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Investigation of the Casimir interaction between two magnetic

metals in comparison with nonmagnetic test bodies
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Abstract

We present the complete results for the dynamic experiment on measuring the gradient of the

Casimir force between magnetic (Ni-coated) surfaces of a plate and a sphere. Special attention

is paid to the description of some details of the setup, its calibration, error analysis and back-

ground effects. Computations are performed in the framework of the Lifshitz theory at nonzero

temperature with account of analytic corrections to the proximity force approximation and of sur-

face roughness using both the Drude and the plasma model approaches. The theory of magnetic

interaction between a sphere and a plate due to domain structure of their surfaces is developed

for both out-of-plane and in-plane magnetizations in the absence and in the presence of sponta-

neous magnetization. It is shown that in all cases the magnetic contribution to the measured force

gradients is much smaller than the total experimental error. The comparison between experiment

and theory is done using the rigorous statistical method. It is shown that the theoretical approach

taking into account dissipation of free electrons is excluded by the data at a 95% confidence level.

The approach neglecting dissipation is confirmed by the data at more than 90% confidence level.

We prove that the results of experiments with Ni-Ni, Ni-Au and Au-Au surfaces taken together

cannot be reconciled with the approach including free electrons dissipation by the introduction of

any unaccounted background force, either attractive or repulsive.

PACS numbers: 78.20.Ls, 12.20.Fv, 75.50.-y, 78.67.Bf

∗ Present adress: Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA
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I. INTRODUCTION

The Casimir interaction is a version of the van der Waals interaction1 when the sepa-

ration distance between the interacting bodies exceeds a few nanometers, and relativistic

effects make an important contribution. The investigation of this phenomenon goes back to

the seminal paper by Casimir2 which predicted that there is an attractive force between two

neutral parallel ideal metal plates in vacuum. The Casimir force originates from the exis-

tence of zero-point oscillations of the electromagnetic field and thermal photons. Lifshitz3

developed the general theory of the van der Waals and Casimir forces between plates made of

different materials based on the theory of electromagnetic fluctuations. At the present time

the Casimir effect is investigated along with other quantum phenomena caused by fluctuat-

ing electromagnetic field.4–6 It has found increasing favor in numerous applications ranging

from condensed matter physics, atomic physics to elementary particle physics, astrophysics

and cosmology.7–9 Much attention is given to measurements of the Casimir force between

two test bodies made of different materials. Thanks to modern laboratory techniques using

atomic force microscopes (AFM) and micromachined oscillators it has been made possible to

measure the Casimir interaction to a high precision at submicrometer separation distances

(see reviews in Refs.10–12). In comparisons between experiment and theory, some unexpected

features in the interaction of quantum fluctuations with matter have been found connected

with the role of conduction electrons which remain poorly understood up to the present (see

below in Secs. VI and VII).

The original version of the Lifshitz theory3 describes materials of the test bodies by means

of a single quantity, the frequency-dependent dielectric permittivity ε(ω). In so doing the

main physical observables, such as the Casimir free energy and force, are most conveniently

expressed via ε(iξl) where the Matsubara frequencies are ξl = 2πkBT l/~, kB is the Boltz-

mann constant, T is the temperature, l = 0, 1, 2, . . . , and ~ is the Planck constant. The

magnetic permeability of materials was assumed to be equal to unity, µ(iξl) = 1. This

is justified for diamagnets whose magnetic properties are characterized by the relation13–15

|µ(0)− 1| ∼ 10−5. For paramagnets consisting of paramagnetic magnetizable microparticles

with no intrinsic magnetic moment (the Van Vleck polarization paramagnetism16) the mag-

netic properties are also negligibly small. The same holds for paramagnets in the narrow

sense which consist of microparticles possessing an intrinsic (permanent) magnetic moments
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whose interaction remains negligibly small even with the decrease of temperature to absolute

zero.13–16 This allows one to conclude17 that in most of cases the contribution of the magnetic

properties to the Casimir interaction is very small. There is, however, the subset of para-

magnets in the broad sense called ferromagnets whose atoms possess strongly interacting

constituent magnetic moments below the temperature of the magnetic phase transition (the

Curie temperature TC). This results in large magnetic permeabilities at zero Matsubara

frequency, µ(0) ≫ 1, in the temperature region T < TC . Richmond and Ninham18 have

generalized the Lifshitz theory for the case of interacting bodies described by the dielec-

tric permittivity ε(iξl) and magnetic permeability µ(iξl) calculated at imaginary Matsubara

frequencies.

After generalization of the Lifshitz theory for the case of magnetic plates, much theoretical

work has been done. Specifically, all main equations of the theory were obtained19,20 for an

arbitrary number of plane parallel layers of magnetodielectrics possessing different ε(iξl)

and µ(iξl). Furthermore, the Lifshitz theory of van der Waals and Casimir interactions was

formulated for magnetodielectric bodies of arbitrary shape.21 Many papers aimed to use

magnetic properties in order to realize the Casimir repulsion.22–29 It was understood,25,26

however, that µ(iξl) decreases rapidly with l in accordance with the Debye formula15

µ(iξl) = 1 +
µ(0)− 1

1 + ξl/ωm
, (1)

where ωm is the characteristic frequency which is much less than ξ1 ∼ 1014Hz at room

temperature. For ferromagnetic metals µ(iξ) becomes equal to unity at ξ > 105Hz (see,

e.g., Ref.30). From this it follows that the magnetic Casimir interaction is determined by

only the zero-frequency Matsubara term (i.e., the term with l = 0 in the Lifshitz formula).

As a result, under some conditions the magnetic repulsion is now expected only between two

test bodies one of which is made of ferromagnetic dielectric and another of a nonmagnetic

metal.24–26 In parallel with the magnetic Casimir interaction between two macroscopic bodies

the case of polarizable microparticles (atoms) with both electric and magnetic polarizabilities

was considered.29 It was found that magnetic properies of both atoms and material of the

wall influence the atom-wall interaction.19,31,32

Recent Ref.33 marked the beginning of experimental research of the magnetic Casimir

interaction. In this experiment the dynamic AFM operated in the frequency-shift mode was

used to measure the gradient of the Casimir force between an Au-coated sphere of 64.1µm
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radius oscillating in perpendicular direction to the plate covered with the ferromagnetic

metal Ni. The dymanic AFM technique with a sharp tip has been used for mapping surface

topography for many years.34 For measurements of the gradient of the Casimir force the

dynamic AFM was used in the phase-shift35,36 and in the amplitude-shift37,38 modes. When

using the dynamic AFM in the frequency-shift mode, the gradient of the Casimir force acting

on the cantilever modifies the resonant frequency and the corresponding frequency shift is

measured by means of a phase locked loop (PLL). For AFM with a sharp tip this measure-

ment mode was discussed in detail in Ref.39. To measure the Casimir interaction by means

of an AFM, it was originally applied40 in the configuration of an Au-coated sphere oscillating

near an Au-coated plate. Previously dynamic measurements of the Casimir interaction in

the frequency-shift mode were performed by means of a micromachined oscillator.41–48 Mea-

surements of the Casimir interaction between an Au-coated sphere and a Ni-coated plate33

demonstrated the impact of magnetic properties of Ni, as predicted by the Lifshitz the-

ory with neglected relaxation properties of conduction electrons (this theoretical approach

was experimentally confirmed previously by measurements with two Au test bodies;40,43–46

see Secs. VI and VII for a complete discussion). However, with inclusion of the relaxation

properties of free charge carriers, the Lifshitz theory does not predict any impact of mag-

netic properties on the Casimir interaction in the Au-Ni configuration. Unfortunately, both

theoretical predictions, by coincidence, numerically almost overlap over the experimental

separation region. This does not allow to conclude that Ref.33 alone contains an indepen-

dent confirmation for the impact of magnetic properties on the Casimir interaction.

The convincing confirmation for the role of magnetic properties in the Casimir effect

was achieved49 by measuring the gradient of the Casimir force between a Ni-coated sphere

and a Ni-coated plate by means of dynamic AFM operated in the frequency-shift mode. In

this configuration the Lifshitz theory predicts sufficiently different values of the gradient of

the Casimir force in cases when the relaxation properties of conduction electrons are either

included or neglected, and in both cases the magnetic properties have a pronounced effect

on the result. Using the same setup, as in Refs.33 and40 for Au-Ni and Au-Au configurations,

respectively, it was shown that the magnetic properties of Ni affect the measured gradient

of the Casimir force. The experimental results were found to be in excellent agreement with

the predictions of the Lifshitz theory with the relaxation properties of free charge carriers

neglected. The theoretical predictions which take into account relaxation properties of free
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electrons were experimentally excluded at a high confidence level.49 Remarkably, for Ni-Ni

configuration the predictions of two theoretical approaches change places, as compared to

the case of Au-Au test bodies.49 This leads to important conclusions concerning the role of

some possible background effects (see Secs. VI and VII).

The present paper contains full description of the experiment on measuring the gradient

of the Casimir force between Ni-coated surfaces of a sphere and a plate which was briefly

described in Ref.49. After a necessary short discussion about the measurement scheme

(note that the setup is common for the experiments of Refs.33,40 and49), we present the

measurement results including those which were not published so far. The error analysis is

elucidated in more detail including the random, systematic and total experimental errors.

The Casimir interaction between two Ni-coated surfaces used in this experiment is calculated

with the help of the Lifshitz theory within the two theoretical approaches either neglecting or

taking into account the relaxation properties of free electrons. In so doing the corrections due

to surface roughness and due to deviations from the proximity force approximation (PFA) are

taken into account. Next, the detailed estimate of the magnetic interaction, which might act

in the experimental setup due to the domain structure of the films independent of the Casimir

interaction, is given. We demonstrate that the gradient of the magnetic force is sufficiently

small and cannot interfere in the comparison between experiment and theory for both cases

of magnetization perpendicular or parallel to the plane of the film. Then the obtained

experimental results are compared with the results of numerical computations using the two

theoretical approaches. This is done with the help of a more rigorous statistical method

which was not used in Refs.33,40 and49. We arrive at the conclusion that the Lifshitz theory

with omitted relaxation properties of free electrons is consistent with the measurement data

whereas the same theory with the inclusion of relaxation properties is excluded by the data

at a 95% confidence level. At the end of the paper we compare the experimental results of

this experiment with experiments of Refs.33 and40 involving at least one nonmagnetic (Au)

surface.

The structure of the paper is as follows. In Sec. II we briefly present the measurement

scheme using the dynamic AFM operated in the frequency-shift mode. Section III contains

our measurement results and the analysis of errors. In Sec. IV the computational results for

the gradient of the Casimir force between two Ni surfaces are presented. The calculation

for the upper bound of the magnetic interaction in our setup can be found in Sec. V. In
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Sec. VI the reader will find the comparison between experiment and theory for two magnetic

test bodies. Section VII contains the comparison with previously performed experiments.

Section VIII is devoted to our conclusions and discussion. Appendices A and B contain

some details of mathematical calculations.

