Lawrence Berkeley National Laboratory

LBL Publications

Title

Redistribution of Electron Equivalents between Magnetite and Aqueous Fe2+ Induced by a Model Quinone Compound AQDS

Permalink https://escholarship.org/uc/item/7c68j66s

Journal

Environmental Science and Technology, 53(4)

ISSN

0013-936X

Authors

Peng, Huan Pearce, Carolyn I N'Diaye, Alpha T <u>et al.</u>

Publication Date

2019-02-19

DOI

10.1021/acs.est.8b05098

Peer reviewed

1	Redistribution of Electron Equivalents between Magnetite and Aqueous Fe ²⁺
2	Induced by a Model Quinone Compound AQDS
3	
4	Huan Peng ^{1, 2} , Carolyn I. Pearce ³ , Alpha T. N'Diaye ⁴ , Zhenli Zhu ^{2, *} , Jinren Ni ¹ , Kevin M.
5	Rosso ³ , Juan Liu ^{1, *}
6	
7	¹ The Key Laboratory of Water and Sediment Sciences, College of
	Environmental Sciences and
8	Engineering, Peking University, Beijing 100871, China
9	² State Key Laboratory of Biogeology and Environmental Geology, School of Earth
10	Sciences, China University of Geosciences, Wuhan, Hubei 430074, China
11	³ Pacific Northwest National Laboratory, Richland, WA 99352, USA
12	⁴ Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
13	
14	
15	
16	
17	
18	*Corresponding authors:
19	J. L.
20	Address: College of Environmental Sciences and Engineering, Peking University, Beijing 100871,
21	China
22	Email: juan.liu@pku.edu.cn
23	Z. Z.
24	Address: State Key Laboratory of Biogeology and Environmental Geology, School of Earth
25	Sciences, China University of Geosciences, Wuhan, Hubei 430074, China
26 27	Email: <u>zlzhu@cug.edu.cn</u>

28 ABSTRACT:

- 29 The complex interactions between magnetite and aqueous Fe^{2+} ($Fe^{2+}_{(aq)}$) pertain to many
- 30 biogeochemical redox processes in anoxic subsurface environments. The effect of natural organic
- 31 matter, abundant in these same environments, on Fe²⁺_(aq)-magnetite interactions is an additional
- 32 complex that remains poorly understood. We investigated the influence of a model quinone
- 33 molecule anthraquinone-2,6-disulfonate (AQDS) on Fe²⁺_(aq)-magnetite interactions by
- 34 systematically studying equilibrium $Fe^{2+}_{(aq)}$ concentrations, rates and extents of AQDS reduction,
- 35 and structural versus surface-localized Fe(II)/Fe(III) ratios in magnetite under different controlled
- 36 experimental conditions. The equilibrium concentration of $Fe^{2+}_{(aq)}$ in Fe^{2+}_{aq} amended magnetite
- 37 suspensions with AQDS proportionally changes with solution pH or initial AQDS concentration,
- 38 but independent of magnetite loadings through the solids concentrations that were studied here.
- 39 The rates and extents of AQDS reduction by Fe²⁺-amended magnetite proportionally increased
- 40 with solution pH, magnetite loading, and initial $Fe^{2+}_{(aq)}$ concentration, which correlates with the
- 41 corresponding change of reduction potentials for the Fe²⁺-magnetite system. AQDS reduction by
- 42 surface-associated Fe(II) in the Fe²⁺- magnetite suspensions induces solid-state migration of
- 43 electron equivalents from particle interiors to the near-surface region and the production of
- 44 non-magnetic Fe(II)-containing species, which inhibits $Fe^{2+}_{(aq)}$ incorporation or electron injection
- 45 into magnetite structure. This study demonstrates the significant influence of quinones on
- 46 reductive activity of the Fe²⁺-magnetite system.

47

48 INTRODUCTION

- ⁴⁹ Magnetite (Fe₃O₄), one of the most common iron oxides, plays an important role in
- 50 contaminant transformation, microbial extracellular respiration, and biogeochemical cycling of
- elements.¹⁻⁴ In addition, the growing use of magnetite for environmental and industrial
- ⁵² applications may increase the release of synthetic magnetite into the environment.⁵⁻⁷ In anoxic
- ⁵³ subsurface environments magnetite can be formed from various biogeochemical processes, such
- ⁵⁴ as microbial or abiotic Fe(III) reduction and the weathering of Fe(II)-bearing minerals.^{8, 9} Its
- ⁵⁵ inverse spinel structure and mixed valent characteristics lead to a dynamic exchange of ferrous
- ⁵⁶ iron between the solid state and solution by topotactic oxidation/reduction processes.¹⁰ This
- 57 exchange enables magnetite to encompass a range of stable stoichiometries that reflect a variable
- total oxidation state along a binary solid-solution with oxidized end-member maghemite, as
- ⁵⁹ described by the equation below:¹¹
- 60 -

 $Fe^{3} + Fe^{3} + Fe^{2} + 4 + 2H + \frac{3}{4}Fe^{3} + Fe^{3} + Fe^{3} + O^{2} + HO + Fe^{2} + (1)$

- 61 Thus, the complex equilibria between $Fe^{2+}_{(aq)}$ and magnetite can result in variable properties and
- 62 redox reactivities of magnetite in natural environments.^{2, 3, 11-18} Although some efforts have been
- 63 made to understand Fe²⁺_(aq)-magnetite interactions under environmentally relevant conditions, ^{12-15,}
- ¹⁸most of them have focused on sorption behavior of Fe²⁺_(aq) onto magnetite of different
- 65 stoichiometries¹⁴ or rates/extents of contaminant reduction by Fe²⁺_(aq) associated with magnetite
- 66 nanoparticles.^{12, 13} Recent studies revealed that stable mineral recrystallization can happen when
- 67 magnetite nanoparticles are exposed to $Fe^{2+}_{(aq)}$ in low-temperature (<100 °C) aqueous systems.^{15,}
- 68 ¹⁹⁻²¹ However, few studies have addressed electron transfer processes between magnetite and

69 Fe²⁺_(aq) under more complex environmental conditions. We recently examined the flow of electron

- 70 equivalents in the form of Fe(II) across the magnetite-solution interface and found that the
- 71 equilibrium between Fe²⁺_(aq) and magnetite can be easily and reversably influenced by fluctuations
- 72 in solution pH and $Fe^{2+}_{(aq)}$ concentration.¹⁸ But the extent to which this applies to the less pristine
- 73 settings expected in more complex environmental systems has not yet been addressed.
- For example, natural organic matter (NOM) may also affect Fe²⁺_(aq)magnetite interactions
- 75 via their redox-accessible functional groups, such as quinones,²²⁻²⁴ Moreover, many
- 76 microorganisms can use endogenous or exogenous quinone-like compounds as electron shuttles to
- 77 facilitate extracellular electron transfer with iron oxides at a distance. ²⁵⁻²⁷ Both $Fe^{2+}_{(aq)}$ and
- 78 magnetite can be formed from or participate in this process, so understanding the influence of
- 79 redox-active organics on $Fe^{2+}{}_{(aq)}$ -magnetite interaction is important for mimicking the
- 80 biogeochemical complexity in more realistic anoxic subsurface environments. Previous studies
- 81 mainly focus on redox reaction between iron oxide and reduced quinones.^{22, 23, 28} To the best of
- 82 our knowledge, no studies have been reported about the influence of redoxactive quinones on the
- 83 interaction between $Fe^{2+}_{(aq)}$ and mixed-valent iron oxide. This furthermore applies to the
- 84 development of magnetite-based remediation strategies designed to exploit its high reduction
- 85 reactivity and simple magnetic separation.^{23, 29, 30} A magnetite coating often develops on the
- 86 surface of nanoscale zero-valent iron (nZVI), one of the most studied nanomaterials for the
- 87 remediation of subsurface contaminants.³¹⁻³³ The influence of ubiquitous redoxactive organic
- 88 compounds on the effectiveness of these remediation strategies is not well known.
- 89 The objective of this study is to quantitatively assess the effects of redoxactive organics on
- 90 the equilibrium distribution of electron equivalents, in the form of Fe(II), between $Fe^{2+}_{(aq)}$ and

91 magnetite at pH 6-8. We selected anthraquinone-2,6-disulfonate (AQDS) as a model

- 92 quinone-containing, redox-active compound, which has been well studied and understood in the
- 93 context as a biogeochemical electron shuttle. In the buffered aqueous solution at pH 6-8, the
- 94 relevant redox equilibrium of AQDS (E_{AQDS}) is the pH-dependent two electron mass balance
- 95 between AQDS and AH₂DS given as:²³

F

96

97

- (2)
- 99 $AQDS^{2-}$ K_{d}^{re} an K_{d}^{re} are the corresponding acid dissociation constants of the reduced forms of
- 100 AQDS. Based on the relationship between E_{AQDS} and equilibrium AQDS speciation, AQDS has
- 101 been used as a non-sorbing chemical redox probe (CRP) to estimate reduction potentials of
- 102 heterogeneous iron systems, consisting of $Fe^{2+}_{(aq)}$ and iron (oxyhydr)oxide.^{23, 24} However, it
- 103 remains unclear whether or not this method can be applied to mixed-valent iron oxides such as
- 104 magnetite, because the extent that CRPs are true spectator species that do not influence the
- 105 distribution of electron equivalents across the magnetite-solution interface and thus its reduction
- 106 potential is yet unknown.^{14, 34} Our results fill a knowledge gap in fundamental understanding of
- 107 the effects of quinones on redox processes between $Fe^{2+}_{(aq)}$ and mixed-valent iron oxides, which
- 108 has not been systematically studied.
- 109 In this study, equilibrium concentrations of $Fe^{2+}_{(aq)}$ were measured as a function of: (i)
- 110 solution pH; (ii) initial Fe²⁺_(aq) concentrations ([Fe²⁺_(aq)]_{int.}); (iii) magnetite loading; and (iv) initial
- 111 AQDS concentration ([AQDS]_{int.}).³⁵ In addition, reduction kinetics and equilibrium speciation of
- 112 AQDS with Fe²⁺-amended magnetite under the corresponding experimental conditions were also

113 studied using UV-visible (UV-vis) absorption spectroscopy. Moreover, the changes of structural

- 114 Fe(II)/Fe(III) ratios in magnetite interiors and at particle surface after reaction with $Fe^{2+}_{(aq)}$ and
- 115 AQDS were quantified using micro X-ray diffraction (μ XRD) and synchrotronbased Fe *L*-edge
- 116 X-ray absorption (XA) and X-ray magnetic circular dichroism (XMCD) spectroscopies,
- 117 respectively.^{2, 11, 16, 18} The systematic quantification of compositional changes in both magnetite
- 118 particles and the aqueous solution revealed a significant influence of AQDS on the equilibrium
- 119 distribution of electron equivalents in the form of Fe(II) under various environmentally relevant
- 120 conditions, which may help us understand the reactivity of ${\rm Fe}^{2+}{}_{(aq)}{\rm -magnetite}$ systems in
- 121 subsurface environments.

