in the scene, not in the image; (b) they persist, so

confidence on their presence should grow as more evidence is accrued from multiple (test)

images; (c) once seen, the system should be aware of their presence even when temporarily

not visible; (d) such awareness should allow it to predict when they will return into view,

based on scene geometry and topology; (e) objects have characteristic shape and size in 3D,
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and vestibular (inertial) sensors provide a global scale and orientation reference that the

system should leverage on.

Detecting objects from images is not the same as detecting images of objects (Fig. 6.5).

Objects do not flicker in-and-out of existence, and do not disappear when not seen (Fig. 6.6).

What we call “object detectors” traditionally refers to algorithms that process a single image

and return a decision as to the presence of objects of a certain class in said image, missing

several critical elements (a)-(e) above. Nevertheless, such algorithms can be modified to

produce not decisions, but evidence (likelihood) for the presence of objects, which can be

processed over time and integrated against the geometric and topological structure of the

scene, to yield an object detector that has the desired characteristics. The scene context

encompasses both the identity and co-occurrence of objects (semantics) but also their spatial

arrangement in three-dimensional (3D) space (syntax).

6.1.1 Summary of Contributions and Limitations

To design an object detector based on the premises above, we (a) formalize an explicit

model of the posterior probability of object attributes, both semantic (identity) and syntactic

(pose), natively in the 3D scene (Sect. 6.3), which (b) maintains and updates such a posterior,

processing each image causally over time (Sect. 6.3.2); (c) the posterior distribution is a form

of short-term memory (representation), which we use to (d) predict visibility and occlusion

relations (Sect. 6.5.3). We exploit the availability of cheap inertial sensors in almost every

mobile computing platform to (e) impose class-specific priors on the size of objects (Sect.

6.5.2).

The key insight from the formalization (a) above is that an optimal (minimal sufficient

invariant [SC16]) representation for objects in the scene (Eq. 6.1) can be factored into two

components: One geometric – which can be computed recursively by a localization (SLAM)

system (Eq. 6.3) – and the other a likelihood term, which can be evaluated instantaneously

by a discriminatively-trained convolutional neural network (CNN, Eq. 6.4) operating on a

single image. Some consequences of this insight are discussed in Sect. 6.6. In practice, this
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Figure 6.1: Illustration of our system to detect objects-in-scenes. Top: state of the system

with reconstructed scene representation (cyan), currently tracked points (red), viewer tra-

jectory from a previous loop (yellow) and current pose (reference frame). All cars detected

are shown as point-estimates (the best-aligned generic CAD model) in green, including those

previously-seen on side streets (far left). Middle: visualization of the implicit measurement

process: Objects in the state are projected onto the current image based on the mean vehicle

pose estimate (green boxes) and their likelihood score is computed (visualized as contrast:

sharp regions have high likelihood, dim regions low). Cars in different streets, known to not

be visible, are visualized as dashed boxes and their score discarded. Bottom: Top view of

the state from the entire KITTI-00 sequence (best viewed at 5×).

means that we can implement our system using some off-the-shelf components, fine-tuning

a pre-trained CNN, and at least for some rudimentary modeling assumptions, our system

operates in real-time, generating object-scene representations at 10-30 frames per second.
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In Sect. 6.5 we report the results of a representative sample of qualitative and quantitative

tests.

Our system is the first to exploit inertial sensors to provide both scale discrimination and

global orientation for visual recognition (Fig. 6.5). Most (image)-object detectors assume

images are gravity-aligned, which is a safe bet for photographic images, not so for robots or

drones. Our system is also the first to integrate CNN-based detectors in a recursive Bayesian

inference scheme, and to implement the overall system to run in real-time [DFK16].

While our formalization of the problem of object detection is general, our real-time im-

plementation has several limitations. First, it only returns a joint geometric and semantic

description for static objects. Moving objects are detected in the image, but their geometry

– shape and pose, estimating which would require sophisticated class-specific deformation

priors – is not inferred. Second, it models objects’ shape as a parallelepiped, or bounding box

in 3D. While this is a step forward from bounding boxes in the image, it is still a rudimentary

model of objects, based on which visibility computation is rather crude. We have performed

several tests with dense reconstruction [GBS15], as well as with CAD models [ISS16], but

matching and visibility computation based on those is not yet at the level of accuracy (dense

reconstruction) or efficiency (CAD matching) to enable real-time computation. The third

limitation is that a full joint syntactic-semantic prior is not enforced. While ideally we would

like to predict not only what objects are likely to become visible based on context, but also

where they will appear relative to each other, this is still computationally prohibitive at

scale.

In Sect. 6.3 we start by defining an object representation as a sufficient invariant for

detection, and show that the main factor can be updated recursively as an integral, where

the measure represents the syntactic context, and can be computed by a SLAM system, and

the other factor can be computed by a CNN. While the update is straightforward and top-

down (the system state generate predictions for image-projections, whose likelihood is scored

by a CNN), initialization requires defining a prior on object identity and pose. For this we

use the same CNN in a bottom-up mode, where putative detection (high-likelihood regions)

are used to initialize object hypotheses (or, rather, regions with no putative detections are
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assumed free of objects), and several heuristics are put in place for genetic phenomena (birth,

death and merging of objects, Sect. 6.4).

6.2 Related Work

This work, by its nature, relates to a vast body of literature on scene understanding in

Computer Vision, Robotics [LBR12, PL15] and AI [KAJ11] dating back decades [Wal81].

Most recently, with the advent of cheap consumer range sensors, there has been a wealth

of activity in this area [LFU13, TTD12, WLS14, CK13, SK13, DTL15, GAM13, KMF13,

SNS13, HFL14, BS15, SGS13, VML15, KMT16, SX16, RS15]. The use of RGB-D cameras

unfortunately restricts the domain of applicability mostly indoors and at close range whereas

we target mobility applications where the camera, which typically has an inertial sensor

strapped on it, but not (yet) a range sensor, can be used both indoor and outdoors. We

expect that, on indoor sequences, our method would underperform a structured light or

other RGB-D source, but this is subject of future investigation.

There is also work that focuses on scene understanding from visual sensors, specifically

video [KLD14, AYB15, LSH16, SHK12, BGC15, YFU12], although none integrates inertial

data, despite a resurgent interest in sensor fusion [ZCV15]. Additional related work includes

[HZC13, CLC08, BSF08, SHP15].

To the best of our knowledge, no work leverages inertial sensing for object detection. This

is critical to provide a scale estimate in a monocular setting, and validate object hypotheses

in a Bayesian setting, so that, for instance, a model car in our system is not classified as a

car (Fig. 6.5).