II. MEASUREMENT SCHEME USING DYNAMIC AFM

The dynamic AFM operated in the frequency-shift mode, used in this experiment to

measure the gradient of the Casimir force between Ni-coated surfaces of a hollow glass sphere

of R = 61.71± 0.09µm radius and a Si plate, is already described in Refs.33,40 and49. Here

we present only a few main points necessary for understanding of the subsequent text and

dwell only on details which were not discussed previously. The sphere was attached to the

rectangular Si cantilever of an AFM and the plate was mounted on top of a piezoelectric tube

capable of travelling a separation distance zpiezo of 2.3µm between the surfaces of a sphere

and a plate. The movement of the piezo was calibrated by a fiber interferometer. Both test

bodies were cleaned using the special multi-step cleaning procedure and placed in the vacuum

chamber that was capable of reaching a pressure of 10−9Torr by using mechanical, turbo

and ion pumps [see Fig. 1(a,b) in Ref.40 for a layout of the setup]. The piezoelectric tube

contained a small magnet introduced by the piezotube manufacturer which is not needed in

this experiment. The initial magnetic field was measured to be ≈ 100Gs using a Hall probe

gaussmeter. To prevent any effects from this field, we inserted a piece of mu-metal magnetic

shield between the top of the piezo tube and the Ni-coated plate. The residual magnetic

field was below the detection resolution of 0.1Gs. Both the initial and residual fields do not

depend on separation in the separation region considered and do not contribute to the force

gradient measured in our work.

In a dynamic experiment using the frequency-shift mode the measured quantity is the

change of resonant frequency ω0 of the periodically driven cantilever.34 The change of the

resonant frequency from ω0 to ωr occurs under the influence of an external force

Ftot(a, T ) = Fel(a) + F (a, T ), (2)

acting between the sphere and the plate at the laboratory temperature T = 300K. Here

Fel(a) is the electric force caused by the voltages Vi applied to the plate whereas the sphere
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remains grounded and F (a, T ) is the Casimir force. The absolute separation between the

sphere and plate surface is given by

a = zpiezo + z0, (3)

where z0 is the point of the closest approach between the two surfaces, which is much larger

than the separation on contact in the dynamic experiments. Note that even if Vi = 0 there

is some residual potential difference V0 between the sphere and the plate caused by different

connections and work functions of the polycrystalline surface from patches and possible

adsorbates on their surfaces.

The shift of the resonance frequency of the cantilever was detected by means of an optical

interferometer.50,51 To prevent any error in the sphere-plate separation a due to cantilever

deflection under the influence of a force Ftot(a, T ), we have kept the interferometric cavity

length constant by means of an additional piezo, which was controlled by a proportional-

integral-derivative feedback loop. Then the frequency shift

∆ω(a) = ωr(a)− ω0, (4)

was measured by the PLL frequency demodulator system (here and below we omit an argu-

ment T in the frequency shift because T is kept constant). The output of the feedback loop

provided by the PLL was the resonant-frequency shift ωr(a)− ωd, where ωd is the set-point

frequency of the PLL. We made sure that at large separations above 2.2µm the frequency

shift ωr(a) − ωd remains constant within the resolution limit. From this it follows that at

separations above 2.2µm there is no influence of the external force and ωr(a) = ω0. Finally

the frequency shift (4) was found from the two measured quantities by the equation

∆ω(a) = [ωr(a)− ωd]− (ω0 − ωd). (5)

In the linear regime, which holds for sufficiently small oscillation amplitudes of the can-

tilever, the frequency shift is given by40

∆ω(a) = −ω0

2k

∂Ftot(a, T )

∂a
≡ −ω0

2k
F ′

tot(a, T ), (6)

where k is the spring constant of the cantilever (maximum allowed amplitudes ensuring the

applicability of the linear regime are calculated in Ref.40).

7



The electric force contributing to the total force (2) in the configuration of a metal sphere

above a metal plate can be calculated precisely as9,52

Fel(a) = X(a, R)(Vi − V0)
2. (7)

Here the function X(a, R) is given by

X(a, R) = 2πǫ0

∞
∑

n=1

cothα− n coth(nα)

sinh(nα)
,

coshα = 1 +
a

R
, (8)

where ǫ0 is the permittivity of the vacuum. When using Eq. (8) in electrostatic calibrations

(see Sec. III), it is convenient to present X(a, R) as the sum of powers9,53

X(a, R) = −2πǫ0

[

c−1
R

a
+ c0 + c1

a

R
+ c2

a2

R2
+ . . .

]

, (9)

where c1 = 0.5, c0 = −1.18260, c1 = 22.2375, c2 = −571.366 etc. Substituting Eqs. (2)

and (7) in Eq. (6), one can connect the measured frequency shift with the gradient of the

Casimir force

∆ω(a) = −β(Vi − V0)
2 − C

∂F (a, T )

∂a
. (10)

Here C ≡ ω0/(2k) and β ≡ β(z0, zpiezo, C, R) = C∂X(a, R)/∂a. Substituting Eq. (9) in the

definition of β, one obtains

β =
πǫ0RC

a2

(

1− 2c1
a2

R2
− 4c2

a3

R3
+ . . .

)

, (11)

where a is expressed according to Eq. (3).

III. MEASUREMENT RESULTS AND ERROR ANALYSIS FOR TWO

MAGNETIC BODIES

To find the gradient of the Casimir force as a function of separation from the measured

frequency shift by using Eq. (10), one needs sufficiently precise values of the coefficients C

and β, of the residual potential difference V0, and of the separation at the closest approach

z0. These were found by means of electrostatic calibrations which were performed using the

dependence of the frequency shift on the applied voltages in Eq. (10). For this purpose 11

different voltages, −64.5, −54.7, −45.1, −35.3, −25.5, −17.7, −7.8, 2.2, 12.5, 22.3 and
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31.6mV were sequentially applied to the plate while the sphere remained grounded. With

each applied voltage the plate was moved towards the sphere starting at the maximum

separation of 2.3µm and the frequency shift ∆ω(a) was recorded at each 0.14 nm. To move

the plate towards the sphere, continuous triangular voltages at 0.01Hz were applied to the

piezoelectric tube. The small mechanical drift in the zpiezo was measured to be 0.003 nm/s

and corrected using the procedure described in Refs.33 and40. Measurement of the frequency

shift ∆ω(a) was repeated three times with each applied voltage Vi. This resulted in 33

measurement sets.

To perform the electrostatic calibration, the measured frequency shift with a step of 1 nm

was found by interpolation. Then at every 1 nm ∆ω was plotted as a function of the applied

voltage Vi and the value of V0 was identified as the position of the parabola maximum.33,40

The obtained values of V0 as a function of separation are plotted in Fig. 1 of Ref.49 over

the separation region from 220 to 1000 nm. As can be seen in this figure, V0 does not

depend on separation indicating that the interacting regions of the surfaces are clean or the

adsorbed impurities are randomly distributed with a submicrometer size scale and make

only a negligible contribution to the total force.40 The mean value of V0 was found to be

V0 = −17.7 ± 1mV (here and below the errors are indicated at a 67% confidence level if

another value is not stated explicitly).

Next, we determined the coefficient C and the separation at the closest approach z0 by

fitting the data for the parabola curvature β to the theoretical expression in Eq. (11). A

least χ2 fitting procedure was used which was repeated by keeping the start points fixed at

the closest separation z0, while the end point zend measured from z0 was varied from 150 to

1190 nm. In Fig. 1(a) the obtained values of C are seen to be almost independent on the end

point indicating the absence of systematic errors from the calibration of zpiezo, mechanical

drift etc. The obtained mean value is C = 52.4± 0.16 kHzm/N. In Fig. 1(b) the respective

values of z0 are presented as a function of zend. They are also independent of zend in the

limits of errors of the fitting procedure. The mean value is z0 = 221.1 ± 0.4 nm. Then

the absolute separations a between the sphere and the plate are obtained from Eq. (3).

The error in the determination of the absolute separations, ∆a, is also equal to 0.4 nm

because the relative separations, zpiezo, are determined to a much higher precision. We

emphasize that our calibration parameters, including absolute separations, are determined

with significantly smaller errors than it is common for sharp tips. The reason is that we
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use a large perfectly shaped sphere made from the liquid phase instead of rough surfaces

where geometry is not known precisely. Another specific feature of our experiment is that

the theoretical electric force in the sphere-plate geometry is known exactly and the electric

potential can be determined to a high precision.

We are now in a position to find the gradients of the Casimir force F ′(a, T ) ≡ ∂F (a, T )/∂a

from the measured frequency shifts by using Eq. (10). They are again found at each 0.14 nm

and then interpolated in order to get 33 values of the force gradient at each nanometer of

the absolute separation a (starting from 223 nm). We have checked the statistical proper-

ties of the Casimir force gradient data obtained in this way and made sure that they are

characterized by a Gaussian distribution (see Sec. VII for more details). In Fig. 2 we plot as

dots all 33 data points for F ′(a) with a step of 5nm starting from the first integer separation

223 nm, where our measurements were performed. The solid line shows the mean values

of the measured gradients of the Casimir force found from 33 measurements. In the inset

the same information is presented over a more narrow separation region which gives the

possibility to demonstrate all the data points with a step of 1 nm.

In this experiment the mean gradients of the Casimir force are burdened by errors of

two types, the random and the systematic. The total experimental error is obtained as a

combination of these two taking into account their distribution laws (see Refs.9 and10 for

details). The random error ∆rF ′(a) calculated from 33 repetitions at a 67% confidence level

using the Student distribution [the Student coefficient t(1+0.67)/2(32) = 1] as a function of

separation is shown by the short-dashed line in Fig. 3. As can be seen in the figure, ∆rF ′(a)

does not depend on separation. The systematic error is determined by the instrumental

noise including the background noise level, by the errors in calibration, and by the errors in

the gradient of the subtracted electrostatic force. Taking into account that all these errors

are characterised by Gaussian distributions, to obtain the total systematic error ∆sF ′(a)

they were combined in quadrature. The obtained values of ∆sF ′(a) at a 67% confidence

level, as a function of separation, are shown in Fig. 3 by the long-dashed line. The increase

of ∆sF ′(a) at shorter separations is caused by the errors in the subtracted electrostatic force.

As can be seen in Fig. 3, the systematic error is from a factor of 6 to a factor of 4 larger

than the random error, as is typical for precise experiments of metrological quality. The

total experimental error ∆tF ′(a) at a 67% confidence level is obtained in quadrature from

the random and systematic errors. It is shown by the solid line in Fig. 3. One can see that
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the total experimental error at all separations is mostly determined by the systematic error.