122

123 MATERIALS AND METHODS

- 124 Magnetite synthesis and all wet chemical experiments were conducted inside an anoxic
- 125 glovebox. All syringe filters, glassware, and plastic were deoxygenated for at least 24 h inside the
- 126 glovebox prior to use. The details of the glovebox, degassed and deionized water (DDW), and all
- 127 chemicals for magnetite synthesis and wet chemical experiments were described in the Supporting
- 128 Information (SI Section 1).
- 129 **Magnetite synthesis and characterization.** Magnetite was synthesized using the
- 130 co-precipitation method that was previously reported.^{11, 18} The resulting particles were
- 131 magnetically separated from the aqueous phase and washed with DDW for three times to remove
- 132 residual metal chlorides. After the washing processes, the particles were resuspended in DDW (\sim
- 133 300 mL) and stored in a sealed bottle covered with aluminum foil and inside the glovebox.
- 134 Particle density of the stock suspension, in terms of equivalent Fe(II) concentration, was measured
- 135 using an acid digestion method.^{2, 18} The crystal phase, size, morphology, and specific surface area

- 136 of the synthetic particles were characterized by micro X-ray diffraction (μXRD) , transmission
- 137 electron microscope (TEM), and Brunauer-Emmer-Teller (BET) method, respectively. More
- 138 details about magnetite synthesis and characterization are provided in SI Section 2.
- 139 **Quantification of equilibrium concentrations.** Batch experiments were conducted to
- 140 measure final concentrations of $Fe^{2+}_{(aq)}$ in the magnetite suspensions (69 695 mg L⁻¹, the
- 141 equivalent Fe(II) concentration of 300 3000 μM) after equilibration with 0 1000 μM Fe^{2+}_{(aq)}
- 142 and 0 500 μM AQDS at pH 6 8 were measured. The buffer solution at pH 7 or 8 was 30 mM
- 143 HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, 99.5%) solution, and that at pH 6
- 144 was 30 mM MES (2-(N-Morpholino) ethanesulfonic acid, 99%) solution. The buffers were
- 145 selected, because they have a low capability to complex with metal ions or adsorb onto iron oxide
- 146 surface. ^{36, 37} All experiments were conducted in sealed containers with continuous shaking at 10
- 147 rpm using a rotating mixer in the glovebox. Batches with desired magnetite loading and ${\sf FeSO}_4$
- 148 concentration at a given pH were continuously shaken for 24 h in order to allow the
- 149 Fe²⁺_(aq)-magnetite system to reach equilibrium.¹⁴ Then, a certain volume of AQDS stock solution
- 150 was spiked into the suspension that was shaken for another 24 h, until a new equilibrium state was
- 151~ established. Finally, the suspensions were filtered using 0.2 μm Nylon syringe filters (Whatman),
- and the first ~1 mL filtrate was discarded as a rinse. $Fe^{2+}_{(aq)}$ concentration and AQDS speciation in
- 153 the filtrates were measured, respectively, using the ferrozine assay 35 and the UV–VIS absorption
- 154 spectra that were recorded using a Shimadzu UV-2501 PC spectrophotometer inside the glovebox.
- 155 Within the pH range (pH 6-8) of this study, the interference of Fe^{3+} on the measurements of
- 156 $Fe^{2+}_{(aq)}$ by the ferrozine assay is negligible. The initial volume in all experiments was 10 mL, and

all experiments were performed at least in triplicate.

- **AQDS reduction kinetics.** Reduction kinetics of 100 μM AQDS by magnetite (300 3000
- 159 μM [Fe(II)] equivalents) amended with 0 1000 μM Fe $^{2+}{}_{(aq)}$ at pH 7 8 were measured by
- 160 monitoring the change of AQDS absorbance at 328 nm as a function of time.^{22-24, 38} No
- 161 experiments were conducted at pH 6, because no measurable AQDS was reduced by 300-3000
- 162 μM magnetite amended with 0-1000 μM $Fe^{2+}{}_{(aq)}$ at this pH. At pH 7, reduction experiments were
- 163 initiated by spiking a given volume of AQDS stock solution to a suspension of magnetite
- 164 equilibrated with a certain concentration of $Fe^{2+}_{(aq)}$. Sample aliquots (2 mL) were taken using 10
- 165 mL syringes at desired time intervals and immediately filtered using 0.2 μm syringe filters. The
- 166 absorbance spectra of the filtrates were recorded using the Shimadzu UV-2501 PC
- 167 spectrophotometer inside the glovebox. At pH 8, AQDS reduction by Fe²⁺- amended magnetite
- 168 finished within several minutes, so the absorbance at 328 nm,^{22, 23, 38} instead of the whole
- 169 spectrum, was recorded over time using the UV-VIS spectrophotometer at an interval of 0.2
- 170 seconds. The reduction experiments were initiated by spiking a certain volume of AQDS into
- 171 Fe²⁺-amended magnetite suspensions in a 3.5 mL screw-cap quartz cuvette that was capped and
- 172 placed in a Peltier cell holder with a stirring system. Dilute particle suspensions were used in all
- 173 experiments, so there was no detectable interference from light scattering by magnetite particles.
- 174 The concentration of reduced AQDS (C_t) at time t (min) was calculated using the difference in
- 175 absorbance at 328 nm (oxidized form of AQDS).^{22, 23, 38} The first-order rate constant (κ , min⁻¹)
- 176 during the initial reaction stage of AQDS reduction by Fe²⁺_(aq)-amended magnetite under different
- 177 experimental conditions was calculated using the following equation:

(3)

178

¹⁷⁹ Where C_0 is the initial concentration of oxidized AQDS. All experiments were carried out at least

- in triplicate. Because the reduction potentials of pure or Fe²⁺-amended magnetite are lower than
- that of reduced AQDS at the conditions present in our experiments (as discussed below), no
- experiments with pre-reduced AQDS in the Fe²⁺-magnetite systems were conducted.
- 183 **Measurements of Fe(II)/Fe(III) ratios in magnetite.** The crystalline phase and cell
- $_{\mbox{(aq)}}$ parameters of magnetite in suspensions before and after reaction with Fe $^{2+}$ $_{\mbox{(aq)}}$ and AQDS were
- measured by μ XRD. According to the linear correlation between the cubic unit cell parameter (*a*)
- and the structural Fe(II)/Fe(III) ratio (x_{stru}) in magnetite,¹¹ the change in x_{stru} of magnetite after
- reaction with Fe²⁺_(aq) and AQDS was determined from the refined unit-cell parameters. Details
- $_{188}$ about μXRD measurements and cell parameter refinement were described in SI Section 2 and our
- 189 previous studies.^{2, 11, 18}
- ¹⁹⁰ X-ray Magnetic Circular Dichroism (XMCD) was conducted to characterize the oxidation
- ¹⁹¹ state and local structure of magnetically ordered iron cations at magnetite surface (in the
- ¹⁹² outermost few Ångstroms of particle surface). The synchrotron XMCD spectra of magnetite were
- collected at room temperature on beamline 6.3.1 at the Advanced Light Source (ALS), Berkeley,
- ¹⁹⁴ CA, using the eight-pole resistive magnet end-station. A nonlinear least-squares analysis of
- 195 XMCD spectra was conducted to quantify surface-localized Fe(II)/Fe(III) ratios (x_{surf}) of
- ¹⁹⁶ magnetite as described in previous studies.^{2, 11, 18}
- 197

198 **RESULTS AND DISCUSSION**

- 199 TEM images (Figure S1) showed that the synthetic nanoparticles were nearly spherical with a
- diameter of 12 \pm 2 nm. The BET specific surface area of the nanoparticles was 55.7 m²/g. The
- 201 XRD pattern (Figure S2) indicated that magnetite was the only phase present in the synthetic