Semantic scene understanding from a single image is also an area of research ([FHG15]

and references therein). We are instead interested in agents embedded in physical space, for

which the restriction to a single image is limiting. There is also a vast literature on scene

segmentation ([HHX15] and references therein), mostly using range (RGB-D) sensors. One

popular pipeline for dense semantic segmentation is adopted by [HFL14, MHD16, VML15,

KLD14, ABS16]: Depth maps obtained either from RGB-D or stereo are fused; 2D semantic
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labeling is transferred to 3D and smoothed with a fully-connected CRF [Kol11]. Also related

methods on joint semantic segmentation and reconstruction are [SHL16, UBG16, BVR16].

There is also work on 3D recognition [KKS13, STL14, MCL14], but again with no inertial

measurements and no motion. Some focus on real-time operation [CFN14], but most operate

off-line [ZSS15, CRU16]. None of the datasets commonly used in these works [COR16,

XOT13] provide an inertial reference, except for KITTI. In terms of 3D object detection

on KITTI, some authors focus on image-based detection [GDD14, Gir15, RHG15, RDG16,

LAE16] and then place objects into the scene [XCL15, XCL17], while others focus on 3D

object proposal generation and verification using a network [CKZ16, CKZ15]. [XCL15] trains

a 3D Voxel Pattern (3DVP) based detector to infer object attributes and demonstrates

the ability to accurately localize cars in 3D on KITTI. Their subsequent work [XCL17]

trains a CNN to classify 3DVPs. Different representations of object proposals are also

exploited, such as 3D cuboids [FDU12] and deformable 3D wireframes [ZSS15]. Various

priors are also considered: [WFU15] exploits geo-tagged images; geometric priors of objects

are incorporated into various optimization frameworks to estimate object attributes [ZZD15,

CRU16]. While most of these algorithms report very good performance on detection (∼ 90%

mean average precision), none reports scores for the semantic-syntactic state of objects in

3D, except for [XCL15, XCL17] and [CKZ15, CKZ16]. Since the latter are dominated by

the former, we take [XCL17] as a paragon for comparison in Sect. 6.5.

The aforementioned 3D object recognition methods are based on 2D detection without

temporal consistency. Therefore, the comparison is somewhat unfair as single-image based

detectors cannot reliably detect objects in space, which is our main motivation for the

proposed approach. For details on comparison methodology, see Sect. 6.5. [CRU16, SC15]

use multiple views, but their output is a point-estimate instead of a posterior. Also, the

optimization has to be re-run once new datum is available.

Recent work in data association [LZD16] aims to directly infer the association map,

which is computationally prohibitive for the scale needed in our real-time system. We there-

fore resort to heuristics, described in Sect. 6.4. More specifically to our implementation,

we leverage existing visual-inertial filters [HKB13, LM14, TCS15] and single image-trained
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CNNs [GDD14, RDG16, XCL17].

6.3 Methods

6.3.1 Representations

A scene ξ is populated by a number of objects zj ∈ {z1, . . . , zN}, each with geometric (pose,

shape)1 and semantic (label) attributes zj = {sj, lj}. Measurements (e.g., images) up to

the current time t, yt
.
= {y1, . . . , yt} are captured from a sensor at pose gt. A semantic

representation of the scene is the joint posterior p(ξ, zj|yt) for up to the j-th objects seen

up to time t, where sensor pose gt and other nuisances are marginalized. The joint posterior

can be decomposed as p(ξ, zj|yt) = p(ξ|zj)p(zj|yt) with the first factor ideally updated

asynchronously each time a new object zj+1 becomes manifest starting from a prior p(ξ) and

the second factor updated each time a new measurement yt+1 becomes available starting

from t = 0 and given p(z).

A representation of the scene in support of (geometric) localization tasks is the posterior

p(gt, x|yt) over sensor pose gt (which, of course, is not a nuisance for this task) and a sparse

attributed2 point cloud x = [x1, . . . , xNx ], given all measurements (visual I t and inertial ut)

up to the current time. Conditioning the semantics on the geometry we can write the second

factor above as

p(zj|yt) =

∫
p(zj|gt, x, yt)dP (gt, x|yt) (6.1)

where the integrand can be updated as more data yt+1 becomes available as p(zj|gt+1, x, y
t+1),

which is proportional to

p(yt+1|zj, gt+1, x)

∫
p(gt+1|gt, ut)dP (zj|gt, x, yt). (6.2)

1Object pose is its position and orientation in world frame. With inertials, pose can be reduced to position
and rotation around gravity. Sensor pose is full 6 degree-of-freedom position and orientation.

2Attributes include sparse geometry (position in the inertial frame) and local photometry (feature de-
scriptor, sufficient for local correspondence).
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6.3.2 Approximations

The measure in (6.1) can be approximated in wide-sense using an Extended Kalman Fil-

ter (EKF), as customary in simultaneous localization and mapping (SLAM): p(gt, x|yt) '
N (ĝt|t, x̂t|t;Pt|t). (6.1) is a diffusion around the mean/mode ĝt|t, x̂t|t; if the covariance Pt|t is

small, it can be further approximated: Given

ĝt|t, x̂t|t = arg max
gt,x

p
SLAM

(gt, x|yt), (6.3)

p̂g,x(z
j|yt) .

= p(zj|gt = ĝt|t, x = x̂t|t, y
t) ' p(zj|yt). Otherwise the marginalization in (6.1) can

be performed using samples from the SLAM system. Either way, omitting the subscripts,

we have

p̂(z|yt+1) ∝ p(yt+1|z, ĝt|tut, x̂t|t)︸ ︷︷ ︸
CNN

p̂(z|yt)︸ ︷︷ ︸
BF

(6.4)

where the likelihood term is approximated by a convolutional neural network (CNN) as

shown in Sect. 6.3.3 and the posterior is updated by a Bayesian filter (BF) approximated

by a bank of EKFs (Sect. 6.3.4). That only leaves the first factor p(ξ|zj) in the posterior,

which encodes context. While one could approximate it with a recurrent network, that would

be beyond our scope here; we even forgo using the co-occurrence prior, which amounts to

a matrix multiplication that rebalances the classes following [CLT10], since for the limited

number of classes and context priors we experimented with, it makes little difference.

