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Abstract

Many signaling systems execute adaptation under circumstances that require noise attenuation. 

Here, we identify an intrinsic trade-off existing between sensitivity and noise attenuation in the 

three-node networks. We demonstrate that, although fine-tuning timescales in three-node adaptive 

networks can partially mediate this trade-off in this context, it prolongs adaptation time and 

imposes unrealistic parameter constraints. By contrast, four-node networks can effectively 

decouple adaptation and noise attenuation to achieve dual function without a trade-off, provided 

that these functions are executed sequentially. We illustrate ideas in seven biological examples, 

including Dictyostelium discoideum chemotaxis and p53 signaling network, and find that adaptive 

networks are often associated with a noise attenuation module. Our approach may be applicable to 

finding network design principles for other dual and multiple functions.

In brief

Minimizing the trade-off between sensitivity and noise attenuation dictates the design principle for 

the dual function of adaptation and noise attenuation.
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Introduction

A fundamental challenge in biology is to understand how the signaling systems in living 

organisms are able to accurately respond to the external signals and robustly carry out their 

functions. General design principles have been found to link recurrent network motifs to 

specific biological functions, such as reliable cell decisions (Brandman et al., 2005), robust 

biological oscillations (Novak and Tyson, 2008; Tsai et al., 2008; Zhang et al., 2017), 

faithful noise resistance (Hornung and Barkai, 2008), optimal fold-change detection (Adler 

et al., 2017), cell polarization (Chau et al., 2012) and adaptation (Ma et al., 2009).

The function of adaptation, referring to the system’s ability to react to a change of signal and 

return to the pre-stimulated level, is vital for living systems to sense a wide range of change 

(Alon et al., 1999; Gardner et al., 2000). Such response terminates the signal response after 

an appropriate time (Ferrell, 2016; Weill et al., 2012) and resists the changed environment to 

maintain their own stability (Muzzey et al., 2009). For example, bacteria maintain their 

sensitivity to chemical gradients over a wide range of attractant or repellent concentrations 

(Barkai and Leibler, 1997). Adaptive Msn2 localization pulse under oxidative stress induced 

by H2O2 plays an important role for yeast to survive environmental challenges (Hao and 

O’Shea, 2011; Levine et al., 2013). Besides, adaptation of E(spl) mediated by miR-7 through 

an incoherent feed-forward loop helps to drive the final state to the previous value after the 

upstream signal changes dramatically, which stabilizes the developmental process of 

drosophila (Li et al., 2009). Adaptive behavior can be measured collectively by two 

quantities: sensitivity and precision. Sensitivity describes how large the magnitude of the 

relative output response is whereas precision depicts how close the pre- and poststimulus 

steady states are (Figure 1A). An exhausted search on all possible three-node enzyme 

networks shows that the adaptation can be achieved by networks containing at least one of 

two core motifs: a negative feedback loop with a buffering node (NFBLB) and an incoherent 
feedforward loop with a proportioner node (IFFLP) (Ma et al., 2009). Similarly, negative 

feedback loops and incoherent feedforward loops are also core motifs in three-node adaptive 

gene regulation networks (Shi et al., 2017).

Signaling systems also need to resist noise to enable reliable responses. It has been found 

that feedback loops play important roles in noise attenuation (Figure 1B). For instance, 

negative feedback (NF) typically reduces cell-cell variations (Alon, 2007; Becskei and 

Serrano, 2000; Fritsche-Guenther et al., 2011; Hansen et al., 2018; Ji et al., 2013). On the 

other hand, positive feedback (PF) can attenuate noise better than NF while the sensitivity is 

maintained (Hornung and Barkai, 2008). By counting on timescales of feedback loops, 

linking fast and slow positive feedback loops is able to maintain a high state and resist large 

noise (Brandman et al., 2005). Moreover, the signed activation time, which describes the 

difference between deactivation and activation time, is a key feature that measures the ability 

of noise reduction in a regulatory system (Wang et al., 2010).

Since adaptive systems are often operated in noisy circumstances (Colin et al., 2017; Sartori 

and Tu, 2011), how to achieve noise attenuation and adaptation simultaneously is clearly a 

challenging task. In equilibrium systems in which the detailed balance condition is satisfied, 

reducing noise and maintaining high sensitivity cannot be achieved simultaneously based on 
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the fluctuation dissipation theorem (Van Kampen, 2007). However, most sensory and 

regulatory systems are non-equilibrium; external metabolic energy is consumed to drive the 

dynamics of the system. It has been demonstrated that it is possible for a system to have both 

high sensitivity and low fluctuation (Sartori and Tu, 2015). In terms of network topologies, 

the investigation of intrinsic noise and adaptive response shows that negative feedback loop 

has a higher response magnitude than incoherent feedforward loop for a given intrinsic noise 

level (Shankar et al., 2015). Moreover, timescale plays a critical role of noise attenuation in 

adaptive systems. Adaptive systems may behave as a bandpass filter so that high-frequency 

extrinsic noise can be averaged out through response time while low-frequency extrinsic 

noise can be filtered by adaptation time (Sartori and Tu, 2011).

Instead of exploring adaptation properties and noise resistance in some classic adaptive 

networks (e.g. IFFLP and NFBLB) (Shankar et al., 2015) or experimentally observed 

networks (Sartori and Tu, 2011), we ask the design principle of low noise and perfect 

adaptation from the bottom-up. What kind of network topologies can maintain adaptation 

and reduce noise simultaneously? If such networks exist, what are the underlying design 

principles?

Here, we systematically investigate the design principles that link network topologies to dual 

function in both three- and four-node networks (Figure 1C). We first use three-node 

networks as a minimal framework and enumerate all possible network topologies to reveal 

the trade-off between sensitivity and noise attenuation capability. In order to mediate such 

trade-off, we also tune the timescale of nodes in three-node adaptive networks. This strategy 

can result in better dual function but introduces some “costs”. Then we turn our attention to 

four-node networks, whose flexibility may provide ways to achieve dual function and 

overcome the limitations of three-node networks. We sequentially combine noise attenuation 

modules with adaptive modules in four-node networks to investigate how different strategies 

influence the compatibility for dual function. Our analysis suggests that despite the 

simplicity of the modules for single function, achieving multiple functions simultaneously 

requires that different functional modules work coherently in both time scales and 

topologies. We further explore a larger four-node network space with an evolution algorithm 

and the design principle of sequential combination emerges again. Examination on seven 

biological systems shows that adaptive networks are often sequentially coupled with a noise 

attenuation module.

Results

Sensitivity, precision, and noise amplification rate

We aim to explore the design principle for network executing both adaptation and noise 

attenuation. The adaptation behavior and noise propagation process are captured by three 

quantities. The adaptation behavior can be described by two quantities: sensitivity and 

precision (Ma et al., 2009). Sensitivity and precision are defined as follows:

Sensitivity  =
Opeak − O1 /O1

I2 − I1 /I1
,
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and

Precision  =
O2 − O1 /O1
I2 − I1 /I1

−1
,

where O1 and O2 are output values in steady state under the input signal I1 and I2 

respectively, and Opeak is the transient peak value when the input signal changes from I1 to 

I2 (Figure 1A). Sensitivity describes the size of the output jump while the precision 

represents how close the pre- and poststimulus output levels are after a persistent change of 

input signal. The system noise level in the output is described using the standard Noise 

Amplification Rate (Hornung and Barkai, 2008; Wang et al., 2010):

NAR = std(O)/mean(O)
std(I)/mean(I) ,

where I denotes the input signal fluctuating around I1 or I2 and O is the corresponding 

output level in steady state (Figure 1B). Thus, according to definition of three quantities, 

networks capable of dual function should have large sensitivity, high precision and low NAR 

(Figure 1C).

We use enzymatic regulatory networks and Michaelis-Menten rate equations to model both 

three-node and four-node networks (see STAR Methods). An enzymatic regulatory network 

with IFFLP topology is illustrated in Figure 1D as an example. Enzyme A is activated by 

input (I) and active enzyme A activates both enzyme B and C. In contrast to enzyme A, 

active enzyme B can deactivate enzyme C, thus forming an incoherent feedforward loop. 

Since both node A and node B have only positive incoming links, basal deactivating 

enzymes are added to regulate the two nodes. With the assumption that the total 

concentration of each enzyme is a constant, the network is modeled as ordinary differential 

equation with three variables (Figure 1D). Each variable represents the concentration of 

active enzyme and fi (i = A, B, C) is the reaction rate of active enzyme. Each term in fi takes 

the form of Michaelis-Menten equation with Michaelis-Menten constant K and catalytic rate 

constant k. Any three- or four-node network follows the same way to construct the model. 

Given all the values of kIA, KIA, kFAA, ⋯, sensitivity and precision are calculated through 

the dynamics of enzyme C when input changes from I1 to I2, and NAR is derived by linear 

noise approximation when input fluctuates around Iss (Iss = I1 or I2) with autocorrelation 

time τ0 (see STAR Methods).

There exists an intrinsic trade-off between robust adaptation and noise attenuation in 
three-node networks

We first try to answer whether three-node networks can robustly execute adaptation and 

buffer noise simultaneously. For each network topology, we measure its robustness by using 

the Q value, which is defined by the number of parameter sets that can yield the target 

functions (Ma et al., 2009). To be more precise, we sample 10,000 parameter sets for each 

topology and quantify three Q values: QA for adaptation, QN for noise attenuation, and 
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QA&N, for dual function. Here, adaptation is defined by sensitivity>1 and precision>10, and 

noise attenuation is defined by NAR<0.2. Dual function of adaptation and noise attenuation 

is achieved if sensitivity>1, precision>10 and NAR<0.2 are satisfied simultaneously. In our 

simulation, the initial input (I1 = 0.4) increases by 12.5% (I2 = 0.45). If the output first 

changes more than 12.5% and finally goes to its steady state that is less than 1.25% different 

from the initial state, sensitivity is larger than 1 and precision is larger than 10. If NAR<0.2, 

the normalized standard deviation (i.e., coefficient of variation) of output is smaller than 

one-fifth of that of input. There are total 16,038 possible three-node network topologies, and 

only 395 networks have been found as the robust adaptation networks (Q value is larger than 

10) (Ma et al., 2009). However, since finite sampling of parameters may lead to some 

randomness in Q values and the threshold Q=10 for defining adaptive network can be 

somewhat arbitrary, to avoid missing some other possible adaptation networks, we 

enumerate all three-node networks rather than taking directly the 395 adaptation networks 

found previously to investigate the dual function.

