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Systems/Circuits

Locomotion Enhances Neural Encoding of Visual Stimuli in
Mouse V1

Maria C. Dadarlat'? and ““Michael P. Stryker!'?
Department of Physiology, University of California—San Francisco, San Francisco, California 94143-0444, and 2Center for Integrative Neuroscience,
University of California—San Francisco, San Francisco, California 94158

Neurons in mouse primary visual cortex (V1) are selective for particular properties of visual stimuli. Locomotion causes a change in
cortical state that leaves their selectivity unchanged but strengthens their responses. Both locomotion and the change in cortical state are
thought to be initiated by projections from the mesencephalic locomotor region, the latter through a disinhibitory circuit in V1. By
recording simultaneously from a large number of single neurons in alert mice viewing moving gratings, we investigated the relationship
between locomotion and the information contained within the neural population. We found thatlocomotion improved encoding of visual
stimuli in V1 by two mechanisms. First, locomotion-induced increases in firing rates enhanced the mutual information between visual
stimuli and single neuron responses over a fixed window of time. Second, stimulus discriminability was improved, even for fixed
population firing rates, because of a decrease in noise correlations across the population. These two mechanisms contributed differently
to improvements in discriminability across cortical layers, with changes in firing rates most important in the upper layers and changes in
noise correlations most important in layer V. Together, these changes resulted in a threefold to fivefold reduction in the time needed to
precisely encode grating direction and orientation. These results support the hypothesis that cortical state shifts during locomotion to

accommodate an increased load on the visual system when mice are moving.
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ignificance Statement

effect is the reduction in noise correlations.

This paper contains three novel findings about the representation of information in neurons within the primary visual cortex of
the mouse. First, we show that locomotion reduces by at least a factor of 3 the time needed for information to accumulate in the
visual cortex that allows the distinction of different visual stimuli. Second, we show that the effect of locomotion is to increase
information in cells of all layers of the visual cortex. Third, we show that the means by which information is enhanced by
locomotion differs between the upper layers, where the major effectis the increasing of firing rates, and in layer V, where the major

~
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Introduction

Behaviors, such as locomotion, attention, and arousal, have been
shown to modulate cortical state (Niell and Stryker, 2010; Harris
and Thiele, 2011; Ayaz et al., 2013; Bennett et al., 2013; Polack et
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al., 2013; Erisken et al., 2014; Reimer et al., 2014; Vinck et al.,
2015). Locomotion, for example, increases stimulus-evoked neu-
ral firing in primary visual cortex of mice (Niell and Stryker,
2010) and possibly in the lateral geniculate nucleus (Niell and
Stryker, 2010; Erisken et al., 2014). In mouse V1, the increase in
firing rates is thought to be produced by disinhibiting pyrami-
dal cells via a circuit separate from that which conveys visual
input to V1 (but see Polack et al., 2013; Dipoppa et al., 2016;
Pakan etal., 2016). Locomotion can be elicited via descending
projections from the mesencephalic locomotor region (Shik et
al., 1966), which also send ascending projections to excite
neurons in the basal forebrain (Nauta and Kuypers, 1958),
from which cholinergic projections to V1 activate a specific
disinhibitory circuit (Pfeffer et al., 2013; Fu et al., 2014; Lee et
al., 2014; Reimer et al., 2014). Importantly, stimulation of
mesencephalic locomotor region can drive a change in cortical
state even in the absence of overt locomotion (Lee et al., 2014),
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and could thus coordinate the initiation of locomotion and
the change of cortical state.

What are the ethological and computational functions of this
coordination? We hypothesize that the purpose of coupling cortical-
state modulation with locomotion is to increase visually relevant
information encoded in the V1 neural population during periods in
which visual information is expected to change rapidly, such as dur-
ing locomotion. Consistent with this hypothesis, locomotion not
only increases single-neuron firing rates but also, via heightened
arousal, decorrelates neural spiking (Erisken et al., 2014; Vinck et al.,
2015), both of which may contribute to increasing information
within V1. Studies of single cells and mouse behavior further support
this hypothesis: locomotion increases the rate with which mice de-
tect low-contrast stimuli (Bennett et al., 2013) and depolarizes neu-
ral membrane voltages while decreasing their variability (Pinto et al.,
2013; Polack et al., 2013).

These results strengthen our expectation that locomotion
should increase the information content of V1 activity. However,
increasing information in single neurons during electrical stim-
ulation or behavior does not ensure that locomotion will increase
information in the population of V1 neurons. For example, spon-
taneous transitions from low to high population firing rates in
monkey V1 only shift information content among cells and do
not increase information (Arandia-Romero et al., 2016).

Here, we use high-density microelectrode recording to test the
hypothesis that populations of neurons in mouse V1 contain more
information about visual stimuli during locomotion by decoding
the direction and orientation of drifting gratings from single-trial
population responses in different behavioral conditions. We find
that locomotion does increase the information content of a neural
population by at least two mechanisms: raising the firing rates of
individual neurons and reducing noise correlations between neu-
rons. These two mechanisms act cooperatively and are present
across all cortical layers, although to different extents. Increasing
neural firing rates enhanced the information content of individual
neurons and improved visual stimulus discriminability in popula-
tion responses. Furthermore, even for trials with the same popula-
tion firing rate, a decrease in pairwise noise correlations during
locomotion further differentiated the representation of different
gratings by V1. Together, these results suggest a computational func-
tion for the locomotion-induced modulation of neural firing and
explain how this function is implemented. Our findings are consis-
tent with a recent report that used 2-photon calcium imaging to
study the responses of upper-layer excitatory neurons, which found
increased information about the orientation of grating stimuli dur-
ing locomotion as a result of increased firing rates, in particular for
stimuli with high spatial resolution (Mineault et al., 2016).

Materials and Methods

Animal procedures. Experiments were performed on adult C57/B16 mice
(age 2—6 months) of either sex. The animals were maintained in the
animal facility at the University of California—San Francisco and used in
accordance with protocols approved by the University of California—San
Francisco Institutional Animal Care and Use Committee. Animals were
maintained on a 12 h light/12 h dark cycle. Experiments in 4 mice were
performed during the light phase of the cycle, and in 4 mice were per-
formed during the dark phase of the cycle. We found no consistent dif-
ferences in the results obtained from recording in animals in either light
phase, and so pooled results from all animals.

Preparation of mice for extracellular recording on the spherical treadmill.
Our spherical treadmill was modified from the design described by Niell and
Stryker (2010). Briefly, a polystyrene ball formed of two hollow 200-mm-
diameter halves (Graham Sweet Studios) was placed on a shallow polystry-
ene bowl (250 mm in diameter, 25 mm thick) with a single air inlet at the
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bottom. Two optical USB mice, placed 1 mm away from the edge of the ball,
were used to sense rotation of the floating ball and transmitted signals to our
data analysis system using custom driver software.