- nanoparticles.
- 203 Effects of AQDS on the equilibrium between magnetite and Fe²⁺ (aq). Our previous study
- shows that, in the absence of AQDS, $Fe^{2+}_{(aq)}$ release from magnetite is more favorable at pH 6 7
- ²⁰⁵ due to proton-promoted dissolution of magnetite, while Fe²⁺_(aq) uptake by magnetite is more
- feasible at pH 8.¹⁸ In addition to solution pH, addition of $Fe^{2+}_{(aq)}$ can also evidently affect the
- reactions at the magnetite-solution interface, resulting in the inhibited dissolution at pH 6 7 but
- the increased $Fe^{2+}_{(aq)}$ uptake at more basic conditions. Increasing magnetite loading enhanced the
- 210 Correspondingly, the structural and surface-localized Fe(II)/Fe(III) ratios of magnetite changed as
- a result of the dynamic $Fe^{2+}_{(aq)}$ -magnetite interaction. These findings revealed the reversible flow
- of Fe(II) across the magnetite-solution interface under different conditions.¹⁸
- To study the effect of AQDS on the equilibrium distribution of electron equivalents in the
- Fe²⁺_(aq)-magnetite system, equilibrium concentrations of Fe²⁺_(aq) ([Fe²⁺_(aq)]_{eq}) in the magnetite
- suspensions (69 695 mg L^-1) amended with 0 1000 μM $Fe^{2+}{}_{(aq)}$ before and after the addition of
- 216 100 μM AQDS at pH 6 8 were measured (Figure S3). Figure 1 shows the difference between
- equilibrium ([Fe²⁺(aq)]_{eq}) and initial Fe²⁺(aq) ([Fe²⁺(aq)]_{int.}) concentrations (i.e., Δ [Fe²⁺(aq)] =
- ²¹⁸ [Fe²⁺_(aq)]_{eq} [Fe²⁺_(aq)]_{int}) as a function of magnetite loading under various experimental conditions.
- At pH 6, the addition of 100 μM AQDS barely changes $[Fe^{2+}{}_{(aq)}]_{eq}$ or $\Delta [Fe^{2+}{}_{(aq)}]$ under the
- 220 conditions of the present study. The dominant interfacial reaction at pH 6 is proton-promoted
- dissolution of magnetite, which leads to the release of 80.7-575.3 μM Fe $^{2+}$ from 300-3000 μM
- magnetite (Figure 1). Correspondingly, the structural Fe(II)/Fe(III) ratio and reduction reactivity
- of magnetite decrease after the release of Fe²⁺. As mentioned above, no

detectable AQDS is

- reduced by Fe²⁺-amended magnetite (300-3000 μM magnetite, 0-1000 μM Fe²⁺ $_{(aq)})$ at pH 6. Thus,
- AQDS is unlikely to be reduced by the partially dissolved magnetite, even with the released Fe^{2+}
- at pH 6 under the conditions of this study. As a non-sorbing redox molecule for iron oxide
- ²²⁷ minerals,²³ AQDS shows no significant impacts on the equilibrium of the nonredox dissolution
- reaction.
- At pH 7 without added Fe $^{2+}{}_{(aq)}$, addition of 100 μM AQDS does not significantly change the
- amount of released Fe^2+ ($\Delta [Fe^{2+}{}_{(aq)}])$ (Figure 1A). Only a very small amount (0.6-6.7 $\mu M)$ of
- AQDS was reduced at the end of the experiments at pH 7 (Figure S4). Protonpromoted
- dissolution of magnetite is still the dominant interfacial reaction in this case, and the presence of
- $_{233}$ 100 μM AQDS did not obviously affect the extent of magnetite dissolution at pH 7. However,
- addition of 100 μM AQDS significantly decreased the value of $[Fe^{2+}{}_{(aq)}]_{eq}$ in Fe^2+- amended
- magnetite (Figure S3). Because AQDS cannot be reduced by dissolved Fe^{2+} at pH 7,²⁴ the
- observed decrease in $[Fe^{2+}_{(aq)}]_{eq}$ cannot simply be attributed to $Fe^{2+}_{(aq)}$ oxidation by AQDS. The
- 237 production of reduced AQDS (Figure S4) and the corresponding change of the structural
- Fe(II)/Fe(III) ratio (x_{stru}) in magnetite (Figure 2) after the addition of AQDS suggest that the
- decrease of $[Fe^{2+}_{(aq)}]_{eq}$ is probably related to the redistribution of electron equivalents in the
- Fe²⁺-magnetite system induced by AQDS, which will be discussed further below. In particular,
- $_{241}$ $_{\Delta}[Fe^{2+}{}_{(aq)}]$ changes from positive to negative values (when $[Fe^{2+}{}_{(aq)}]_{int}$ = 250 750 μM) after
- adding AQDS, suggesting that the flow direction of electron equivalents across the
- ²⁴³ magnetite-solution interface changed from magnetite [] solution to solution [] magnetite.
- Although adding 1000 μ M Fe²⁺_(aq) to 300-3000 μ M magnetite suspensions without AQDS at pH 7

 $_{245}$ can also result in the similar reversal of flow direction, 18 the presence of 100 μM AQDS obviously

- decreases the threshold concentration of $Fe^{2+}_{(aq)}$ for the occurrence of this phenomenon from 1000
- $_{247}$ $\ \mu M$ to 250 μM or less. Thus, the presence of AQDS facilitates the flow of electron equivalents
- ²⁴⁸ from the solution phase to the solid phase (i.e. magnetite).
- At pH 8, no measurable Fe²⁺ was released from magnetite without added Fe²⁺ (aq), no matter
- ²⁵⁰ whether AQDS was present. In the Fe²⁺-magnetite system, AQDS is mainly reduced by
- surface-associated Fe²⁺ (Fe(II)-Mt), because the reduction rate by Fe(II)-Mt $([Fe^{2+}_{(aq)}]_{int} =$
- $_{252}$ $500\text{-}1000~\mu\text{M},\,300$ 3000 μM magnetite is 3 5 orders of magnitude faster than that of Fe^{2+}_{(aq)} or
- $_{253}$ $\,$ Fe(II)_{stru} in magnetite under similar conditions (Table S1). Figure 1 shows that addition of 100 μM
- AQDS generally results in more negative values of \triangle [Fe²⁺_(aq)] (i.e. a greater decrease in Fe²⁺_(aq)
- concentration) at pH 8 in Fe²⁺_(aq)-amended magnetite. Moreover, much more AQDS is reduced by
- Fe²⁺(aq)-amended magnetite at pH 8 than at pH 7. The fast reduction of AQDS by Fe(II)-Mt at pH
- 257 8 drive the flow of electron equivalents from solution to magnetite and change the speciation of
- AQDS, which will be discussed further with the XMCD and μ XRD results below.
- The presence of AQDS also changes the influence of magnetite loading on Δ [Fe²⁺(aq)] at pH 7
- and 8. In the absence of AQDS, the absolute value of $\triangle[Fe^{2+}{}_{(aq)}]$ increases linearly with the
- $_{261}$ increase of magnetite loading from 300 to 3000 μM at pH 6 8 (Figure 1), probably due to more
- surface sites available for $Fe^{2+}_{(aq)}$ -magnetite interaction with the increase of magnetite loading.¹⁸
- $_{\text{(aq)}]}$ However, in the presence of 100 μM AQDS, the absolute values of $\triangle[\text{Fe}^{2+}$ $_{(aq)}]$ only slightly
- increases or fluctuates around a fixed value as magnetite loading increases, when $[Fe^{2+}_{(aq)}]_{int.}$ was
- $_{265}$ $\,$ 0 1000 μM at pH 7 or less than 750 μM at pH 8 (Figure 1). As shown in Figure S4, the increase
- ²⁶⁶ of mineral loading results in more reduced AQDS, which probably offsets the effect of increasing
- 267 mineral loading on \triangle [Fe²⁺(aq)].

268	At the same magnetite loading and initial $Fe^{2+}_{(aq)}$ concentration, changing initial AQDS
269	concentration ([AQDS] _{int.}) can also affect the equilibrium between magnetite and $Fe^{2+}_{(aq)}$. For
270	example, in the suspensions of 3000 μM magnetite with 1000 μM Fe^+(aq), increasing [AQDS]_int.
271	from 100 to 500 μM significantly increases the absolute values of $\triangle[$ Fe^{2+} (aq)] (i.e. more Fe^{2+} ions
272	transfer from solution to solid) and the equilibrium concentrations of reduced AQDS
273	([AQDS _{red}] _{eq}) (Figure 3). Moreover, the change of \triangle [Fe ²⁺ (aq)] and [AQDS _{red}] _{eq} with the increase of
274	[AQDS] $_{\rm int.}$ is more significant in the suspensions amended with ${\rm Fe^{2+}}_{(aq)}$ at the elevated pH (Figure
275	3). These results show that the presence of AQDS generally decreases equilibrium concentrations
276	of $Fe^{2+}_{(aq)}$ ($[Fe^{2+}_{(aq)}]_{eq}$) in the Fe^{2+} -magnetite system at pH 7-8. The extent of this impact depends
277	on solution pH and initial AQDS concentration. However, the decrease of $[Fe^{2+}_{(aq)}]_{eq}$ after addition
278	of AQDS can be related to electron injection from ${\rm Fe^{2+}}_{(aq)}$ to magnetite, or electron transfer from
279	$Fe^{2+}{}_{(aq)}$ to AQDS, or the change of $Fe^{2+}{}_{(aq)}$ to surface-associated $Fe^{2+}.$ The rate and extend of
280	AQDS reduction and the change of Fe(II)/Fe(III) ratios in magnetite are needed to illustrate the
281	flow of electrons in the Fe ²⁺ -magnetite system with AQDS.
282	AQDS reduction by Fe ²⁺ -amended magnetite. Kinetic profiles of AQDS reduction by
283	Fe^2+-amended magnetite (300-3000 μM magnetite, 0-1000 μM added Fe^2+ $_{(aq)}$) at pH 7 and 8 are
284	shown in Figure S5 and S6, respectively. In 3000 μM magnetite suspension without added $Fe^{2+}_{(aq)},$
285	the initial rate of AQDS reduction at pH 8 is one order of magnitude greater than that at pH 7
286	(Table S1). Reduction potentials of both $AQDS_{\mbox{\scriptsize ox}}/AQDS_{\mbox{\scriptsize red}}$ and magnetite/Fe $^{2+}$ couples decrease
287	with increasing pH (Figure S7), but the magnetite/Fe ²⁺ couple has a steeper negative slope (-236
288	mV/pH) ³⁰ than that of AQDS _{ox} /AQDS _{red} (-59 mV/pH), ^{23, 28, 39} resulting in the enhanced reduction

rates of AQDS at high pH. Our previous study shows that the bulk structural Fe(II)/Fe(III) (x_{stru})