Approximating the likelihood in (6.4) appears daunting because of the purported need

to generate future data yt+1 (the color of each pixel) from a given object class, shape and

pose, and to normalize with respect to all possible images of the object. Fortunately, the

latter is not needed since the product on the right-hand side of (6.4) needs to be normalized

anyway, which can be done easily in a particle/mixture-based representation of the posterior

by dividing by the sum of the weights of the components. Generating actual images is

similarly not needed. What is needed is a mechanism that, for a given image yt+1, allows

quantifying the likelihood that an object of any class with any shape being present in any

portion of the image where it projects to from the vantage point gt. In Sect. 6.3.3 we will

show how a discriminatively-trained CNN can be leveraged to this end.
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6.3.3 Measurement Process

At each instant t, an image It is processed by “probing functions” φ, which can be designed or

trained to be invariant to nuisance variability. The SLAM system processes all past image

measurements I t and current inertial measurements ut, which collectively we refer to as

yt = {φκ(It), ut}, where φκ(It) is a collection of sparse contrast-invariant feature descriptors

computed from the image for Ni visible regions of the scene, and produces a joint posterior

distribution of poses gt and a sparse geometric representation of the scene x = [x1, . . . , xNi(t)],

assumed uni-modal and approximated by a Gaussian:

p
SLAM

(gt, x|yt) ' N (ĝt|t, x̂t|t;P{g,x} t|t) (6.5)

where x ∈ ∪jsj, i.e., the scene is assumed to be composed by the union of objects, including

the default class “background” l0. This localization pipeline is borrowed from [TCS15], and

is agnostic of the organization of the scene into objects and their identity. It also restricts

x to a subset of the scene that is rigid, co-visible for a sufficiently long interval of time, and

located on surfaces that, locally, exhibit Lambertian reflection.

To compute the marginal likelihood for each class lk ∈ {l0, . . . , lK}, we leverage on a

CNN trained discriminatively to classify a given image region bj into one of K + 1 classes,

including the background class. The architecture has a soft-max layer preceded by K + 1

nodes, one per class, and is trained using the cross-entropy loss, providing a normalized score

φ
CNN

(l|It|bj )[k] for each class and image bounding box bj. We discard the soft-max layer, and

forgo class-normalization. The activations at the K+1 nodes in the penultimate layer of the

resulting network provide a mechanism for, given an image It, quantifying the likelihood of

each object class lk being present at each bounding box bj, which we interpret the (marginal)

likelihoods for (at least an instance of) each class being present at the given bounding box:

φ
CNN

(l|It|bj )[k] ' p(It|lk, bj). (6.6)

This process induces a likelihood on object classes being present in the visible portion of

the scene regions of sj and corresponding vantage points gt, via bj = π(gtsj) where π is the
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projection. Since inertials ut are directly measured, up to a Gaussian noise, we have:

p(yt|zj, gt, x) ' φ
CNN

(l|It|π(gtsj) )[k]N (ū;Q) (6.7)

where ū are the inertial biases and Q the noise covariance; here the object attributes zj are

the labels lj = lk and geometry sj. Thus, given an image It, for each possible object pose

and shape sj and vantage point gt, we can test the presence of at least one instance of each

class lk within. Note that the visibility function is implicit in the map π. If an object is

not visible, its likelihood given the image It is constant/uniform. Note that this depends on

the global layout of the scene, since the map π must take into account occlusions, so objects

cannot be considered independently.

6.3.4 Dependencies and Co-visibility

Computing the likelihood of an object being present in the scene requires ascertaining

whether it is visible in the image, which in turn depends on all other objects, so the scene has

to be modeled holistically rather than as an independent collection of objects. In addition,

the presence of certain objects, and their configuration, affects the probability that other

objects that are not visible be present.3

To capture these dependencies, we note that the geometric representation p(gt, x|yt) can

be used to provide a joint distribution on the position of all objects and cameras p(gt, x|yt),
which yields co-visibility information, specifically the probability of each point in x being

visible by any camera in gt. It is, however, of no use in determining visibility of objects,

since it contains no topological information: We do not know if the space between two points

is empty, or occupied by an object void of salient photometric features.To enable visibility

computation, we can use the point cloud together with the images to compute the dense

shape of objects in a maximum-likelihood sense: ŝj = arg max p(sj|gt, x, yt) using generic

regularizers. This can be done but not at the level of accuracy and efficiency needed for

3For instance, seeing a keyboard and a monitor on a desk affects the probability that there is a mouse in
the scene, even if we cannot see it at present. Their relative pose also informs the vantage point that would
most reduce the uncertainty on the presence of the mouse.
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Figure 6.2: System Flow Chart.

live operation. An alternative is to approximate the shape of objects with a parametric

family, for instance cuboids or ellipsoids, and compute visibility accordingly, also leveraging

the co-visibility graph computed as a corollary from the SLAM system and priors on the size

and aspect ratios of objects. To this end, we approximate

p̂g,x(z
j|yt) .

= p(zj|yt, gt, x) '
∏
j

p(zj|yt, gt, x, z−j) (6.8)

where z−j indicates all objects but zj. Each factor p(sj, lj|yt, gt, x, z−j) is then expanded as

the product

p(sj|lj, yt, gt, x, s−j)︸ ︷︷ ︸
EKF

P (lj|yt, gt, x, l−j)︸ ︷︷ ︸
PMF

(6.9)

where PMF indicates a probability mass filter; this effectively yields a bank of class-

conditional EKFs. These provide samples from p̂(z|yt) in the right-hand side of (6.4), that

are scored with the CNN to update the posterior.

6.4 Implementation Details

We have implemented two renditions of the above program: One operating in real-time and

demonstrated live in June 2016 [DFK16]. The other operating off-line and used for the

experiments reported in Sect. 6.5. Fig. 6.2 sketches the system flow chart.

In both cases, we have taken some shortcuts to improve the efficiency of the approximation

of the likelihood function implemented by a CNN. Also, the semantic filter needs initialization

and data association, which requires some heuristics to be computationally viable. We
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describe such heuristics in order.

Visual Odometry and Baseline 2D CNN We use robust SLAM implemented from

[TCS15] to acquire sparse point clouds and camera pose x, gt at each t. This occurs in

10− 20ms per VGA frame. For the quantitative evaluation on KITTI, we use [MMT15] as

the underlying localization pipeline. For our real-time system, we use YOLO [RDG16] as a

baseline method to compute object likelihoods in 150−200ms, whereas in the off-line system

we use SubCNN [XCL17]. In either case, the result is, for each given window, a positive

score for each class k, read out from the penultimate layer. These are used both to compute

the likelihood, and to generate proposals for initialization as discussed later.

Filter Organization Each object is represented by a PMF filter over class labels and K

class-conditional EKFs, one for each class (6.9). Thus each object is represented by a mixture

of K EKFs, some of which pruned as we describe later. Each maintains a posterior estimate

of position, scale and orientation relative to gravity. The state predicts the projection of

(each of the K instances of) each object onto the image plane, where the CNN evaluates the

likelihood. For some object classes, we use a shape prior, enforced as a pseudo-measurement

with uncertainty manually tuned to the expected class-variability. For instance, people are

parallelepipeds of 1m3 expected volume with an anisotropic covariance along coordinate axes

in the range of few decimeters, whereas couches have significantly more uncertainty.

