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Abstract

Recent high-profile failures of Alzheimer disease treatments at the clinical trial stage have led 

to renewed efforts to identify and test novel interventions for Alzheimer disease and related 

dementias (ADRD). In this Perspective, we highlight the importance of including well-designed 

observational studies as part of these efforts. Observational research is an important cornerstone 

for gathering evidence on risk factors and causes of ADRD; this evidence can then be combined 

with data from preclinical studies and randomized controlled trials to inform the development of 

effective interventions. Observational study designs can be particularly beneficial for hypothesis 

generation, posing questions that are unethical or impractical for a trial setting, studying life-

course associations, research in populations typically not included in trials, and public health 

surveillance. Here, we discuss each of these situations in the specific context of ADRD research. 

We also highlight novel approaches to enhance causal inference and provide a timely discussion 

on how observational epidemiological studies help provide a bridge between preclinical studies 

and successful interventions for ADRD.

Introduction

Alzheimer disease and related dementias (ADRD) are an important and growing problem 

worldwide; a report published in 2020 estimated that >50 million people have ADRD and 

that this number will increase to 152 million by 2050 (ref.1). Most individuals with dementia 

are found to have Alzheimer disease (AD) or AD plus other pathologies at autopsy2. 

Substantial research efforts have been dedicated to identifying the aetiological causes of 

ADRD and to developing pharmacological treatments. Evidence indicates that a complex 

combination of genetic and environmental exposures contributes to cognitive decline and 

development of dementia3. Estimates suggest that life-course risk factors, such as education, 

cardiovascular health and physical activity, account for up to 40% of dementia worldwide 
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and that these risk factors could be targeted to reduce dementia prevalence4,5. Numerous 

treatments and interventions for ADRD have been evaluated in clinical trials, yet the vast 

majority have failed to slow cognitive decline or dementia progression6. These failures 

suggest a need to refine our hypotheses around the treatment and prevention of dementia and 

to address methodological and other challenges to identifying effective treatments. Although 

in evaluating treatments there is often a focus on preclinical studies and clinical trials7,8, 

observational research in human participants (for example, studies without interventions) has 

an important role in knowledge generation. Such studies will be essential if we are to move 

the field forward towards identifying effective strategies to prevent and slow dementia onset.

Well-designed observational studies are essential to bridge the gaps between preclinical 

studies and randomized controlled trials (RCTs) and to provide real-world data. Here, we 

use the term preclinical studies to refer to studies that investigate disease mechanisms 

or contribute to drug discovery and drug development prior to testing in human 

participants. These preclinical studies primarily test cell lines, animal-based models or 

human biospecimens in a controlled environment. Although preclinical studies are crucial 

for knowledge and hypothesis generation, their results have limited generalizability to 

human populations and require confirmation in human participants; indeed, most dementia 

therapies that have produced promising preclinical results have not been successful in 

RCTs6,9.

The efficacy and safety of a novel drug must be demonstrated in RCTs in human participants 

before it can be approved for use in patients. Well-designed RCTs can provide robust 

evidence of the effects of treatments or interventions. However, they are often of limited 

duration (several years) and scope owing to costs and feasibility, which can make it 

more difficult to detect some treatment effects. Even RCTs of sufficient size and duration 

often require participants to meet strict eligibility criteria, which can exclude individuals 

with comorbid disease and under-represented minorities. Furthermore, for many research 

questions, such as to understand the effects of harmful exposures, conducting an RCT is not 

ethical or feasible10. Therefore, for many research questions, well-designed observational 

studies can help bridge and complement experimental designs7,8.

Because observational studies are more prone to biases, such as unmeasured confounding 

and selection bias, than well-designed RCTs11,12, the development and use of rigorous 

approaches that enhance causal inference are essential13. Nevertheless, different research 

questions and settings require different approaches and study designs to yield relevant and 

valid answers. Therefore, evidence should be evaluated on the basis of quality as opposed 

to purely on the type of study design14. In this Perspective, we present our view on the 

important role of observational studies in ADRD research. We discuss the challenges of 

using RCTs to study ADRD and highlight specific ADRD research topics that are suited for 

observational studies. Finally, we discuss emerging approaches to improve causal inference 

using observational data and other future research directions.