During experiments, the animal’s head was fixed in place by a steel
headplate that was screwed into a rigid crossbar above the floating ball.
The headplate, comprised of two side bars and a circular center with a 5
mm central opening, was cemented to the skull a week before recording
using surgical procedures as described by Niell and Stryker (2010).
Briefly, animals were anesthetized with isoflurane in oxygen (3% induc-
tion, 1.5% maintenance) and given a subcutaneous injection of carpro-
fen (5 mg/kg) as a postoperative analgesic, and a subcutaneous injection
of 0.2 ml of saline to prevent postoperative dehydration. After a scalp
incision, the fascia was cleared from the surface of the skull and a thin
layer of cyanoacrylate (Vet-Bond, WPI) was applied to provide a sub-
strate to which the dental acrylic could adhere. The metal headplate was
then attached with dental acrylic, covering the entire skull, except for the
region in the center of the headplate, which was covered with a 0.2%
benzethonium chloride solution (New-Skin Liquid Bandage) to protect
the skull. The animal was then allowed to recover. Three to seven days
following headplate attachment, the animal was allowed to habituate to
the recording setup by spending progressively more time on the floating
ball over the course of 2-3 days (15 min to 1 h), during which time the
animal was allowed to run freely on the floating ball.

Extracellular recording in awake mice. The recording was performed as
described previously (Niell and Stryker, 2010) with little modification.
On the day of recording, the animal was again anesthetized as described
above. The liquid bandage was removed, and the skull was thinned and
removed to produce a craniotomy ~1-2 mm in diameter above the
monocular zone of V1 (2.5-3 mm lateral to A). This small opening was
enough to allow insertion of a 1.1-mm-long single-shank 64-channel or
double-shank 128-channel probe with tetrode configuration (Du et al.,
2011), fabricated by the Masmanidis laboratory (University of Califor-
nia—Los Angeles) and assembled by the Litke laboratory (University of
California—Santa Cruz). The electrode was placed at an angle of 30°-45°
to the cortical surface and inserted to a depth of 500—-1000 wm below the
cortical surface. A period of 30 min to 1 h was allowed to pass before
recording began. For each animal, the electrode was inserted only once.

Visual stimuli, data acquisition, and analysis. Visual stimuli were pre-
sented as described previously (Niell and Stryker, 2010). Briefly, stimuli
were generated in Matlab using Psychophysics Toolbox (Brainard, 1997;
Pelli, 1997) and displayed with 7y correction on a monitor (Nanao Flex-
scan, 30 X 40 cm, 60 Hz refresh rate, 32 cd/m? mean luminance) placed
25 cm from the mouse, subtending 60°-75° of visual space. For current
source density (CSD) analysis, we presented a contrast-reversing square
checkerboard (0.04 cycles/degree, square-wave reversing at 1 Hz). To
characterize neural responses with single-unit recordings, we presented
drifting sinusoidal gratings of 1.5 s duration at 100% contrast, with tem-
poral frequency of 1 Hz, spatial frequency of 0.04 cycles/degree. We
presented 12 evenly spaced directions in random order, interleaving a
0.5 s gray blank screen.

Movement signals from the optical mice were acquired in an event-
driven mode at up to 300 Hz, and integrated at 100 ms intervals. We then
used these measurements to calculate the net physical displacement of
the top surface of the ball. A mouse was said to be running on a single trial
if its average speed for the first 500 ms of the trial fell above a threshold,
found individually for each mouse (1-3 cm/s), depending on the noise
levels of the mouse tracker. To make fair comparisons across behavior,
we used an equal number of still and running trials in our analysis. This
was done by finding the behavioral condition with the minimum number
of trials (e.g., N trials), and keeping only N trials (randomly chosen) from
the other behavioral condition.

Data acquisition was performed using an Intan Technologies RHD2000-
Series Amplifier Evaluation System, sampled at 20 kHz; recording was trig-
gered by a TTL pulse at the moment visual stimulation began.

Single-neuron analysis. To find single-unit activity, the extracellular
signal was filtered from 700 to 7 kHz, and spiking events were detected by
voltage threshold crossing. Single units were identified using Vision Soft-
ware (Litke et al., 2004). Typical recordings yielded 35-73 single units
across the electrode. Neurons whose firing rates were unstable across the
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Figure 1.

Layer time (s)

Cortical state change during locomotion. a, The activity of 35-73 single neurons was recorded from the primary visual cortex of freely-moving mice. Moving gratings (6 orientations,

each movingin one of two possible directions) were displayed for 1.5 sin the visual field contralateral to the recording site. Mouse movement was tracked over the course of the experiment. b, Evoked
mean spike count, averaged over all visual stimuli, across behavioral conditions (N = 409 cells in 8 mice, p = 1e-47, Wilcoxon signed-rank test). Gray line indicates unity. ¢, CSD plot for one mouse
overlaid with inferred laminar boundaries (thick gray lines). Distances at left refer to electrode location relative to the center of the array. d, Mean spike counts of cells by layer, averaged across all
stimulus presentations. Layer Il, N = 112; layer IV, N = 90; layer V, N = 84; layer VI, N = 123. Error bars indicate bootstrapped estimates of SE. *p << 0.05 (Wilcoxon rank-sum test). **p < 0.01
(Wilcoxon rank-sum test). ***p << 1.3e-5 (Wilcoxon rank-sum test). p values were corrected for multiple comparisons using the Holm—Bonferroni method. e, Change in mean spike count during
running as a fraction of mean spike count at rest, using data from d. Numbers of samples as in d. Error bars indicate bootstrapped estimates of SE. *p << 0.05 (Wilcoxon rank-sum test). p values were

corrected for multiple comparisons using the Holm—Bonferroni method.

recoding session, characterized by a change of 75% in mean firing rate
from the first third to the last third of the session, were excluded from
further analysis. Units were classified as narrow-spiking (putative inhib-
itory) or broad-spiking (putative excitatory) based on the shape of their
average waveforms, which were clustered into two groups using k-means
on the first two principal components of waveform shape. Single-trial
responses to visual stimuli were characterized as the number of spikes
evoked during the first 500 ms after stimulus onset.

Cortical layer. Cell layer was estimated by performing CSD on data
collected during presentations of contrast-reversing square checker-
board. Raw data sampled at 20 kHz were first bandpass filtered between
1 and 300 Hz and then averaged across all 1 s positive-phase presenta-
tions of the checkerboard. Data from channels at the same depth were
averaged together within a shank of the electrode; 2 mice had recordings
from two-shank electrodes. CSD for each channel (C;) was computed
from the average LFP traces, P(t) using Equation 1, four site spacing, s,
equal to a distance of 100 wm as follows:

oo P(i — 25) + P(i + 25) — 2P(i)

i 52

(1)

The borders between layers II/III-IV, IV-V, and V-VI were identified by
spatiotemporal patterns of sinks and sources in the CSD plot (Mitzdorf,
1985). The plot included in Figure 1cis of a 10X upsampled CSD from
Mouse 1.