Data Association To avoid running the baseline CNN multiple times on overlapping

regions (each object is represented by multiple, often very similar, regions, one per each

current class hypothesis), we do not query the CNN sequentially for each prediction. Instead,

we run the CNN once, with lax threshold so as to obtain a large number of (low-confidence)

regions. While this is efficient, it does create a data association problem, as we must attribute

(possibly multiple) image regions to each (of multiple) object hypotheses, each of which has

multiple possible class labels [AZD14]. We avoid explicit data association by opting simple

heuristics instead: first we generate predictions from the filter; then occluded objects are

excluded from likelihood evaluation. For all others, we generate four-tuple coordinates of the
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bounding box, as a 4-dimensional Gaussian given the projection of the current state. This is a

sloppy prediction, for the image of a parallelepiped is in general not an axis-aligned rectangle

on the image. Nevertheless, we use this for scoring the use of the likelihood produced by

the CNN for each predicted class. A (class-dependent) threshold is used to decide if the

bounding box should be used to update the object. Bounding boxes with lower likelihood

are given small weights in the filter update. This requires accurate initialization, which we

will describe below. The silver lining is that inter-frame motion is usually small, so data

association proceeds smoothly, unless multiple instances of the same object class are present

nearby and partially occlude each other.

Initialization Putative 2D CNN detections not associated to any object are used as

(bottom-up) proposals for initialization. The new object is positioned at the weighted cen-

troid of the sparse points whose projections lie within the detection region. The weight at

center is the largest and decreases exponentially outwards. Orientation is initialized as the

“azimuth” from SubCNN, rotated according to camera pose and gravity. Given the position

and orientation, scale is optimized by minimizing the reprojection error.

Merge Objects are assumed to be simply-connected and compact, so two objects cannot

occupy the same space. Yet, their projected bounding boxes can overlap. If multiple in-

stances from the same object are detected, initialized and propagated, they will eventually

merge when their overlap in space is sufficiently large. Only objects from the same class are

allowed to merge as different classes may appear co-located and intersecting in their sloppy

parallelepipedal shape model, e.g., a chair under a table.

Termination Each object maintains a probability over K classes, each associated with

a class-conditional filter. If one of the classes becomes dominant (maximum probability

above a threshold), all other filters will be eliminated to save computational cost. Most

objects converge to one or two classes (e.g., chair, couch) within few iterations. Objects that

disappear from view are retained in the state (short-term memory), and if not seen for a

sufficiently long time, they are stored in long-term memory (“semantic map”) for when they

will be seen again.
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Figure 6.3: Qualitative comparison with SubCNN. Top: Images with back-projected objects

from our method (Green), the same with SubCNN (Yellow). Bottom: top-view of the

corresponding portion of the scene. Ground truth is shown in Blue.

Position error < 0.5 m < 1 m < 1.5 m

Orientation error method #TP Precision Recall #TP Precision Recall #TP Precision Recall

< 30◦
Ours-FNL 150 0.14 0.10 355 0.34 0.24 513 0.49 0.35

Ours-INST 135 0.13 0.09 270 0.26 0.18 368 0.35 0.25

SubCNN 99 0.10 0.07 254 0.26 0.17 376 0.38 0.26

< 45◦
Ours-FNL 157 0.15 0.11 367 0.35 0.25 533 0.50 0.36

Ours-INST 141 0.13 0.10 283 0.27 0.19 388 0.37 0.26

SubCNN 99 0.10 0.07 257 0.26 0.17 383 0.38 0.26

−
Ours-FNL 169 0.16 0.11 425 0.40 0.29 618 0.58 0.42

Ours-INST 149 0.14 0.10 320 0.30 0.22 450 0.43 0.31

SubCNN 104 0.10 0.07 272 0.27 0.18 409 0.41 0.28

Table 6.1: Quantitative evaluation on KITTI and comparison with SubCNN [XCL17]. The

number of true positives having positional error (row), and angular error (column) less than

a threshold is shown, along with Precision and Recall. Scores are aggregated across all 3501

ground-truth labeled frames in the dataset, with 498 annotated objects. The last 3 rows

discard orientation error.

6.5 Experiments

6.5.1 Quantitative Results

As explained in Sec. 6.2, we choose SubCNN [XCL17] as the paragon, even though it is based

on a single image, because it is the top performer for 3D recognition in KITTI among non-

anonymous and reproducible ones, in particular it dominates [CKZ16]. Being single-image

based, SubCNN returns different results in each frame, therefore naturally at a disadvan-
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Figure 6.4: Evolution of the state (Green) against ground-truth annotation (Blue) (best

viewed at 5×, images shown at the top for ease of reference). When first seen (Leftmost)

cars ‘A’ and ‘B’ are estimated to be side-by-side; after a few frames, however, ‘A’ and ‘B’

fall into place, but a new car ‘C’ appears to flank ‘B’. As time goes by, ‘C’ too falls into

place, as new cars appear, ‘D’, ‘E’, ‘F.’ The error in pose (position and orientation) relative

to ground truth can be appreciated qualitatively. Quantitative results are shown in Table

6.1.

tage. To make the comparison fair, one would have to average or integrate detections for

each object across all frames when it is visible. However, SubCNN does not provide data

association, making direct comparison challenging. To make comparison as fair as possible,

without developing an alternate aggregation method for SubCNN, we compare it to our

algorithm on a frame-by-frame basis. Specifically, for each frame, we transfer the ground

truth to the camera frame, and remove occluded objects. Then we can compare detections

from SubCNN to our point estimate (conditional mean) computed causally by the filter at

the current time. We call this method Ours-INST. On the other hand, we can benefit from

aggregating temporal information for as long as possible, so we also report results based on

the point-estimate of the filter state at the last time instant when each object is seen. The

estimate is then mapped back to the current frame, which we call Ours-FNL. To the best of

our knowledge, there are no known methods for 3D recognition that causally update poste-

rior estimates of object identity/presence and geometric attributes, and even naive temporal

averaging of a method like [XCL17] is not straightforward because of the absence of data

association across different frames. This is precisely what motivates us.
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6.5.1.1 Dataset

There are many datasets for image-based object detection [EGW10, RDS15] which provide

2D ground truth. There are also 3D object detection datasets [XOT13], most using extra

sensor data, e.g., depth from a structured-light sensor. None provide inertial measurements,

except KITTI [GLS13], whose object detection benchmark contains 7181 images, from which

we exclude 3682 frames used for SubCNN training [XCL17], leaving us a validation set of

3799 frames. We then find 10 videos which cover most of the validation set. After removing

moving objects, 498 objects are observed 18468 times at 3501 instants, which is the same

order of magnitude of the 2D validation set.

6.5.1.2 Evaluation Metrics

KITTI provides ground-truth object tracklets we use to define true positives, miss detections

and false alarms. A true positive is the nearest detection of a ground truth object within

a specified error threshold in both position and orientation (Table 6.1). A miss occurs if

there is no detection within the threshold. A false alarm occurs when an object is detected

despite no true object being within the threshold in distance and orientation. Precision is

the fraction of true positives over all detections, and Recall is the percentage of detected

instances among all true objects.