- in magnetite in the absence of AQDS is higher at pH 8 than that at pH 7, when other experimental
- 291 conditions are same.¹⁸ Because reduction potential of magnetite is inversely proportional to x_{stru} in
- ²⁹² magnetite,²⁹ magnetite exhibits a higher reactivity for AQDS reduction at pH 8 than at pH 7.
- Recent studies of contaminant reduction by Fe^{2+} in the presence of Fe(III)-(oxyhydr)oxide
- reported a linear relationship between the logarithms of the surface-areanormalized reduction rate
- ²⁹⁵ constants and reduction potentials for oxide-bound Fe²⁺ species, when electron transfer at the
- ²⁹⁶ solid/solution interface occurs during or before the rate-limiting step of the reactions.^{24, 40} This
- ²⁹⁷ linear free energy relationship (LFER) is also observed in our study. In Figure S8, the
- surface-normalized rate constants ($\log k_{SA}$, data shown in Table S2) for AQDS reduction were
- ²⁹⁹ plotted versus the reduction potential (E_H) of magnetite suspension (300 to 3000 μ M magnetite)
- equilibrated with 0 to 1000 μ M added Fe²⁺_(aq) at pH 7 and 8. The E_H value of magnetite suspension
- $_{\rm 301}$ $\,$ was calculated from the measured $[{\rm Fe}^{2+}{}_{(aq)}]_{\rm eq}$ using the Nernst equation for the following
- half-reaction (for more details about E_H calculation, refer to SI section 3):^{18, 40, 41}
- 303 $0.5Fe_{3}O_{4} + 4H^{+} + e^{-} \rightarrow 1.5Fe^{2+} + 2H_{2}O$ (4)
- 304 A good linear correlation is observed between $\log k_{SA}$ and E_H for Fe²⁺-amended magnetite at pH 7
- and 8 (Figure S8), suggesting that the rates of AQDS reduction by Fe^{2+} -amended magnetite are
- 306 limited by electron transfer across the magnetite-solution interface. On the other hand, the rates of
- 307 AQDS reduction significantly increase with the increase of solution pH, magnetite loading, or
- 308 $[Fe^{2+}{}_{(aq)}]_{int.}$ (Table S1). For example, as magnetite loading increases from 300 to 3000 $\mu M,$ the
- 309 reduction rate of AQDS by magnetite amended with 1000 μM $Fe^{2+}{}_{(aq)}$ increases two orders of
- 310 magnitude. The observed faster reduction rates of AQDS reflect the decrease of $E_{\rm H}$ for
- 311 Fe²⁺-amended magnetite with the change of these experimental conditions.

- 312 The absorbance spectra of AQDS after reaction with Fe²⁺-amended magnetite at pH 7 8
- 313 (Figure S9) confirmed that AQDS reduction under these conditions is a twoelectron transfer
- 314 reaction. As shown in Equation 2, AQDS reduction is a pH-dependent reaction. When $pH < pK^{red}$
- 315 (the acidity constant for the reaction from $AQDSH_2$ to $AQDSH_2$), AQDS reduction involves
- 316 two-electron transfer.⁴² Although the p ^{re}_{a1} value varies (pH 7.2-8.7) in literature, the value of 8.1
- 317 has been widely used for pK^{red}.^{22-24, 43} The observed spectra in Figure S9 are consistent with the
- 318 previous studies.^{23, 38, 44} To study electron balance of the reactions, the change of Δ [Fe²⁺(aq)] (δ =
- 319 \triangle [Fe²⁺(aq)]_{without AQDS} \triangle [Fe²⁺(aq)]_{with AQDS}) in Fe²⁺-amended magnetite before and after reaction
- 320 with AQDS ([AQDS]_{int.} = 100 μ M) was compared to the amount of electrons transferred to AQDS
- 321 $(2*[AQDS_{red}]_{eq})$ (Figure S10). At pH 7, the values of δ are generally greater than the
- 322 corresponding values of $2*[AQDS_{red}]_{eq}$, whereas at pH 8 the latter is greater in the suspensions
- 323 amended with 0 500 μM Fe^{2+} $_{(aq)}$. In all of these experiments, the values of δ and 2*[AQDS_{red}]_{eq}
- 324 are generally different, (Figure S10) suggesting that the change of \triangle [Fe²⁺_(aq)] after adding AQDS
- 325 cannot simply be attributed to AQDS reduction by Fe²⁺_(aq). Redistribution of electron equivalents
- 326 between magnetite and aqueous phase may be induced by the addition of AQDS, which will be
- 327 discussed together with the changes in the Fe(II)/Fe(III) ratios of magnetite.
- 328 **Changes of Fe(II)/Fe(III) ratios in magnetite.** The μXRD patterns of all post-reaction
- 329 samples show that no secondary crystalline phases were produced under all experimental
- 330 conditions, but the unit-cell parameter of magnetite changed after reaction. The values of
- 331 structural Fe(II)/Fe(III) ratio in magnetite (x_{stru}) derived from the μ XRD patterns of magnetite (69
- 332 695 mg L^-1) after reaction with 0 1000 μM $Fe^{2+}{}_{(aq)}$ and 100 μM AQDS at pH 7 and 8 are

333 compared in Figure 3 (data shown in Table S3). The results indicate that x_{stru} systematically

- 334 increases with solution pH, magnetite loading, and $[Fe^{2+}_{(aq)}]_{int.}$ Due to the negative linear
- relationship between reduction potential and x_{stru} value for the magnetitemaghemite (Fe₃O₄-
- 336 Fe_{8/3}O₄) system,⁴⁵ the higher x_{stru} values at the increased solution pH, magnetite loading, or
- 337 [Fe²⁺_(aq)]_{int.} imply the lower reduction potential for magnetite as these conditions change. It is
- 338 worth mentioning that the decrease of x_{stru} value upon addition of magnetite into the buffer
- 339 solutions at pH 7 or 8 is due to the pH difference between the stock suspension of magnetite (~ 8.5)
- 340 and the buffer solutions.^{11, 18} Spiking an aliquot of the stock suspension into the buffer solution
- 341 can result in a sudden pH decrease, which can induce Fe^{2+} release or solidstate migration of
- 342 electrons from the interior to the near-surface region. The changes of x_{stru} values with solution pH,
- 343 magnetite loading, and $[Fe^{2+}_{(aq)}]_{int.}$ in the suspensions without AQDS were reported and discussed
- in our previous study.¹⁸
- 345 Because the electrochemical determination of redox potential for Fe²⁺-iron oxide redox
- 346 couple in aqueous suspension is still quite challenging, due to the influences of many factors, such
- 347 as particle aggregation, mass transport, lack of redox equilibria, and formation of secondary
- 348 phases,^{24, 46} recent studies proposed a method for the estimation of reduction potential for
- 349 Fe²⁺-iron oxide redox couples using CRPs, like AQDS.^{23, 24, 47} According to this method, reduction
- 350 potentials for Fe²⁺-amended magnetite ($E_{Fe(II) Mt}$) under different conditions can be calculated
- 351 from $[AQDS_{red}]_{eq}$ and $[AQDS]_{int.}$, as shown in Figure S11 (for more details about $E_{Fe(II) Mt}$
- 352 calculation, see SI Section 4). The results indicate that the values of $E_{Fe(II)}$ became more
- 353 negative with the increase of magnetite loading, $[Fe^{2+}_{(aq)}]_{int.}$, or pH (Figure S11), which is
- 354 consistent with the trend in x_{stru} values for magnetite (Figure 3). It is worth mentioning that, at the

355 same experimental condition, the calculated

 $\begin{array}{ll} E_{\mathsf{Fe}(\mathsf{II})} & \text{is systematically higher than} \\ {}^{\mathsf{Mt}} & \text{the} \end{array}$

- 356 calculated value of E_H (Figure S12). Because E_H was calculated mainly based on pH and
- 357 $[Fe^{2+}_{(aq)}]_{eq}$, the difference between $E_{Fe(II)}$ and E_{H} can be attributed to the changes of magnetite
- and the reduction of AQDS in the system (Figure 2 and 3).
- As shown in Figure 2 and 3, different $[AQDS]_{int.}$ values result in different values of x_{stru} ,
- 360 $[Fe^{2+}_{(aq)}]_{eq}$, and $[AQDS_{red}]_{eq}$ in the suspensions of $Fe^{2+}_{(aq)}$ -amended magnetite, so the
- 361 correspond ing $E_{Fe(II)}$ values for Fe²⁺-amended magnetite can be different with the increase of
- 362 $[AQDS]_{\text{int.}}$ (Figure S11). For example, as $[AQDS]_{\text{int.}}$ increases from 100 to 500 μM in the 3000
- 363 μ M magnetite suspension amended with 1000 μ M Fe²⁺_(aq) at pH 8, [AQDS_{red}]_{eq} changes from 95.8
- 364 to 368.7 μ M (Figure 3), and correspondingly $E_{Fe(II)}$ increases from -277.8 to -250.8 Mt mV
- 365 (Figure S11). On the other hand, $\bigtriangleup[Fe^{2+}_{(aq)}]$ changes from -682 to -988 μM (Figure 3), indicating
- 366 that the change of $[Fe^{2+}{}_{(aq)}]_{eq}$ is less than the change of $2*[AQDS_{red}]_{eq}$ (546 $\mu M).$ Thus, the
- 367 decrease of x_{stru} in magnetite (Table S3) with the increase of [AQDS]_{int.} may be related to AQDS
- 368 reduction by structural Fe(II) in magnetite. The results suggest that increasing the initial
- 369 concentration of AQDS can increase the flow of Fe²⁺_(aq) from solution to solid, promote oxidation
- 370 of structural Fe(II) (i.e. the decrease x_{stru}) in magnetite, and increase the reduction potential of the
- 371 Fe²⁺-magnetite system ($E_{Fe(II) Mt}$). Thus, E_{Mt} - calculated from equilibrium Fe(II) AQDS
- 372 speciation represents the reduction potential for the Fe²⁺-magnetite system after equilibration with
- 373 AQDS, which can be different from the value of the system before AQDS addition. Caution must
- be taken when comparing $E_{Mt Fe(II)}$ values calculated from equilibrium speciation of CRPs with
- 375 different initial concentrations. In addition, reduction potentials of mixed-valent iron oxides, such
- 376 as magnetite and green rust, depend on the structural Fe(II)/Fe(III) ratio