Cell tuning. Tuning curves for each neuron were found by taking a
cell’s mean response across repetitions of a single visual stimulus.

The change in spike count with locomotion was calculated as a func-
tion of mean spike count at rest as follows:

Trun = Tstill

Ar= 2)

Tstill
where r is the mean firing rate of the cell averaged across all stimulus
conditions.
Additive and multiplicative modulation. Additive and multiplicative
components of neural modulation were calculated by performing linear
regression between the tuning curves fit separately to running and still

data, treating the tuning curve in the still condition as the independent
variable. The multiplicative coefficient obtained from the linear regres-
sion was taken to be the multiplicative component of modulation; the
additive coefficient was further scaled by the mean firing rate across the
tuning curves to compute the additive component of modulation. Mod-
ulation was assessed for significance using a resampling procedure, re-
peating the regression described above 1000 times on trials that were
randomly assigned to the “still” or “run” categories. If the original regres-
sion coefficients fell outside of the 95% of the resampled distribution,
they were considered significant.

Mutual information. In the context of visually evoked neural activity, a
cell’s responses are considered informative if they are unexpected. For
example, if a neuron in primary visual cortex consistently produces 2
spikes per second, the knowledge that the cell produced 2 spikes in re-
sponse to a picture of a zebra does not provide any information. This
notion can be formalized by a measure of information called the Shan-
non entropy (Shannon, 1948), the expected value of the information
content of a particular variable,

HX) = ElI®] = —3__ plx) log, p(x),

computed here in units of bits. A neuron that has high variability of
responses has high entropy and is therefore said to be informative. The
concept is further extended to mutual information, I(X;, X,), which
quantifies how much information one variable contains about another.
I(X,, X,) calculates the average reduction in uncertainty (entropy) about
the first variable gained from knowing a particular instance of the second.
Intuitively, a single response from a cell that is well tuned for visual
grating orientation will leave little uncertainty as to the visual stimulus
that evoked each response, whereas knowing the response of a poorly
tuned cell will result in little reduction in uncertainty. Mutual informa-
tion between visual stimuli (S) and evoked single-neuron responses ( R)
is calculated as follows:

I(S, R) = H(S) — H(S|R) = ;;p(s, r) log, (%)

(3)
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where r and s are particular instances from the set of neural responses
(measured as spike counts) and stimuli (grating movement directions),
respectively. The change in mutual information with locomotion was
calculated as a function of I(S, R) at rest as follows:

I(R> S)run - I(R) S)still

AI(S, R) = I(R, S).

(4)

Stimulus-specific information. Stimulus-specific information, SSI(s), tells
us how much information an average response carries about a particular
visual stimulus, s (Butts, 2003). Or, rephrased, it is the average reduction
in uncertainty gained from one measurement of the response r € R given
a stimulus s € S. The SSI of stimulus s is as follows:

SSI(s) = ;Rp<r|s><H[5] — H[S|r]) (5)

where s, 1, S, and R are defined as above, H[S] = — Zse s p(s) log, p(s) is
=2 PG| log, p(slr) is
the entropy of the visual stimuli associated with a particular response.

Population-based analysis: decoding visual stimulus from single-trial popu-
lation responses. Data trials were separated into equal numbers of running
and still trials, randomly subsampling from each 25 times to get a distribu-
tion of decoding errors based on the data included. We trained a linear
discriminant analysis classifier to classify single-trial neural responses, as-
suming independence between neurons (a diagonal covariance matrix), us-
ingaleave-one-out approach to train and test classification separately for the
data from each behavioral state (LDA-LOOCV). The classifier was trained
and tested using MATLAB’s fitcdiscr and predict functions. To decode only
grating orientation and not movement direction, we grouped stimuli mov-
ing 180° apart into the same class.

Population-based analysis: decoding from trials with equal population
spike counts. To determine whether firing rates are the sole determinants
of information encoded within a neural population, we compared de-
coding accuracy from trials in running and still conditions with equal
population spike counts, the sum of spikes from all neurons on a single
trial. Although the distribution of population spike counts overlapped
between rest and running, high population spike counts were more com-
mon during running and low population spike counts were more com-
mon at rest. To compare the two, we constructed a dataset that retained
higher-order structure between neural activity with the population but
had many samples of running and still trials with the same population
spike count. This was accomplished by performing LDA-LOOCV on
different subsets of neurons from the population: 1-70 neurons were
randomly subsampled from the population, yielding single-trial popula-
tion spike counts that ranged from 0 to 275. For each number of neurons
(e.g., 1, 5, etc.), we subsampled with replacement 100 times from the
population, yielding 100 combinations of neurons. Classifiers were
trained separately on each subsample and for each behavioral state (run-
ning vs rest).

Signal and noise correlations. Using single-trial spike counts from the
first 500 ms after stimulus onset, we calculated Pearson correlation coef-
ficients for each pair of neurons recorded from a single mouse, p,,,,. These
coefficients were assumed to be the sum of signal and noise correlations.
Signal correlations, p,, measure similarity of tuning curves between neu-
rons and were calculated by shuffling neurons’s responses to each visual
stimulus. Noise correlations, p,,, measure similarities in neural spiking
across presentations of the same visual stimulus and were calculated by
taking the difference between total and signal pairwise correlations
Py = Pror = P)-

Decorrelating neural responses. Neural responses were decorrelated by
randomly shuffling single-cell responses to a particular stimulus across
trials, where each trial was an instance of a single stimulus. For example,
assume that X is an # X m matrix of neural responses, where n is the
number of trials during which stimulus 1 was presented, and m is the
number of neurons that were recorded. Shuffling randomly moves
around entries in each column, so a single row will end up with neural
responses from separate instances of a stimulus, and preserves the mean
response of the cell to each stimulus while removing any correlations
between neurons in time.

the entropy of the visual stimuli, and H[S|r] =
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Stimulus discriminability (d"). Stimulus discriminability was calcu-
lated by taking all pairs of neighboring visual stimuli (6 = /4, move-
ment in both directions) and plotting the population responses to each
pair in n-dimensional space, where 7 is the number of neurons recorded
from each mouse. We found the mean response for each stimulus, and
projected each cloud of responses onto the vector between the two
means. A d’ was calculated as follows:

o=tk 6)

1 2 2 2
(5(0'1 + Uz))

where w, and u, were the means of the projected data for each stimulus,
and o} and o3 were the variances. Discriminability was computed sepa-
rately for each behavioral state.