Enumeration of all possible 16,038 three-node network topologies shows that none of them 

leads to robust dual function. Figure 2A shows the QA – QN − QA&N space of 16,038 three-

node network topologies. Among all these network topologies, 4.65% can achieve non-zero 

QA and 96.97% non-zero QN. However, there is no parameter set that can meet the criterion 

of dual function for all 16,038 networks (QA&N = 0). Although there are nonzero QA&N for 

several network topologies when the sample size of parameter sets increases to 106, the 

maximal QA&N is less than 10. These results indicate that some network topologies may 

have good performance of individual function but are still difficult to achieve dual function. 

For example, circuits (a circuit is defined as a network topology with certain specific 

parameters) buffering noise always show little response to external stimuli while adaptive 

circuits with high sensitivity usually accompany with large noise (Figures 2B and 2C).

To dissect the difficulty of achieving dual function, we investigate the interdependencies 

among three quantities (sensitivity, precision and NAR). Pearson’s correlation coefficients 

are calculated to measure correlations among three quantities for all 16038 network 

topologies (Figures 2D–2F). It can be seen that sensitivity is highly positively correlated 

with NAR, with Pearson’s correlation coefficients ranging from 0.8 to 1 (Figure 2D). This 

means that larger sensitivity generally results in higher NAR, which implies a trade-off 

between adaptation and noise attenuation, hindering the achievement of dual function. In 

contrast to sensitivity, precision is negatively correlated with NAR, which benefits dual 

function (Figure 2E). It should be noted that adaptation alone requires to overcome the 

negative correlation between sensitivity and precision (Figure 2F), which results in an IFFLP 

or NFBLB architecture in three-node adaptive networks (Ma et al., 2009). Additionally, a 

similar analysis in three-node transcriptional regulatory networks (see STAR Methods) 

further confirms the trade-off between adaptation and noise attenuation (Figures S1A–S1D).

Fine-tuning timescales in three-node networks can partially mediate the trade-off between 
sensitivity and NAR with a cost

In order to minimize the trade-off between sensitivity and NAR, we analyze the effect of 

timescales on these two quantities. We use IFFLP as an example to illustrate how timescale 
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modification is performed (Figure 2G). First, for the three-node network modeled by 
dA
dt = f A I, A, B, C , dB

dt = f B A, B, C , and dC
dt = f C A, B, C , we choose one set of 

parameters capable of good precision (i.e., precision>10) (see Table S1 for parameters). 

Then with all of the parameters in fA, fB and fC fixed, we introduce three parameters, τA, τB 

and τC to simulate a new system τA
dA
dt = f A, τB

dB
dt = f B and τC

dC
dt = f C, where tuning τA, 

τB or τC can change the timescale of the corresponding node. Since changing τA, τB or τC 

has no influence on precision, we can investigate how timescales affect sensitivity and NAR. 

For IFFLP, when τA is fixed as a constant (τA = 1), smaller ratio of τC to τB > results in 

higher sensitivity (Figure 2H). With fixed ratio of τC to τB, larger τC leads to smaller NAR 

but has little effect in sensitivity (Figure 2I). Similar results can be obtained for NFBLB 

(Figures S1E and S1F; see Table S2 for parameters). The reason for smaller ratio of τC to τB 

leading to higher sensitivity can be given in this way: small ratio of τC to τB causes a steep 

slope of the node C trajectory at the initial response when the input intensity changes from I1 

to I2, and therefore the maximum of node C in the phase plane becomes large (Figure 2J). 

This can be further validated by mathematical analysis (see STAR Methods). With fixed 

ratio of τC to τB, analytical derivation of NAR using linear noise approximation shows that 

NAR is a decreasing function of τC when τC is large enough compared to the autocorrelation 

time of input noise (see STAR Methods). In fact, with more general form of rate equations 

(i.e., whether it is enzymatic regulation or transcriptional regulation), IFFLP and NFBLB 

still obey the same monotonicity of sensitivity and NAR as functions of τB and τC (see 

STAR Methods).

Taken together, one feasible strategy for reducing the trade-off in IFFLP or NFBLB is to 

increase τC for small NAR while decreasing the ratio of τC to τB to ensure high sensitivity. 

For instance, when we fix a small ratio τC/τB and increase τC to ten times, noise can be 

greatly reduced while sensitivity is almost unchanged (Figure 2K). However, the cost to 

improve dual function by adjusting timescales is a large increase of the adaptation time τAD 

that is defined as the time required for the output to return to halfway between the peak 

value and the steady-state value after change of the input (Barkai and Leibler, 1997) (Figures 

2K and 2L). That is to say, to obtain a small NAR while maintaining adaptation, the system 

is required to take a long adaptation time, which depends on the timescale of input noise and 

network topology. If the time scale of the input noise is faster (corresponding to smaller 

autocorrelation time), the adaptation time required to reach a certain level of NAR will be 

shorter for both IFFLP (Figure 2M) and NFBLB (Figure 2N). Sampling within the same 

parameter space, NFBLB tends to have shorter adaptation time while IFFLP can reach 

smaller NAR (Figures 2O and S1G–S1I). Overall, there is a trade-off between NAR and 

adaptation time.

In fact, for all adaptive three-node networks (not limited to simple IFFLP or NFBLB), the 

trade-off between sensitivity and NAR can be partially lifted by fine-tuning the timescales of 

node B and node C to obtain both high sensitivity and low NAR (see STAR Methods). 

However, besides the side effect of increasing the adaptation time, changing the timescales is 

equivalent to expanding the search space of kinetic parameters, which may be out of 

biologically realistic range.
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Combinations of function-specific modules in four-node networks can achieve dual 
function

Since dual function in three-node networks is difficult to obtain, we next study four-node 

networks as more nodes often provide more flexibility in controlling functions. If we just 

consider networks that contain at least one direct or indirect causal link from the input node 

to the output node and exclude redundant networks that are topologically equivalent, the 

number of possible four-node networks is 19,805,472, which is about 1,200 times more than 

that of possible three-node networks (16,038). Besides, compared to three-node networks, 

the number of parameters in a four-node network is typically larger, leading to an 

exponentially increase in the volume of the parameter space to be sampled. Thus, 

enumeration with effective parameter sampling of all four-node networks is computationally 

too expensive. Alternatively, we construct four-node networks by assembling two function-

specific modules: adaptation module and noise attenuation module. A straightforward 

strategy is the sequential connection of these two modules, including N-A types and A-N 

types (Figure 3A), where N represents noise attenuation and A represents adaptation. N-A 

types indicate that the input signal passes through an upstream noise attenuation module and 

then the downstream adaptation module, while A-N types require that the adaptation module 

is placed upstream of the noise attenuation module. We choose IFFLP and NFBLB as 

adaptation modules (red nodes in Figure 3B) while PF and NF as noise attenuation modules 

(blue nodes in Figure 3B). Thus, by combining minimal adaptation modules and noise 

attenuation modules, we obtain eight four-node networks including four N-A types (the first 

row of Figure 3B) and four A-N types (the second row of Figure 3B). These networks do not 

have redundant links and thus may constitute minimal four-node networks capable of dual 

function. Since we allow the input node and the output node to be the same for these 

modules, IFFLP and NFBLB can be reduced to two-node adaptive networks in Figure 3B.

We explore the capability of these A-N and N-A networks to achieve dual function. As an 

illustration, the Q value of PF-IFFLP type is computed as follows. First, we randomly assign 

2 × 106 parameter sets for PF and IFFLP, respectively. For IFFLP, circuits capable of 

adaptation are recorded and we use a to denote the number of these adaptive circuits. For PF, 

circuits capable of noise attenuation are selected out and its number is denoted by n. Here, 

the criterion for an adaptation circuit is sensitivity>1 & precision>10 while the criterion for 

a noise attenuation circuit is modified as sensitivity>1 & NAR<0.2. The reason why 

sensitivity>1 is added to the criterion for noise attenuation is that we expect to maintain the 

system’s sensitivity when the signal is passing through the noise attenuation module. 

Because of the extremely low percentage of functional NF circuits (~0.0036%, Figure S2A), 

we increase the number of sampling parameter sets to 2 × 106. Then, we assemble function-

specific circuits to construct a × n and characterize corresponding dynamic behaviors to 

calculate the Q value.

We first compute the Q values for the eight networks listed in Figure 3B under different 

thresholds of sensitivity and NAR (Figure 3C). For each bar graph, the criterion for dual 

function is determined by the x coordinate and y coordinate: sensitivity>x & NAR<y & 

precision>10. We define Q as the averaged Q value calculated by eight repeated simulations 

and it is modified by adding 10−8 to ensure log Q  is well-defined. Green bars denote four N-
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A networks: PF-IFFLP, NF-IFFLP, PF-NFBLB, NF-NFBLB while red bars denote four AN 

networks: IFFLP-PF, IFFLP-NF, NFBLB-PF, NFBLB-NF. The results show that 

combinations of function-specific modules in four-node networks can lead to dual function 

(Figure 3C). With sensitivity>1 & NAR<0.2 & precision>10 as the criterion, seven of the 

eight four-node network topologies (excluding NFBLB-NF) can achieve non-zero Q values. 

Although stricter criteria result in smaller Q values, the Q value rankings of the eight 

networks are almost consistent under different combinations of thresholds of sensitivity and 

NAR. Moreover, most N-A networks perform better than A-N networks with the same 

adaptation and noise attenuation modules except for the combination of PF and NFBLB, and 

networks with IFFLP have higher Q values than those with NFBLB.

Next, we investigate which factors affect Q values of assembled four-node networks. 