6.5.1.3 Benchmark Comparison

Table 6.1 shows result on the KITTI dataset, averaged over all sequences. On average, Ours-

INST already outperforms SubCNN even if our initialization can be rather inaccurate. Note

that our method requires evidence to be accumulated over time before claiming the existence

of an object in the scene, so Ours-INST is penalized heavily in the first few frames when a

new object is spotted. Ours-FNL further improves the results by a large margin. Fig. 6.4

shows how our method refines the state over time. Visual comparison is shown in Fig. 6.3

for ground truth (Blue), Ours-FNL (Green) and SubCNN (Yellow).
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Figure 6.5: Class-specific scale prior. (a): A real car is detected by our system, unlike the

toy car, despite both scoring high likelihood and therefore being detected by an image-based

system (Yellow). As time goes by, the confidence on the real car increases (best viewed at

5×) (b). See online video at [DFS17].

6.5.2 Class-specific Priors

Objects have characteristic scales, which are lost in perspective projection but inferable with

an inertial sensor. We impose a class-dependent prior on size and shape (e.g., volume, aspect

ratios). In Fig. 6.5, a toy car is detected as a car by an image-based detector (Yellow), but

rejected by our system as inconsistent with the scale prior (Green). Fig. 6.5(b) shows two

background cars in the far field, whose images are smaller than the toy car, yet they are

detected correctly, whereas the toy car is rejected4.

6.5.3 Occlusion and Memory

Our system represents objects in the state even while they are not visible, or detected by an

image-based detector. This allows predicting the re-appearance of objects in future frames,

4All supplementary videos are available online at http://vision.cs.ucla.edu/vis.html.
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Figure 6.6: Occlusion management and short-term memory. (a): A chair is detected and

later becomes occluded by the monitor (b). Its projection onto the image is shown in dashed

lines, indicating occlusion. The model allows prediction of dis-occlusion (c) which allows

resuming update when the chair comes back into view. See online video at [DFS17].

and to resume update if new evidences appear. Fig. 6.6 shows a chair first detected and then

occluded by a monitor, later reappearing. The system predicts the chair to be completely

occluded, and therefore does not use the image to update the chair, but resumes doing so

when it reappears, by which time it is known to be the same chair that was previously

seen (re-detection). In Sect. 6.5.4, we show the same phenomenon in a large-scale driving

sequence.

6.5.4 Large-scale Driving Sequences

Fig. 6.1 and online video at [DFS17] show our results on a 3.7km-long sequence from KITTI.

It contains hundreds of cars along the route. Once recognized as a car, we replace the

bounding box with a CAD model of similar car, aligned with the pose estimate from the

filter, in a manner similar to [SNS13], that however uses RGB-D data. In this sequence, we

can also see cars on different streets “through walls” if they have been previously detected,

which can help navigation.
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6.5.5 Indoor Sequences

We have tested our system live in a public demo [DFK16], operating in real time in cluttered

environments with people, chairs, tables, monitors and the like. Representative examples

are shown for simpler scenes, for illustrative purposes, in Fig. 6.7, where again CAD models

of objects are rendered once detected, a’ la [SNS13]. Our system does not produce exact

orientation estimates, as seen in Fig. 6.7, so there is plenty of room for improvement.

6.6 Discussion

Inertial sensors are in every modern phone, tablet, car, even many toys, all devices embedded

in physical space and occasionally in need to interact with it. It makes sense to exploit iner-

tials, along with visual sensors, to help detecting objects that exist in 3D physical space, and

have characteristic shape and size, in addition to appearance. We have recorded tremendous

progress in object detection in recent years, if by object one means a group of pixels in an

image. Here we leverage such progress to design a detector that follows the prescriptions

(a)-(e) indicated in the introduction.

We start by defining a representation as a minimal sufficient invariant statistic of object

attributes, in line with [SC16]. We then marginalize on camera Euclidean pose – which

allows us to enforce priors on the class-specific scale of objects – and update the measure by

a Bayesian filter, where a CNN is in charge of computing the likelihood function.

We note that a minimal sufficient invariant for localization is an attributed point cloud,

and therefore there is no need to deploy the machineries of Deep Learning to determine

camera pose (Deep Learning could still be used to infer the attributes at points, which are

used for correspondence). Instead, we use an Extended Kalman Filter, conditioned on which

the update for object attributes can be performed by a Mixture-of-Kalman filter.

The result is a system whereby objects do not flicker in-and-out of existence, our con-

fidence in their presence grows with accrued evidence, we know of their presence even if

temporarily occluded, we can predict when they will be seen, and we can enforce known
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Figure 6.7: Indoor sequences. Top: An office area. Bottom: A Lounge area. Both videos

are available at [DFS17].

scale priors to reject spurious hypotheses from the bottom-up proposal mechanism.

We have made stringent and admittedly restrictive assumptions in order to keep our

model viable for real-time inference. One could certainly relax some of these assumptions

and obtain more general models, but forgo the ability to operate in real time.

The main limitation of our system is its restriction to static objects. While in theory the

framework is general, the geometry of moving and deforming objects is not represented, and

therefore their attributes remain limited to what can be inferred in the image. Also, our

representation of objects’ shape is rather rudimentary, and as a result visibility computation

rather fragile. These are all areas prime for further future development.
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CHAPTER 7

Discussion

Building a meaningful representation is central to many computer vision, robotics and arti-

ficial intelligence tasks. It is inferred from the sensing data (e.g., visual and possibly inertial

measurements), and is used to answer queries related to a certain task of interest. What

“meaningful” or “useful” means depends on the task. So does the definition of “nuisance”

factors. In this dissertation, several optimal visual representations are constructed for various

purposes.

In the local image descriptor design, we have constructed a descriptor that is a minimal

sufficient statistic of the scene that is also maximally invariant to nuisance group actions on

the data. Minimal sufficiency maintains all the information we would like to retain given

the task of interest. Invariance to nuisances (such as translation, rotation) is the key to

many widely-adopted local descriptors. We have established a theoretical link between the

sampling theory and the design considerations adopted by these descriptors, and extended

them to handle planar similarity given one single image is provided, and more general dif-

feomorphism when multiple views of the same scene are provided.