 (x_{stru}) .²⁹ Even in the

377 reactions with other common CRPs, like carbon tetrachloride, 4chloronitrobenzene (4-CINB),

- 378 and 2-chloroacetophenone, x_{stru} in the mixed-valent iron oxides may also change as the reactions
- 379 proceed. For example, the reduction of 4-CINB by green rust was found to be increasingly slower
- 380 over time, and correspondingly the reduction potential of the suspension gradually increased.⁴⁸
- 381 X-ray absorption spectra indicate the increasing Fe(III) contents in green rust during reaction,
- 382 suggesting that x_{stru} in green rust decreased during the reaction with 4-CINB. Different types of
- 383 CRPs may with mixed-valent iron oxides to different extents, and correspondingly the measured
- 384 reduction potentials from equilibrium speciation of CRPs may be different.
- 385 In addition to structural Fe(II)/Fe(III) ratio (x_{stru}) of magnetite, the oxidation state and local
- 386 structure of magnetically ordered iron cations at the magnetite surface (x_{surf}) , before and after
- 387 reaction with $Fe^{2+}_{(aq)}$ and AQDS, were also analyzed using Fe L_{2,3}-edge XMCD. Addition of 100
- 388 μ M AQDS to magnetite suspensions ([Fe(II)] equivalents = 3000 μ M) without added Fe²⁺_(aq)
- 389 increases x_{surf} at both pH 7 and pH 8 (Figure 4 and Table 1). The corresponding structural
- 390 Fe(II)/Fe(III) ratio decreases after adding AQDS (Table 1), suggesting that AQDS induces the
- 391 solid-state migration of electrons from the interior to the near-surface region in magnetite under
- 392 these conditions. However, in the magnetite suspensions amended with 1000 μM Fe^{2+}_{(aq)}, addition
- 393 of 100 μ M AQDS obviously decreased x_{surf} at pH 7 and 8. The different changes of x_{surf} values
- 394 after addition of AQDS in magnetite and Fe²⁺-amended magnetite suspensions suggest different
- 395 flow directions of electron equivalents in the system under different conditions, as discussed
- 396 below.
- 397 **Redistribution of electron equivalents induced by AQDS.** To study the effect of AQDS on
- 398 mass and electron balance in $Fe^{2+}_{(aq)}$ -magnetite interactions under different experimental
- 399 conditions, \triangle [Fe²⁺(aq)] and [AQDS_{red}]_{eq}, as well as x_{stru} and x_{surf} in magnetite,

before and after

- 400 addition of 100 μM AQDS are compared in Table 1. Because of the limited beam time for XMCD
- 401 measurements, only some representative samples were analyzed using XMCD. The x_{stru} value
- 402 (0.498) of 3000 μM magnetite in the pH 7 buffer solution without added Fe^{2+}_{(aq)} was smaller than
- 403 that (0.544) of magnetite in the stock suspension (pH = ${\sim}8.5$), due to the release of 250.5 μM
- 404 Fe²⁺_(aq) from magnetite after transferring magnetite from the stock solution to the buffer solution.
- 405 The value of ${\scriptstyle \bigtriangleup[Fe^{2+}{\scriptstyle (aq)}]}$ (250.5 μM) measured from chemical analysis is consistent with the
- 406 decrease (251 μ M) of structural Fe(II) in magnetite ([Fe(II)_{stru}]) that is calculated from the μ XRD
- 407 results (for details of $[Fe(II)_{stru}]$ calculation, see SI section S5). Thus, in the suspension without
- 408 added $Fe^{2+}_{(aq)}$ at pH 7, the increase of $[Fe^{2+}_{(aq)}]$ is mainly attributed to Fe(II) release from
- 409 magnetite structure as a result of proton-promoted dissolution.¹⁸
- 410 Addition of 100 μM AQDS to the suspension under the same condition (pH = 7, 3000 μM
- 411 magnetite) decreases the value of $\bigtriangleup[Fe^{2+}{}_{(aq)}]$ from 250.5 to 206.7 $\mu M,$ and the corresponding value
- 412 of $[\text{AQDS}_{\text{red}}]_{\text{eq}}$ is 6.7 μM (Table 1). There are 220.1 μM electron equivalents transferred from
- 413 magnetite to the solution (\triangle [Fe²⁺(aq)] + 2*[AQDS_{red}]_{eq} in Table 1). The calculated decrease of
- 414 [Fe(II)_{stru}] in magnetite after reaction with AQDS is ~287 μM (for details of \triangle [Fe(II)]_{stru}
- 415 calculation, see SI Section S5.2), which is greater than the amount of electron equivalents
- 416 transferred from magnetite to the solution $(\triangle[Fe^{2+}_{(aq)}] + 2*[AQDS_{red}]_{eq})$. The decrease of x_{stru} and
- 417 the increase of x_{surf} in magnetite after addition of AQDS (Table 1) suggest solidstate migration of
- 418 electrons from the particle interior to the near surface region induced by AQDS reduction on
- 419 magnetite surface. This similar outward migration of electron equivalents in magnetite structure
- 420 was observed in the reduction of pertechnetate anions ([TcO $\overline{}$]) and a bacterial enzyme MtoA by

421 magnetite. 16 The calculated [Fe(II)_{stru}] in the near-surface region is 319.4 μM higher than the value

- 422 before reaction with AQDS (SI section S5.2). Thus, the difference between the calculated \bigtriangleup
- 423 [Fe(II)]_{stru} from μ XRD and the amount of (\triangle [Fe²⁺(aq)] + 2*[AQDS_{red}]_{eq}) can be attributed to the
- 424 solid-state migration of electrons from the particle interior to the near surface region. Although the
- 425 amount (250.5 μM) of Fe^{2+} released from 3000 μM magnetite at pH 7 is theoretically sufficient for
- 426 complete reduction of AQDS (100 μM), only a limited amount (6.7%) of AQDS is reduced in the
- 427 system (Table 1). It is possible that accessibility to structural and surfaceassociated Fe(II), and the
- 428 coupled diffusion of the electrons to maintain charge balance in the solid, control the extent of
- 429 AQDS reduction. Thus, in magnetite suspensions without added $Fe^{2+}_{(aq)}$ at pH 7, the slight
- 430 reduction of AQDS by Fe(II) in magnetite structure inhibits magnetite dissolution but induces
- 431 solid-state migration of electrons from the interior to the near-surface region of magnetite.
- 432 The amendment of 1000 μM $Fe^{2+}{}_{(aq)}$ to magnetite suspensions (3000 $\mu M)$ at pH 7 results in
- 433 the decrease of \triangle [Fe²⁺(aq)] (Table 1), due to inhibition of magnetite dissolution by added Fe²⁺(aq).¹⁸
- 434 Addition of 100 μM AQDSchanges $\bigtriangleup[Fe^{2+}{}_{(aq)}]$ from positive to negative values, and
- 435 correspondingly 98% AQDS is reduced by the Fe²⁺-magnetite system. The decrease of $[Fe^{2+}_{(aq)}]_{eq}$
- 436 is much more than the value of $2*[AQDS_{red}]_{eq}$, so not all electrons are transferred from $Fe^{2+}_{(aq)}$ to
- 437 AQDS. Both x_{stru} and x_{surf} in magnetite decreased after addition of AQDS to the Fe²⁺-magnetite
- 438 system (Table 1). The observed decrease of x_{stru} is probably attributed to solidstate migration of
- 439 electrons from the interior to the near-surface region of magnetite due to AQDS reduction by
- 440 surface-associated Fe²⁺, which is similar to the phenomenon in magnetite suspensions without
- 441 added $Fe^{2+}_{(aq)}$. However, different from the case without added $Fe^{2+}_{(aq)}$, x_{surf} of magnetite amended
- 442 with 1000 μM Fe^{2+}_{(aq)} obviously decreases after AQDS addition, which might be related to a

443 change of Fe(II) speciation on magnetite surface. XMCD is only sensitive to magnetically ordered

- 444 Fe(II) in the near-surface region of magnetite, but the XAS signal corresponds to both magnetic
- 445 and non-magnetic Fe in the system. The intensity of Fe(II) peak in the XAS signal did not
- 446 obviously decrease after addition of AQDS (Figure S13), suggesting the formation of
- 447 non-magnetic $Fe(II)(OH)_2$ -like species on magnetite surface in this case. This is different from the
- 448 results of the Fe²⁺-magnetite system without AQDS, in which no stable Fe(II) surface complexes
- 449 or secondary Fe²⁺ precipitates are formed.¹⁴ Further studies are needed to investigate the effect of
- 450 AQDS on the complexation of Fe²⁺ on magnetite surface. There are no peaks of secondary phases
- 451 in the μXRD patterns of all post-reaction samples, indicating that the non-magnetic
- 452 $Fe(II)(OH)_2$ -like species is probably amorphous or at a quantity below the detection limit of
- 453 μ XRD. The formation of Fe(II)(OH)₂-like species also makes it difficult to get a closed
- 454 mass/charge balance from the changes of aqueous solution and magnetite. The results suggest that,
- 455 in Fe²⁺-amended magnetite suspension at pH 7, AQDS promotes the transfer of electron
- 456 equivalents from aqueous solution to magnetite, inhibits incorporation of Fe²⁺ or electron injection
- 457 into magnetite structure, and also induces the production of non-magnetic Fe(II) (OH)₂-like species
- 458 on magnetite surface.
- 459 In magnetite suspension (3000 μ M) without added Fe²⁺_(aq) at pH 8, no measurable Fe²⁺_(aq) is
- 460 released from magnetite ($[Fe^{2+}_{(aq)}] = 0 \mu M$), no matter whether AQDS is present (Table 1).
- 461 Addition of 100 μ M AQDS results in 80.8 μ M reduced AQDS (2*[AQDS_{red}]_{eq} = 161.6 μ M), and
- 462 correspondingly decreases x_{stru} in magnetite from 0.526 to 0.501. The decrease of [Fe(II)_{stru}] in
- 463 magnetite after reaction with AQDS is ~159 μM (for details of $\[fe(II)]_{stru}$ calculation, see SI
- 464 Section S5.3) that is close to the value of $2*[AQDS_{red}]_{eq}$ (161.6 μM). Thus, AQDS is reduced