Brenowitz and Yaffe Page 2

Nat Rev Neurol. Author manuscript; available in PMC 2023 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Observational studies

Observational research is a general term for studies that involve no intervention, 

manipulation, or experimentation of participants or samples. The term can apply to both 

basic science and clinical research; here, we focus on observational studies in the context 

of human clinical and epidemiological research. Observational studies differ from RCTs in 

two important aspects. First, RCTs involve an intervention, for example, a drug treatment, 

medical procedure, or psychological or behavioural training. Second, in RCTs, allocation 

to receive the intervention or not (control) is assigned by random chance; this provides 

clear temporal order of exposure and outcome and is not as susceptible to confounding by 

other characteristics. See Table 1 for a more detailed comparison of the advantages and 

disadvantages of RCTs and observational study designs.

Epidemiological questions can be assessed with a variety of observational study designs15. 

Many of these study designs draw inference on causes of disease by comparing health 

factors of interest (often called a risk factor or exposure) between those with and without 

the disease of interest (often called the outcome). Factors of interest can include social 

and demographic factors, lifestyle and health behaviours, molecular or biological indicators, 

and other health conditions. Observational studies can also be used to assess and validate 

screening and diagnostic tools or to monitor trends in disease prevalence over time. Various 

epidemiology textbooks describe study designs and their considerations in detail15,16; we 

summarize common designs in Box 1. In each of these designs, data can be collected from 

a variety of sources, including clinical examinations, biological measurement questionnaires, 

electronic medical records, insurance claims data, and/or census information.

Taken into the context of translational science, in which discoveries are translated from 

basic research and discovery to clinical care or public health measures, observational 

studies can be used to inform various stages, from basic science to clinical practice17,18. 

Box 2 summarizes the types of clinical and epidemiological research questions that are 

suited for observational studies. Below, we further highlight the challenges of performing 

RCTs in ADRD research and provide specific examples of ADRD research questions that 

observational epidemiological studies are well suited to address.

Limitations of RCTs

In addition to the general advantages and disadvantages set out in Table 1, RCTs have 

specific disadvantages in the context of dementia. First, dementia develops over decades 

and, by the time cognitive impairment is detected, the underlying pathological changes 

might be too advanced for therapy to be effective3. One reason for the failure of so many 

clinical trials of disease-modifying interventions in dementia might be that interventions are 

given too late to significantly slow the disease process and prevent neurodegeneration19. 

Second, dementia is a heterogeneous syndrome that encompasses a variety of underlying 

brain pathologies2. Although AD is the most common subtype — comprising 50–70% of 

dementias2 — most individuals have multiple co-occurring pathologies at autopsy (termed 

mixed neuropathology), including AD, vascular pathology, Lewy body disease and TDP43 

proteinopathy20,21. These pathologies could act additively or interact to increase the risk 
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of dementia22-25 or could contribute to the misdiagnosis of clinical dementia subtypes26. 

This broad range of overlapping dementia aetiologies highlights the complexity of brain 

ageing and suggests that there will be no ‘magic bullet’ treatment, as one drug is unlikely 

to affect more than one mechanism or pathology. This heterogeneity thus poses a problem 

for conducting RCTs. Indeed, even the most optimistic estimates suggest that antiamyloid 

treatments have small effects on cognition27, a high risk of adverse effects28 and are of 

uncertain benefit for patients who have comorbid medical conditions such as vascular 

disease29. Because animal models of AD tend to mimic a specific and limited number of 

pathologies, the high prevalence of mixed pathologies in older adults might be part of the 

reason for failed efficacy of treatments that are promising in animal models.

Applications in AD research

Hypothesis generation

Pathophysiology.—Historically, observational studies have contributed many insights 

into AD pathophysiology. In the early 1900s, case reports by Alois Alzheimer and others 

described plaques, tangles and neurodegeneration in the brains of individuals with early-

onset dementia, which helped establish AD as a distinct disease30. Observational studies 

have also identified a correlation of neuropathological, imaging and other biomarkers of AD 

with dementia symptoms over time3,31,32, genetic variants associated with AD and cognitive 

decline33,34, and lifestyle, social and clinical risk factors for AD5. Early observational 

studies on dementia and AD led to the identification of candidate genes such as APP35 

and APOE36, neuropathologies associated with dementia31,37, and staging and diagnostic 

criteria for AD and other dementias38-40. Together, this observational data informed 

subsequent laboratory studies and the development of the amyloid cascade hypothesis41, 

which has since dominated the field and driven the development of drug targets such as 

amyloid-β-directed monoclonal antibody treatments, including the controversially approved 

aducanumab28. Observational studies also include large-scale genome-wide association 

studies34,42 that have identified many AD-associated genetic variants with roles in the 

production of tau and the innate immune response, which are now being investigated as 

novel drug targets.