IV. CALCULATION OF THE CASIMIR INTERACTION BETWEEN TWO Ni

BODIES

Here we calculate the gradient of the Casimir force in the experimental configuration of a

Ni-coated sphere and a Ni-coated plate. Given the thicknesses of Ni coatings (d1 = 250±1 nm

and d2 = 210± 1 nm on the plate and the sphere, respectively), one can consider them as a

solid Ni ball near a Ni semispace.9 Using the PFA, the gradient of the Casimir force is given

by

F ′

PFA(a, T ) = 2πRF ′

pp(a, T ), (12)

where Fpp(a, T ) is the free energy of the Casimir interaction per unit area of two parallel Ni

semispaces spaced a nanometers apart in thermal equilibrium at temperature T . According

to the Lifshitz theory,3,18 Fpp(a, T ) can be presented as the sum from l = 0 to l = ∞ over

the Matsubara frequencies ξl (see Sec. I). Then the gradient of the Casimir force (12) takes

the form40,49

F ′

PFA(a, T ) = 2kBTR
∞
∑

l=0

′
∫

∞

0

qlk⊥dk⊥
∑

α

r2α
e2aql − r2α

. (13)

Here, q2l = k2
⊥
+ ξ2l /c

2, k⊥ is the projection of the wave vector on the plate, and the prime

following the summation sign multiplies the term with l = 0 by 1/2. The index α takes

the two values TM and TE and denotes the transverse magnetic and transverse electric

polarizations of the electromagnetic field. The respective reflection coefficients rα calculated

along the imaginary frequency axis have the following explicit form:

rTM ≡ rTM(iξl, k⊥) =
ε(iξl)ql − kl
ε(iξl)ql + kl

,

rTE ≡ rTE(iξl, k⊥) =
µ(iξl)ql − kl
µ(iξl)ql + kl

, (14)

kl =

[

k2
⊥
+ ε(iξl)µ(iξl)

ξ2l
c2

]1/2

.

The main properties of the magnetic permeability µ of a boundary material (Ni) calculated

at the imaginary Matsubara frequencies are discussed in Sec. I.

To apply Eqs. (13) and (14) for the calculation of the Casimir interaction, one needs

to have the values of ε(iξl) up to sufficiently large values of l and µ(0) (see Sec. I). The
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dielectric permittivity at the imaginary Matsubara frequencies is obtained by means of

the Kramers-Kronig relation from Im ε(ω) = 2n1(ω)n2(ω), where n1(ω) and n2(ω) are the

real and imaginary parts of the complex index of refraction, respectively, measured and

tabulated over a wide frequency region.54 An application of the Kramers-Kronig relation

requires, however, the optical data at much lower frequencies than it may become available

in any foreseeable future. Because of this, the problem arises on how to extrapolate the data

for Im ε(ω) to lower frequencies down to zero frequency. In Sec. I two approaches to the

resolution of this problem proposed in the literature are mentioned. According to the first

approach, which seems to be the most natural and straightforward from a theoretical point

of view, in any extrapolation the properties of boundary materials should be described

as precise as possible. Specifically, the relaxation properties of conduction electrons at

low frequencies should be taken into account by means of the commonly accepted Drude

dielectric function

εD(ω) = 1−
ω2
p

ω[ω + iγ(T )]
, (15)

where ωp is the plasma frequency and γ(T ) is the relaxation parameter. This approach

was called the Drude model approach. The theoretical predictions for the Casimir in-

teraction obtained in this way were excluded by several experiments with metallic test

bodies9,10,40,43–46,49 performed by R. S. Decca and U. Mohideen groups. At the same time in

two other experiments55,56 of S. K. Lamoreaux group the Drude model approach was claimed

to be in agreement with the data. This conclusion, however, has been questioned.57–60 Fur-

thermore, several experiments performed by E. A. Cornell and U. Mohideen groups with

dielectric materials turned out to be in contradiction with theoretical predictions if the

free charge carriers are included in the Lifshitz theory.9,10,61–66 Besides, the inclusion of the

relaxation properties of charge carriers or taking into account the free charge carriers for

dielectrics in the Lifshitz theory were found to violate the third law of thermodynamics

(the Nernst heat theorem).6,10,67,68 This, however, happens at zero temperature and is not

directly relevant to any experimental work.

The second proposed approach suggested to extrapolate the optical data for metals to

zero frequency by means of the plasma model εp(ω). The latter is obtained from Eq. (15) by

putting γ(T ) = 0, i.e., by disregarding the relaxation properties of free charge carriers (note

that for permittivities having the second order pole at zero frequency the Kramers-Kronig

relation is modified accordingly69). The plasma model approach was found to be consistent
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with the measurement data of the experiments with metallic test bodies.9,10,40,43–46,49 The

Drude and the plasma model approaches are the subject of continuing discussions in the

literature.70–73 Below we perform computations using both approaches on equal terms and

compare the obtained results between themselves and with the measurement data.

We obtained the dielectric permittivity ε(iξl) from the optical data54 for the complex

index of refraction of Ni using the Kramers-Kronig relation. The data were first extrapolated

to zero frequency by using either the Drude or the plasma models. In so doing we have

used the plasma frequency of Ni ωp = 4.89 eV and the relaxation parameter at T = 300K

γ = 0.0436 eV according to Refs,54 and74. Our Ni-coated test bodies did not possess a

spontaneous magnetization due to sufficiently thick coatings and weak environment magnetic

fields. The magnetic properties of Ni were described by a static magnetic permeability

µ(0) = 110. For all Matsubara frequencies with l ≥ 1 at T = 300K it holds µ(iξl) = 1

because µ(iξ) rapidly falls to unity with increasing ξ (see Sec. I).

Equation (13) was obtained using the PFA and, thus, is not exact. Recently the gradient

of the Casimir force in a sphere-plate configuration was calculated exactly and the corrections

to the PFA result were found.75–78 According to these papers the exact force gradient between

the sphere of large radius and the plate is equal to

F ′(a, T ) = F ′

PFA(a, T )
[

1 + δPFAcorr (a, T, R)
]

= F ′

PFA(a, T )
[

1 + θ(a, T )
a

R
+ o

( a

R

)]

, (16)

where F ′

PFA is given in Eq. (13). In Ref.77 the coefficient θ, as a function of separation,

was calculated for Au at both T = 0 and T = 300K using the Drude model approach. In

the separation region from 220 to 550 nm the obtained results at T = 300K only slightly

differ from those for ideal metal surfaces considered at T = 300K in the framework of

thermal quantum field theory. This demonstrates a very weak dependence of θ on the

plasma frequency ωp, relaxation parameter γ and optical data within this separation region.

Because of this, one can use the values of θ found in Ref.77 for Ni as well. It was also shown78

that at T = 0 the values of θ calculated using the plasma model are sandwiched between

those calculated using the Drude model and for ideal metal surfaces. This allows one to

approximate the values of θ at T = 300K in the plasma model approach by those for ideal

metals at the same temperature. In Fig. 4 we present by the upper and lower solid lines the

correction to PFA δcorr at T = 300K in percent for the Drude and plasma model approaches,
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respectively (note that the correction of order a2/R2 ∼ 0.3×10−4 can be neglected). As can

be seen in Fig. 4, the error from using the PFA is substantially smaller than a/R. The latter

value for this error was used previously.9,10,40,43–46,49,61,62,65,66 Thus, the analysis of previous

experiments was highly conservative.

One more correction factor which should be introduced in Eq. (13) is due to the surface

roughness. The root-mean-square roughness on the sphere and the plate was investigated

by means of an AFM with a sharp tip and found to be δs = 1.5 nm and δp = 1.4 nm, respec-

tively. For so small a roughness at separations above 200 nm one can use the multiplicative

approach.9,10 In the framework of this approach the force gradient with account of surface

roughness is given by9,10

F ′

R(a, T ) = F ′(a, T )
[

1 + δRcorr(a)
]

, (17)

δRcorr(a) = 10
δ2s + δ2p

a2
+ 105

(δ2s + δ2p)
2

a4
.

In Fig. 4 the correction due to surface roughness δRcorr in percent is shown by the dashed line

as a function of separation. As can be seen in Fig. 4, the corrections due to deviations from

the PFA and due to surface roughness are of opposite signs and give only minor contributions

to the force gradient.

Now we are in a position to calculate the gradient of the Casimir force F ′(a, T ) between

two Ni surfaces at T = 300K with account of all correction factors. Computations were

performed by Eqs. (13), (14), (16), and (17), using the Drude [F ′

R,D(a, T )] and plasma

[F ′

R,p(a, T )] model approaches. The computational results are shown in Fig. 5 by the upper

and lower lines, respectively. We emphasize that for two Ni test bodies F ′

R,D > F ′

R,p at

all separations. This is quite the reverse to the case of two Au test bodies and leads to

important consequences discussed in Sec. VII. To obtain a striking understanding of the

difference between the predictions of the two approaches, in Fig. 6(a) we also plot the

difference

F ′

diff(a, T ) ≡ F ′

R,D(a, T )− F ′

R,p(a, T ) (18)

at T = 300K as a function of separation. In the same figure the dashed line reproduces

from Fig. 3 the total experimental error in measurements of force gradients. As can be seen

in Fig. 6(a), F ′

diff is well above the total experimental error determined at a 67% confidence

level up to almost 450 nm. However, with increasing separation distance, the magnitudes

14



of F ′

diff fall below the total experimental error. In Fig. 6(b) we also plot as a function of

separation the relative difference (in percent) between the predictions of two theoretical

approaches F ′

diff/F
′

R,p. It can be seen that the relative difference for Ni test bodies increases

with increasing separation and achieves 10% at separations above 500 nm (see Sec. VII where

the cases of Ni and Au test bodies are compared).

V. CALCULATION OF MAGNETIC INTERACTION IN THE EXPERIMENTAL

SETUP

Before the measurement data could be compared with the above computational results

for the gradient of the Casimir force using different theoretical approaches, due attention

should be focused on magnetic interactions. Note that in our experiment both interacting

surfaces are ferromagnetic films and consist of many domains. Because of this, it is necessary

to calculate the maximum possible contribution of magnetic forces into the measurement

results. First, we calculate the energy of magnetic interaction per unit area of two plane

parallel films. For this purpose the domain structure of the films of sizes L
(1)
x × L

(1)
y and

L
(2)
x × L

(2)
y is periodically continued for infinite planes. Then, using the PFA, we calculate

the upper bound for the gradient of the magnetic force acting between a sphere and a plate

coated with magnetic films. Note that PFA in the form of Eq. (12) is applicable not only to

Casimir forces, but, for instance, to the electric forces which decrease with separation less

rapidly.9 It was shown79 that a more general formulation of the PFA (the so-called Derjaguin

method80) is applicable even to volumetric forces which do not decrease with separation. In

our case of magnetic forces we have checked that the PFA in both formulations leads to

coincident results.

The magnetic field created by a magnetic body V1 at the point (x2, y2, z2) is given by the

expression15

H(x2, y2, z2) =

∫

V1

dx1dy1dz1
3(nr ·M 1)nr −M 1

|r|3 . (19)

Here, the integration is extended over the coordinates (x1, y1, z1) of the body V1, the unit

vector nr is given by

nr =
r

|r| , (20)
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the vector r is directed from the point (x1, y1, z1) to the point (x2, y2, z2) and

|r| =
[

(x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2
]1/2

. (21)

The magnetization distribution M 1 ≡ M 1(x1, y1, z1) of the body V1 depends on a point.