Results

Locomotion-induced modulation of evoked visual activity
We made stable simultaneous extracellular recordings from 36 to
73 single neurons in the primary visual cortex of each of 8 awake,
head-fixed mice that were presented with moving gratings in the
monocular visual field contralateral to the recording site. Mice
were free to run or stand stationary on a spherical treadmill float-
ing on an air stream (Fig. 1a) while their movements were mon-
itored. Neuron spike times were extracted from raw data traces
and sorted using custom software (Vision Software, Litke labo-
ratory, University of California—Santa Cruz). Experimental tri-
als consisted of 1.5 s presentation of a moving grating following
by 0.5 s of gray screen. Gratings could take 1 of 12 movement
directions (2 directions for each of 6 orientations), evenly spaced
between 0° and 360°. We characterized a neuron’s single-trial
response to a visual stimulus by counting the number of spikes
evoked in the first 500 ms after stimulus onset, labeling each trial
as a “run trial” or a “still trial” based on the mouse’s average
running speed during that period. Separate tuning curves of re-
sponse as a function of grating movement direction for the run
and still trials were calculated for each cell.

Single-cell-evoked responses are more informative
during locomotion
Average firing rates and mutual information (I(S, R), Eq. 3) for
single neurons were computed separately for each behavioral
state, using a total of 240-961 trials (20—78 per stimulus), de-
pending on the mouse. Fractional changes in firing rates and
mutual information were calculated by dividing the change from
rest to locomotion and normalizing it by the average value at rest.
Locomotion strengthened average single-cell responses to the
stimuli (mean increase of 62 = 93%, p = le-47, Wilcoxon
signed-rank test; Fig. 1b). The cortical layer in which a cell was
located, found using current-source density analysis (Fig. 1c),
was related to the magnitude of a cell’s evoked responses, with
cells in layers II/IIl and VI having the lowest evoked spike counts
and those in layers IV and V having the highest (Fig. 1d). The
fractional changes in spike count were inversely proportional to
the magnitude of evoked spike rates, but only the difference be-
tween layers II/III and layer V was significant (Fig. le; Eq. 2).
Running also increased mutual information between the re-
sponses and the set of visual stimuli, including the information
encoded by a single spike (mean gain of 47 = 72%, p = 8e-31,
Wilcoxon signed-rank test; Fig. 2a,b), calculated by dividing
I(S, R) by the mean spike rate of the cell, but the results across
individual mice were more variable. While cells from all mice had
significant shifts in I(S, R) per spike (p < 0.02, Wilcoxon signed
rank test, Bonferroni correction for multiple comparisons), 3 of
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Figure 2. Cortical state affects single-neuron activity. a, Single-cell mutual information, /(S, R), during running and rest (N = 409, p = 8e-31, Wilcoxon signed-rank test). Gray line indicates

unity. b, /(S, R) per spike (N = 409, p = 6e-12, Wilcoxon signed-rank test). Gray line indicates unity. ¢, Average behaviorally dependent /(S, R), within each cortical layer. Layer Il, N = 112; layer IV,
N'=90;layerV, N = 84; layer VI, N = 123. Error barsindicate bootstrapped estimates of SE. *p = 0.012 (Wilcoxon rank-sum test). **p = 0.002 (Wilcoxon rank-sum test). ***p = 0.0007 (Wilcoxon
rank-sum test). p values were corrected for multiple comparisons using the Holm—Bonferroni method. d, Fractional change in mutual information, A/(S,R), within each cortical layer during running.
Error bars indicate bootstrapped estimates of SE. **p = 0.002 (Wilcoxon rank-sum test). ***p << 0.0005 (Wilcoxon rank-sum test). p values were corrected for multiple comparisons using the
Holm—Bonferroni method. e, Relationship between average spike count and stimulus-specific information, $S/(s). Each point indicates the SSI of a single cell to a particular grating movement
direction (N = 4908). Blue line indicates fit of linear regression (R2 = 0.85, p << 1e-30). f, Schematic of multiplicative (top) and additive (bottom) tuning curve shifts from rest (black) to locomotion
(red). g, Sample single-cell tuning curves for evoked responses at rest (black) and during locomotion (red), with values of additive and multiplicative modulation printed above each. Bold represents
significant modulation. h, Relationship between additive and multiplicative components of modulation for rapidly spiking cells (V = 409, p = —0.315, p = 1.2e-7). Gray points indicate cells with
no significant modulation. Colors represent significant modulation for multiplicative (blue), additive (black), or both (magenta) components. Gray lines represent null hypotheses that no modulation
occurs. Open circles represent data points outside of plot range. i, Average modulation across cortical layers during locomotion for cells that are significantly modulated. Error bars indicate
bootstrapped estimates of SE. j, A/(S,R) as a function of multiplicative (left; p = 0.58, p = 2.4e-38) and additive (right; p = —0.16, p = 0.001) components of modulation (N = 409). Lines as
described in h. Blue line indicates fit of linear regression.

the 8 mice actually had significant decreases in mutual informa-
tion per spike with locomotion. Overall, 314 of 409 cells across all
layers had increased I(S, R) with locomotion. The lower layers
had the highest mutual information in both behavioral condi-
tions (Fig. 2¢), possibly driven by high firing rates in layer V and
the presence of a population of well-tuned cells in layer VI (Vélez-
Fort et al., 2014), but layers II/IIT had the largest fractional in-
crease in mutual information during locomotion (Fig. 2d). We
next calculated a measure of stimulus-specific information
(8SI(s), as defined in Eq. 5) to determine whether a cell’s infor-
mation was directly proportional to its firing rate or whether it
depended on factors, such as response variability. The amount of
information a cell carried about each stimulus increased with the

natural logarithm of mean spike count (Fig. 2e), as is predicted by
a Poisson encoder (Ringach et al., 2002, their Appendix).

As has been reported previously (Niell and Stryker, 2010; Ayaz et
al., 2013; Saleem et al., 2013; Erisken et al., 2014; Fu et al., 2014; Lee et
al.,, 2014; Mineault et al., 2016), the responses of V1 neurons were
modulated by locomotion. Response modulation consisted of both
additive and multiplicative components (Fig. 2f~h), which were
computed by linearly regressing a neuron’s tuning curve during
locomotion against its tuning curve at rest. The multiplicative coef-
ficient obtained from linear regression was taken to be the multipli-
cative component of modulation; the additive coefficient was
further scaled by mean firing rate across the tuning curves to com-
pute the additive component of modulation.
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(lassification of single-trial neural responses recorded during locomotion is more accurate than of those recorded at rest. a, Error in LOOCV-LDA classification of visual stimulus

movement direction and orientation, as a population (All) and within particular layers. Numbers above layer labels indicate the fraction of the total population included in the decoding. Error bars
indicate bootstrapped estimates of SE. b, Fractional change in decoding error with behavior (Error, ,, — Error,;,/Error, ;). More negative values indicate greater improvement during locomotion. All,
All cells; SMG, significant multiplicative gain > 1; SAG, significant additive gain > 0; MG, multiplicative gain > 1; AG, additive gain > 0; ~, entire population excluding the category specified.
Numbers above layer labels indicate the fraction of the total population included. Error bars indicate bootstrapped estimates of SE. Horizontal gray line indicates no change.