Clearly, the robustness of each component module, i.e., the number of adaptive circuits a or 

the number of noise attenuation circuits n can affect Q values since the network topology 

with larger a or n has the greater potential to generate more parameter sets capable of dual 

function. With sufficient simulations, we find that adaption modules NFBLB and IFFLP do 

not share a same value of a, neither do noise attenuation modules PF and NF. Furthermore, n 
of PF is about fifty times larger than that of NF, while a of NFBLB is roughly double that of 

IFFLP (Figure S2A). A closer look at the robustness of four modules (PF, NF, IFFLP and 

NFBLB) is shown in Figures 3D–3G. Joint distributions of sensitivity and NAR for noise 

attenuation modules show that PF has a broader and denser functional region than NF, 

implying a larger n (Figures 3D and 3E). For adaptation modules, the functional region of 

NFBLB is larger than IFFLP, indicating a larger a for NFBLB (Figures 3F and 3G).

However, more robust component modules cannot guarantee to constitute better dual 

function. For instance, PF-IFFLP performs better dual function than PF-NFBLB despite that 

NFBLB module can achieve more robust adaptation than IFFLP module. Thus, we define 

the compatibility as the probability of successful combination of adaptation modules and 

noise attenuation modules, i.e.,

Compatibility  = Q
a × n .

We use this quantity to measure the level of compatibility of the two modules when 

combined sequentially to perform the dual function (upper panel in Figure 3H). Given the 

same adaptation and noise attenuation modules, N-A networks have better compatibilities 

thus better performance than A-N networks, except PF-NFBLB. For N-A networks, 

topologies with NF in the upstream have better compatibilities than those with PF when the 

downstream module is fixed, and IFFLP in the downstream leads to better compatibility than 

NFBLB. The A-N networks obey similar rules, where IFFLP-NF is more compatible than 

others.

The response time of upstream module is a key factor for dual function

To identify the key factor that determines the compatibility between modules, we investigate 

how sensitivity, precision and NAR are affected in the eight assembled four-node networks. 

The lower panel in Figure 3H shows the percentages of parameter sets in the eight networks 
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that meet the requirement of sensitivity, precision and NAR for dual function. It can be seen 

that less than 10 percent of parameter sets can satisfy sensitivity>1 for all eight networks 

except NF-IFFLP. Instead, percentages of parameter sets for good precision and NAR are 

relatively high. Thus, loss of sensitivity after module combination can be the bottleneck to 

achieve dual function. Furthermore, the order of N-A networks sorted by percentages of 

sensitivity>1 is consistent with that sorted by compatibility, indicating the impact of 

sensitivity on the compatibility.

Since the downstream module receives the output of the upstream module, the output 

dynamics of the upstream module plays a role in the downstream output sensitivity. Two 

quantities can be used to collectively characterize the upstream output dynamics: sensitivity 

and response time (the time required to reach halfway to the peak value). However, we pay 

particular attention to the upstream response time, because the upstream circuits (noise 

attenuation circuits or adaptation circuits) with different topologies have been limited to 

those with the same requirement of sensitivity (i.e., sensitivity>1) but with no restriction in 

response time. Thus, in what follows, we investigate how the upstream response time affects 

the downstream output sensitivity and its dependence on network topology.

First, we focus on N-A networks. As the noise attenuation module, PF tends to have longer 

response time than NF (Figure 3I). Such difference of response time between PF and NF 

may cause divergence in the output sensitivity of PF-A and NF-A (where A represents 

adaptation module IFFLP or NFBLB). To test this hypothesis, we construct a series of 

dynamics to imitate the outputs of the upstream noise attenuation module where response 

time and sensitivity of the upstream outputs can be assigned manually. The general form of 

the dynamics is defined as following:

Oup(t) =

O1
up, t < T0

O1
up + O2

up − O1
up t − T0

Ton
up + t − T0

, t ≥ T0
.

In this dynamics, Oup(t) increases from its prestimulus steady-state value O1
up after the input 

changes from I1 to I2 at time T0, and finally stabilizes at O2
up. The sensitivity and the 

response time of Oup(t) are given by 
O2

up − O1
up /O1

up

I2 − I1 /I1
 and Ton

up, respectively. Then we 

calculate the sensitivity of assembled N-A circuits, in which the output of the upstream noise 

attenuation module is replaced by Oup(t). By varying O2
up (with fixed O1

up) and Ton
up, we can 

change the upstream sensitivity and the upstream response time respectively, and study how 

these two quantities affect the sensitivity of assembled circuits. Figure 3J shows that the 

percentage of the assembled circuits satisfying sensitivity>1 decreases with increasing 

upstream response time for a given upstream sensitivity whether the downstream module is 

IFFLP or NFBLB. However, to maintain a high output sensitivity, IFFLP can tolerate longer 

upstream response time than NFBLB given the same level of the upstream sensitivity. These 

results indicate that, in order to generate a high output sensitivity for N-A networks, the 
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upstream noise attenuation module should be fast enough and the downstream adaptation 

module need to allow long upstream response time. Thus, NF is a more compatible upstream 

module than PF because of its shorter response time and IFFLP is a more compatible 

downstream module than NFBLB since IFFLP relaxes the requirement of fast upstream 

dynamics.

Next, we conduct a similar study in A-N networks. Distributions of response time indicate 

that IFFLP tends to have longer response time than NFBLB as the adaptation module 

(Figure 3K). Then we construct a series of dynamics to imitate the outputs of the upstream 

adaptation module, which are defined by following equations:

Oup t =

O1
up,

O1
up +

Opeak
up − O1

up

1 − e−1 1 − e

− t − T0
ln 2e

(e + 1)
Ton

up
,

O2
up + Opeak

up − O2
up e

− ln2
To f f

up t
Ton

up

ln 2e
e + 1

− T0
,

t < T0

T0 ≤ t < T0 +
Ton

up

ln 2e
e + 1

t ≥ T0 +
Ton

up

ln 2e
e + 1

.

In this dynamics, Oup(t) initially increases from O1
up to the peak value Opeak

up  and then 

eventually decreases to O2
up with half-time To f f

up . The sensitivity and the response time of 

Oup(t) are given by 
opeak
up − o1

up /o1
up

I2 − I1 /I1
 and Ton

up, respectively. Using the constructed adaptation 

dynamics, we can explore how response time and sensitivity of upstream adaptation module 

outputs affect sensitivity of assembled circuits with PF or NF as the downstream module. 

Figure 3L illustrates that the percentage of assembled circuits satisfying sensitivity>1 

increases with increasing upstream response time, which is opposite to the N-A networks. 

Given the same upstream sensitivity and upstream response time, A-NF can maintain 

sensitivity better than A-PF. These results indicate that, to maintain downstream output 

sensitivity, the upstream adaptation module should be slow enough and downstream noise 

attenuation module should allow relative short upstream response time. The possible reasons 

can be: a fast response in the upstream adaptation module will be severely filtered by the 

downstream noise attenuation module (as a low-pass filter), which is harmful for high 

sensitivity; a fast downstream noise attenuation module has high cutoff frequency and thus 

retains most of the high-frequency signal, which is beneficial for high sensitivity. As a result, 

IFFLP, the one with longer response time, has better compatibility than NFBLB as an 

upstream module, and NF is more compatible as a downstream module because of its higher 

cutoff frequency than PF. It should be noted that NFBLB-NF can better maintain sensitivity 

than NFBLB-PF (lower panel in Figure 3H) but has worse compatibility (upper panel in 

Figure 3H), which results from lower percentage of adaptation circuits in NFBLB-NF 

(Figure S2B).
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The relationship between compatibility and response time of modules in both N-A and A-N 

networks is summarized in Figure 3M. We notice that response time of these modules is 

limited by their individual function topologies. For adaptation modules, sensitivity is 

negatively correlated with response time (Figures S2C and S2D), so high sensitivity often 

leads to short response time. Within the limit of short response time, IFFLP shows longer 

response time than NFBLB, thus leading to better compatibility. For noise attenuation 

modules, NAR is also negatively correlated with response time (Figures S2E and S2F) and 

thus longer response time usually results in lower NAR, i.e., less noise. To match the 

response time of adaptation modules, NF is more compatible than PF because of its shorter 

response time. As a result, a combination of NF and IFFLP optimizes the compatibility and 

thus maximizes the success rate of the dual function.

Evolution algorithm demonstrates the high performance of dual function for N-A networks

The four-node networks considered in the previous sections are limited to a special class in 

which two functional modules (adaptation and noise attenuation) are sequentially connected. 

It would be ideal to expand the search to more classes of four-node networks in order to see 

if new types of dual function topology would emerge, although, as discussed before, it is not 

feasible to enumerate all four-node networks. Since adaptation necessarily requires three 

nodes (i.e., input node, output node and the control node), we focus on the four-node 

networks containing a minimal three-node adaptive network but allowing the fourth node D 

with more flexibility. Specifically, we limit ourselves to explore the set of four-node 

networks with the fourth node D connecting to a three-node IFFLP or NFBLB network via 
two additional links. The two additional links are one incoming link to and one outgoing 

link from node D, i.e., node i ⟹ node D ⟹ node j, i, j ∈ {A, B, C} and the combination 

of signs of these two links can be (+,+), (−,−), (+,−) or (−,+). Thus, there are total 3×3×4=36 

different realizations of the two additional links when added to a three-node minimal 

adaptive network. By this method we construct two subsets of networks in the whole four-

node network space, i.e., the IFFLP-based subset and the NFBLB-based subset, each of 

which has 36 different four-node networks. Note that these sets include N-A networks 

(added links are A ⟹ D ⟹ A) and A-N networks (added links are C ⟹ D ⟹ C).

To find the network topologies in these subsets that best perform the dual function, we 

employ an evolution algorithm (François and Hakim, 2004). For each subset, the algorithm 

begins with an initial collection of circuits whose topologies are randomly chosen from the 

subset and parameters randomly assigned. Through many rounds of growth and selection, 

the circuit collection evolves towards higher performance of the dual function (see STAR 

Methods).