The energy of the magnetic interaction between the bodies V1 and V2 is given by15

Em = −
∫

V2

dx2dy2dz2M 2(x2, y2, z2) ·H(x2, y2, z2), (22)

where M 2 ≡ M 2(x2, y2, z2) is the magnetic distribution of the second body.

The orientation of magnetization of separate domains in the magnetic films depends on

the film thicknesses. Thus, one can obtain in-plane magnetization only in very thin films.

With increasing film thickness up to 150 nm and more, the easy direction is out-of-plane

perpendicular to it.81–83 Although in our experiment the film thicknesses satisfy this condi-

tion, below we calculate the upper bounds of the magnetic interaction for both out-of-plane

and in-plane magnetizations and show that in both cases the gradient of magnetic force is

negligibly small. Note that any other alignment of domains (which cannot occur in thin

films but might be possible in thick magnetic bodies) can be presented as a superposition

of these two. The results obtained below concerning the smallness of the magnetic inter-

action are valid for films consisting of many domains. The numerical estimations use the

domain sizes, as in our experiment. We start from the most realistic case of an out-of-plane

magnetization.

A. Out-of-plane magnetization

For magnetization perpendicular to the plane of first and second films one has

M 1,2 = (0, 0,M (1,2)
z ), M (1,2)

z ≡ M (1,2)
z (x1,2, y1,2), (23)

i.e., magnetizations do not vary with film surface distances. We first assume that the mag-

netizations M
(1,2)
z take the values Ms and −Ms with equal probability (it is known that81

Ms = 435 emu/cm3). Here it is assumed that the films do not possess a spontaneous magne-

tization as predicted by experimental conditions (the case of films possessing a spontaneous

magnetization is considered next). The magnetic interaction between the two parallel films

of finite area consisting of randomly distributed domains can be calculated using the forma-

lism developed earlier84 to take into account the impact of surface roughness to the Casimir
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force. For this purpose we perform the periodic continuation of the functionsM
(1,2)
z (x1,2, y1,2)

as odd functions with periods 2L
(1,2)
x and 2L

(1,2)
y over the whole planes (x1, y1) and (x2, y2),

respectively. The obtained periodic functions can be expanded in the Fourier series

M (1,2)
z (x1,2, y1,2) =

∞
∑

k,n=1

M
(1,2)
kn sin

kπx1,2

L
(1,2)
x

sin
nπy1,2

L
(1,2)
y

, (24)

where M
(1,2)
kn are the Fourier coefficients.

Now one can use the standard formalism of magnetic force microscopy85,86 to calculate the

magnetic energy (22) between the two parallel films spaced at a separation a. We emphasize,

however, that when scanning a sharp tip above the boundary of two neighboring domains in

magnetic force microscopy, they are usually modeled by a periodic structure.85,87 In this case

the quantities L
(1,2)
x,y in Eq. (24) are replaced with the characteristic sizes of the magnetic

domains D
(1,2)
x,y . For randomly distributed domains, as in our case, the dominant contribution

to the right-hand side of Eq. (24) is given by the item numbered with rather large indices

k ≈ L
(1,2)
x /D

(1,2)
x and n ≈ L

(1,2)
y /D

(1,2)
y . Thus, taking into account that the size of magnetic

domains is approximately equal to the film thickness, we obtain for the domains on the first

film D
(1)
x ≈ D

(1)
y ≈ d1 = 250 nm. In a similar way D

(2)
x ≈ D

(2)
y ≈ d2 = 210 nm. Then, using

the sizes of the first film L
(1)
x = 0.9 cm and L

(1)
y = 1.1 cm, we arrive at k ≈ 3.6 × 104 and

n ≈ 4.4×104. After calculations using Eqs. (19)–(24), for the magnetic energy per unit area

of the first film one arrives at (see Appendix A for details)

Em(a)

L
(1)
x L

(1)
y

=
1

L
(1)
x L

(1)
y

∞
∑

k,n=1

∞
∑

k′,n′=1

M
(1)
kn M

(2)
k′n′Xkk′Ynn′ (25)

×
∫ a+d2

a

dz2 [(z2 + d1)Φkn(z2 + d1)− z2Φkn(z2)] .

Here, the functions Xkk′ and Ynn′ are defined as

Xkk′ =

∫ L
(1)
x

0

dx sin
πkx

L
(1)
x

sin
πk′x

L
(2)
x

,

(26)

Ynn′ =

∫ L
(1)
y

0

dy sin
πny

L
(1)
y

sin
πn′y

L
(2)
y

and the function Φkn(z) is defined by

Φkn(z) =
2π

z
e−γknz, γkn = π





(

k

L
(1)
x

)2

+

(

n

L
(1)
y

)2




1/2

. (27)
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Using the PFA in Eq. (12), one can obtain the gradient of the magnetic force acting

between a sphere and a plate. For this purpose we replace Fpp in Eq. (12) with Em/(L
(1)
x L

(1)
y )

defined in Eq. (25) and perform differentiation with respect to a. The result is

F ′

m(a) =
4π2R

L
(1)
x L

(1)
y

∞
∑

k,n=1

∞
∑

k′,n′=1

M
(1)
kn M

(2)
k′n′e

−γkna (28)

× (1− e−γknd1)(1− e−γknd2)Xkk′Ynn′.

Note that the factors Xkk′ and Ynn′ do not average to zero due to the finitness of L
(1)
x , L

(1)
y

and L
(2)
x ≈ L

(2)
y ∼ 2R, i.e., due to the boundary effects.

Now we estimate the gradient of the magnetic force (28) by considering the dominant

contribution to Eq. (28). As discussed above, the dominant contribution is given by k ≈
L
(1)
x /D

(1)
x and k′ ≈ L

(2)
x /D

(2)
x and hence by

Xkk′ =

∫ L
(1)
x

0

dx sin
πx

D
(1)
x

sin
πx

D
(2)
x

(29)

=
D

(1)
x D

(2)
x

2π

{

1

D
(2)
x −D

(1)
x

[

sin
πL

(1)
x

D
(1)
x

cos
πL

(1)
x

D
(2)
x

− cos
πL

(1)
x

D
(1)
x

sin
πL

(1)
x

D
(2)
x

]

− 1

D
(1)
x +D

(2)
x

[

sin
πL

(1)
x

D
(1)
x

cos
πL

(1)
x

D
(2)
x

+ cos
πL

(1)
x

D
(1)
x

sin
πL

(1)
x

D
(2)
x

]}

.

Taking into account, that L
(1)
x /D

(1)
x is an integer number, one obtains

|Xkk′| ≤
D

(1)
x D

(2)
x

2π

(

1

D
(1)
x −D

(2)
x

− 1

D
(1)
x +D

(2)
x

)

=
D

(1)
x

π

[

(

D
(1)
x

D
(2)
x

)2

− 1

] ≈ D
(1)
x

0.4π
. D(1)

x . (30)

In a similar way for n ≈ L
(1)
y /D

(1)
y , n′ ≈ L

(2)
y /D

(2)
y we get

|Ynn′| . D(1)
y . (31)

Using Eqs. (30) and (31) we calculate the dominant contribution to the gradient of

magnetic force (28) at different separations. Thus, at a = 223, 250 and 300 nm its magnitude

is equal to 1.4 × 10−3, 8.6 × 10−4 and 3.5 × 10−4 µN/m, respectively. The gradient of

the magnetic force further decreases in magnitude with increasing separation. Numerical

computations using Eq. (28) show that at all separations the total magnitude of the gradient
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of the magnetic forces due to randomly distributed domains |F ′

m(a)| < 10−2 µN/m, i.e., much

smaller than the total error in the dynamic measurements of the Casimir interaction (see

Sec. III).

The above calculations were performed under an assumption that there is no spontaneous

magnetization in our Ni films. Now we include the case that there is some excess in the

magnetization of domains in one direction. This can be described by adding a nonzero term

M
(1,2)
00 on the right-hand side of Eq. (24) for M

(1,2)
z . The magnetic energy per unit area of

two parallel discs of L
(1)
x /2 radii arising due to such term is obtained as (see Appendix A

for details)

Esm(a) = 4πM
(1)
00 M

(2)
00

∫ a+d2

a

dz2





z2
√

(L
(1)
x )2 + 4z22

− z2 + d1
√

(L
(1)
x )2 + 4(z2 + d1)2



 . (32)

Then, the gradient of the magnetic force due to the spontaneous magnetization is found by

using the PFA in Eq. (12) where we replace Fpp with Esm defined in Eq. (32). The result is

F ′

sm(a) = 8π2RM
(1)
00 M

(2)
00





a+ d2
√

(L
(1)
x )2 + 4(a+ d2)2

− a
√

(L
(1)
x )2 + 4a2

− a + d1 + d2
√

(L
(1)
x )2 + 4(a+ d1 + d2)2

+
a+ d1

√

(L
(1)
x )2 + 4(a+ d1)2



 . (33)

We calculate the quantity (33) in an extreme case when the magnetic moments of all domains

are directed in one direction. In this case |M (1)
00 | = |M (2)

00 | = Ms. Then calculations using

Eq. (33) result in |F ′

sm| ≈ 2.6× 10−5 µN/m at a = 223 nm and even smaller values at larger

separations. Such small magnitudes for the gradient of the magnetic force due to spontaneous

magnetization are explained by the fact that in the considered separation region this force

depends on separation only slightly. Thus, for out-of-plane magnetization of Ni films one

can neglect any influence of the magnetic interaction when measuring the gradient of the

Casimir force.

B. In-plane magnetization

Now we consider the magnetic interaction between Ni-coated surfaces of a plate and

a sphere under the assumption that separate domains are characterized by the in-plane

magnetization (as discussed above, this might happen for sufficiently thin magnetic films).
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For the in-plane magnetization, one can choose the coordinate system in such a way that

for the first film

M 1 = (M (1)
x , 0, 0), M (1)

x ≡ M (1)
x (x1, y1). (34)

We further assume that there is no spontaneous magnetization so that M
(1)
x = ±Ms with

equal probability. The in-plane magnetization of the second film may make an angle α with

the x axis. Because of this

M 2 = (M (2)
x ,M (2)

y , 0), (35)

where both components depend on the position and take random values

M (2)
x = ±Ms cosα, M (2)

y = ±Ms sinα. (36)

Similar to Sec. VA, we extrapolate the quantities M
(1)
x (x1, y1) and M

(2)
x,y(x2, y2) to the

entire planes (x1, y1) and (x2, y2) as odd functions with the periods 2L
(1,2)
x and 2L

(1,2)
y , re-

spectively. The obtained periodic functions can be expanded in the Fourier series

M (1)
x (x1, y1) =

∞
∑

k,n=1

M̃
(1)
kn sin

kπx1

L
(1)
x

sin
nπy1

L
(1)
y

,

M (2)
x,y(x2, y2) =

∞
∑

k,n=1

M̃
(2)
x,y;kn sin

kπx2

L
(2)
x

sin
nπy2

L
(2)
y

. (37)

After caclulations using Eqs. (19)–(22) and (34)–(37) one obtains an expression for the

magnetic energy per unit area of two parallel films (see Appendix B for details)

Em(a)

L
(1)
x L

(1)
y

=
2π

L
(1)
x L

(1)
y

∞
∑

k,n=1

∞
∑

k′,n′=1

M̃
(1)
kn

{

M̃
(2)
x;k′n′Xkk′Ynn′

×
∫ a+d2

a

dz2

[

− k2π2

(L
(1)
x )2γ2

kn

e−γknz2
(

1− e−γknd1
)

− Ei(−γknz2) + Ei[−γkn(z2 + d1)]

]

(38)

+M̃
(2)
y;k′n′X̃kk′Ỹnn′

knπ2

L
(1)
x L

(1)
y γ2

kn

(

1− e−γknd1
)

∫ a+d2

a

dz2e
−γknz2

}

.

