Sa1441 Gas Sensor Capsules: A New Paradigm in Gastroenterology for Assessing Functional Roles of the Gut Microbiota

Permalink
https://escholarship.org/uc/item/7c6441dc

Journal
Gastroenterology, 150(4)

ISSN
0016-5085

Authors
Kalantar-Zadeh, Kourosh
Yao, CK
Ha, Nam
et al.

Publication Date
2016-04-01

DOI
10.1016/s0016-5085(16)31110-6

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed
Sal441

Gas Sensor Capsules: A New Paradigm in Gastroenterology for Assessing Functional Roles of the Gut Microbiota
Kourosh Kalantar-Zadeh, CK Yao, Nam Ha, Jian Zhen Ou, Stephanie A. Ward, Jeremy J. Cottrell, Frank R. Dunshea, Jane Muir, Peter R. Gibson

Background: Microorganisms of the gut contribute to our health, development and metabolic requirements. Many of these microorganisms satisfy their energy needs by the fermentation of food intake. This process produces certain gases. The production and relative concentration of these gases affect the functionality of the gut. The most prevalent gases in the metabolic activities include CH₄, CO₂, H₂, H₂S and NOₓ. As perturbations in environmental parameters, stress, diet and diseases affect the microorganisms of the gut, the activities of the microbiota are impacted and consequently the constituents of the gases are altered. We have recently introduced the concept and prototype of a swallowable, indigestible gas capsule (1,2) comprising a sensor based on thermal conductivity technologies, which could measure CH₄, CO₂ and H₂ values in %. Aims: To test the operation of the human-sized gas-sensing capsules in pigs, where the effects of antibiotics was assessed on the luminal production of CH₄, CO₂ and H₂.

Methods: Gas-sensing capsules (2.7 mm × 11.5 mm) containing a membrane that is highly permeable to diffusion of gas molecules, but not gut fluid, and whose electrical components sample and subsequently communicate the data to an external receiver every 5 minutes were evaluated. Capsules were administered via gavage to 2 pigs (~40 kg weight) receiving standard pig-growers diet alone (~7.5% fibre) or with co-administration of antibiotics (Lincopharm 800 - added to the pig’s diet three days before the start of the trial) in a randomized study. Pigs were kept under the ambient condition and at constant temperature. Changes in gas constituents of CO₂ - CH₄ and H₂ were assessed until the capsules left the body of the pigs, and was compared between treatment conditions.

Results: Gas profiles with and without administration of antibiotics are shown in Fig 2. Two main differences were noted: (a) in the fermentation region, H₂ concentration was less in association with antibiotics (2.6%) compared to without (4.1%), consistent with an overall reduction of the bacterial population; and (b) a stark difference in the production of CH₄ in the distal colon of pigs on antibiotics, with CO₂ - CH₄ being increased by 70%, consistent with reduction of activity and presumably number of methanogens in the colon.

Conclusions: This capsule prototype has demonstrated in vivo the changes in colonic luminal gas production that might be anticipated in association with antibiotic therapy, indicating the validity of measurements obtained. Human testing of the gas-sensor capsule is warranted.

References:

Fig 1 (a) Schematic of the internal components of the capsule and (b) the photo of the capsule with antennae included (not sealed).