For the IFFLP-based subset, we obtain 115 circuits capable of dual function from 400 

implementations of the evolution algorithm. Six network topologies emerge with relatively 

high occurrences among the 115 functional circuits (Figure 3N). Two of the six networks 

(ranked #2 and #4) are N-A networks, in which added links A→D—|A and A—|D—|A form 

one negative and one positive feedback loop, respectively. This is consistent with fact that 

NA networks have advantage over A-N networks found previously. Interestingly, some new 

dual function four-node networks emerge. The network with the highest frequency of 
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occurrence has added links C—|D—|B, forming a coherent feedforward loop from node A to 

node B (i.e., A→C—|D—|B and A→B; see the inset of Figure 3N). The #3 ranking network 

with added links A—|D—|B also has a coherent feedforward loop from node A to node B 

(i.e., A—|D—|B and A→B; see the inset of Figure 3N). For these two networks, the 

additional coherent feedforward loop is analogous to coherent type 4 (Mangan and Alon, 

2003), which delays the activation of node B and thus may enhance the transient response of 

node C. Comparisons between these two networks and IFFLP show that the additional links 

C—|D—|B or A—|D—|B benefit high sensitivity (Figure S3A) with little effect on noise 

buffering capability (Figure S3B). Moreover, IFFLP added with C—|D—|B or A—|D—|B 

can achieve higher sensitivity than IFFLP given the same level of NAR (Figure S3C), which 

essentially results from slow response of node B caused by the additional coherent 

feedforward loop (Figure S3D). For the other two networks with added links B—|D→A and 

B→D—|A, the additional negative feedback loop through node A coupled with IFFLP 

results in smaller adaptation error (Ma et al., 2009).

For the NFBLB-based subset, only 18 circuits capable of dual function are obtained from 

400 implementations. This is consistent with the previous conclusion that N-A and A-N 

networks containing NFBLB show worse performance of dual function than those 

containing IFFLP. The 18 circuits correspond to only three topologies (Figure 3O). Similar 

to the IFFLP-based subset, two of the three topologies (ranked #1 and #3) have an additional 

coherent feedforward loop from node A to node B (A—|D—|B or A→D→B), which may 

achieve high sensitivity by delaying the response of node B. The third topology (ranked #2) 

has links B— |D—|B, a positive feedback loop which also slows down the activation of node 

B and thus enhances sensitivity. As expected, simulation results show that all of the three 

topologies improve sensitivity without compromising noise buffering capability compared 

with NFBLB (Figures S3E–S3G). Further investigations on node B validate that the 

additional loop (coherent feedforward loop or positive feedback loop) indeed slows down 

the response of node B to improve dual function in these three topologies (Figure S3H).

We also investigate the robustness of dual function for the IFFLP- and NFBLB-based subset, 

and find that top-ranked topologies obtained by the evolution algorithm also have higher 

robustness (Figures S3I–S3L). To avoid zero Q values for almost all topologies, we calculate 

Q values using a relaxed criterion for dual function, i.e., sensitivity>0.8 & precision>10 & 

NAR<0.3. For the IFFLP-based subset, the #1 and #3 ranking topologies obtained by the 

evolution algorithm (Figure 3N) have the top 2 Q values and the N-A network with added 

links A—|D—|A has the 7th highest Q value (Figure S3I). Moreover, different thresholds of 

sensitivity and NAR have little effect on the Q value rankings of 36 IFFLP-based topologies 

(Figure S3J). For the NFBLB-based subset, the three topologies with highest Q values are 

exactly those obtained by the evolution algorithm (Figures S3K and S3L).

The design principles for dual function revealed by exploring a larger four-node network 

space are consistent with those found in previous sections. The first thing is that N-A 

networks still show relatively high performance of dual function even within a larger 

network space. Second, besides the sequential connection of two modules, all the new 

topologies emerged achieve more robust dual function by a better performance in adaptation 

function, in particular by enhancing the sensitivity. This is consistent with our finding that 
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maintaining sensitivity while reducing noise is the key for the dual function. This can be 

accomplished either directly by the sequential connection of two modules (e.g. N-A 

networks) or indirectly by ways of enhancing sensitivity.

Biological examples

In previous sections, we have used three- and four-node networks as coarse-grained 

approximation to biological networks. Although the vast majority of biological networks are 

more complex and tend to have more than three or four nodes, many of them are likely to be 

abstracted into simpler networks with proper coarse-graining. Also, despite the apparent 

complexity, the underlying core network topology responsible for robustly executing the 

biological function might be simpler. Thus, the principles obtained from the simple three- or 

four-node networks may also help to understand more complex biological systems.

By examining several adaptation networks in literatures (Batchelor et al., 2011; Beltrami and 

Jesty, 1995; Bode and Dong, 2004; Bonner and Savage, 1947; Cesarman - Maus and Hajjar, 

2005; Ferrell, 2016; Jackson and Nemerson, 1980; Li et al., 2009; O’Donnell et al., 2005; 

Ohashi et al., 2014; Shah et al., 2016; Sinha and Häder, 2002; Tago et al., 2015; Zhang and 

Lozano, 2017; Zhang et al., 2014), we found that the positive or negative feedback loop is 

often coupled with the adaptation module (Figure 4A). For example, in Dictyostelium 
discoideum, under the change of ligand cAMP, Gβγ subunit on the membrane is activated 

and then modulates RasGEF (guanine nucleotide exchange factor) along with RasGAP 

(GTPase-activating protein). RasGEF activates Ras, whereas RasGAP inactivates Ras. So 

Gβγ, RasGEF, RasGAP and Ras constitute an adaptation module. Meanwhile, PIP3, a vital 

intermediate molecular in the downstream of Ras, is involved in a positive feedback loop 

composed of PI3K, PIP3, RacGEF, Rac and F-actin. Since positive feedback is a noise 

attenuation module, co-occurrence of these two kinds of signaling pathways can be roughly 

regarded as an A-N network. Here, we use Dictyostelium discoideum chemotaxis network 

and p53 activation as biological examples to study whether these modularized signaling 

pathways can perform robust dual function.

Dictyostelium discoideum chemotaxis—Chemotaxis describes the directional 

movement of biological system when exposed to a chemical gradient. This behavior is 

crucial for organisms to seek for food, chase a signaling cue or avoid harmful environment, 

and is observed in many organisms such as bacteria (Barkai and Leibler, 1997; Berg and 

Brown, 1972), amoebae (Bonner and Savage, 1947), neutrophils (Li et al., 2002) and tumor 

cells (Roussos et al., 2011). In chemotaxis systems like bacteria and amoebae, perfect 

adaptation to changes in chemoattractant is essential to gradient sensing. At the same time, 

these systems face with diverse kinds of noise such as receptor-ligand binding noise (Berg 

and Purcell, 1977; Sartori and Tu, 2011), chemoattractant fluctuations and intrinsic noise 

(Sartori and Tu, 2011). In Escherichia coli and Dictyostelium discoideum chemotaxis 

system, adaptation is driven by hydrolysis of SAM, ATP or GTP (high-energy biomolecules 

under physiological conditions), which makes the system far from equilibrium and the 

detailed balance condition broken. Therefore, it is feasible for bacteria and amoebae to 

buffer noise while responding and adapting to signal change (Sartori and Tu, 2015).
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The signaling pathways of Dictyostelium discoideum chemotaxis have been well studied 

(Han et al., 2006; Kimmel and Parent, 2003; Park et al., 2004; Sasaki et al., 2004; Takeda et 

al., 2012). The whole regulatory network can be regarded as a IFFLP-PF type network 

(Figures 4A and S4A). Signaling from the ligand (cAMP) to Ras constitutes the adaptation 

module. The ligand binds to the G-protein coupled receptor (GPCR), activating the GPCR. 

Upon activation of GPCR, the heterotrimeric G-protein dissociates into a Gα subunit and a 

free Gβγ subunit. The free Gβγ subunit activates both RasGEF and RasGAP. RasGEF 

catalyzes GDP-bound Ras (inactive form of Ras) to GTP-bound Ras (active form of Ras), 

while RasGAP converts active Ras to its inactive form by catalyzing GTP hydrolysis. Hence, 

the regulations of Ras form an incoherent feedforward loop, which is the core of the 

adaptation module (Takeda et al., 2012). Downstream of the adaptation module is the noise 

attenuation module, characterized by the positive feedback loop between PI3K and PIP3. 

Accumulation of upstream output Ras activates PI3K on the plasma membrane. Active 

membrane PI3K phosphorylates the membrane lipid PIP2 into PIP3, a second messenger. 

Accumulation of PIP3 activates Rac by stimulating the activity of RacGEF, and activation of 

Rac leads to polymerization of F-actin. F-actin polymerization promotes the localization of 

PI3K on the plasma membrane from cytoplasm. Thus, PIP3 can facilitate the membrane 

localization of PI3K through F-actin polymerization and forms a positive feedback loop with 

PI3K.

By merging the multi-steps in the linear pathway of regulation from PIP3 to PI3K into one 

step, this system can be simplified to seven species (Figure S4B) and modeled by following 

equations:

dGβγ
dt = k1 ⋅ cAMP ⋅ Gβγ0 − Gβγ − kd1 ⋅ Gβγ

dRasGEF
dt = k2 ⋅ Gβγ − kd2 ⋅ RasGEF

dRasGAP
dt = k3 ⋅ Gβγ − kd3 ⋅ RasGAP

dRas
dt = k4 ⋅ RasGEF ⋅ Ras0 − Ras − kd4 ⋅ RasGAP ⋅ Ras

dPI3K
dt = k5 ⋅ Ras ⋅ PI3Km − kd5 ⋅ PI3K

dPI3Km
dt = k7 ⋅ PI3K0 − PI3Km − PI3K ⋅ PIP3 + k70 − kd7 ⋅ PI3Km − k5 ⋅ Ras ⋅ PI3Km + kd5 ⋅ PI3K

Qiao et al. Page 14

Cell Syst. Author manuscript; available in PMC 2020 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dPIP3
dt = k6 ⋅ PI3K ⋅

P0 − PIP3
P0 − PIP3 + K6

− kd6 ⋅ PIP3.