Across 8 mice, 38% of neurons had significant multiplicative
modulation (154 of 409, average of 1.5 = 1.3), 27% of neurons had
significant additive modulation (110 of 409, average of 0.8 = 1), and
13% of neurons had both (54 of 409). Significance was computed
using a resampling procedure (see Additive and multiplicative mod-
ulation). Average additive and multiplicative components varied
across cortical layers, with layers II/IIT having the greatest multipli-
cative modulation and layer V the least (Fig. 2), although the differ-
ence was no longer significant after correcting for multiple
comparisons. The change in the mutual information of cells with
behavior was predicted by the multiplicative component of modu-
lation and was weakly inversely related to the additive component of
modulation (p = 0.58, p = 2.4e-38 and p = —0.16, p = 0.001,
respectively; Fig. 2j). Although this change was necessarily driven by
cells that were modulated, many of the most informative cells in the
population were not modulated, and there was no significant rela-
tionship between the degree of additive or multiplicative modula-
tion and mutual information in either behavioral state (p = 0.17 and
p = 0.36, respectively, F test of significance in regression).

Populations of neurons encode more information about
visual stimuli during locomotion
As single-cell responses shift to encode more information about
visual stimuli during locomotion, we might expect that the pop-
ulation as a whole would follow suit. Computing the mutual
information between a neural population’s evoked responses and
a visual stimulus would describe how well a population of neu-
rons represents a visual stimulus; however, an accurate calcula-
tion of this value would require a vast number of trials. Instead,
mutual information was estimated indirectly by training a linear
decoder (LDA) on the data and asking how well visual stimuli
could be predicted for single trials excluded from the training set.
The classifier is linear and makes several assumptions, including
that evoked responses are independent across neurons and that
they have a Gaussian distribution. By comparing the accuracy
with which single-trial responses could be classified, this tech-
nique allows comparison of how informative neural responses
are about both the orientation and direction of the moving grat-
ings during rest and locomotion.

Single-trial neural responses were classified more accurately
during locomotion, both for the direction of grating movement
(32% decrease in error, p = 3e-19, Wilcoxon sign test) and for

grating orientation (44% decrease in error, p = le-18, Wilcoxon
rank-sum test; Fig. 3a). Grating orientation was classified with
higher accuracy than movement direction in both behavioral
states, and the fractional improvement in its classification during
locomotion was larger (44% vs 32% decrease in error). The cells
that were driving the change in information during running were
not localized within a particular cortical layer: repeating the de-
coding analysis separately including only cells in layers II/II, IV,
V, and VI yielded similar, significant changes in classification
accuracy for each (Fig. 3a).

Next, to determine whether a particular subset of cells were
most informative, we performed classification either by using
only responses from that subset of cells or by using all cells in the
population but that subset. Groups of interest included cells that
had significant multiplicative gain >1 (SMG), significant addi-
tive gain >0 (SAG), multiplicative gain >1 (MG), and additive
gain >0 (AG). Excluding cells with multiplicative gain eliminated
the difference in classification error between rest and locomotion
(Fig. 3b), revealing that these cells contributed most to this effect.
When we excluded only SMG cells, the result was similar but less
dramatic, presumably because many cells in which modulation
did not reach significance by our criteria were actually modulated
on most trials, leading to a difference in encoding accuracy across
behavioral states. On their own, SMG and MG cells became far
more informative during locomotion, statistically matching the
fractional change in error observed when using the entire popu-
lation of cells. In contrast, cells with significant additive modula-
tion alone had no gain in information during running.

Firing rates contribute to, but are not necessary for, increased

information content in a population

In the cortical state produced by locomotion, the information about
the visual stimulus increases along with the visual responses of most
neurons. Does the extra information available during locomotion
result solely from the increase in neuronal firing rates, or does it also
involve a change in the pattern of stimulus-evoked neural responses?
Locomotion leads to higher population spike counts (the sum of
spikes from all recorded neurons) on average, but the distributions
of population spike counts during locomotion and rest have some
overlap (Fig. 4a). Comparing decoding accuracy in the two states for
trials with equal population spike counts would preserve any higher
order structure that might distinguish them, and would reveal
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Figure4.

Noise correlations influence population representation of visual stimuli. a, The distribution of population spike counts and the sum of spikes from all neurons on a single trial overlap in

the running and rest conditions. b, Classification error for grating movement direction (left) and orientation (right) as a function of population spike count. Error bars indicate bootstrapped estimates
of SE. Dashed gray line indicates chance levels of performance. ¢, Stimulus-independent (noise) pairwise correlations shift with behavior. Error bars indicate bootstrapped estimates of SE. All, All pairs
of cells; E-E, pairs of putative excitatory cells; I-I, pairs of putative inhibitory cells; E-1, pairs of one putative excitatory and inhibitory cells. Values below layer labels are number of pairs included in
analysis. **Significant change during running ( p << 1e-5, Wilcoxon signed-rank test). d, Noise correlations between excitatory cells by cell modulation. Error bars indicate bootstrapped SEM. All, All
pairs of excitatory cells; SMG, significant multiplicative gain > 1; SAG, significant additive gain > 0; MG, multiplicative gain > 1; AG, additive gain > 0. *Significant change during running (p <
1e-3, Wilcoxon signed-rank test). **Significant change during running (p << 1e-6, Wilcoxon signed-rank test). Values below labels are number of pairs included in analysis. e, Noise correlations
between excitatory cells within a single layer and across layers. Error bars indicate bootstrapped estimates of SE. Values below layer labels are number of pairs included in the analysis. For significant
changes during running: *p << 0.02 (Wilcoxon signed-rank test); **p << 0.005 (Wilcoxon signed-rank test).

whether information is exclusively determined by population spike
counts. However, as the fraction of trials that directly overlapped is
small, we generated a larger dataset with overlapping spike count by
subsampling neurons from the population (see Population-based
analysis: decoding from trials with equal population spike counts.)
When few neurons were sampled, the population spike count was
forced to be low; and when many were sampled, it was high. There-
fore, decoding accuracy was ultimately compared for equal popula-
tion spike counts during rest and locomotion by including fewer
cells in the locomotion classifier than in the rest classifier. LOOCV-
LDA was performed separately for data collected during rest and
duringlocomotion, after which the results from all mice were pooled
together to generate average decoding error as a function of popula-
tion spike count for each behavioral state. Classification error de-
creased with increasing spike count in both states, but the errors were
lower for running trials than for still trials, even for equal population

spike counts (Fig. 4b), and particularly so at high population spike
counts. These findings held both when classifying grating movement
direction (left) and orientation (right). Thus, not just the amount
but also the pattern of activity across the population is important for
the accurately encoding visual stimuli, and locomotion shifts the
population into a more informative state.