Here, the quantities Xkk′ and Ynn′ are defined in Eq. (26), γkn is defined in Eq. (27), Ei(t)
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is the exponential integral and

X̃kk′ =

∫ L
(1)
x

0

dx sin
πkx

L
(1)
x

cos
πk′x

L
(2)
x

,

(39)

Ỹnn′ =

∫ L
(1)
y

0

dy sin
πny

L
(1)
y

cos
πn′y

L
(2)
y

.

The gradient of the magnetic force between a sphere and a plate is obtained from the

PFA in Eq. (12) by replacing Fpp with the magnetic energy per unit area defined in Eq. (38).

This leads us to the following result:

F ′

m(a) =
4π2R

L
(1)
x L

(1)
y

∞
∑

k,n=1

∞
∑

k′,n′=1

M̃
(1)
kn

{

M̃
(2)
x;k′n′Xkk′Ynn′ (40)

[

k2π2

(L
(1)
x )2γ2

kn

e−γkna
(

1− e−γknd1
) (

1− e−γknd2
)

+ Ei(−γkna)− Ei[−γkn(a+ d2)]− Ei[−γkn(a + d1)] + Ei[−γkn(a + d1 + d2)]

]

−M̃
(2)
y;k′n′X̃kk′Ỹnn′

knπ2

L
(1)
x L

(1)
y γ2

kn

e−γkna
(

1− e−γknd1
) (

1− e−γknd2
)

}

.

Similar to the case of out-of-plane magnetization, the quantity (40) is different from zero

only due to the boundary effects. The dominant contribution to Eq. (40) can be estimated

using Eqs. (30) and (31) and the same inequalities for X̃kk′ and Ỹnn′ defined in Eq. (39). As

a result, we obtain that at each separation the largest magnitude of F ′

m is achieved at α = 0,

i.e., for the parallel in-plane magnetizations. For example, when separation increases from

223 to 400 nm the magnitude of F ′

m decreases from 1.1× 10−3 to 5.3× 10−4 µN/m. Thus, in

the case of in-plane magnetization the role of magnetic interaction in dynamic measurements

of the Casimir force is even smaller than for out-of-plane one.

Now we consider the case that there is a spontaneous magnetization in our Ni films. This

can be described by adding nonzero constant terms M
(1)
00 and M

(2)
x,y;00 on the right-hand side

of Eq. (37). In the same way, as in Sec. VA, for the energy of magnetic interaction per unit
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area of two parallel films we obtain (see Appendix B for details)

Esm(a) = 4M
(1)
00 M

(2)
x,00

∫ a+d2

a

dz2



arctan
2z2

√

(L
(1)
x )2 + (L

(1)
y )2 + 4z22

− arctan
2(z2 + d1)

√

(L
(1)
x )2 + (L

(1)
y )2 + 4(z2 + d1)2



 . (41)

Using the PFA in Eq. (12), the gradient of the magnetic force due to spontaneous mag-

netization takes the form

F ′

sm(a) = 8πRM
(1)
00 M

(2)
x,00



arctan
2(a+ d2)

√

(L
(1)
x )2 + (L

(1)
y )2 + 4(a+ d2)2

− arctan
2a

√

(L
(1)
x )2 + (L

(1)
y )2 + 4a2

+ arctan
2(a+ d1)

√

(L
(1)
x )2 + (L

(1)
y )2 + 4(a+ d1)2

− arctan
2(a+ d1 + d2)

√

(L
(1)
x )2 + (L

(1)
y )2 + 4(a+ d1 + d2)2



 . (42)

Assuming that all magnetic moments are directed in one direction (the saturation mag-

netization), we obtain from Eq. (42) that |F ′

sm| increases from 1.0×10−5 to 1.7×10−5 µN/m

when the separation increases from 223 to 550 nm. This is a negligibly small effect in dy-

namic measurements of the Casimir force.

VI. COMPARISON BETWEEN EXPERIMENT AND THEORY FOR Ni TEST

BODIES

We have now demonstrated that possible magnetic effect due to the domain structure

of Ni films used in our experiment yields scarcely any contribution to the measured force

gradients. Because of this the measurement results for the gradients of the Casimir force

presented in Sec. III can be reliably compared with the predictions of the Lifshitz theory

taking into account nonzero temperature, conductivity properties of Ni, surface roughness

and inaccuracy of the PFA, as discussed in Sec. IV.

In Ref.49 we have used the traditional method of the comparison between experiment

and theory when the measurement data are presented as crosses whose horizontal arms are

equal to 2∆a and the vertical arms are equal to 2∆tF ′(a). Here we use another method of
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comparison9,10,44,53 based on consideration of the confidence interval for the random quantity

F ′

R(ai) − F̄ ′(ai) equal to the difference between theoretical and mean experimental force

gradients at the experimental separations ai. This method is advantageous because it allows

to make the quantitative conclusions not only about the rejection of any theoretical approach,

but about the measure of agreement between experiment and theory as well.

To calculate the confidence interval for the difference between theoretical and mean ex-

perimental force gradients, one needs to have the total errors of both quantities. The total

experimental error ∆tF ′ is already determined in Sec. III (see Fig. 3). The crucial contri-

bution to the theoretical error is given by the errors in optical data of Ni determined by

the number of significant figures in the tables.54 The errors in the optical data lead to the

theoretical error ∆optF ′

R equal to approximately 0.5% of F ′

R (it is shown by the long-dashed

line in Fig. 7 as a function of separation). There is, however, one more source of error89

when the theoretical value of the force gradient is calculated not over some separation inter-

val but at the experimental separations ai. The point is that each experimental separation

is determined up to an error ∆a and this leads to a respective error in the calculated force

gradients89

∆sepF ′

R(ai) ≈ 4
∆a

ai
F ′

R(ai). (43)

In Fig. 7 the theoretical error ∆sepF ′

R as a function of separation is shown by the short-dashed

line. In the same figure the solid line shows the total theoretical error ∆tF ′

R determined

at a 67% confidence level which was combined in quadrature from the theoretical errors

∆optF ′

R and ∆sepF ′

R. The total theoretical error varies from 0.99 to 0.03µN/m when the

separation increases from 223 to 500 nm. As can be seen from the comparison with Fig. 3,

at all separations the total experimental error is in exceess of the total theoretical error.

As a result, the confidence interval for the quantityv F ′

R(ai) − F̄ ′(ai) determined at a 67%

confidence level is given by [−Ξ0.67
F ′ (a),Ξ0.67

F ′ (a)], where

Ξ0.67
F ′ (a) =

{

[∆tF ′(a)]2 + [∆tF ′

R(a)]
2
}1/2

. (44)

In Fig. 8(a) we show the quantities ±Ξ0.67
F ′ (a) as functions of separation by the solid lines.

In doing so the confidence interval at each fixed a is the vertical segment between −Ξ0.67
F ′ (a)

and Ξ0.67
F ′ (a). It has the meaning that if the theory is consistent with the data then at least

67% data points within each separation subinterval must belong to this confidence interval.

To verify which of the two theoretical approaches used in Sec. IV is consistent with the

23



data, in Fig. 8(a,b) we plot the differences F ′

R(ai) − F̄ ′(ai) as black and gray dots, where

the plasma model and the Drude model approaches, respectively, were used to compute the

quantity F ′

R(ai) (see the lower and upper lines in Fig. 5). As can be seen in Fig. 8(a), not

only 67% but all black dots belong to the confidence intervals within the entire separation

region from 223 to 550 nm. This means that the data are consistent with the Lifshitz theory

combined with the plasma model approach with a large safety margin. As to the gray dots,

most of them are outside the confidence intervals over the separation region from 223 to

420 nm. Thus, the Drude model approach to the Casimir force is excluded by the data

within this separation region at a 67% confidence level.

As is seen in Fig. 8(a), even if the confidence intervals were widened to reach a 95%

confidence level, the differences F ′

R,D(ai)−F̄ ′(ai) computed using the Drude model approach

would still remain outside those intervals within some range of separations. To make this

observation quantitative, we calculate the half-width of the confidence interval Ξ0.95
F ′ (a) from

the equation
Ξ0.95
F ′ (a)

Ξ0.67
F ′ (a)

=
t(1+0.95)/2(32)

t(1+0.67)/2(32)
≈ 2. (45)

In Fig. 8(b) we plot the borders of the 95% confidence intervals ±Ξ0.95
F ′ (a) by the solid lines

and reproduce the black and gray dots from Fig. 8(a). As can be seen in Fig. 8(b), the most

of gray dots are still outside the widened confidence intervals within the separation interval

from 223 to 345 nm. This allows one to conclude that at these separations the Drude model

approach is excluded by the data at a higher, 95%, confidence level.

To give a better understanding of the character of agreement (disagreement) between the

nonaveraged data and two theoretical approaches, in Fig. 9 we provide a histogram plotted

at a = 251 nm. Here, f is the fraction of 33 data points having F ′ in the bin shown by the

respective vertical lines. The data are consistent with the Gaussian distribution with the

standard deviation σF ′ = 0.92µN/m and the mean gradient F̄ ′ = 74.17µN/m shown by the

dashed line. The black and gray vertical lines in Fig. 9 show the theoretical predictions of the

plasma model, F ′

R,p = 74.19µN/m, and the Drude model, F ′

R,D = 77.46µN/m, approaches,

respectively. Note that in Ref.49 there is a typo in the value of separation (250 nm instead of

251 nm in the inset to Fig. 2). It is seen that the plasma model approach is in a very good

agreement with the measurement result as

F ′

R,p − F̄ ′ = 0.02µN/m <
1

52
∆tF ′. (46)
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At the same time the theoretical prediction of the Drude model approach is excluded at

high confidence as

F ′

R,D − F̄ ′ = 3.29µN/m > 3∆tF ′. (47)

In the end of this section we emphasize that although Figs. 8(a) and (b) allow the exclu-

sion of the Drude model approach in a quantitative way (at 67% and 95% confidence levels

within respective separation regions), they cannot be considered as a confirmation of the

plasma model approach at either 67% or 95% confidence level. The situation here is just

the opposite: the higher is the confidence level at which the Drude model is excluded [for

example, 95% in Fig. 8(b)], the easier is for the plasma model approach to accomodate all

the points for the gradient differences within the widened confidence interval. In fact, to

obtain the quantitative description for the measure of agreement between some experimen-

tally consistent theoretical approach and the data one should make the confidence interval

as narrow as possible and determine the respective low confidence level at which this ap-

proach is excluded by the data. Then one can conclude that the theoretical approach under

consideration is confirmed by the data at a complementary to 100% high confidence.