To investigate the importance of noise attenuation module, we destroy positive feedback by 

artificially deleting the regulation from PIP3 to PI3K as comparison. This is achieved by 

replacing PIP3 with a (arbitrary) constant 0.44 in the equation of PI3Km (other choices of 

the constant gave the same results). Parameters of upstream adaptation module are selected 

to achieve an adaptive response of Ras (Table S3). Parameters of downstream module with 

or without positive feedback are randomly chosen with a sample size of 106 (Table S3). The 

adaptation precision of PIP3 is well maintained because of the good precision of Ras. The 

distributions of sensitivity and NAR without and with positive feedback are shown in 

Figures 4B and 4C, respectively. The area bounded by red dashed line is the region of dual 

function, within which the network with positive feedback (Figure 4C) has a higher Q value 

than that without (Figure 4B). Moreover, the superiority of the network with positive 

feedback in the Q value remains consistent for different combinations of thresholds of 

sensitivity and NAR (Figure S4C). It demonstrates the critical role of positive feedback as a 

downstream noise attenuation module in the IFFLP-PF network of Dictyostelium 
discoideum chemotaxis to achieve dual function.

p53 activation—In mammalian cells, tumor suppressor p53 is a common mediator of 

many stress-related signaling pathways and plays a role in cell cycle arrest, senescence and 

apoptosis (Zhang and Lozano, 2017). However, different kinds of stresses can induce 

distinct temporal dynamics of p53, which may encode different information (Batchelor et 

al., 2011; Levine et al., 2013). For example, double-strand breaks (DSBs) caused by γ-

radiation can lead to stereotyped pulses of p53, while single-stranded DNA (ssDNA) 

damage caused by UV light can induce a dose-dependent adaptive dynamics of p53 

(Batchelor et al., 2011).

The signaling pathway involved in response to UV can be regard as a PF-NFBLB type 

network (Figure 4A). Exposure to UV light can cross-link adjacent cytosine or thymine 

bases and create pyrimidine dimers, leading to ssDNA damage (Sinha and Häder, 2002). 

ssDNA damage lesions lead to recruitment of ATR and phosphorylation of ATR itself. Then 

the kinase activity of ATR is stimulated by TopBP1 with the help of other regulators such as 

Rad17 and 9-1-1 complexes (Zhang and Lozano, 2017). Once stimulated, ATR 

phosphorylates Chk1 and activation of ATR-Chk1 checkpoint pathway further increases the 

accumulation of TopBP1 to the DNA damage lesions, thus creating a positive feedback loop 

between ATR and TopBP1 (Ohashi et al., 2014). Phosphorylation of p53 by Chk1 can 

activate p53 for DNA-binding, which enhances the expression of the target genes such as 

those related to DNA-repair processes, cell-cycle arrest, and apoptosis (Bode and Dong, 

2004). The function of p53 can be controlled by two negative regulators, Mdm2 and Wip1, 

both of which are also target genes of p53. Mdm2 is a ubiquitin E3 ligase and can induce 

p53 degradation through the ubiquitin-proteasome pathway, while Wip1 is a phosphatase 

that can dephosphorylate p53 and thus reduce the activity of p53 (Batchelor et al., 2011). So, 

in this network, ATR-Chk1-TopBP1-ATR forms the positive feedback loop, while Mdm2 
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and Wip1 act as the negative regulators of p53 and thus form two negative feedback loops 

with p53.

Dynamics of the signaling network can be modeled by following equations:

dATR
dt = k1 ⋅ UV ⋅ TopBP1 + l1 ⋅ ATR0 − ATR − kd1 ⋅ ATR

dTopBP1
dt = k2 ⋅ Chk1 ⋅ TopBP10 − TopBP1 − kd2 ⋅ TopBP1

dChk1
dt = k3 ⋅ ATR ⋅

Chk10 − Chk1
K3 + Chk10 − Chk1 − kd3 ⋅ Chk1

Kd3 + Chk1

dp53inactive
dt = kg4 − kd4 ⋅ p53inactive + k4 ⋅ Wip1 ⋅

p53active
K4 + p53active

− k5 ⋅ Chk1 ⋅
p53inactive

K5 + p53inactive

dp53active
dt = k5 ⋅ Chk1 ⋅

p53inactive
K5 + p53inactive

− k4 ⋅ Wip1 ⋅
p53active

K4 + p53active
− kd5 ⋅ Mdm2 ⋅

p53active
Kd5 + p53active

dMdm2
dt = k6 ⋅

p53active
K6 + p53active

− kd6 ⋅ Mdm2
Kd6 + Mdm2

dWip1
dt = k7 ⋅

p53active
K7 + p53active

− kd7 ⋅ Wip1
Kd7 + Wip1 .

Using this p53 model, we perform the same simulations as the chemotaxis model. Positive 

feedback can be eliminated the by replacing TopBP1 with a (arbitrary) constant 0.5 in the 

equation of ATR (other choices of the constant gave the same results) and other parameters 

are shown in Table S4. We find that the positive feedback loop as the upstream noise 

attenuation module can increase the parameter region for dual function (Figures 4E, 4F and 

S4D), indicating that such PF-NFBLB network for p53 dynamic is able to perform robust 

dual function.

Discussion

A longstanding question in biology is how complex biological networks in the cell perform 

sophisticated regulatory functions with a remarkable degree of accuracy, reliability, and 

robustness. Do “universal” design principles underlie cellular systems? Rather than 
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searching for naturally occurring circuits on a case-by-case basis, one strategy is to 

understand the design logic from the bottom-up to achieve single or multiple functions (Lim 

et al., 2013; Zhang and Tang, 2019).

Here we have investigated both three- and four-node networks to search for the design 

principle for the dual function of adaptation and noise attenuation. An intrinsic trade-off was 

found to exist in three-node networks between system sensitivity, which is required in 

adaptation, and noise attenuation. Although fine-tuning timescales in three-node adaptive 

networks can partially mediate such trade-off, it introduces prolonged adaptation time and 

additional parameter constraints. Our results show that the required adaptation time to 

reduce noise can be unrealistically long. For example, to achieve a noise reduction of 

NAR=0.1, the adaptation time has to be about 10,000 times longer than the autocorrelation 

time of the input noise (Figures S1G–S1I). A too slow adaptation time can be harmful for 

detecting rapid changes of signal (Andrews et al., 2006; Berg, 1988), leading to a further 

tradeoff between noise buffering capability and signal tracking ability.

In four-node networks, the dual function can be achieved robustly. The key challenge of 

maintaining system sensitivity while reducing noise can be met, via sequential combination 

of two sub-function modules. By evaluating effects of response times in noise attenuation 

and adaptation modules on the functional performance, we found that the combination of 

slow adaptation module and fast noise attenuation module can achieve better dual function. 

Our work highlights the importance of time scales in the relationship between topology and 

function. In some cases, timescale can be a key factor linking topology to function. For 

adaptation alone, the determining factor is topology (Ma et al., 2009). On the other hand, 

noise attenuation is closely related to timescale. Many works have shown how output noise 

depends on kinetic parameters such as degradation rate (Hornung and Barkai, 2008; 

Paulsson, 2004). Since different topologies can have distinct timescales, topology can 

therefore play a crucial role in noise resistance. For example, compared with NF, PF slows 

down the dynamics and therefore enhances noise buffering for a given steady susceptibility 

(Hornung and Barkai, 2008) or transient sensitivity (Figures 3D and 3E). Interlinked fast and 

slow positive feedback loops have a short activation time and a long deactivation time, 

resulting in the small fluctuation of the on state (Brandman et al., 2005). Our work of 

exploring the criterion to combine adaptation module and noise attenuation module follows 

the similar scenario: the topology determines the response time and therefore determines 

compatibility (Figure 3M). In N-A networks, NF has shorter response time, which is 

beneficial for high sensitivity after combination, so NF is more compatible than PF as an 

upstream module. In A-N networks, IFFLP, the one with longer response time, maintains a 

higher percentage of sensitive output and thus has better compatibility than NFBLB as an 

upstream module. Thus, together with previous works, our finding highlights the 

significance of timescale and its dependence on the network topology in reverse engineering.

In biological systems, ample examples of singling pathways adopt the topologies capable of 

the dual function of adaptation and noise attenuation. In two cases, Dictyostelium 
discoideum chemotaxis and p53 signaling network, we showed that these networks can 

effectively resist the noise while performing adaptation. Although many regulatory networks 

could be highlighted as in Figure 4 using sequentially connected modules, our explorations 
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on many existing systems have suggested that in many adaptive systems a positive feedback 

loop or negative feedback loop is coupled with an adaptation module, creating an expanded 

dual-function module. In addition, the detail dynamics induced by such added positive/

negative feedback is clearly related to noise attenuation in our analysis – an area not 

explored in previous studies that have focused only on adaptation. Interestingly, we found 

that in biological systems N-A networks appear more frequently than A-N networks. This is 

consistent with our finding that N-A architecture has higher compatibility for dual function. 

However, some adaptive systems such as chemotaxis network in Dictyostelium discoideum 
(Han et al., 2006; Kimmel and Parent, 2003; Park et al., 2004; Sasaki et al., 2004; Takeda et 

al., 2012) and EGFR signaling pathway in mammalian cells (Ferrell, 2016) adopt the A-N 

architecture. One possible reason is that placing adaptation module in the upstream may be 

advantageous if the same upstream signal activates several downstream pathways of 

different characters (Levchenko and Iglesias, 2002). Since noise attenuation module is 

generally non-adaptive, placing noise attenuation module in the upstream may also cause 

persistent activation of downstream signaling pathways. Thus, it is conceivable that A-N 

networks could be more suitable in certain circumstances.

In this work, the noise is assumed only from the input signal. Besides extrinsic noise due to 

the input fluctuation, the adaptation module also faces with intrinsic noise in the adaptation 

reaction (Colin et al., 2017; Sartori and Tu, 2011). Such noise exhibits different 

characteristics (e.g. frequency and amplitude), and may require different mechanisms to 

attenuate (Colin et al., 2017; Sartori and Tu, 2011; Shankar et al., 2015). Therefore, different 

design principles may emerge when considering mixed sources of noise.

Although this work was limited to enzymatic regulatory networks, our approach can be 

naturally extended to other types of regulations or forms of networks. For instance, the 

topologies for three-node adaptive networks with transcriptional regulation can still be 

grouped into the same two categories: NFBLB and IFFLP (Shi et al., 2017). Furthermore, 

other types of modules can also be used for network assembly. For adaptation, besides 

negative feedback and incoherent feedforward, mechanisms such as state-dependent 

inactivation and antithetical integral feedback could generate perfect adaptation (Briat et al., 

2016; Ferrell, 2016; Friedlander and Brenner, 2009). For noise attenuation, linear cascades, 

time delay, and zero-order kinetics can also buffer noise (Hornung and Barkai, 2008). It 

would be interesting to systematically investigate the design principles for dual function 

made of other or mixed regulation types and functional modules, especially considering that 

the time scales of different regulations and modules can be very different.