465 mainly by structural Fe(II) of magnetite in this case. The value of x_{surf} slightly increases from

- 466 0.584 to 0.590 after AQDS addition (Table 1), implying the similar solidphase migration of
- 467 electron equivalents in magnetite that is mentioned above.
- 468 The amendment of 1000 μM $Fe^{2+}{}_{(aq)}$ to the 3000 μM magnetite suspension at pH 8 induces
- 469 the uptake of 555 μ M Fe²⁺_(aq) by magnetite, coupled to an increase of x_{stru} from 0.526 to 0.538.
- 470 The increase of x_{stru} is attributed to the incorporation of Fe²⁺ into magnetite structure or electron
- 471 transfer from sorbed Fe(II) to structural Fe(III) in the underlying magnetite. After addition of 100
- 472 μM AQDS to Fe^2+-amended magnetite at pH 8, AQDS is completely reduced, and $\triangle[Fe^{2+}{}_{(aq)}]$
- 473 changes from -555 to -750 μ M (Table 1). Correspondingly, the value of x_{stru} (0.525) for magnetite
- 474 in this case is similar to that (0.526) of magnetite in the pH 8 buffer solution without added $Fe^{2+}_{(aq)}$
- 475 or AQDS. The increase in the absolute values of $\bigtriangleup[Fe^{2+}{}_{(aq)}]$ (195 $\mu M)$ is close to the value of
- 476 $2*[AQDS_{red}]_{eq}$ (200 µM), so electron equivalents mainly flows from Fe²⁺_(aq) to AQDS, probably
- 477 via the steps involving Fe²⁺ adsorption onto magnetite surface and subsequent AQDS reduction by
- 478 Fe(II)-Mt. No further Fe²⁺_(aq) incorporation or electron injection into magnetite structure occurred
- 479 after AQDS addition under this condition, even though there are excess $Fe^{2+}_{(aq)}$ ions in the system.
- 480 Compared to the Fe²⁺-amended magnetite without AQDS, addition of AQDS results in the
- 481 decrease of both x_{stru} and x_{surf} , which is similar to the trend observed at pH 7 (Table 1). The XAS
- 482 signal (Figure S13) shows the similar intensity of Fe(II) peak before and after reaction with AQDS
- 483 in the Fe²⁺-amended magnetite at pH 8, suggesting the presence of nonmagnetic Fe(II) species on
- 484 magnetite surface. The Fe(II) enrichment into surface structure and the formation of non-magnetic
- 485 Fe(II)(OH)₂-like species after AQDS addition might inhibit Fe²⁺_(aq) incorporation or electron
- 486 injection into magnetite structure at pH 8.

488 Environmental Implications

- 489 The findings in this study reveal that the model quinone molecule AQDS can significantly
- 490 impact the interaction between magnetite and dissolved Fe²⁺, causing changes in: (i) redox
- 491 potentials for the Fe^{2+} -magnetite system; (ii) the equilibrium distribution of Fe(II) in the
- 492 magnetite-solution system; and (iii) the change of the structural Fe(II)/Fe(III) versus
- 493 surface-localized Fe(II)/Fe(III) in magnetite, under environmentally relevant conditions. The
- 494 findings show that the dynamic redistribution of electron equivalents between $\ensuremath{\mathsf{Fe}^{2+}}_{(aq)}$ and
- 495 mixed-valent iron oxide minerals, such as magnetite, can be significantly impacted by the
- 496 presence of quinones, resulting in modified reduction reactivity of minerals. The inhibition of
- 497 $Fe^{2+}_{(aq)}$ incorporation or electron injection into magnetite structure by AQDS in the Fe²⁺-amended
- 498 magnetite suspension at pH 7-8 is consistent with our previous results that humic acid-coated
- 499 magnetite transfers electrons between microbial cells of different species mainly via humic acid
- 500 on magnetite surface.⁴⁹ Moreover, understanding the effect of quinones on the flow of electron
- 501 equivalents in Fe²⁺_(aq)-magnetite systems can aid understanding of the role of magnetite in
- 502 biogeochemical processes and help develop applications of magnetite/zero valent iron
- 503 nanoparticles for environmental remediation.
- 504 At the same time, the equilibrium speciation of AQDS can also be changed, to different
- 505 extents, by magnetite in the absence or presence of $Fe^{2+}_{(aq)}$. AQDS is usually used as an electron
- 506 shuttle to promote dissimilatory microbial reduction of Fe(III) oxides. Because magnetite and
- 507 $Fe^{2+}_{(aq)}$ are common products of microbial Fe(III) reduction, the presence of quinones may not
- 508 only facilitate electron transfer between microorganisms and iron oxides, but also influence
- 509 reduction reactivity of biogenic magnetite. In addition, redox-active quinones

can act as recyclable

- 510 electron acceptors for anaerobic microbial respiration and become re-oxidized during aeration of
- 511 temporarily anoxic systems.⁵⁰ Moreover, natural organic matters contain diverse quinone moieties,
- 512 so the effect of other model quinones on Fe^{2+} -magnetite interaction deserve further exploration for
- 513 understanding the cycling and impacts of natural organic matters in environmentally relevant
- 514 redox transition zones.

516 ASSOCIATED CONTENT

- 517 Supporting Information. Additional figures and details for Materials and Methods and Results and
- 518 Discussion are presented. This material is available free of charge via the Internet at
- 519 http://pubs.acs.org.
- 520

521 AUTHOR INFORMATION

- 522 Corresponding Author
- 523 J Liu: E-mail: juan.liu@pku.edu.cn; address: College of Environmental Sciences and Engineering,
- 524 Peking University, Beijing 100871, China
- 525 Z Zhu: E-mail: <u>zlzhu@cug.edu.cn</u>; address: State Key Laboratory of Biogeology and
- 526 Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan,
- 527 Hubei 430074, China.
- 528

529 ACKNOWLEDGEMENTS

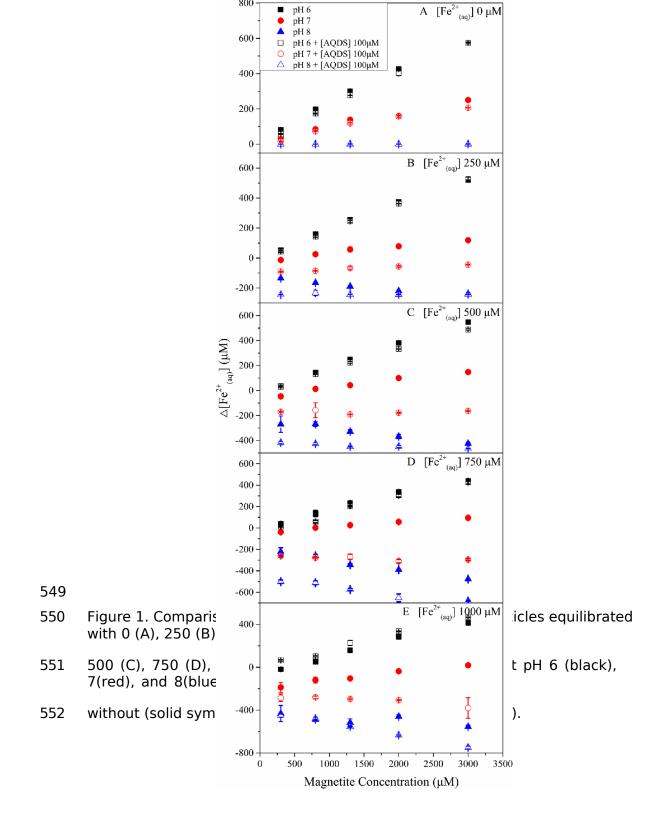
- 530 This work was financially supported by National Basic Research Program of China (973
- 531 Program, 2014CB846001) and National Natural Science Foundation of China (41472306 and

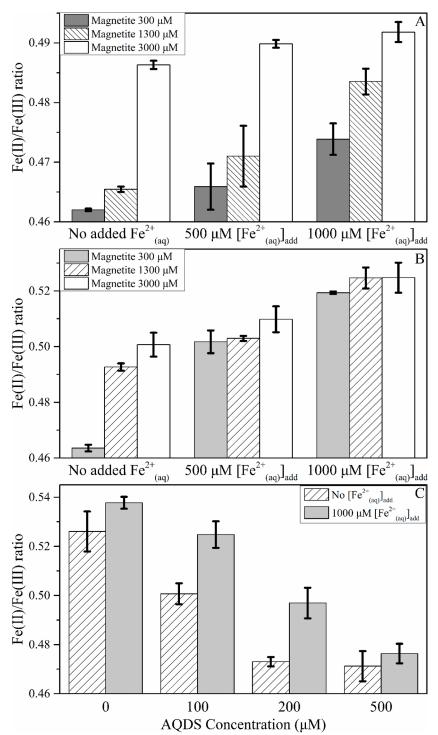
- 532 41673014). KMR acknowledges support from the U.S. Department of Energy (DOE), Office of
- 533 Science, Office of Basic Energy Sciences, from the Chemical Sciences, Geosciences, and
- 534 Biosciences Division through its Geosciences program at Pacific Northwest National Laboratory
- 535 (PNNL). A portion of this research was performed using EMSL, a national scientific user facility
- 536 sponsored by the DOE Office of Biological and Environmental Research and located at PNNL.
- 537 The work performed at the ALS is supported by the Director, Office of Basic Energy Sciences of
- the U.S. DOE under Contract No. DE-AC02-05CH11231.