To illustrate the above, let us consider the confidence interval [−Ξ0.1
F ′ (a),Ξ0.1

F ′ (a)] defined

at a 10% confidence. This can be found from the equality

Ξ0.1
F ′ (a)

Ξ0.67
F ′ (a)

=
t(1+0.1)/2(32)

t(1+0.67)/2(32)
≈ 0.13. (48)

In Fig. 10 the borders of the 10% confidence intervals are plotted as the two solid lines and

the black dots show the same differences F ′

R,p(ai)− F̄ ′(ai) as are shown by the black dots in

Fig. 8. As can be seen in Fig. 10, in spite of rather narrow 10% confidence intervals, much

more than 10% of all dots within any separation subinterval belong to them. This means

that the plasma model approach is not excluded by the data even at a 10% confidence level

or, equivalently, that this approach is confirmed by the data at more than 90% confidence

level.

As mentioned in Secs. I and IV, it remains unclear why the experimental data are in

agreement with theory disregarding really existing relaxation properties of conduction elec-

trons and exclude the theory taking these properties into account. In the next section we

compare the above experimental results for two Ni films with respective measurements in

configurations containing one or two Au test bodies. We show that the unique feature of two

Ni test bodies shown in Fig. 5 (F ′

R,D > F ′

R,p) leads to important conclusions with respect to
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the role of possible background effects in measurements of the Casimir force, such as patch

potentials.90

VII. COMPARISON WITH EXPERIMENTS INVOLVING NONMAGNETIC

METALS

Here we compare the experimental results and the measure of their agreement with theory

for two Ni test bodies with the results of previous measurements using the same setup. One

of them was performed40,91 with an Au-coated plate and an Au-coated sphere, and the

other33 with a Ni-coated plate and an Au-coated sphere.

We begin from the experiment40,91 using an Au-coated plate and an Au-coated sphere

of R = 41.3µm radius. First, we present the results of this experiment in terms of the

differences between the theoretical force gradients computed using either the Drude model

or the plasma model approaches and mean measured gradients of the Casimir force. These

differences are shown in Fig. 11(a,b) by the gray and black dots, respectively. Note that for

Au computations using the Drude model approach have been made40,91 with the tabulated

optical data54 extrapolated to zero frequency by the Drude model (15) with the parameters

ωp = 9.0 eV and γ = 0.035 eV. Recently it was shown92 that ε(iξl) obtained in this way is

in excellent agreement with the dielectric permittivity obtained by means of the weighted

Kramers-Kronig relations from the tabulated optical data54 with no extrapolation. Fur-

thermore, ellipsometry measurements of the optical properties of Au films were found93 in

good agreement with the results of Ref.54. The alternative optical data for Au contained in

the literature, which can significantly deviate from the tabulated data,54 were shown9,10 to

lead to much larger deviations between the predictions of the Drude model approach and

measurements of the Casimir force than the data of Ref.54.

The solid lines in Fig. 11 indicate the borders of the confidence intervals determined

at (a) 67% confidence and (b) 95% confidence level. They are found by using the total

experimental and theoretical errors in the experiment of Refs.40,91, as discussed in Sec. VI of

the present paper. As can be seen in Fig. 11, the plasma model approach is consistent with

the data over the entire separation region. As to the Drude model approach, it is excluded

by the data at a 67% confidence level over the separation region from 235 to 420 nm [see

Fig. 11(a)] and at a 95% confidence level over the separation region from 235 to 330 nm [see
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Fig. 11(b)].

From the comparison of Figs. 8 and 11 one can observe an important difference between

the cases of Ni-Ni and Au-Au test bodies. Note that for Ni-Ni test bodies F ′

R,D− F̄ ′ > 0 (see

Fig. 8), i.e.., F ′

R,D > F ′

R,p, in contrast to the case of Au-Au test bodies where F ′

R,D − F̄ ′ < 0

(see Fig. 11) and F ′

R,D < F ′

R,p. This difference sheds light on the possible role and size of

electrostatic patches in measurements of the Casimir force. It was hypothesized94 that an

additional attractive force due to the effect of large patches might bring the experimental

data for the two Au test bodies in agreement with the predictions of the Drude model

approach. From Fig. 11 it is seen that the attractive force with a magnitude equal to the

difference between two sets of dots would really bring the gray dots in agreement and the

black dots in disagreement with the data. It is not logical, however, to assume that the

patch effect plays this role for Au but does not play the same role for Ni. From Fig. 8

it follows that any additional attractive force would only increase the disagreement of the

Drude model approach with the data leading also to a disagreement of the plasma model

approach with the same data. This is in favor of the statement that surface patches lead to

only a negligibly small effect in measurements of the Casimir interaction by means of AFM

and micromachined oscillator9,10,44 in qualitative agreement to the model of patches proposed

in Ref.90. This conlusion was recently confirmed95 by means of Kelvin probe microscopy.

Futher confirmation for a negligibly small role of the effect of electrostatic patches in

measurements of the Casimir interaction by means of an AFM comes from the experiment33

with a Ni-coated plate and an Au-coated sphere of R = 64.1µm radius. In this configuration

the predictions of both theoretical approaches to the Casimir force are almost coincident

over the experimental separations range. To see this in Fig. 12(a) we show the quantity

F ′

diff(a)/R [see Eq. (18)] by the three solid lines from top to bottom for the experiments on

measuring the gradient of the Casimir force between Ni-Ni (this work), Ni-Au (Ref.33) and

Au-Au test bodies,40,91 respectively (in each case the respective value of the sphere radius

is used to make the presented results comparable). To gain a better understanding of dis-

tinctions between the two theoretical approaches, in Fig. 12(b) we also show the quantity

F ′

diff(a)/F
′

R,p(a) in percent for the three experiments in the same succession as in Fig. 12(a).

As is seen in Fig. 12(a,b), for Ni-Au test bodies (the lines sandwiched between the top and

bottom ones) the quantity F ′

diff/R and F ′

diff/F
′

R,p cannot be distinguished from zero in the

limits of experimental errors. However, for all the three experiments, including that with
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Ni-Au test bodies, the measurement results are consistent with theoretical predictions using

the plasma model approach. This is seen in Fig. 13(a,b) where, to make the results of the

different experiments comparable, the quantity F ′

R,p/R is shown by the solid dark bands and

the crosses represent measurement data with their total experimental errors normalized by

the radii (the bands having thicknesses equal to twice the theoretical error are again plotted

from top to bottom for experiments with Au-Au, Ni-Au, and Ni-Ni test bodies, respectively).

Remembering that for Ni-Au test bodies two alternative theoretical approaches lead to al-

most coincident predictions, an introduction of some detectable additional force originating,

for instance, from patch potentials would inevitably make both approaches inconsistent with

the experimental data.

In Fig. 14 we demonstrate that it is impossible to simultaneously reconcile the Drude

model approach with the data of two experiments using Au-Au and Ni-Ni test bodies at the

expense of any unaccounted hypothetical background effect leading to either attractive or

repulsive force. In this figure the upper and lower bands show the theoretical results obtained

using the Drude model approach for the quantity F ′

R,D/R for Au-Au and Ni-Ni test bodies,

respectively. As can be seen in Fig. 14, there is an evident inconsistency between the data of

both experiments and theoretical predictions of the Drude model approach. The important

point is that to remedy the problem one would need to introduce some hypothetical attractive

force for the experiment with Au-Au test bodies (the upper band and set of crosses) and

a hypothetical repulsive force for the experiment with Ni-Ni test bodies (the lower band

and set of crosses). Thus, not only an electrostatic attraction due to patch potentials, but

any unaccounted hypothetical interaction preserving its sign (i.e., being either attractive or

repulsive) is incapable to reconcile the predictions of the Drude model approach with the

data. Keeping in mind that in Sec. V we have carefully examined possible contributions of

magnetic interactions due to the domain structure of Ni films and found it negligibly small,

any alternative interpretation of our measurement results faces severe difficulties.

VIII. CONCLUSIONS AND DISCUSSION

In the foregoing we have presented complete calibration and measurement data of the

experiment on measuring the gradient of the Casimir force between a Ni-coated plate and

a Ni-coated sphere by means of dymanic AFM operated in the frequency shift technique.
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This is the pioneering experiment which measured the influence of magnetic properties of

the boundary metals on the Casimir interaction predicted theoretically more than 40 years

ago. Taking into account that the magnitudes of the force gradients under consideration

are about or less than 100µN/m and the magnetic properties contribute up to 5% of this

quantity, it becomes clear that such experiments call for extreme care to the vacuum system,

surface preparation, calibration procedures, background effects, error analysis and compari-

son between experiment and theory. In this paper we have presented exhaustive information

on all the above subjects which has not been already elucidated in the papers devoted to

previous experiments using the same setup with Au-Au and Au-Ni test bodies,33,40,91 and

with Ni-Ni test bodies published only in Letter form.49

After a brief description of some details of the setup which were not described in the

literature so far, we have presented the results of the electrostatic calibrations which allow

precise determination of the calibration constant, closest absolute separation and residual

potential difference. All the details of error analysis, including the random, systematic

errors and their combination into the total error, were provided. Both individual measured

gradients of the Casimir force and their mean values were presented. Computations of the

gradients of the Casimir force in the sphere-plane geometry were performed using the Lifshitz

theory at nonzero temperature taking into account the recently calculated correction terms

to the PFA and the surface roughness. The conductivity properties of Ni were described in

succession using the Drude and the plasma model approaches to the Casimir force presented

in the literature and the obtained results were compared between themselves and with the

total experimental errors.

We have investigated possible magnetic interaction between the test bodies in our experi-

mental configuration arising due to the domain structure of Ni films. Both cases, out-of-plane

and in-plane magnetizations, have been studied extensively (the former has been only briefly

considered with respect to measurements of the Casimir force49 and the latter was not pre-

viously investigated). Although extreme care has been taken in order to avoid spontaneous

magnetization of the Ni films used, the case of the fully magnetized films was also considered.