The same idea has been extended to image-level classifier to handle nuisance variables

irrelevant to the identity of the objects depicted in each image. By coupling a conven-

tional deep neural network architecture with explicit nuisance marginalization, we are able

to achieve substantial improvements over the baseline network which is trained end-to-end

to learn away nuisance variability. The difference between image classification and object

detection is discussed. The discussion justified the use of marginalization and max-out op-

eration in each task due to the fact that the same quantity (e.g., translation, rotation, scale,

aspect ratio, etc. ) changes its role between nuisance and information in different tasks.
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Finally, a real-time system to detect objects in three-dimensional space using video and

inertial sensors are presented. A minimal sufficient representation, the posterior of semantic

(identity) and syntactic (pose) attributes of objects in space is decomposed into a geometric

term and a likelihood function. The former is maintained by a localization-and-mapping

filter where the poses of the sensing platform over time are estimated and integrated out to

yield an estimate of the object’s geometry that is invariant to the view point. The likelihood

function is approximated by a discriminatively-trained convolutional neural network, and is

used to update the belief of the object semantics in space. The resulting system processes

the video stream causally in real time, and provides a representation of objects in the scene

that is persistent.

While we have focused on three different levels of granularity and thus different target

applications where an optimal visual representation is estimated for each, the principles

outlined in the dissertation are applicable to many other problems and tasks in the broad

fields of computer vision, machine perception and artificial intelligence.
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APPENDIX A

Appendix: Derivation of DSP-SIFT

A.1 Relation to Sampling Theory

This first section summarizes the background needed for the derivation, reported in the next

section.

A.1.1 Sampling and aliasing

In this section we refer to a general scalar signal f : R → R;x 7→ f(x), for instance the

projection of the albedo of the scene onto a scanline. We define a detector to be a mechanism

to select samples xi, and a descriptor φi to be a statistic computed from the signal of interest

and associated with the sample i. In the simplest case, x is regularly sampled, so the detector

does not depend on the signal, and the descriptor is simply the value of the function at the

sample φi = f(xi). Other examples include:

A.1.1.1 Regular sampling (Shannon ’49)

The detector is trivial: {xi} = Λ is a lattice, independent of f . The descriptor is a

weighted average of f in a neighborhood of fixed size σ (possibly unbounded) around xi:

φi = φ({f(x), x ∈ Bσ(xi)}). Neither the detector nor the descriptor function φ depend on

f (although the value of the latter, of course, does).

If the signal was band-limited, Shannon’s sampling theory would offer guarantees on the

exact reconstruction f̂ of f(x), x ∈ R from its sampled representation {xi, φi}. Unfortu-

nately, the signals of interest are not band-limited (images are discontinuous), and therefore
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the reconstruction f̂ can only approximate f . Typically, the approximation include “alien

structures,” i.e., spurious extrema and discontinuities in f̂ that do not exist in f . This

phenomenon is known as aliasing. To reduce its effects, one can replace the original data f

with another f̃ that is (closer to) band-limited and yet close to f , so that the samples can

encode f̂ = f̃ free of aliasing artifacts. The conflicting requirements of faithful approxima-

tion of f and restriction on bandwidth trade off discriminative power (reconstruction error)

with complexity, which is one of the goals of communications engineering. This tradeoff

can be optimized by choice of anti-aliasing operator, that is the function that produces f̃

from f , usually via convolution with a low-pass filter. In our context, we seek for a tradeoff

between discriminative power and sensitivity to nuisance factors. This will come naturally

when anti-aliasing is performed with respect to the action of nuisance transformations.

A.1.1.2 Adaptive sampling (Landau ’67)

The detector could be “adapted” to f by designing a functional ψ that selects samples

{xi} = ψ(f). Typically, spatial frequencies of f modulate the length of the interval δxi
.
=

xi+1−xi. A special case of adaptive sampling that does not requires stationarity assumptions

is described next. The descriptor may also depend on ψ, e.g., by making the statistic depend

on a neighborhood of variable size σi: φi = φ({f(x), x ∈ Bσi(xi)}).

A.1.1.3 Tailored sampling (Logan ’77)

For signals that are neither stationary nor band-limited, we can leverage on the violations

of these assumptions to design a detector. For instance, if f contains discontinuities, the

detector can place samples at discontinuous locations (“corners”). For band-limited signals,

the detector can place samples at critical points (maxima, or “blobs”, minima, saddles). A

(location-scale) co-variant detector is a functional ψ whose zero-level sets

ψ(f ; s, t) = 0 (A.1)

define isolated (but typically multiple) samples of scales si > 0 and locations ti ∈ R locally

as a function of f via the implicit function theorem [GP74], in such a way that if f is trans-
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Figure A.1: Detector specificity vs. descriptor sensitivity. (Left) Change of detector re-

sponse (red) as a function of scale, computed around the optimal location and scale (here

corresponding to a value of 245), and corresponding change of descriptor value (blue). An

ideal detector would have high specificity (sharp maximum around the true scale) and an

ideal descriptor would have low sensitivity (broad minimum around the same). The opposite

is true. This means that it is difficult to precisely select scale, and selection error results in

large changes in the descriptor. Experiments are for the DoG detector and identity descrip-

tor. Referring to the notation in Appendix (see details therein), (middle) template ρ (red)

and target f (blue). (Right) corresponding scale-space [f ]. Note that the maximum detector

response may even not correspond to the true location. The jaggedness of the response is

an aliasing artifact.

formed, for instance via a linear operator depending on location τ and scale σ parameters,

W (σ, τ)f , then so are the samples: ψ(W (σ, τ)f ; s+ σ, t+ τ) = 0.

The associated descriptor can then be any function of the image in the reference frame

defined by the samples ti, si, the most trivial being the restriction of the original function

f to the neighborhood Bsi(ti). This, however, does not reduce the dimensionality of the

representation. Other descriptors can compute statistics of the signal in the neighborhood,

or on the entire line. Note that descriptors φi could have different dimensions for each i.
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A.1.1.4 Anti-aliasing and “pooling”

In classical sampling theory, anti-aliasing refers to low-pass filtering or smoothing that typ-

ically1 does not cause genetic phenomena (spurious extrema, or aliases, appearing in the

reconstruction of the smoothed signal.) Of course, anti-aliasing typically has destructive

effects, in the sense of eliminating extrema that are instead present in the original signal.

A side-effect of anti-aliasing, which has implications when the goal is not to reconstruct,

but to detect or localize a signal, is to reduce the sensitivity of the relevant variable (descrip-

tor) to variations of the samples (detector). If we sample translations, xi = x+ ti, and just

store fi = f(xi), an arbitrarily small translation of the sample dx can cause an arbitrarily

large variation in the representation δf(xi) = f(xi + dx)− fi, when xi is a discontinuity. So,

the sensitivity S(f) = δf
dx

= ∞. An anti-aliasing operator φ(f) should reduce sensitivity to

translation: δφ(f)
dx
� δf

dx
. Of course, this could be trivially achieved by choosing φ(f) = 0 for

any f . The goal is to trade off sensitivity with discriminative power. For the case of trans-

lation, this tradeoff has been described in [BM11]. However, similar considerations holds for

scale and domain-size sampling.