STAR Methods

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Lei Zhang (zhangl@math.pku.edu.cn).
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METHOD DETAILS

Mathematical model

Enzymatic regulatory networks: We use enzymatic regulatory networks and Michaelis-

Menten rate equations to model both three-node and four-node networks (Ma et al., 2009). 

An enzymatic regulatory network with IFFLP topology is illustrated in Figure 1D as an 

example. Each node (representing an enzyme) is assumed to have active form and inactive 

form, with the total concentration as a constant (set to be 1). A positive regulation from node 

i to node j (denoted by i→j) implies that the inactive form of the enzyme j can be converted 

to its active form by active enzyme i. Similarly, a negative regulation from node i to node j 
(denoted by i—|j) implies that the active form of enzyme j can be converted to its inactive 

form by active enzyme i. If the node i has only positive (or negative) incoming regulations, a 

basal enzyme (Fi) with constant concentration (set to be 0.5) is assumed to deactivate (or 

activate) the node. Thus, a three-node enzymatic regulatory network can be modeled by 

following equations:

dA
dt = f A = IkIA(1 − A) 1 − A

1 − A + KIA
+ ∑

i
XikXiA

1 − A
1 − A + KXiA

− ∑
i

YikYiA
A

A + KYiA
,

dB
dt = f B = ∑

i
XikXiB

1 − B
1 − B + KXiB

− ∑
i

YikYiB
B

B + KYiB
,

dC
dt = f C = ∑

i
XikXiC

1 − C
1 − C + KXiC

− ∑
i

YikYiC
C

C + KYiC
,

where I is the input intensity, and A, B and C are concentrations of the three enzymes in 

active form, respectively. Since the total concentration of each enzyme is set to be 1, 1 − A, 

1 − B and 1 − C represents concentrations of the three enzymes in inactive form, 

respectively. Xi in each equation represents the activating enzymes of the node while Yi the 

deactivating enzymes. Each term in above equations takes the form of Michaelis-Menten 

equation where capitalized K denotes Michaelis-Menten constant and lowercase k denotes 

the catalytic rate constant. For a four-node network there is an additional equation for node 

D:

dD
dt = f D = ∑

i
XikXiD

1 − D
1 − D + KXiD

− ∑
i

YikYiD
D

C + KYiD
.

Unless otherwise specified, all our simulations are based on enzymatic regulatory networks.

Transcriptional regulatory networks: The transcriptional regulatory network depicts 

interactions among genes’ products where each gene product can regulate the transcriptional 

activity of other genes as the transcription factor (TF). In a transcriptional network topology, 

nodes and links represent gene products and transcriptional regulations respectively. In our 
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model, transcriptional regulations are assumed to only affect the gene activation and have no 

effect on the degradation of gene products. If multiple TFs regulate the same gene, AND 

logic (i.e., the gene expression is active if all activators are at high concentrations and all 

repressors at low concentrations) is applied. By modeling the regulated production rate with 

Hill function and the degradation rate with linear function, the three-node transcriptional 

regulatory network with AND logic can be modeled by following equations:

dA
dt = f A = vA

I
nIA

I
nIA + KIA

nIA
∏

i

Xi

nXiA

Xi

nXiA + KXiA

nXiA
∏

j

KYiA

nYiA

Yi

nYi
A

+ KYiA

nYi
A − A

τA
,

dB
dt = f B = vB∏

i

Xi

nXiB

Xi

nXiB + KXiB

nXiB
∏

j

KYiB

nYiB

Yi
nYiB + KYiB

nYiB
− B

τB
,

dC
dt = f C = vC∏

i

Xi

nXiC

Xi

nXi
C

+ KXiC

nXiC
∏

j

KYiC

nYiC

Yi

nYiC + KYiC

nYiC
− C

τC
,

where I is the input intensity, and A, B and C are concentrations of the three gene products 

respectively. Each gene product has a degradation rate constant τi
−1 and a maximal 

production rate νi (i = A, B, C). Xi in each equation represents the activator of the node 

while Yi the repressor. The Hill function representing positive regulation (e.g. 

Xi

nXiA

Xi

nXiA + KXiA

nXiA
) has two parameters K and n, which denote the activation coefficient and Hill 

coefficient, respectively. Likewise, the Hill function representing negative regulation (e.g. 

KYiA

nYiA

Yi

nYiA + KYiA

nYiA
) also has parameters K and n, except that K is termed as the repression 

coefficient. When calculating Q values for 16,038 three-node transcriptional regulatory 

networks, above equations are normalized by setting vi = τi
−1 for parameter reduction.

Calculation of sensitivity, precision and NAR—In our simulations, we set I1 = 0.4 

and I2 = 0.45. When calculating Q values for enzymatic regulatory networks, the Latin 
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hypercube method is used to sample the catalytic rate constants k’s and Michaelis-Menten 

constants K’s, which are from log-uniform distributions with the parameter ranges [0.1,10] 

and [0.001,1000], respectively. For transcriptional regulatory networks, the degradation rate 

constants τi
−1‘s and the activation (or repression) coefficients K’s are sampled from log-

uniform distributions with ranges [0.1,10] and [0.001,1000], respectively; the Hill coefficient 

n is sampled based on uniform distribution from 1 to 4.

By performing ODE simulation, the deterministic dynamics for a given circuit is obtained 

and thus the sensitivity and the precision are calculated directly according to their 

definitions. We use linear noise approximation (LNA) (Elf and Ehrenberg, 2003; Paulsson, 

2004) to calculate NAR. By assuming the noise is only from the input signal I and 

autocorrelation function of fluctuations exponentially decays with timescale τ0 = 1/ω (ω is 

set to 0.5 unless otherwise specified), Ornstein-Uhlenbeck process is applied to approximate 

the dynamics of I:

dI
dt = −

I − Iss
τ0

+
2η0

2

τ0
ξt

where ξt = is the white noise satisfying 〈ξt〉 = 0 and 〈ξtξs〉 = δ (t − s), and η0
2 is the variance 

of I as t → ∞. We set Iss = I1 and I2 to calculate the NAR when system is at the steady state 

under I1 and I2 respectively. For saving calculation costs, we linearize the model to obtain an 

approximate NAR instead of a long-time simulation. According to LNA, we can solve the 

following equation to get NAR:

Mη + ηMT + D = 0.

In three-node networks, the matrix M, η, D are

M =

− 1
τ0

0 0 0

∂ f A
∂I

∂ f A
∂A

∂ f A
∂B

∂ f A
∂c

∂ f B
∂I

∂ f B
∂A

∂ f B
∂B

∂ f B
∂C

∂ f C
∂I

∂ f C
∂A

∂ f B
∂B

∂ f C
∂C

, η =

η0
2 cov(I, A) cov(I, B) cov(I, C)

cov(I, A) ηA
2 cov(A, B) cov(A, C)

cov(I, B) cov(A, B) ηB
2 cov(B, C)

cov(I, C) cov(A, C) cov(B, C) ηC
2

, D =

2η0
2

τ0
0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

.

Then NAR is just 
ηC
2 / C 2

η0
2/ISS

2  (〈·〉) denotes the steady-state value of the node). In practice, we 

transformed Mij to Mi j
x j
xi

, ηij to 
ηi j
xix j

, Dij to 
Di j
xix j

, where x1 = Iss, x2 = 〈A〉, x3 = 〈B〉, x4 = 〈C〉 

so that we can get the square of NAR directly by dividing the last element in new η by the 

first element. These matrices are evaluated in steady state. As there are two different levels 
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of input signal (i.e., I1 and I2), we have two steady states and thus two values of NAR. When 

calculating Q values, the larger value of NAR is used. The method above can easily expand 

to four-node network. In fact, the NAR obtained by LNA can well approximate that obtained 

by a long-time simulation of stochastic differential equation (Figure S2G).

Analytical derivation of NAR and sensitivity

IFFLP with general form of regulations: To simplify the derivation, we assume that the 

dynamics of node A is the same as the input I. Then equations of IFFLP can be written as

τB
dB
dt = f B(A, B)

τC
dC
dt = f C(A, B, C)

.

First we use LNA to derive NAR for the above system. We assume the fluctuation of A is an 

Ornstein-Uhlenbeck process with time scale τ0 = 1/ω and variance η0
2. Then we can calculate

M = Mi j =

−ω 0 0
k1/τB −k2/τB 0

k4/τC −k5/τC −k6/τC

and

D =
2η0

2ω 0 0

0 0 0
0 0 0

,

where k1 = A
B

∂ f B
∂A , k2 = −

∂ f B
∂B , k4 = A

C

∂ f C
∂A , k5 = − B

C

∂ f C
∂B , k6 = −

∂ f C
∂C . All ki (i = 

1,2,4,5,6) are positive according to the sign of regulations in IFFLP. ⟨A⟩, ⟨B⟩, ⟨C⟩ denote 

steady states of A, B, C respectively. By solving the equation with respect to η

Mη + ηMT + D = 0,

we get the expression of NAR:

NAR =
ηC
2

ηA
2 =

k1k5 − k2k4
2 k2τC + k6τB + τBτCω + k2k6k4

2τB
2ω

k2k6 k2τC + k6τB k2 + ωτB k6 + ωτC

=
k1k5 − k2k4

2 k2
τB
τC

1
τB

+ k6
τE
τC

2 1
τB

+
τB
τC

ω + k2k6k4
2 τB

τC

2
ω

k2k6 k2 + k6
τB
τC

k2/τB + ω k6
τB
τC

+ ωτB

.

Qiao et al. Page 22

Cell Syst. Author manuscript; available in PMC 2020 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



From the expression of NAR, we can easily find that NAR is a decreasing function of τC (or 

τB) if τBτC ≥
k2k6
ω2  when the ratio of τC to τC is fixed as a constant.