Alongside laboratory studies, observational epidemiological studies have an important role 

in refining and validating scientific knowledge. For example, observational post-mortem 

studies identified amyloid-β plaques and tau neurofibrillary tangles as characteristic 

neuropathological features of AD31,38, which were used to develop diagnostic criteria. 

These observations then motivated the development of in vivo diagnostic testing for AD, 

including PET imaging43,44, cerebral spinal fluid biomarkers45 and, more recently, blood-

based biomarkers for amyloid and tau burden32. Observational biomarker studies examining 

longitudinal change in AD biomarkers and cognitive decline46,47 are helping to refine the 

hypothesized pathophysiological cascade of AD3 and contributed to the development of the 

AT(N) framework for the diagnosis of biological AD48; this work is ongoing. Improving 

our understanding of biomarker changes in AD and the duration of the preclinical phase of 

ADRD will be essential for designing better studies in the future.
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Risk factor identification.—Early case–control studies found limited risk factors for 

dementia49-51; however, starting in the 1990s, a shift to large cohort studies with longer 

follow-up52 as well as access to electronic medical record databases has resulted in the 

identification of numerous potential risk factors. Systematic reviews and meta-analyses 

of observational studies suggest that education, hypertension, vascular disease, diabetes, 

physical activity, a history of smoking, diet, cognitive engagement, depression, sleep quality, 

and traumatic brain injury influence the risk of cognitive decline and dementia4,5,53,54. Such 

observational evidence has informed the design of clinical trials testing interventions that 

aim to slow cognitive decline, for example, vitamin supplementation55, exercise56, cognitive 

stimulation57, hypertension and cardiovascular risk control58.

Because observational studies suggest that ADRD are likely to be caused by a complex 

set of lifestyle and health factors4,5,53,54, several health domains might need to be targeted 

to achieve meaningful dementia reduction. Indeed, multi-domain interventions seem to be 

particularly promising options for dementia prevention. These approaches combine several 

interventions, for example, dietary changes, exercise, cognitive training, monitoring of 

vascular and other health risks, and psychosocial interventions59-61. Examples of clinical 

trials testing multi-domain interventions include the Prevention of Dementia by Intensive 

Vascular care (preDIVA) trial, the Finnish Geriatric Intervention Study to Prevent Cognitive 

Impairment and Disability (FINGER) trial, the worldwide FINGER studies, and the 

Systematic Multi-domain Alzheimer’s Risk Reduction Trial (SMARRT). The FINGER 

study is one of few RCTs to have reported slower cognitive decline with intervention60. 

More results are expected from the recently completed SMARRT and ongoing worldwide 

FINGER study in the next few years.

Observational studies continue to identify and investigate novel potential risk factors for AD. 

Study designs well suited to this purpose include established prospective, population-based 

cohort studies that have been running for years (for example, the Framingham Study62) 

as well as emerging data biobanks (for example, UK Biobank)63, electronic health record 

databases and registries64, or data-pooling projects that combine multiple cohorts65. AD risk 

factors that have emerged over the last decade include napping and sleep disturbances66, 

peripheral hearing impairment and sensory loss67, neighbourhood effects such as exposure 

to air pollution68, viral infections such as herpesvirus64, altered gut microbiota69, and 

mitochondrial dysfunction70.

Taking vision impairments (an emerging risk factor for dementia) as an example, a 

systematic review published in 2022 identified 110 studies that investigated this risk 

factor, 48% were cross-sectional, 39% longitudinal and 13% were case–control studies71. 

Approximately 50% of the studies were performed with participants enroled in population-

based studies and 10% used insurance claims data. Although relatively few studies (n = 17) 

were rated as being of high quality and having limited potential for bias, the majority were 

moderate and well-designed observational studies that can provide compelling evidence. 