- 540 Table 1. Charge balance in the 3000 μM magnetite suspensions amended with 0 $_{-}$ 1000 μM Fe^{2+}_{(aq)}
- 541 and 0 100 μM AQDS at pH 7-8

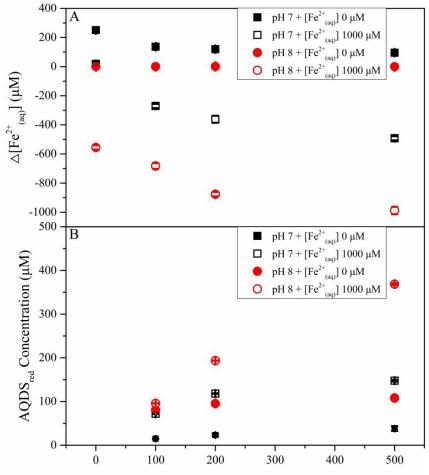
Experir	nental	conditions	Fe ²⁺ (aq)	AQDS	Electron equivale nts [‡]	Chan in mag te	-
Fe(II) _{added}	рН	[AQDS]	∆[Fe ²⁺	2*[AQDS] _{re}	∆[Fe ²⁺	$x_{\rm stru}^{\perp}$	X_{surf}^{T}
(µM)		i	(aq)] [†]	d	(aq)]+		
		nt	(µM)	(μM)	2*[AQDS] _r		
		(µM)			^{ed} (μM)		
0	Stoc k	0	0	0	0	0.544	0.53 8
0	7	0	250.5	0	250. 5	0.498	0.60 4
0	7	100	206.7	13.4	220. 1	0.486	0.66 7
100 0	7	0	19.2	0	19.2	0.511	0.71 4
100 0	7	100	-380.0	196.0	-184	0.492	0.64 3
0	8	0	0	0	0	0.526	0.58 4
0	8	100	0	161.6	161. 6	0.501	0.59 0
100 0	8	0	-555	0	-555	0.538	0.61 8
100 0	8	100	-750	200.0	-550	0.525	0.57 4

542 [†]The positive values of \triangle [Fe²⁺_(aq)] represent the increase of Fe²⁺_(aq), and the negative values denote

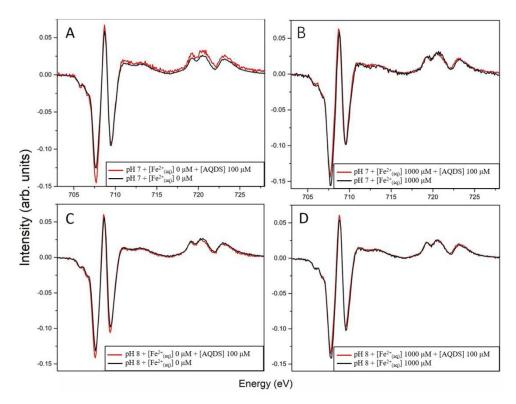

543 the decrease of $Fe^{2+}_{(aq)}$


544 ⁺The positive values represent the flow of electron equivalents from aqueous solution to solid, and

545 the negative values denote the opposite direction.


546 ${}^{\perp}x_{stru}$: structural Fe(II)/Fe(III) ratio deduced from μ XRD results

547 Tx_{surf} : surface-localized Fe(II)/Fe(III) ratio deduced from XMCD results



- 554 Figure 2. Structural Fe(II)/Fe(III) ratios of magnetite (300 3000 $\mu\text{M})$ in the suspensions amended
- 555 with 0-1000 μM Fe^{2+}_{(aq)} at pH 7 (A) and 8 (B) with 100 μM AQDS. (C) Effects of initial AQDS
- 556 concentration (0-500 $\mu M)$ on structrual Fe(II)/Fe(III) ratios of magnetite (3000 $\mu M)$ in the
- suspensions without $Fe^{2+}_{(aq)}$ and with 1000 μ M $Fe^{2+}_{(aq)}$, respectively, at pH 8.

- Initial AQDS Concentration (µM)
- 559 Figure 3 Effects of initial AQDS concentrations on (A) the change of [Fe $^{2+}$ $_{\rm (aq)}]$ and (B) the
- 560 equilibrium concentrations of reduced AQDS in the 3000 μM magnetite suspensions without
- added $Fe^{2+}(aq)$ (solid dots) or amended with 1000 μ M $Fe^{2+}(aq)$ (open dots).

- 566 Figure 4 Comparison of XMCD spectra of 3000 μ M magnetite NPs before (black) and after (red)
- 567 reaction with 100 μM AQDS in the pH 7 buffer solution without (A) or with (B) 1000 μM added
- 568 $Fe^{2+}_{(aq)}$, and in the pH 8 buffer solution without (C) or with (D) 1000 μ M added $Fe^{2+}_{(aq)}$.

569 References

- 570 (1) Baer, D. R.; Grosz, A. E.; Ilton, E. S.; Krupka, K. M.; Liu, J.; Penn, R. L.; Pepin, A., Separation,
- *571* characterization and initial reaction studies of magnetite particles from Hanford sediments. *Phys.*
- 572 Chem. Earth **2010**, 35, (6), 233-241.
- 573 (2) Liu, J.; Pearce, C. I.; Qafoku, O.; Arenholz, E.; Heald, S. M.; Rosso, K. M.,
- Tc(VII) reduction

574 kinetics by titanomagnetite ($Fe_{3-x}Ti_xO_4$) nanoparticles. *Geochim. Cosmochim. Acta* **2012**, 92, 67-81.

575 (3) Latta, D. E.; Pearce, C. I.; Rosso, K. M.; Kemner, K. M.; Boyanov, M. I.,

Reaction of U^{VI} with

576 Titanium-Substituted Magnetite: Influence of Ti on U^{IV} Speciation. *Environ. Sci. Technol.* **2013**, 47,

- 577 (9), 4121-4130.
- 578 (4) Cheng, W.; Marsac, R.; Hanna, K., Influence of Magnetite Stoichiometry on the Binding of
- 579 Emerging Organic Contaminants. *Environ. Sci. Technol.* **2018**, 52, (2), 467-473.
- (5) Ali, I., New Generation Adsorbents for Water Treatment. *Chem. Rev.* 2012, 112, (10), 5073-5091.
- 581 (6) Usman, M.; Byrne, J. M.; Chaudhary, A.; Orsetti, S.; Hanna, K.; Ruby, C.; Kappler, A.;
- 582 Haderlein, S. B., Magnetite and Green Rust: Synthesis, Properties, and Environmental Applications of
- 583 Mixed-Valent Iron Minerals. *Chem. Rev.* **2018**, 118, (7), 3251-3304.
- 584 (7) Zang, H.; Miao, C.; Shang, J.; Liu, Y.; Liu, J., Structural effects on the catalytic activity of
- 585 carbon-supported magnetite nanocomposites in heterogeneous Fenton-like reactions. *RSC Adv.* **2018**, 8,

586 (29), 16193-16201.

587 (8) Catalano, J. G.; Fenter, P.; Park, C.; Zhang, Z.; Rosso, K. M., Structure and oxidation state of

588 hematite surfaces reacted with aqueous Fe(II) at acidic and neutral pH. *Geochim. Cosmochim. Acta*

- **2010**, 74, (5), 1498-1512.
- 590 (9) Frierdich, A. J.; Helgeson, M.; Liu, C.; Wang, C.; Rosso, K. M.; Scherer, M. M., Iron Atom
- 591 Exchange between Hematite and Aqueous Fe(II). *Environ. Sci. Technol.* **2015**, 49, (14), 8479-8486.
- 592 (10) Cornell, R. M.; Schwertmann, U., *The Iron Oxides: Structure, Properties, Reactions, Occurrences*
- 593 and Uses. Wiley-VCH: Weinheim, 2003.
- 594 (11) Pearce, C. I.; Qafoku, O.; Liu, J.; Arenholz, E.; Heald, S. M.; Kukkadapu, R. K.; Gorski, C. A.;
- 595 Henderson, C. M. B.; Rosso, K. M., Synthesis and properties of titanomagnetite (Fe₃ $_{-\ x} Ti_{x}O_{4})$
- 596 nanoparticles: A tunable solid-state Fe(II/III) redox system. J. Colloid Interface Sci.

2012, 387, (1),

597 24-38.

598 (12) Klausen, J.; Troeber, S. P.; Haderlein, S. B.; Schwarzenbach, R. P., Reduction of Substituted

599 Nitrobenzenes by Fe(II) in Aqueous Mineral Suspensions. *Environ. Sci. Technol.* **1995**, 29, (9),

600 2396-2404.

601 (13) Gregory, K. B.; Larese-Casanova, P.; Parkin, G. F.; Scherer, M. M., Abiotic Transformation of 602 Hexahydro-1,3,5-trinitro-1,3,5-triazine by Fe^{II} Bound to Magnetite. *Environ. Sci. Technol.* **2004**, 38, 603 (5), 1408-1414.

604 (14) Gorski, C. A.; Scherer, M. M., Influence of Magnetite Stoichiometry on Fe^{II} Uptake and

605 Nitrobenzene Reduction. Environ. Sci. Technol. 2009, 43, (10), 3675-3680.

606 (15) Gorski, C. A.; Handler, R. M.; Beard, B. L.; Pasakarnis, T.; Johnson, C. M.; Scherer, M. M., Fe 607 Atom Exchange between Aqueous Fe²⁺ and Magnetite. *Environ. Sci. Technol.* **2012**, 46, (22), 608 12399-12407.

609 (16) Liu, J.; Pearce, C. I.; Liu, C.; Wang, Z.; Shi, L.; Arenholz, E.; Rosso, K. M., $Fe_{3-x}Ti_xO_4$

610 Nanoparticles as Tunable Probes of Microbial Metal Oxidation. *J. Am. Chem. Soc.* **2013**, 135, (24),

611 8896-8907.