It was shown that in all cases the contribution of magnetic interaction to the measured force

gradient is by several orders of magnitude smaller than the total experimental error. This

allowed a reliable comparison of the measured gradients of the Casimir force with theoretical

predictions.
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The comparison of the experimental results with theory was based on a more rigorous

method different from that used in Refs.33,40,49,91. This method is based on the consideration

of the random quantity equal to the difference between theoretical and mean experimental

force gradients. Both 67% and 95% confidence intervals for this quantity were found. The

preference of the comparison method under discussion is that it not only allows one to ex-

clude some theoretical approach as inconsistent with the data at a given confidence level,

but also permits to quantitatively determine at what confidence level a theoretical approach

is confirmed by the data. On this basis we have concluded that the Drude model approach

to the Casimir force is excluded by our measurements with two Ni surfaces at a 95% con-

fidence level, whereas the plasma model approach is confirmed by the data at higher than

90% confidence level. In this work we have investigated in detail the striking property of the

Casimir interaction between two magnetic test bodies, i.e., that the force gradients calcu-

lated using the Drude model approach are significantly larger than the measured mean force

gradients. This is just the opposite of the case of two nonmagnetic (Au) test bodies where

the theoretical force gradients, calculated using the Drude model approach are significantly

smaller than the measured mean force gradients. By comparing the measurement results of

the three experiments with Au-Au, Ni-Au, and Ni-Ni test bodies taking the above property

into account, we have arrived at the conclusion of major importance that no hypothetical

unaccounted background force (either attractive or repulsive) could bring the measurement

data into agreement with theoretical predictions of the Drude model approach (the attrac-

tive force arising due to electrostatic patches is only one example of possible interactions).

This means that an exclusion of the Drude model approach by the data assumes a greater

significance which awaits for its fundamental explanation.73

To conclude we would like to stress that the experiment on measuring the gradient of

the Casimir force between two Ni surfaces has brought confirmation to the prediction of the

Lifshitz theory that magnetic properties of boundary surfaces influence the Casimir force.

According to our measurement results, the quantitative description of the Casimir interaction

between both magnetic and nonmagnetic metals is given by the plasma model approach.

At this point it is pertinent to note that in the configuration of a ferromagnetic dielectric

interacting with a nonmagnetic metal described by the plasma model the Lifshitz theory

predicts the Casimir repulsion through a vacuum gap.24–26 This makes possible realization

of the Casimir repulsion on microscales in the near future for subsequent applications to the
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problems of lubrication and friction in nanodevices.
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APPENDIX A

In this Appendix we derive some mathematical results used in Sec. VA to calculate the

magnitude of magnetic interactions in our experimental setup for out-of-plane magnetized

Ni films.

From Eq. (19) we can find the z-component of the magnetic field created by the period-

ically extended first Ni film at the points of the second Ni film

Hz(x2, y2, z2) =

∫

∞

−∞

dx1

∫

∞

−∞

dy1

∫ 0

−d1

dz1

[

3(z2 − z1)
2

|r|5 − 1

|r|3
]

M (1)
z (x1, y1), (A1)

where the radius-vector r is defined in Eq. (21) and the magnetization is specified in Eq. (23).

Calculating the integral with respect to z1 in Eq. (A1), we obtain

Hz(x2, y2, z2) =

∫

∞

−∞

dx1

∫

∞

−∞

dy1

{

z2

[z22 + (x2 − x1)2 + (y2 − y1)2]
3/2

(A2)

− z2 + d1

[(z2 + d1)2 + (x2 − x1)2 + (y2 − y1)2]
3/2

}

M (1)
z (x1, y1).

Now we assume that there is no spontaneous magnetization and substitute the Fourier

series (24) in Eq. (A2). After introducing the new variables u = x1 − x2 and v = y1 − y2,

transforming the sinus functions and equating to zero the integrals of odd functions, Eq. (A2)

can be brought to the form

Hz(x2, y2, z2) =

∞
∑

k,n=1

M
(1)
kn sin

kπx2

L
(1)
x

sin
nπy2

L
(1)
y

× [z2Φkn(z2)− (z2 + d1)Φkn(z2 + d1)] . (A3)
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Here we have introduced the notation

Φkn(z) =

∫

∞

−∞

du

∫

∞

−∞

dv
cos kπu

L
(1)
x

cos nπv

L
(1)
y

(u2 + v2 + z2)3/2
. (A4)

The double integral in Eq. (A4) can be evaluated explicitly. For this purpose we set

πk/L
(1)
x = ak, πn/L

(1)
y = bk and calculate the derivative88

dΦkn(z)

dbn
= −2

∫

∞

−∞

du cos(aku)

∫

∞

0

dv
v sin(bnv)

(u2 + z2 + v2)3/2

= −4bn

∫

∞

−∞

du cos(aku)K0(bn
√
z2 + u2)

= −2π
bn
γkn

e−γknz, (A5)

where K0(t) = (πi/2)H
(1)
0 (it) is the Bessel function of imaginary argument and γkn is defined

in Eq. (27). Then by the integration of Eq. (A5) with respect to bn one finds

Φkn(z) =
2π

z
e−γknz +G(ak, z), (A6)

where G(ak, z) is the integration constant. The value of this constant can be found by

considering the quantity (A4) with n = bn = 0

Φk0(z) = 4

∫

∞

0

du cos(aku)

∫

∞

0

dv

(u2 + z2 + v2)3/2

= 4

∫

∞

0

du
cos(aku)

z2 + u2
=

2π

z
e−zak . (A7)

Comparing this with Eq. (A6), we can conclude that G(ak, z) = 0. Thus, from (A6) one

arrives at the final expression (27) for the function Φkn(z).

The energy of magnetic interaction between parallel plates can be now obtained from

Eq. (22)

Em(a) = −
∫ L

(1)
x

0

dx2

∫ L
(1)
y

0

dy2

∫ a+d2

a

dz2M
(2)
z (x2, y2)Hz(x2, y2, z2). (A8)

Substituting here with Eq. (24) for the magnetization of the second film, Eq. (A3) for the

magnetic field and using notations (26), one arrives at the expression in Eq. (25).

If the spontaneous magnetizaion is present, Eq. (A2) for the respective magnetic field

created by the first film, should be rewritten in the form

Hz(x2, y2, z2) = M
(1)
00

∫ L
(1)
x /2

−L
(1)
x /2

dx1

∫ L
(1)
y /2

−L
(1)
y /2

dy1

{

z2

[z22 + (x2 − x1)2 + (y2 − y1)2]
3/2

− z2 + d1

[(z2 + d1)2 + (x2 − x1)2 + (y2 − y1)2]
3/2

}

. (A9)
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Now we take into account that the second film is situated above the center of a large plate,

i.e., x2 << L
(1)
x and y2 << L

(1)
y . Thus, with sufficient precision one can put x2 ≈ y2 ≈ 0.

Replacing the first film with a disc of L
(1)
x /2 = 0.5 cm radius, we obtain the following estimate

Hz(z2) ≈ 4πM
(1)
00





z2 + d1
√

(L
(1)
x )2 + 4(z2 + d1)2

− z2
√

(L
(1)
x )2 + 4z22



 . (A10)

Then, calculating the magnetic energy arising per unit film area due to the spontaneous

magnetization

Esm(a) = −M
(2)
00

∫ a+d2

a

dz2Hz(z2), (A11)

we arrive at Eq. (32).

APPENDIX B

Here we derive the mathematical expressions used in Sec. VB to calculate the gradient

of magnetic force for the case of in-plane magnetization of Ni films.

We begin from calculation of the x- and y-components of magnetic field created by the

periodically continued first Ni film at the points of parallel to it second Ni film. From

Eq. (19) for the in-plane magnetization one obtains

Hx(x2, y2, z2) =

∫

∞

−∞

dx1

∫

∞

−∞

dy1

∫ 0

−d1

dz1

[

3(x2 − x1)
2

|r|5 − 1

|r|3
]

M (1)
x (x1, y1),

Hy(x2, y2, z2) =

∫

∞

−∞

dx1

∫

∞

−∞

dy1

∫ 0

−d1

dz1
3(x2 − x1)(y2 − y1)

|r|5 M (1)
x (x1, y1), (B1)

where the magnetization is presented in Eq. (37). Let us calculate the component Hy first.

For this purpose we use the identity

3(x2 − x1)

|r|5 = − ∂

∂x2

1

[(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2]
3/2

. (B2)

Substituting Eqs. (B2) and (37) in Eq. (B1) and using the variables u and v introduced in

Appendix A, we find

Hy(x2, y2, z2) = −
∞
∑

k,n=1

M̃
(1)
kn

∂

∂x2

∫

∞

−∞

du

∫

∞

−∞

dv

∫ 0

−d1

dz1

× v sin[ak(u+ x2)] sin[bn(v + y2)]

[u2 + v2 + (z2 − z1)2]3/2
, (B3)
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where ak and bn are defined in Appendix A below Eq. (A4). Now we transform the sinus

functions, set equal to zero the integrals of odd functions, and calculate the derivative with

respect to x2. The result is

Hy(x2, y2, z2) = −
∞
∑

k,n=1

M̃
(1)
kn ak cos(akx2) cos(bny2)

×
∫ 0

−d1

dz1

∫

∞

−∞

du

∫

∞

−∞

dv
v cos(aku) sin(bnv)

[u2 + v2 + (z2 − z1)2]3/2
. (B4)

Using the differentiation with respect to bn and the notation (A4), Eq. (B4) can be identically

presented in the form

Hy(x2, y2, z2) =
∞
∑

k,n=1

M̃
(1)
kn ak cos(akx2) cos(bny2)

×
∫ 0

−d1

dz1
∂

∂bn
Φkn(z2 − z1). (B5)

Substituting here Eq. (A5) one obtains after some transformations

Hy(x2, y2, z2) = −2π
∞
∑

k,n=1

M̃
(1)
kn

akbn
γkn

cos(akx2) cos(bny2)

× e−γknz2

∫ 0

−d1

dz1e
γknz1 (B6)

leading to the final expression

Hy(x2, y2, z2) = −2π
∞
∑

k,n=1

M̃
(1)
kn

akbn
γkn

e−γknz2(1− e−γknd1)

× cos(akx2) cos(bny2). (B7)

In a similar way the component Hx from Eq. (B1) can be written in the form

Hx(x2, y2, z2) = −
∞
∑

k,n=1

M̃
(1)
kn

∫

∞

−∞

dx1

∫

∞

−∞

dy1

∫ 0

−d1

dz1

×
{

(x2 − x1)
∂

∂x2

sin(akx1) sin(bny1)

[(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2]
3/2

+
sin(akx1) sin(bny1)

[(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2]
3/2

}

. (B8)

Then we again introduce the new variables u and v, set to zero the integrals of odd functions,

calculate the derivative with respect to x2 and introduce the derivative with respect to ak
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in order to use Eqs. (A4) and (A5). These allow the following representation of Eq. (B8):

Hx(x2, y2, z2) = −2π
∞
∑

k,n=1

M̃
(1)
kn sin(akx2) sin(bny2)

×
[

− a2k
γkn

∫ 0

−d1

dz1e
−γkn(z2−z1) +

∫ 0

−d1

dz1
z2 − z1

e−γkn(z2−z1)

]

. (B9)

After integration and identical transformations one finally obtains

Hx(x2, y2, z2) = 2π
∞
∑

k,n=1

M̃
(1)
kn sin(akx2) sin(bny2)

×
{

a2k
γ2
kn

e−γknz2(1− e−γknd1) + Ei(−γknz2)− Ei[−γkn(z2 + d1)]

}

. (B10)

The magnetic energy between two parallel plates with in-plane magnetization is obtained

from Eq. (22)

Em(a) = −
∫ L

(1)
x

0

dx2

∫ L
(1)
y

0

dy2

∫ a+d2

a

dz2
(

M (2)
x Hx +M (2)

y Hy

)

. (B11)

Substituting Eqs. (37), (B7) and (B10) in Eq. (B11), one arrives at Eq. (38).