Then we approximate sensitivity by linearizing the system around steady state ⟨A⟩, ⟨B⟩, 
⟨C⟩:

dΔB
dt

dΔC
dt

=

−k2
τB

0

−
k5 C

τC B

−k6
τC

ΔB
ΔC

+ ΔA

k1(B

τB A

k4 C

τC A

where ⟨A⟩, ⟨B⟩, ⟨C⟩ denote the steady states of A, B, C. The condition of perfect adaptation 

is assumed, that is, k1k5 – k2k4 = 0. By solving above equations, we get the expression of 

ΔC(t):

ΔC(t) =
k4 C

τC A
ΔAe

λ2t
− e

λ1t

λ2 − λ1

where λ1 = −
k2
τB

, λ2 = −
k6
τC

. Let ΔC′(t) = 0, and we obtain the peak time of ΔC:

tpeak =
ln

λ2
λ1

λ1 − λ2
=

τCln
k6τB
k2τC

k6 − k2
τC
τB

.

Then the highest (or lowest) value of ΔC is:

ΔC tpeak = ΔA
k4 C

τC A
1

−λ1

λ2
λ1

λ2
λ1 − λ2 =

k4 C

k2 A

τB
τC

k6τB
k2τC

1
k2τC
k6τB

− 1
ΔA .

The sensitivity is derived naturally:

Sensitivity =
ΔC tpeak / C

ΔA/ A =
k4
k6

k6τB
k2τC

k6τB
k2τC

1
k2τC
k6τB

− 1
=

k4
k6

k2τC
k6τB

k2τC
k2τB

1 −
k2τC
k6τB
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From the expression of sensitivity, it can be seen that sensitivity is a constant when 
τC
τB

 is 

fixed. Furthermore, smaller ratio of τC to τB causes larger sensitivity because of decreasing 

function x

X1 − x .

Next, we show the special case in enzymatic regulatory IFFLP. If conditions of perfect 

adaptation are assumed, that is, (1 −B) ≫ KAB and B ≪ KFBB, equations of enzymatic 

regulatory IFFLP can be written as

τB
dB
dt = AkAB − FB

kFBB

KFBB
B

τC
dC
dt = AkAC

1 − C
1 − C + KAC

− BkBC
C

C + KBC

.

Then we have k1 = k2 = kFBBFB/kFBB, k4 = k5 =
kAC A (1 − C )

1 − C + KAC C
=

kBC B

C + KBC
, 

k6 =
KAC C

1 − C + KAC (1 − C )
+

KBC
C + KBC

k4. The expressions of NAR and sensitivity can thus 

be obtained directly:

NAR =
k4
2τB

2ω

k1τC + k6τB k1 + ωτB k6 + ωτC
=

k4
2 τB

τC

2
ω

k1 + k6
τB
τC

k6
τB
τC

+ ωτB k1/τB + ω

,

and

Sensitivity  =
ΔC tpeak / C

ΔA/ A =
k4
k6

k1τC
k6τB

k1τC
k6τB

1 −
k1τC
k6τB .

When 
τC
τB

 is fixed, we can see that sensitivity is a constant and NAR is a decreasing function 

of τB (or τC) if τBτC ≥
k1k6
ω2 .

NFBLB with general form of regulations: To simplify the derivation, we assume that the 

dynamics of node A is the same as the input I. Then equations of NFBLB are

Qiao et al. Page 24

Cell Syst. Author manuscript; available in PMC 2020 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



τB
dB
dt = f B(B, C)

τC
dC
dt = f C(A, B, C)

First we use LNA to derive NAR for the above system. We assume the fluctuation of A is an 

Ornstein-Uhlenbeck process with time scale τ0 = 1/ω and variance η0
2. Then we can calculate

M = Mi j =

−ω 0 0
0 −k1/τB k2/τB

k3/τC −k4/τC −k5/τC

and

D =
2η0

2ω 0 0

0 0 0
0 0 0

,

where k1 = −
∂ f B
∂B , k2 = C

B

∂ f B
∂C , k3 = A

C

∂ f C
∂A , k4 = − B

C

∂ f C
∂B , k5 = −

∂ f C
∂C . All ki (i = 

1,2,3,4,5) are positive according to the sign of regulations in NFBLB. ⟨A⟩, ⟨B⟩, ⟨C⟩ denote 

steady states of A, B, C respectively. By solving the equation with respect to η.

Mη + ηMT + D = 0,

we get the expression of NAR:

NAR =
ηC
2

ηA
2 =

k3
2 k1

2 k1τC + k5τB + τBτCω + k1k5 + k2k4 τB
2ω

k2k4 + k1k5 k5τB + k1τC τBτCω2 + k5τBω + k1τCω + k2k4 + k1k5

=
k3
2 k1

2 k1
1

τC

τC
τB

2
+ k5

1
τC

τC
τB

+
τC
τB

ω + k1k5 + k2k4 ω

k2k4 + k1k5 k5 + k1
τC
τB

τCω2 + k5ω + k1
τC
τB

ω + 1
τC

τC
τB

k2k4 + k1k5

.

From the expression of NAR, we can easily find that NAR is a decreasing function of τC (or 

τB) if τBτC >
k1k5 + k2k4

w2  when the ratio of τB to τC is fixed as a constant.

Then we approximate sensitivity by linearizing the system around steady state (⟨A⟩, ⟨B⟩, 
⟨C⟩):
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dΔB
dt

dΔC
dt

=

−
k1
τB

k2 B

τB R

−
k4 C

τC B
−

k5
τC

ΔB
ΔC

+ ΔA
k3 C

τC A

where (⟨A⟩, ⟨B⟩, ⟨C⟩ denote the steady states of A, B, C. The condition of perfect adaptation 

is assumed, that is, k1 = 0. By solving above equations, we get the expression of ΔC(t):

ΔC(t) =
k3 C

τC A
ΔAe

λ2t
− e

λ1t

λ2 − λ1

where λ1 =
−

k5
τC

+
k5
τC

2
− 4

k4k2
τBτC

2 , λ2 =
−

k5
τC

k5
τC

2
− 4

k4k2
τBτC

2 . Let ΔC′(t) = 0, and we obtain the 

peak time of ΔC:

tpeak =
ln

λ2
λ1

λ1 − λ2
=

ln
−

k5
τC

k5
τC

2
− 4

k4k2
τBτC

− −
k5
τC

+
k5
τC

2
− 4

k4k2
τBτC

k5
τC

2
− 4

k4k2
τBτC

.

Then the highest (or lowest) value of ΔC is:

ΔC tpeak = ΔA
k3 C

τC A
1

−λ1

λ2
λ1

λ2
λ1 − λ2 .

The sensitivity is derived naturally:

Sensitivity  =
ΔC tpeak / C

ΔA/ A =
k3
τC

1
−λ1

λ2
λ1

λ2
λ1 − λ2 .

The expression of sensitivity and tpeak also holds for complex eigenvalues. However, the 

monotonicity with 
τC
τB

 τC is easy to analysis when eigenvalues are both negative real number. 

So only the situation with negative real eigenvalues is considered.
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Let x = k5
2 − 4

k2k4τC
τB

, λ1 =
−k5 + x

2τC
, λ2 =

−k5 − x

2τC
, then

Sensitivity  =

ΔC tpeak
C

ΔA
A

=
k3
τC

1
−λ1

λ2
λ1

λ2
λ1 − λ2 ∝ 1

k5 − x

k5 + x

k5 − x

k5 + x

−2x ∝ 1
1 − x/k5

1 + x/k5
1 − x/k5

1 + x/k5
−2x/k5 .

Use x to denote x/k5, and let f x = 1
1 − x

1 + x
1 − x

1 + x
−2x , x ∈ (0,1). According to the 

monotonicity of f(x), sensitivity is an increasing function with x, and thus a decreasing 

function with 
τC
τB

.

Fine-tuning timescales in three-node networks—For a three-node network capable 

of perfect adaptation, we aim to maintain sensitivity and lower NAR by tuning τB and τC. 

Here, S denotes sensitivity and N denotes NAR. Maintaining sensitivity means

∂S
∂τB

ΔτB + ∂S
∂τC

ΔτC = 0

by neglecting the high-order terms. Similarly, lowering NAR means

∂N
∂τB

ΔτB + ∂N
∂τC

ΔτC < 0

by neglecting the high-order terms. Taking the first equality and the second inequality 

together, we have

∂N
∂τC

− ∂N
∂τB

∂S
∂τC
∂S

∂τB

ΔτC < 0.

For instance, if ∂N
∂τC

− ∂N
∂τB

∂S
∂τC
∂S

∂τB

> 0, we can reduce τC, i.e., ΔτC < 0, and set 

ΔτB = −

∂S
∂τC
∂S

∂τB

ΔτC in order to lower NAR while maintaining sensitivity. It is similar to the 

case of ∂N
∂τC

− ∂N
∂τB

∂S
∂τC
∂S

∂τB

< 0.
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Module combination in four-node networks—We take PF-IFFLP as an example to 

show how to construct equations and parameters of the assembled four-node network. 

Before module combination, we assume that equations of PF are

dA
dt = IkIA

up(1 − A) 1 − A

1 − A + KIA
up + BkBA

up 1 − A

1 − A + KBA
up − FAkFAA

up A

A + KFAA
up ,

dB
dt = AkAB

up 1 − B

1 − B + KAB
up − FBkFB

up B

B + KFB
up ,

and those of IFFLP

dC
dt = IkIC

dw 1 − C

1 − C + KIC
dw − DkDC

dw C

C + KDC
dw ,

dD
dt = IkID

dw 1 − D

1 − D + KID
dw − FDkFD

dw D

D + KFD
dw .

However, in PF-IFFLP, node C and node D receive the regulation from node B rather than 

the input I. So, to obtain equations of PF-IFFLP, we need replace variable I with variable B 
in equations of node C and node D while keeping other equations unchanged, i.e.,

dA
dt = IkIA

up(1 − A) 1 − A

1 − A + KIA
up + BkBA

up 1 − A

1 − A + KBA
up − FAkFAA

up A

A + KFA
up ,

dB
dt = AkAB

up 1 − B

1 − B + KAB
up − FBkFBB

up B

B + KFBB
up ,

dC
dt = BkIC

dw 1 − C

1 − C + KIC
dw − DkDC

dw C

C + KDC
dw ,

dD
dt = BkID

dw 1 − D

1 − D + KID
dw − FDkFDD

dw D

D + KFDD
dw .