A.2 Derivation

The derivation of DSP-SIFT and its extensions follows a series of steps summarized as follows:

• We start from the correspondence, or matching, task: Classify a given datum f (test

image, or target) as coming from one of M model classes, each represented by an image

ρj (training images, or templates), with j = 1, . . . ,M .

• Both training and testing data are affected by nuisance variability due to changes of (i)

illumination (ii) vantage point and (iii) partial occlusion. The former is approximated

by local contrast transformations (monotonic continuous changes of intensity values),

a maximal invariant to which is the gradient orientation. Vantage point changes are

1This central tenet of scale-space theory only holds for scalar signals. Nevertheless, genetic effects have
been shown to be rare in two-dimensional Gaussian scale-space [CE11].
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decomposed as a translation parallel to the image plane, approximated by a planar

translation of the image, and a translation orthogonal to it, approximated by a scal-

ing of the image. Partial occlusions determine the shape of corresponding regions in

training and test images, which are approximated by a given shape (say a circle, or

square) of unknown size (scale). These are very crude approximations but nevertheless

implicit to most local descriptors. In particular, camera rotations are not addressed in

this work.

• Solving the (local) correspondence problem amounts to an M + 1-hypothesis testing

problem, including the background class. Nuisance (i) is eliminated at the outset by

considering gradient orientation instead of image intensity. Dealing with nuisances (ii)–

(iii) requires searching across all (continuous) translations, scales, and domain sizes.

• The resulting matching function must be discretized for implementation purposes.

Since the matching cost is quadratic in the number of samples, sampling should be

reduced to a minimum, which in general introduces artifacts (“aliasing”).

• Anti-aliasing operators can be used to reduce the effects of aliasing artifacts. For the

case of (approximations of) the likelihood function, such as SIFT, anti-aliasing corre-

sponds to marginalizing residual nuisance transformations, which in turn corresponds

to pooling gradient orientations across different locations, scales and domain sizes.

• The samples can be thought of as a special case of “deformation hypercolumns” [Soa10]

(samples with respect to the orientation group) with the addition of the size-space semi-

group (Fig. 2.9). Most importantly, the samples along the group are anti-aliased, to

reduce the effects of structural perturbations.

A.3 Formalization

For simplicity, we formalize the matching problem for a scalar image (a scanline), and neglect

contrast changes for now, focusing on the location-scale group and domain size instead.
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Let ρj : R→ R, with j = 1, . . . ,M possible models (templates, or ideal training images).

The data (test image) is f : [0, . . . , N ]→ R with each sample f(xi) obtained from one of the

ρj via translation by τ ∈ R, scaling by σ > 0, and sampling with interval ε, if xi is in the

visible domain [a, b]. Otherwise, the scene ρj is occluded and f(xi) has nothing to do with

it.

The forward model that, given ρ and all nuisance factors σ, τ, a, b, generates the data, is

indicated as follows: If xi ∈ [a, b], then

f(xi) = Wε(xi;σ, τ)ρj + nij (A.2)

where ni is a sample of a white, zero-mean Gaussian random variable with variance κ.

Otherwise, xi /∈ [a, b], and f(xi) = β(xi) is a realization of a process independent of ρj (the

“background”). The operator Wε is linear2 and given by

Wε(xi;σ, τ)ρ
.
=

∫
Bε(xi)

ρ

(
x− τ
σ

)
dx (A.6)

where Bε(xi) is a region corresponding to a pixel centered at xi. Matching then amount to

a hypothesis testing problem on whether a given measured f = {f(xi)}Ni=1 is generated by

any of the ρj – under suitable choice of nuisance parameters – or otherwise is just labeled as

background:

H0 : ∃ j, a, b, σ, τ | p(f(xi)|ρj, a, b, σ, τ) =

pβ({f(xk), xk /∈ [a, b]})
∏

xi∈[a, b]

N (f(xi)−Wε(xi;σ, τ)ρj), κ) (A.7)

2W : L2(R) → RN can be written as an integral on the real line using the characteristic function
χBε (x − xi) or a more general sampling kernel kε(x − xi), for instance a Gaussian with zero-mean and
standard deviation ε. Then we have∫

Bε(xi)
ρ

(
x− τ
σ

)
dx =

∫
kε(x− xi)ρ

(
x− τ
σ

)
dx =

∫∫
δ

(
y − x− τ

σ

)
kε(x− xi)ρ (y) dxdy (A.3)

=

∫∫
δ
(
y +

τ

σ
− x

σ

)
kε(x− xi)dxρ (y) dy =

∫∫
δ
(
y +

τ

σ
− x̄
)
kε(σx̄− xi)σdx̄ρ (y) dy (A.4)

= σ

∫
kε(σy + τ − xi)ρ (y) dy (A.5)

107



and the alternate hypothesis is simply pβ({f(xi)}Ni=1). If the background density pβ is un-

known, the likelihood ratio test reduces to the comparison of the product on the right-hand

side to a threshold, typically tuned to the ratio with the second-best match (although some re-

cent work using extreme-value theory improves this [FSR13]). In any case, the log-likelihood

for points in the interval xi ∈ [a, b] can be written as

rij(a, b, σ, τ) =
1

|b− a|
∑

xi∈[a,b]

|f(xi)−Wε(xi;σ, τ)ρj| (A.8)

which will have to be minimized for all pixels i = 1, . . . , N and templates j = 1, . . . ,M , of

which there is a finite number. However, it also has to be minimized over the continuous

variables a, b, σ, τ . Since r is in general neither convex nor smooth as a function of these

parameters, analytical solutions are not possible. Discretizing these variables is necessary,3

and since the minimization amounts to a search in 2 + 4 dimensions, we seek for methods to

reduce the number of samples with respect to the arguments a, b, σ, τ as much as possible.

There are many ways to sample, some described in Sect. A.1.1, so several questions

are in order: (a) How should each variable be sampled? Regularly or adaptively? (b) If

sampled regularly, when do aliasing phenomena occur? Can anti-aliasing be performed to

reduce their effects? (c) The search is jointly over a, b and σ, τ , and given one pair, it is easy

to optimize over the other. Can these two be “separated”? (d) Is it possible to quantify

and optimize the tradeoff between the number of samples and classification performance?

Or for a given number of samples develop the “best” anti-aliasing (“descriptor”)? (e) For a

histogram descriptor, how is “anti-aliasing” accomplished?

A.4 Common approaches and their rationale

Concerning question (a) above, most approaches in the literature perform tailored sampling

(Sect. A.1.1.3) of both τ and σ, by deploying a location-scale covariant detector [Low04].

When time is not a factor, it is common to forgo the detector and compute descriptors

3Coarse-to-fine, homotopy-based methods or jump-diffusion processes can alleviate, but not remove, this
burden.
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“densely” (a misnomer) by regularly subsampling the image lattice, or possibly undersam-

pling by a fixed “stride.” Sometimes, scale is also regularly sampled, typically at far coarser

granularity than the scale-space used for scale selection, for obvious computational reasons.