Locomotion decreases noise correlations

Stimulus discriminabilty, the extent to which visually evoked
neural responses differentiate visual stimuli, can be magnified or
diminished by correlations between neurons (Cohen and Maun-
sell, 2009; Moreno-Bote et al., 2014). Correlated activity among
neurons consists of two components: stimulus-dependent (sig-
nal) correlations that measure similarities in cell tuning, and cor-
related trial-to-trial fluctuations in response strength that are
stimulus-independent (noise correlations). A reduction in
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Stimulus discriminability depends on firing rates and noise correlations. a, Schematic calculation of d" measure. Ovals represent distribution of responses of two neurons to two visual

stimuli. Black arrow between response distributions indicates difference vector upon which responses are projected, yielding distributions drawn in bottom right. Values for d” are calculated from
these overlapping distributions using Equation 6. b, Discriminability of grating movement direction, calculated on pairs of neighboring stimuli across behavioral state (p = 3e-17, Wilcoxon
signed-rank test). Black points indicate d’ for a pair of stimuli (n = 248; 8 mice, 31 per mouse). Gray line indicates unity. ¢, Decorrelation reduces change in d” with behavior, and increases overall
d’ values. Mean improvement in d" with correlated data (47%, p = 3e-17, Wilcoxon signed-rank test). Mean improvement in d’ with decorrelated data (31%, p = 1e-12, Wilcoxon signed-rank
test). Error bars indicate bootstrapped Cls of the mean. **p << 5e-8, difference between correlated and decorrelated d” values.

pairwise noise correlations, as is observed during attention
and locomotion via arousal (Cohen and Maunsell, 2009;
Erisken et al., 2014; Vinck et al., 2015), could explain the
improvement in classification that we observe duringlocomo-
tion. Therefore, we calculated Pearson pairwise correlations
from trial-by-trial spike counts for each pair of neurons, sep-
arately for running and still conditions, and parsed these val-
ues into signal and noise correlations.

Locomotion had only a minor effect on average signal pairwise
correlations (mean decrease of 0.003, p = 8e-7, Wilcoxon signed-
rank test), but it substantially reduced mean noise correlations be-
tween all neurons (mean decrease of 0.014, p = 2.2e-50, Wilcoxon
signed-rank test; Fig. 4¢). Noise correlations between putative excit-
atory-excitatory, inhibitory-inhibitory, and excitatory-inhibitory
pairs significantly decreased, although pairs of inhibitory cells
tended to have high, positive noise correlation in both behavioral
states (Fig. 4c). Pairs of putative excitatory cells with significant mod-
ulation were most decorrelated during locomotion (Fig. 4d). Fur-
thermore, excitatory cells across all cortical layers were decorrelated
during running (Fig. 4e). Layer V cells had the highest levels of noise
correlations at rest and were most decorrelated during running
(mean decrease of 0.035, p = 3e-7, Wilcoxon signed-rank rest), fol-
lowed by layer IV cells (mean decrease 0f 0.017, p = 0.002, Wilcoxon
signed-rank test). The upper layers, layer II/III cells, were only mod-
erately decorrelated during running (mean decrease of 0.01, p =
0.02, Wilcoxon signed-rank test), and layer VI cells were not signif-
icantly decorrelated (p = 0.17, Wilcoxon signed-rank rest). Further-
more, across layers, pairs of cells in layers II/III-IV, IV-V, IV=VI,
and V-VI were decorrelated during locomotion.

Increased firing rates and decorrelation improve

stimulus discriminability

As noise correlations can either aid or hinder neural encoding
(Averbeck et al., 2006; Moreno-Bote et al., 2014; Ruff and Cohen,
2014), the effect of reduced noise correlations on the population
representation of visual stimuli is not obvious. However, it can be
assessed indirectly by comparing the discriminability of popula-
tion representations of two similarly oriented gratings (e.g., 0°
and 30°) when single-trial responses are decorrelated by shuffling
(see Population-based analysis: decorrelating neural responses)
to when correlations are preserved. The discriminability of a pair
of stimuli can be measured by calculating d’ of response distribu-
tions (the difference in their mean responses divided by the root
mean square of their SDs) (Cohen et al., 2009) (Fig. 5a; see
Population-based analysis: stimulus discriminability d'). We ap-

plied this analysis to the neural representations of oriented grat-
ings, calculating d" for neighboring pairs of grating movement

i i
directions, 6 with 6 = %and Owith 6 + 7 = % As expected,

d’ values were higher for pairs of stimulus representations ob-
served during locomotion than during rest, implying that visual
stimuli should be better separated in the neural response space
during locomotion (average d.;; = 2.62, d,,,,, = 3.64, mean in-
crease of 47%, p = 3e-17, Wilcoxon signed-rank test; Fig. 5b,c).

To isolate the separate effects of increased spiking and decor-
relation, we examined the change in d’ when one factor was held
constant. First, to assess the effect of an increase in spike count
when noise correlations were held fixed, we calculated d’ for
populations whose responses had been decorrelated by shuffling.
These shuffled populations lack any noise correlations, so com-
paring d' across behavior reveals only the effect of increasing
spike counts. Decorrelating responses in this way substantially
reduced the effect of behavior on discriminability but did not
eliminate it (average di;j; jocor = 3.14, average d,,,, = 3.84, mean
increase of 23%, p = 6e-16, Wilcoxon signed-rank test; Fig. 5¢).
Therefore, locomotion improves stimulus discriminability
not only by increasing the distance between the mean re-
sponses to different stimuli through increases in firing rates,
but also by reducing variability in responses through decorre-
lating responses.

Time course of information

When the mouse is at rest, the brain has unlimited time to inte-
grate information from the stable visual scene, but during loco-
motion the visual system must encode the scene swiftly. In both
cases, visually evoked responses are dynamic, beginning with a
sharp onset at ~50 ms after stimulus presentation, then falling to
a stable, elevated rate for the remainder of the stimulus presenta-
tion. How much information about the visual stimulus do cells
contain at different points over the course of the response, and at
what relative stimulus durations are the information content of
these two states equivalent (e.g., at what stimulus duration will
decoding from responses at rest yield the same decoding accuracy
as decoding from the first 100 ms during locomotion)?