Equations and parameters for other assembled four-node networks can be obtained in a 

similar way.

Evolution algorithm—The evolution algorithm (François and Hakim, 2004) begins with 

an initial circuit collection including different networks with random parameters. Then the 

circuit collection evolves towards dual function with many rounds of growth and selection. 

In the growth phase, the circuit collection is doubled by adding a mutated copy of each 

circuit in the collection. The mutation of each circuit is carried out as following: (1) 

randomly select one parameter based on the equal probability principle; (2) modify the 

chosen parameter by multiplying a random number uniformly distributed between 0 and 2. 

In the selection phase, high-performance circuits are selected to form a new circuit 

collection with the original size. The performance of dual function is measured using a score 

function, which reaches maximum score when the circuit performs dual function (i.e., 

sensitivity>1, precision>10, NAR<0.2). Here, the size of the initial circuit collection is set to 

be 1000, so each network in the subset will have about 27~28 (1000÷36≈ 27.8) different 
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parameter sets in average. The score function we use is defined as the product of three 

factors, each of which ranges from 0 to 1. The first factor is defined by the minimum 

between the value of sensitivity and 1. The second factor is the minimum between 

precision/10 and 1. The third factor is the minimum between 0.2/NAR and 1. These three 

factors reflect how close the circuit’s sensitivity, precision and NAR approach to 

corresponding thresholds. The evolution process is terminated if the circuit with score=1 

(i.e., capable of dual function) occurs or the maximum number of iterations (set to be 300) is 

reached.
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Highlights

• An intrinsic trade-off exists in three-node networks

• Tuning timescales can partially mediate this trade-off with a cost

• Sequential assembly in four-node networks can effectively decouple two 

functions

• Biological adaptive networks are often associated with a noise attenuation 

module
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Figure 1. Searching for circuits capable of adaptation and noise attenuation.
(A) Typical dynamics, functional characterization and motifs of adaptation.

(B) Typical dynamics, functional characterization and motifs of noise attenuation.

(C) Expected dynamics and characterization of dual function.

(D) Illustration of mathematical model for a three-node network IFFLP.

Qiao et al. Page 34

Cell Syst. Author manuscript; available in PMC 2020 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. The trade-off between robust adaptation and noise attenuation in three-node networks.
(A) Q values (including QN, QA and QA&N) of 16038 three-node network topologies. QA&N 

are zero for all three-node network topologies.

(B-C) Two kinds of typical output of IFFLP with two different parameter sets. Inset in (B): 

The blue solid line represents one trajectory of the input signal and the gray dashed line is 

the average of all random trajectories. In both (B) and (C), the red solid line is one output 

trajectory under noisy input, and the gray dashed line the mean behavior of output. Both the 

output in (B) and (C) have high precision, but the dynamics in (B) shows good noise 

attenuation with low sensitivity while the one in (C) has a high sensitivity with large 

fluctuations.

(D-F) The histograms of Pearson’s correlation coefficients of sensitivity-NAR, precision-

NAR and sensitivity-precision in 16,038 three-node network topologies. Sensitivity, 
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precision and NAR are log-transformed before calculating Pearson’s correlation coefficients. 

(G) Network topology of IFFLP with timescales τA, τB and τC.

(H-I) The scatter diagrams of sensitivity and NAR for IFFLP. All parameters except τB and 

τC are fixed. Here, log (τB) is sampled from 0 to 2 with an increment 0.2 and so is log (τC), 

leading to 121 pairs of sensitivity and NAR. The only difference between (H) and (I) is the 

content of color bar. The color bar in (H) and (I) indicate the values of τC/τB and τC, 

respectively. The lower-right rectangle bounded by the black dashed line represents the 

functional region for dual function, i.e., sensitivity>1 & NAR<0.2 & precision>10. The 

black and the red circle in (H) are corresponding to τC = τB = 10 and τC = τB = 100, 

respectively.

(J) The phase plane of nodes B and C for IFFLP. When the input signal changes from I1 and 

I2, the trajectory of B and C are drawn for different ratios of τC to τB. The start point of the 

trajectory is the stable point under I1 while the end point is the stable point under I2.

(K) Comparison of the dynamics under two sets of τC under τB· τC = τB = 10 and τC = τB = 

100 are corresponding to the black circle point and red circle point in (H), respectively. 

Adaptation time τAD is illustrated for the dynamics under τC = τB = 100.

(L) τAD as a function of τB and τC for IFFLP.

(M-N) NAR as a function of adaptation time for different timescales of input noise in IFFLP 

(M) and NFBLB (N). Kinetic parameters except τB and τC are the same as those used in 

Figures 2H-2L (for IFFLP) or Figures S1E and S1F (for NFBLB). For a fixed 

autocorrelation time of input noise τ0, as τB and τC are tuned proportionally (with τC/τB = 

1), NAR and adaptation time τAD very accprdingly.

(O) Scatter diagram of NAR and adaptation time for IFFLP and NFBLB when τ0 = 2. In the 

diagram, 1,000 points satisfying adaptation i.e., sensitivity>1 & precision>10 are illustrated 

for both IFFLP and NFBLB. See Figures S1G–S1I for the same diagram with τ0 = 1, 0.2 

and 0.1.
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Figure 3. Dual function can be achieved by module combination in four-node networks.
(A) Two strategies for sequential combination of adaptation module and noise attenuation 

module.

(B) Eight networks obtained by two different ways of module combination shown in (A). 

Red nodes represent the adaptation module (IFFLP or NFBLB) and blue nodes the noise 

attenuation module (PF or NF).

(C) Q of dual function for the eight four-node networks in (B). Q is defined as the averaged 

Q value calculated by eight repeated simulations and modified by adding 10−8 to ensure 

log Q  is well-defined. For each bar graph, the criterion for dual function is determined by 

the x coordinate and y coordinate: sensitivity>x & NAR<y & precision>10. Green bars 

represent N-A networks and red bars A-N networks.

(D-E) The joint histogram of sensitivity and NAR for noise attenuation modules: PF (D) and 

NF (E). The color bar indicates the density of parameter sets in a given region. The lower-
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right rectangle bounded by the red dashed line represents the functional region of noise 

attenuation, i.e., sensitivity>1 & NAR<0.2.

(F-G) The joint histogram of sensitivity and precision for adaptation modules: NFBLB (F) 

and IFFLP (G). The color bar indicates the density of parameter sets in a given region. The 

upper-right rectangle bounded by the red dashed line represents the functional region of 

adaptation, i.e., sensitivity>1 & precision>10.

(H) Compatibilities (upper panel) and percentages of assembled circuits satisfying 

sensitivity>1, precision>10 or NAR<0.2 (lower panel) for the eight four-node networks. The 

four N-A networks are ranked by percentages of assembled circuits satisfying sensitivity>1 

and so are the four A-N networks.

(I) Distribution of the upstream response time in N-A networks. For each noise attenuation 

module (PF or NF), only circuits satisfying sensitivity>1 & NAR<0.2 are chosen to calculate 

the response time and the probability density is fitted using the Gamma distribution. The 

shape parameter and the scale parameter of the Gamma distribution are estimated to be: 

(2.14, 79.38) for PF and (3.06, 30.09) for NF.

(J) The percentage of assembled N-A circuits satisfying sensitivity>1 as a function of the 

upstream response time and the upstream sensitivity. For a given upstream output with 

specific response time and sensitivity, 200 adaptation circuits (100 for IFFLP module and 

100 for NFBLB module) satisfying sensitivity>1 & precision>10 are chosen as downstream 

circuits to calculate the sensitivity of assembled circuits.

(K) Distribution of the upstream response time in A-N networks. For each adaptation 

module (IFFLP or NFBLB), only circuits satisfying sensitivity>1 & precision>10 are chosen 

to calculate the response time and the probability density is fitted using the Gamma 

distribution. The shape parameter and the scale parameter of the Gamma distribution are 

estimated to be: (0.57, 1.22) for IFFLP and (1.09, 0.27) for NFBLB.

(L) The percentage of assembled A-N circuits satisfying sensitivity>1 as a function of the 

upstream response time and the upstream sensitivity. For a given upstream output with 

specific response time and sensitivity, 200 noise attenuation circuits (100 for PF module and 

100 for NF module) satisfying sensitivity>1 & NAR<0.2 are chosen as downstream modules 

to calculate the sensitivity of assembled circuits.

(M) Schematic illustration of the relationship between compatibility and response time of 

modules in both N-A and A-N networks. The distributions of response time for the four 

modules are sketched using Gaussian distributions with the same variance and different 

mean values.

(N) Frequency of 36 IFFLP-based topologies among 115 four-node circuits obtained by the 

evolution algorithm. The 36 IFFLP-based four-node topologies are ranked by their 

percentages of occurrence. Topologies in the red parallelogram are those whose percentages 

of occurrence are larger than 5%. Inset: #1 and #3 ranking topologies.

(O) Frequency of 36 NFBLB-based topologies among 18 four-node circuits obtained by the 

evolution algorithm. The 36 NFBLB-based four-node topologies are ranked by their 

percentages of occurrence. Inset: the three appeared topologies (whose labels are marked in 

the red parallelogram).
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Figure 4. Examples of biological systems capable of dual function
(A) A list of biological systems that include both adaptation module and noise attenuation 

module. Biological process (along with the references), network topology and category of 

module combination are illustrated for each system.

(B-C) The joint histogram of NAR-Sensitivity without and with the positive feedback loop 

between PI3K and PIP3 in the chemotaxis model. The color bar indicates the density of 

parameter sets in a given region. The area bounded by red dashed line is the region of dual 

function, i.e., sensitivity>1 & NAR<0.2 & precision>10. The corresponding Q value is 

indicated on the right.

(D-E) The joint histogram of NAR-Sensitivity without and with the positive feedback loop 

between ATR and TopBP1 in the p53 model. The color bar indicates the density of 

parameter sets in a given region. The area bounded by red dashed line is the region of dual 

function, i.e., sensitivity>1 & NAR<0.2 & precision>10. The corresponding Q value is 

indicated on the right.
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