In general, regular sampling requires assumptions on band limits. The function Wρ is not

band-limited as a function of τ . Therefore, tailored sampling (detector/descriptor) is best

suited for the translation group.4 We will therefore assume that τ has been tailor-sampled

(detected, or canonized), but only up to a localization error. Without loss of generality we

assume the sample is centered at zero, and the residual translation τ is in the neighborhood

of the origin. In Fig. A.1 we show that the sensitivity to scale of a common detector (DoG),

which should be high, and is instead lower than the sensitivity of the resulting descriptor,

which should be low. Therefore, small changes in scale cause large changes in scale sample

localization, which in turn cause large changes in the value of the descriptor. Therefore, we

forgo scale selection, and instead finely sample scale. This causes complexity issues, which

prompt the need to sub-sample, and correspondingly to anti-alias or aggregate across scale

samples. Alternatively, as done in Sect. 5.2, we can have a coarse adaptive or tailored sam-

pling of scales, and then perform fine-scale sampling and anti-aliasing around the (multiple)

selected scales.

Concerning (b), anti-aliasing phenomena appear as soon as Nyquist’s conditions are vi-

olated, which is almost always the case for scale and domain-size (Fig. A.2). While most

practitioners are reluctant to down-sample spatially, leaving millions of locations to test, it

is rare for anyone to employ more than a few tens of scales, corresponding to a wild down-

sampling of scale-space. This is true a fortiori for domain-size, where the domain size is

often fixed, say to 69 × 69 or 91 × 91 locations [FDB14]. And yet, spatial anti-aliasing is

routinely performed in most descriptors, whereas none – to the best of our knowledge – per-

form scale or domain-size anti-aliasing. Anti-aliasing should ideally decrease the sensitivity

of the descriptor, without excessive loss of discriminative power. This is illustrated in Fig.

A.2.

4Purported superiority of “dense SIFT” (regularly sampled at thousands of location) compared to ordinary
SIFT (at tens or hundreds of detected location), as reported in few empirical studies, is misleading as
comparison has to be performed for a comparable number of samples.
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For (c), we make the choice of fixing the domain size in the target (test) image, and

regularly sampling scale and domain-size, re-mapping each to the domain size of the target

(Fig. 2.1). For comparison with [FDB14], we choose this to be 69 × 69. While the choice

of fixing one of the two domains entails a loss, it can be justified as follows: Clearly, the

hypothesis cannot be tested independently on each datum f(xi). However, testing on any

subset of the “true inlier set” [a, b] reduces the power, but not the validity, of the test.

Vice-versa, using a “superset” that includes outliers invalidates the test. However, a small

percentage of outliers can be managed by considering a robust (Huber) norm ‖f −Wρ‖H
instead of the L2 norm. Therefore, one could consider the sequential hypothesis testing

problem, starting from each xi ∈ [a = b] as an hypothesis, then “growing” the region by one

sample, and repeating the test. Note that the optimization has to be solved at each step.5

As a first-order approximation, one can fix the interval [a, b] and accept a less powerful test

(if that is a subset of the actual domain) or a test corrupted by outliers (if it is a superset).

This is, in fact, done in most local feature-based registration or correspondence methods, and

even in region-based segmentation of textures, where statistics must be pooled in a region.

While (d) is largely an open question, (e) follows directly from classical sampling consid-

erations, as described in Sect. A.1.1.

A.5 Anti-aliasing descriptors

In the case of matching images under nuisance variability, it has been shown [DKD15] that

the ideal descriptor computed at a location xi is not a vector, but a function that approx-

imates the likelihood, where the nuisances are marginalized. In practice the descriptor is

approximated with a regularized histogram, similar to SIFT (2.1). In this case, anti-aliasing

corresponds to a weighted average across different locations, scales and domain sizes. But

5In this interpretation, the test can be thought of as a setpoint change detection problem. Another
interpretation is that of (binary) region-based segmentation, where one wishes to classify the range of a
function f −Wρ into two classes, with values coming from either ρ or the background, but the thresholds
is placed on the domain of the function [a, b]. Of course, the statistics used for the classification depend on
a, b so this has to be solved as an alternating minimization, but it is a convex one [CE05].
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the averaging in this case is simply accomplished by pooling the histogram across differ-

ent locations and domain-sizes, as in (2.2). The weight function can be design to optimize

the tradeoff between sensitivity and discrimination, although in Sect. 5.2 we use a simple

uniform weight.

To see how pooling can be interpreted as a form of generalized anti-aliasing, consider the

function f sampled on a discretized domain f(xi) and a neighborhood Bσ(xi) (for instance

the sampling interval). The pooled histogram is

pxi(y) =
1

σ

∑
xj∈Bσ(xi)

δ(y − f(xj)) (A.9)

whereas the anti-aliased signal (for instance with respect to the pillbox kernel) is

φ(xi) =
1

σ

∑
xj∈Bσ(xi)

f(xj) (A.10)

The latter can be obtained as the mean of the former

φ(xi) =
∑
y

ypxi(y) (A.11)

although former can be used for purposes other than computing the mean (which is the best

estimate under Gaussian (`2) uncertainty), for instance to compute the median (correspond-

ing to the best estimate under uncertainty measured by the `1 norm), or the mode:

f̂(xi) = arg max
y
pxi(y). (A.12)

The approximation is accurate only to the extent in which the underlying distribution px(y) =

p(f(x) = y) is stationary and ergodic (so the spatially pooled histogram approaches the

density), but otherwise it is still a generalization of the weighted average or mean.

This derivation also points the way to how a descriptor can be used to synthesize images:

Simply by sampling the descriptor, thought of as a density for a given class [DKD15, VKM13].

It also suggests how descriptors can be compared: Rather than computing descriptors in both

training and test images, a test datum can just be fed to the descriptor, to yield the likelihood

of a given model class [FMR08], without computing the descriptor in the test image.
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Figure A.2: Aliasing: (Top left) A random row is selected as the target f and re-scaled to

yield the orbit [f ]; a subset of f , cropped, re-scaled, and perturbed with noise, is chosen as

the template ρ. The distance E between ρ and [f ] is shown in red (right) as a function of

scale. The same exercise is repeated for different sub-sampling of [f ], and rescaled for display

either as a mesh (middle left) or heat map (right) that clearly show aliasing artifacts along

the optimal ridge. Anti-aliasing scale (bottom) produces a cleaner ridge (left, right). The

net effect of anti-aliasing has been to smooth the matching score E (top-right, in blue) but

without computing it on a fine grid. Note that the valley of the minimum is broader, denot-

ing decreased sensitivity to scale, and the value is somewhat higher, denoting a decreased

discriminative power and risk of aliasing if the value raises above that of other local minima.
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