To determine whether single-cell responses were more infor-
mative during locomotion throughout the duration of the
evoked response, we computed mutual information in 10 ms
bins. Average single-cell I(S, R) closely followed the time course
of spike rates (data not shown), and I(S, R) during locomotion
was higher than that at rest for the entirety of the evoked neural



3772 - J. Neurosci., April 5, 2017 - 37(14):3764 3775

Dadarlat and Stryker @ Neural Coding in V1 Is Enhanced during Locomotion

a o004, b c
0.5
0.035 0.5
003! -§ 0.4 - o4l
— 3 ¢ - S
20.025| £03 g e 3
s 5 - =03/
= 0.02 o2t @ o 5 -~
5 0.2 N
L w -
0.015¢ 0.1 O Direction i‘\\\ i“~~‘_§
= O Ori i 01 r L R -
0.01E rientation a—___
0 a1
0. 8 7. 2 3,
5 0. S0, 0. S0. 0
0.005 0 01 02 03 04 05 D 89 "PRs, 35, 50-150 50-250 50-350 50-550
Time (s) Time period (ms) Time period (ms)
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time ranges after stimulus onset. Error bars indicate bootstrapped estimates of 95% Cls. Shaded bars represent 95% Cls of the mean during the first 100 ms after neural response onset.

response (~50-500 ms; Fig. 6a). Therefore, in single cells, corti-
cal state change during locomotion confers a persistent, not
transient, advantage in representing visual stimuli. We next com-
pared the amount of information in the entire neural population
at different time points, using LDA-LOOCYV to estimate grating
direction and orientation from spike counts during four sequen-
tial 100 ms periods, beginning with the time of response onset,
~50 ms after the stimulus was first presented. Consistent with
single-cell mutual information, the population of neurons was
most informative during the first 100 ms after neural response
onset, with smaller decoding errors than during subsequent 100
ms periods (Fig. 6b). Unsurprisingly, using data from the entire
500 ms period was superior to even the most informative 100 ms
period, revealing that information is gained with longer periods
of integration, regardless of cortical state.

To find a point of equivalence between decoding errors in the
two behavioral states, we compared classification errors on pop-
ulation responses over a range of stimulus durations: 50-150,
50-250, 50-350, and 50-550 ms (Fig. 6¢). Classification accu-
racy achieved using spike counts from the first 100 ms of run
trials was equal to that using spike counts from the first 300 ms
(for stimulus orientation) or 500 ms (for stimulus movement
direction) of still trials. It therefore takes vastly different times for
the two states to yield similar net information.

Are cortical states binary?

The information encoded in the population grows with spike
count, but single-cell spike counts are only slightly modulated by
the running speed. Indeed, in only 72 of 409 cells was >1% of the
variance in spiking explained by linearly regressing spike counts
against run speeds. Furthermore, residual spike counts, calcu-
lated by subtracting a cell’s mean response to a visual stimulus
from its single trial responses to that stimulus, were only weakly
related to running speed (Fig. 7a). Therefore, the variability in
cell spiking that is unrelated to visual stimuli is also not well
explained by running speed. Similar, but qualitative, observa-
tions were reported in excitatory neurons in V1 (Niell and
Stryker, 2010) and in the inhibitory neurons thought to convey
information about locomotion to V1 (Fu et al., 2014). Then, to
what extent is population-level information proportional to
mouse running speed?

To answer this question, we repeated the LDA-LOOCYV anal-
ysis on just running trials and examined the relationship between
run speed, population spike counts, and classification error. As
shown above, single-trial population spike counts were predic-

tive of classification error (Fig. 4b). However, population spike
count was only weakly predicted by a linear function of run speed
or the natural logarithm of run speed (Fig. 7b). Instead, >99% of
the variability single-trial population spike counts was left unex-
plained, even though the relationship between variables was sig-
nificant in all of the mice. As forecast by the preceding results, run
speed was not significantly predictive of average classification
error in individual mice (Fig. 7¢). Classification error saturated
with increases in running speed >1-2 cm/s when we considered
responses during the first 500 ms after stimulus onset (Fig. 7¢). In
only 3 of the 8 mice did error decrease significantly (p = 0.04)
with running speed, suggesting that, at least in most mice, the
effect of locomotion on stimulus encoding is more nearly binary
than graded.

Discussion

Summary

Our data demonstrate that mouse V1 represents visual informa-
tion with higher accuracy during locomotion than at rest, reduc-
ing the time required to correctly portray visual inputs. This is
accomplished by a change in cortical state across the depth of the
cortex that both increases firing rates of single cells and decorre-
lates non—stimulus-related spiking among cells. Not only does
the amount of information conveyed by V1 increase with loco-
motion, but, on average, the information conveyed by each spike
within the population increases, although the process by which
this is accomplished varies across cortical layers. Furthermore,
the effect does not seem to be graded by movement speed and
instead is closer to a binary switch in cortical state. Together,
these changes should allow the mouse visual system to process the
dynamic visual scenery experienced during running accurately
and rapidly.

Behavioral modulation of the neural code

Behaviorally induced, rather than random, fluctuations in corti-
cal state may have greater effects on population-wide encoding in
V1. For example, in a recent report on monkey primary visual
cortex (Arandia-Romero et al., 2016), spontaneous transitions
from low to high population activity did not alter the total infor-
mation available about grating orientation. Instead, it appeared
that the gain in information from neurons that were multiplica-
tively modulated was offset by the loss from neurons that were
additively modulated. In contrast, but in agreement with our
present result, a study examining the effect of locomotion on
neurons in layers II/III of mouse visual cortex found that grating
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Relationship between running speed and spike counts, population responses, and classification error. a, Residual spike counts as a function of run speed for 15 sample cells after mean

visually evoked responses were subtracted. Cells were chosen randomly from the population in a single mouse; responses shown are from run trials. Blue bar represents speed of visual stimulus, 30
cm/s. b, Population spike counts as a function of the natural logarithm of mouse running speed on single running trials (black dots). Red lines indicate fit of linear regression. Panels are individual
mice. ¢, Average LOOCV error with increasing mouse running speed for stimulus orientation (blue) and movement direction (red). Numbers of samples at each mean speed are listed at top of each

panel. Error bars indicate bootstrapped estimates of SE.

orientation was easier to read from population activity during
locomotion, and that the greatest gains were made for stimuli
with high spatial frequency (Mineault et al., 2016). The present
study additionally shows that decoding accuracy of both grating
orientation and movement direction (for stimuli at a fixed spatial
frequency) is enhanced for neurons in deeper layers of cortex,
even though these neurons tend to have lower multiplicative gain
values (Erisken et al., 2014) and a smaller fractional change in
mutual information. These findings suggest that spontaneous
shifts in population activity may have little significance, but be-
haviorally elicited changes affect information transmission in the
animal models studied.