(17) Byrne, J. M.; Klueglein, N.; Pearce, C.; Rosso, K. M.; Appel, E.; Kappler, A., 612 Redox cycling of

613 Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria. *Science* **2015**, 347, (6229), 1473-1476. 614 (18) Peng, H.; Pearce, C.; Huang, W.; Zhu, Z.; N'Diaye, A. T.; Rosso, K.; Liu, J., Reversible Fe(II) 615 Uptake/Release by Magnetite Nanoparticles. *Environ. Sci.: Nano* **2018**, 5, (7), 1545-1555. 616 (19) Frierdich, A. J.; Beard, B. L.; Scherer, M. M.; Johnson, C. M., Determination of the Fe(II)_{aq} – 617 magnetite equilibrium iron isotope fractionation factor using

the three-isotope method and a *Planet. Sci. Lett.* **2014**, 391, 77-86. 618 multi-direction approach to equilibrium. Earth.

619 (20) Handler, R. M.; Frierdich, A. J.; Johnson, C. M.; Rosso, K. M.; Beard, B. L.; Wang, C.; Latta, D. 620 E.; Neumann, A.; Pasakarnis, T.; Premaratne, W. A. P. J.; Scherer, M. M., Fe(II)-Catalyzed 621 Recrystallization of Goethite Revisited. *Environ. Sci. Technol.* **2014**, 48, (19), 11302-11311.

622 (21) Gorski, C. A.; Fantle, M. S., Stable mineral recrystallization in low temperature aqueous systems:

624 (22) Shi, Z.; Zachara, J. M.; Shi, L.; Wang, Z.; Moore, D. A.; Kennedy, D. W.; Fredrickson, J. K., 625 Redox Reactions of Reduced Flavin Mononucleotide (FMN), Riboflavin (RBF), and 626 Anthraquinone-2,6-disulfonate (AQDS) with Ferrihydrite and Lepidocrocite. *Environ. Sci. Technol.* 627 **2012**, 46, (21). 11644-11652.

628 (23) Orsetti, S.; Laskov, C.; Haderlein, S. B., Electron Transfer between Iron Minerals and Quinones: 629 Estimating the Reduction Potential of the Fe(II)-Goethite Surface from AQDS Speciation. *Environ. Sci.* 630 *Technol.* **2013**, 47, (24), 14161-14168.

631 (24) Fan, D.; Bradley, M. J.; Hinkle, A. W.; Johnson, R. L.; Tratnyek, P. G., Chemical Reactivity 632 Probes for Assessing Abiotic Natural Attenuation by Reducing Iron Minerals. *Environ. Sci. Technol.* 633 **2016**, 50, (4), 1868-1876.

634 (25) Lovley, D. R.; Coates, J. D.; BluntHarris, E. L.; Phillips, E. J. P.; Woodward, I. C., Humic

635 substances as electron acceptors for microbial respiration. Nature **1996**, 382,

(6590), 445-448.

636 (26) Newman, D. K.; Kolter, R., A role for excreted guinones in extracellular electron transfer. Nature

637 **2000**, 405, (6782), 94-97.

638 (27) Shimizu, M.; Zhou, J.; Schröder, C.; Obst, M.; Kappler, A.; Borch, T.,

Dissimilatory Reduction

639 and Transformation of Ferrihydrite-Humic Acid Coprecipitates. Environ. Sci. Technol. 2013, 47, (23),

640 13375-13384.

- 641 (28) Shi, Z.; Zachara, J. M.; Wang, Z.; Shi, L.; Fredrickson, J. K., Reductive dissolution of goethite
- 642 and hematite by reduced flavins. Geochim. Cosmochim. Acta 2013, 121, 139-154.
- 643 (29) Gorski, C. A.; Nurmi, J. T.; Tratnyek, P. G.; Hofstetter, T. B.; Scherer, M. M., Redox Behavior of
- 644 Magnetite: Implications for Contaminant Reduction. Environ. Sci. Technol. 2010, 44, (1), 55-60.
- 645 (30) Dhakal, P.; Matocha, C. J.; Huggins, F. E.; Vandiviere, M. M., Nitrite Reactivity with Magnetite.
- 646 Environ. Sci. Technol. 2013, 47, (12), 6206-6213.
- 647 (31) Bae, S.; Lee, W., Influence of Riboflavin on Nanoscale Zero-Valent Iron Reactivity during the
- Degradation of Carbon Tetrachloride. Environ. Sci. Technol. 2014, 48, (4), 2368-648 2376.
- 649 (32) Bae, S.; Hanna, K., Reactivity of Nanoscale Zero-Valent Iron in Unbuffered Systems: Effect of

pH and Fe(II) Dissolution. *Environ. Sci. Technol.* **2015**, 49, (17), 10536-10543.
(33) Shi, Z.; Fan, D.; Johnson, R. L.; Tratnyek, P. G.; Nurmi, J. T.; Wu, Y.; Williams, K. H., Methods 652 for characterizing the fate and effects of nano zerovalent iron during groundwater remediation. *J.* 653 *Contam. Hydrol.* **2015**, 181, 17-35.
(34) Marsac, R.; Pasturel, M.; Hanna, K., Reduction Kinetics of Nitroaromatic Compounds by

655 Titanium-Substituted Magnetite. J. Phys. Chem. C **2017**, 121, (21), 11399-11406.

656 (35) Stookey, L. L., Ferrozine — a new spectrophotometric reagent for iron. *Anal. Chem.* **1970**, 42,

657 (7), 779-781.

658 (36) Yu, Q.; Kandegedara, A.; Xu, Y.; Rorabacher, D. B., Avoiding Interferences from Good's 659 Buffers: A Contiguous Series of Noncomplexing Tertiary Amine Buffers Covering the Entire Range of 660 pH 3–11. *Anal. Biochem.* **1997**, 253, (1), 50-56.

661 (37) Buchholz, A.; Laskov, C.; Haderlein, S. B., Effects of Zwitterionic Buffers on Sorption of Ferrous

662 Iron at Goethite and Its Oxidation by CCl4. *Environ. Sci. Technol.* **2011**, 45, (8), 3355-3360.

663 (38) Liu, C.; Zachara, J. M.; Foster, N. S.; Strickland, J., Kinetics of Reductive Dissolution of

664 Hematite by Bioreduced Anthraquinone-2,6-disulfonate. *Environ. Sci. Technol.* **2007**, 41, (22),

665 7730-7735.

666 (39) Uchimiya, M.; Stone, A. T., Reduction of Substituted *p*-Benzoquinones by Fe^{II} Near Neutral pH.

667 Aquat. Geochem. 2009, 16, (1), 173-188.

668 (40) Stewart, S. M.; Hofstetter, T. B.; Joshi, P.; Gorski, C. A., Linking

Thermodynamics to Pollutant

669 Reduction Kinetics by Fe²⁺ Bound to Iron Oxides. *Environ. Sci. Technol.* **2018**, 52, (10), 5600-5609. 670 (41) Pang, S. C.; Chin, S. F.; Anderson, M. A., Redox equilibria of iron oxides in aqueous-based 671 magnetite dispersions: Effect of pH and redox potential. *J. Colloid Interface Sci.* **2007**, 311, (1), 672 94-101.

- 673 (42) Wedege, K.; Dražević, E.; Konya, D.; Bentien, A., Organic Redox Species in Aqueous Flow
- 674 Batteries: Redox Potentials, Chemical Stability and Solubility. *Sci. Rep.* **2016**, 6, 39101.
- 675 (43) Clark, W. M., *Oxidation-Reduction Potentials of Organic Systems*. Williams and Wilkins:
- 676 Baltimore, MD, 1960.

677 (44) Rosso, K. M.; Smith, D. M. A.; Wang, Z.; Ainsworth, C. C.; Fredrickson, J. K., Self-Exchange 678 Electron Transfer Kinetics and Reduction Potentials for Anthraquinone Disulfonate. *J. Phys. Chem. A* 679 **2004**, 108, (16), 3292-3303. 680 (45) Gorski Christopher, A.; Scherer Michelle, M., Determination of paperaticulate magnetize 681 stoichiometry by Mössbauer spectroscopy acidic

680 (45) Gorski Christopher, A.; Scherer Michelle, M., Determination of nanoparticulate magnetite 681 stoichiometry by Mössbauer spectroscopy, acidic dissolution, and powder X-ray diffraction: A critical 682 review. Am. Mineral. **2010**, 95, (7), 1017-1026.

683 (46) Sander, M.; Hofstetter, T. B.; Gorski, C. A., Electrochemical Analyses of Redox-Active Iron 684 Minerals: A Review of Nonmediated and Mediated Approaches. *Environ. Sci. Technol.* **2015**, 49, (10), 685 5862-5878.

686 (47) Uchimiya, M.; Stone, A. T., Redox reactions between iron and quinones: Thermodynamic

687 constraints. Geochim. Cosmochim. Acta 2006, 70, (6), 1388-1401.

688 (48) Jones, A. M.; Murphy, C. A.; Waite, T. D.; Collins, R. N., Fe(II) Interactions with Smectites: 689 Temporal Changes in Redox Reactivity and the Formation of Green Rust. *Environ. Sci. Technol.* **2017**, 690 51, (21), 12573-12582.

691 (49) You, Y.; Zheng, S.; Zang, H.; Liu, F.; Liu, F.; Liu, J., Stimulatory effect of magnetite on the 692 syntrophic metabolism of Geobacter co-cultures: Influences of surface coating. *Geochim. Cosmochim.* 693 *Acta* **2018**.

694 (50) Klupfel, L.; Piepenbrock, A.; Kappler, A.; Sander, M., Humic substances as fully regenerable

695 electron acceptors in recurrently anoxic environments. *Nat. Geosci.* **2014**, 7, (3), 195-200.