In the end we consider the case when the spontaneous magnetization is not equal to zero.

We can again assume that the second film is situated above the center of the first and put

x2 ≈ y2 ≈ 0. From symmetry considerations it also follows that Hy ≈ 0. Then Eq. (19)

written for the in-plane magnetization leads to

Hx(z2) = M̃
(1)
00

∫ L
(1)
x /2

−L
(1)
x /2

dx1

∫ L
(1)
y /2

−L
(1)
y /2

dy1

∫ 0

−d1

dz1

{

3x2
1

[x2
1 + y21 + (z2 − z1)2]

5/2

− 1

[x2
1 + y21 + (z2 − z1)2]

3/2

}

. (B12)

Using the identity

3x2
1

[x2
1 + y21 + (z2 − z1)2]

5/2
= −x1

∂

∂x1

1

[x2
1 + y21 + (z2 − z1)2]

3/2
, (B13)

we calculate the integral with respect to x1 and obtain

Hx(z2) = 8M̃
(1)
00 L

(1)
x

∫ L
(1)
y /2

−L
(1)
y /2

dy1

∫ 0

−d1

dz1
1

[

(L
(1)
x )2 + 4y21 + 4(z2 − z1)2

]3/2
. (B14)

Both integrations in Eq. (B14) can be easily performed with the result

Hx(z2) = 4M̃
(1)
00



arctan
2(z2 + d1)

√

(L
(1)
x )2 + (L

(1)
y )2 + 4(z2 + d1)2

− arctan
2z2

√

(L
(1)
x )2 + (L

(1)
y )2 + 4z22



 .

(B15)
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Substituting Eq. (B15) in the following expression for the magnetic energy per unit area due

to the spontaneous magnetization:

Ems(a) = −M̃
(2)
x;00

∫ a+d2

a

dz2Hx(z2), (B16)

one arrives at Eq. (41).
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46 R. S. Decca, D. López, E. Fischbach, G. L. Klimchitskaya, D. E. Krause, and V. M. Mostepa-

nenko, Eur. Phys. J. C 51, 963 (2007).

47 H. B. Chan, Y. Bao, J. Zou, R. A. Cirelli, F. Klemens, W. M. Mansfield and C. S. Pai, Phys.

Rev. Lett. 101, 030401 (2008).

48 Y. Bao, R. Guérout, J. Lussange, A. Lambrecht, R. A. Cirelli, F. Klemens, W. M. Mansfield,

C. S. Pai and H. B. Chan, Phys. Rev. Lett. 105, 250402 (2010).

49 A. A. Banishev, G. L. Klimchitskaya, V. M. Mostepanenko, and U. Mohideen, Phys. Rev. Lett.

10, 137401 (2013).

50 D. Rugar, H. J. Mamin, and P. Guethner, Appl. Phys. Lett. 55, 2588 (1989).

51 B. C. Stipe, H. J. Mamin, T. D. Stowe, T. W. Kenny, and D. Rugar, Phys. Rev. Lett. 87,

096801 (2001).

52 W. R. Smythe, Electrostatics and Electrodynamics (McGraw-Hill, New York, 1950).

53 F. Chen, U. Mohideen, G. L. Klimchitskaya, and V. M. Mostepanenko, Phys. Rev. A 74, 022103

(2006).

54 Handbook of Optical Constants of Solids, ed. E. D. Palik (Academic, New York, 1985).

55 A. O. Sushkov, W. J. Kim, D. A. R. Dalvit, and S. K. Lamoreaux, Nature Phys. 7, 230 (2011).

56 D. Garcia-Sanches, K. Y. Fong, H. Bhaskaran, S. Lamoreaux, and H. X. Tang, Phys. Rev. Lett.

109, 027202 (2012).

57 V. B. Bezerra, G. L. Klimchitskaya, U. Mohideen, V. M. Mostepanenko, and C. Romero, Phys.

Rev. B 83, 075417 (2011).

58 G. L. Klimchitskaya, M. Bordag, E. Fischbach, D. E. Krause, and V. M. Mostepanenko, Int. J.

Mod. Phys. A 26, 3918 (2011).

59 G. L. Klimchitskaya, M. Bordag, and V. M. Mostepanenko, Int. J. Mod. Phys. A 27, 1260012

(2012).

60 M. Bordag, G. L. Klimchitskaya, and V. M. Mostepanenko, Phys. Rev. Lett. 109, 199701 (2012).

61 F. Chen, G. L. Klimchitskaya, V. M. Mostepanenko, and U. Mohideen, Optics Express 15, 4823

(2007).

62 F. Chen, G. L. Klimchitskaya, V. M. Mostepanenko, and U. Mohideen, Phys. Rev. B 76, 035338

38



(2007).

63 J. M. Obrecht, R. J. Wild, M. Antezza, L. P. Pitaevskii, S. Stringari, and E. A. Cornell, Phys.

Rev. Lett. 98, 063201 (2007).

64 G. L. Klimchitskaya and V. M. Mostepanenko, J. Phys. A: Math. Theor. 41, 312002 (2008).

65 C.-C. Chang, A. A. Banishev, G. L. Klimchitskaya, V. M. Mostepanenko, and U. Mohideen,

Phys. Rev. Lett. 107, 090403 (2011).

66 A. A. Banishev, C.-C. Chang, R. Castillo-Garza, G. L. Klimchitskaya, V. M. Mostepanenko,

and U. Mohideen, Phys. Rev. B 85, 045436 (2012).

67 V. B. Bezerra, G. L. Klimchitskaya, V. M. Mostepanenko, and C. Romero, Phys. Rev. A 69,

022119 (2004).

68 B. Geyer, G. L. Klimchitskaya, and V. M. Mostepanenko, Phys. Rev. D 72, 085009 (2005).

69 G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko, J. Phys. A: Math. Theor. 40, 339

(2007).

70 K. A. Milton, J. Phys. A: Math. Gen. 37, R209 (2004).

71 I. Brevik, J. B. Aarseth, J. S. Høye, and K. A. Milton, Phys. Rev. E 71, 056101 (2005).

72 V. B. Bezerra, R. S. Decca, E. Fischbach, B. Geyer, G. L. Klimchitskaya, D. López,
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FIG. 1: (a) The coefficient C in Eq. (10) and (b) the closest sphere-plate separation z0 as functions

of the end point of the fit.
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FIG. 2: All 33 data points for the gradient of the Casimir force between Ni surfaces are shown as

dots with a step of 5 nm starting from a separation of 223 nm. The mean values of the measured

gradients are presented as the solid line. In the inset the same information is given with a step of

1 nm over a more narrow region.
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FIG. 3: (Color online) The random, ∆rF ′, systematic, ∆sF ′, and total, ∆tF ′, errors in the measured

gradient of the Casimir force determined at a 67% confidence level are shown as functions of

separation by the short-dashed, long-dashed, and solid lines, respectively.

42



250 300 350 400 450 500 550

-0.3

-0.2

-0.1

0

0.1

a (nm)

Æ



o

r

r

;

;

(

%

)

FIG. 4: (Color online) Corrections to the gradient of the Casimir force due to deviations from

the PFA (upper and lower solid lines computed within the Drude and plasma model approaches,

respectively) and due to the surface roughness (dashed line) as functions of separation.
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FIG. 5: (Color online) Theoretical predictions for the gradient of the Casimir force between Ni sur-

faces computed using the Drude and plasma model approaches (upper and lower lines, respectively)

including corrections to the PFA and due to surface roughness as functions of separation.
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FIG. 6: (a) The difference of gradients of the Casimir force between Ni surfaces predicted within

the Drude and plasma model approaches as a function of separation is shown by the solid line (the

dashed line indicates the total experimental error determined at a 67% confidence level). (b) The

relative difference of force gradients predicted within the Drude and plasma model approaches as

a function of separation.
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inaccuracy of the optical data of Ni, ∆optF ′
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R,

and the total theoretical error, ∆tF ′

R, are shown as functions of separation by the long-dashed,

short-dashed, and solid lines, respectively.
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FIG. 8: Differences between the theoretical and mean experimental gradients of the Casimir force

found at the experimental separations using the plasma and the Drude model approaches are shown

by the black and gray dots, respectively. The solid lines indicate the borders of the (a) 67% and

(b) 95% confidence intervals.
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FIG. 9: (Color online) Histogram for the measured gradient of the Casimir force at the separation

a = 250nm (see text for details). The theoretical predictions of the plasma and Drude model

approaches are shown by the black and gray vertical lines, respectively.
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FIG. 10: Differences between the theoretical and mean experimental gradients of the Casimir force

found at the experimental separations using the plasma model approach are shown by the black

dots. The solid lines indicate the borders of the 10% confidence intervals.
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FIG. 11: Differences between the theoretical and mean experimental gradients of the Casimir force

found at the experimental separations between a plate and a sphere both coated with Au using

the plasma and the Drude model approaches are shown by the black and gray dots, respectively.

The solid lines indicate the borders of the (a) 67% and (b) 95% confidence intervals.
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FIG. 12: (Color online) Difference of gradients of the Casimir force calculated using the Drude

and plasma model approaches and normalized (a) for the respective sphere radii and (b) for the

gradients of the Casimir force calculated using the plasma model approach are shown by the solid

lines from top to bottom for experiments with Ni-Ni, Ni-Au and Au-Au test bodies, respectively.
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FIG. 13: (Color online) The measurement data for the mean gradients of the Casimir force normal-

ized by sphere radii with the total experimental errors indicated as crosses and theoretical bands

computed using the plasma model approach are shown from top to bottom for the experiments

with Au-Au, Au-Ni and Ni-Ni surfaces over the separation region (a) from 220 to 320 nm and (b)

from 320 to 400 nm.
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FIG. 14: The measurement data for mean gradients of the Casimir force normalized by sphere

radii with total experimental errors indicated as crosses and the theoretical bands computed using

the Drude model approach are shown from top to bottom for the experiments with Au-Au and

Ni-Ni surfaces over the separation region (a) from 220 to 320 nm and (b) from 320 to 400 nm.
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