Specificity of results to cortical layers

Although locomotion increased the accuracy with which visual
stimuli were decoded from evoked neural activity in every corti-
cal layer (Fig. 3a), these changes seem to have been driven by
distinct mechanisms in each: cells in layers II/III underwent a
large increase in mean firing rates relative to baseline and a small
but significant decrease in noise correlations, cells in layer V had
only a small increase in fractional firing rates but experienced a
large decrease in noise correlations, and cells in layers IV and VI
fell somewhere in between, and probably result from some com-
bination of the processes described below.

The increase in layer II/III firing rates has been explained by a
disinhibitory circuit model, where cholinergic inputs from the
basal forebrain excite VIP-positive interneurons that in turn in-
hibit somatostatin-positive interneurons (SST), effectively disin-
hibiting excitatory neurons in V1 (Fu et al., 2014). In contrast,
layer V VIP cells are fewer (Lee et al., 2010) and morphologically
distinct (Pronneke et al., 2015) from those in layers II/III, and
they only weakly inhibit SST cells (Pfeffer et al., 2013). Therefore,
in layer V, only a small change in firing rates can be expected
during locomotion. However, contradictory reports of SST be-
havior in mouse V1 during locomotion (Polack et al., 2013; Fu et

al., 2014; Reimer et al., 2014; Pakan et al., 2016) have led to the
development of an alternative model of interneuron activity in
layers II/III (Dipoppa et al., 2016): VIP and SST cells are mutually
inhibitory, and their relative activity is dependent on the type of
visual input available. The disinhibitory circuit described previ-
ously is presented as a subcase that occurs when visual inputs are
small, thus strongly exciting VIP cells but only weakly activating
SST cells, leading to disinhibition. Large visual inputs, as were
used in the experiments described here, robustly drive both cell
types; however, as SST cells receive greater net input, they dom-
inate and inhibit both VIP and pyramidal cells. It is not clear
under such a model how pyramidal neurons increase firing rates
during locomotion.

The second mechanism, a decrease in noise correlations dur-
ing locomotion (Erisken et al., 2014; Vinck et al., 2015), is driven
by heightened arousal (Reimer et al., 2014; Vinck et al., 2015). In
general, pairwise noise correlations in pyramidal cells are thought
to result from fluctuations in drive to neurons by nonsensory
factors (Ecker et al., 2010; Goris et al., 2014; Reimer et al., 2014;
McGinley et al., 2015; Vinck et al., 2015), which shift the magni-
tude of feedback inhibition to increase (less inhibition) or de-
crease (more inhibition) noise correlations (Stringer et al., 2016).
For example, cholinergic projections from the basal forebrain can
decorrelate neural population responses (Goard and Dan, 2009)
by directly exciting SST neurons (Chen et al., 2015). If this circuit
explains the shift in noise correlations with locomotion, layers
that exhibit substantial reductions during locomotion should
have SST cells as a significant portion of interneurons and should
receive cholinergic inputs from the basal forebrain. Indeed, SST
cells comprise just under half of all interneurons in layer V (Lee et
al., 2010), where noise correlations were profoundly reduced
during locomotion (Fig. 4¢), and the lower portion of this layer
receives cholinergic inputs (Kitt et al., 1994). The relative balance
of cholingeric inputs and interneuron distribution and connec-
tivity may explain the differences observed in noise correlations



3774 - J. Neurosci., April 5, 2017 - 37(14):3764 3775

across cortical layers. Overall, quick shifts in alertness of the an-
imal could have inflated our estimates of noise correlations, both
while mice are at rest and during locomotion (Reimer et al., 2014;
McGinley et al., 2015; Vinck et al., 2015). However, mechanisms
contributing to the effect of locomotion on visual responses are
not yet fully understood, in part because there are several types of
SST cells that have not genetically been manipulated separately
(Reimer et al., 2014). In particular, it will be important to clarify
which SST cells are net excited by cholinergic inputs activated by
locomotion and which are net inhibited via VIP cells.

Computational goal of cortical state change

Two additional explanations have been advanced for behavior-
ally driven shifts in neural firing patterns. The first posits that
neurons in layers II/III of mouse V1 are encoding sensory mis-
match signals, the difference between expected and true visual
flow given the mouse’s run speed (Keller et al., 2012), whereas the
second suggests that neurons in V1 represent an integrated esti-
mate of visual flow and running speed of the mouse (Saleem et al.,
2013). They both suggest that motor information, perhaps effer-
ence copy, is transmitted to mouse V1, either to differentiate
between self-generated and external visual flow or to help the
mouse estimate his own movement speed. The object of this
paper is not to refute either of these hypotheses, but to argue for
an additional, third purpose for the modulation of neural firing
rates in mouse V1 during locomotion. As both studies used a
virtual reality environment to manipulate the relationship be-
tween visual flow and running speed, our results cannot be
directly compared. However, these hypotheses make specific pre-
dictions, and we can ask whether the explanations they pose to-
ward elevated firing rates during locomotion can explain the
pattern of results in the present study.

If neurons were encoding sensory mismatch, the most vigor-
ous neural responses would be elicited when the difference be-
tween movement speed and visual speed were largest. Instead, we
found that neurons, including those in layers II/1I1, had visually
evoked responses that were only weakly modulated by mouse
running speed >1-2 cm/s (Fig. 7a), and were not minimal at ~30
cm/s (the movement speed of the visual stimulus), contradicting
the notion that sensory mismatch explains our results.

If neurons were integrating visual speed and locomotor speed,
neural responses would be best explained by a function of both.
As our data were generated using a fixed visual stimulus speed, we
could only study the effect of running speed on neural responses
in V1. As described above, the neural population became more
informative at higher running speeds in only a minority of the
mice in the present study, and only weakly so (Fig. 7). These
results are unsurprising, as neural responses become more infor-
mative when more spikes are devoted to encoding visual stimuli,
whereas single neurons in the population may have different
nonmonotonic or negative speed tuning (Saleem et al., 2013;
Erisken et al., 2014). Any small improvement in stimulus encod-
ing at high speeds may have resulted from pairwise decorrelation
during locomotion.

We propose that enhanced information processing, represen-
tation of sensory mismatch, and sensorimotor integration may all
be taking place simultaneously in V1. Perhaps motor input to V1,
in the form of efference copy from sensorimotor areas, allows
mice to differentiate between internally and externally generated
visual flow, whereas cholinergic inputs from the basal forebrain
modulate the gain of neuronal responses to improve information
coding. A similar heterogeneity exists in primary somatosensory
cortex of macaques, which has cells that primarily respond to
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sensory input, others that respond to motor signals, and others
that are modulated by a combination of the two (London and
Miller, 2013). We may expect a comparable mixture in mouse
primary visual cortex.

Note Added in Proof: The in-text reference citations and reference list
were accidentally not included in the Early Release version. The citations
and references have now been added.
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