Another study published in 2022 found that, among individuals with cataracts, cataract 

extraction was associated with a reduced risk of dementia72. This study combined cohort 

study data with medical records from an integrated health-care system and used robust 

analytical methods to account for biases. Furthermore, the researchers used glaucoma 
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surgery, which does not restore vision, as a negative control. Overall, evidence from 

these studies suggests that bidirectional associations exist between vision impairment and 

dementia, and that cataract surgery is associated with a reduced risk of dementia. Future 

observational studies in this area are needed to build on this evidence and could inform 

whether and which vision interventions can protect against dementia.

Not all associations established in observational studies have held up in clinical trial 

settings (for example, hormone therapy)73,74 nor have the majority of therapeutics developed 

in preclinical studies9. In our opinion, strong observational data help provides critical 

justification for testing interventions and new avenues for mechanistic research. Ideally, 

observational studies will be informed by preclinical studies and will also lead to new 

preclinical studies to help build translational evidence.

Research not suitable for RCTs

Some interventions and exposures cannot be investigated in RCTs or with experimental 

designs for reasons of ethics, practicality or feasibility75. For example, ethical approval for 

randomization requires equipoise, that is, there is uncertainty over the relative therapeutic 

merits of each treatment arm10. However, unproven interventions increase the risk for 

participants compared with standard care and many exposures that would be interesting to 

study in the context of ADRD risk would cause participants harm. These exposures include 

harmful environmental factors (air pollution, pesticides, harmful chemicals)68, lifestyle and 

health conditions (smoking76, obesity77, traumatic brain injury50), and social determinants 

of health (racism78, discrimination, poverty79).

Beyond ethics, many exposures that are of interest in ADRD are not feasible for randomized 

intervention. These include exposures that are difficult to change (for example, personality 

traits), difficult to assign randomly (for example, treatments that are already in widespread 

use), and long-term exposures and effects75,80. The effect of cancer and cancer treatment on 

ADRD risk is one such area of research. Although cognitive complaints are common after 

cancer treatment81, many observational studies suggest that cancer history is associated with 

a reduced risk of ADRD in the long term82. Therefore, although RCTs for cancer treatments 

can provide insights into short-term cognitive side effects, the full picture of long-term 

effects only becomes clear when you look at the observational data.

Larger-scale exposures, such as those at the community level, are also rarely feasible in 

RCTs. Social determinants of health, defined by the WHO as conditions in the environments 

where people are born, live, learn, work, play and age, are especially challenging variables 

for which to design and implement RCTs83. These social determinants of health include 

education, income or wealth, race and ethnicity, sex, health insurance status, neighbourhood 

characteristics, and other social influences, all of which might contribute to disparities in 

ADRD but typically are only altered by policies and legislation84. Observational studies 

addressing social determinants of health have identified clear inequalities in dementia 

incidence. Older adults of lower socioeconomic status (SES)85 or those who identify as 

Black or African American or Hispanic have a higher incidence of ADRD than older adults 

with higher SES levels and those who identify as white or Asian86. However, SES and race 

might also contribute to the underdiagnosis or misdiagnosis of dementia; for example, an 
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observational study in Denmark reported that patients with dementia with lower SES were 

diagnosed at more severe stages and later time points than those with high SES87. This 

study was performed by linking several population-based Danish registries on dementia care 

referrals, demographics and other health conditions.

Using observational studies to implement interventions and policy changes can be justified 

in the following situations: first, when performing RCTs for the exposure of interest is 

unethical, impossible or infeasible; second, when waiting to intervene would be a detriment 

to population health; finally, when the observational evidence is consistent and strong 

across multiple settings and designs80. For example, decades of observational data on social 

determinants of health have been key for building consensus on possible policy changes 

and community-wide initiatives to address health disparities84,88. Recommendations from 

the 2008 WHO Commission on Social Determinants of Health final report and current 

governmental health initiatives include improving access to education, housing, jobs, 

transportation, green spaces and health care84,89. Likewise, consensus groups have relied 

on observational data to identify improved education, reduction in vascular risk factors and 

comorbidities, and promoting healthy lifestyles through late life as targets for dementia 

prevention5,90.

Life-course associations and timing of exposures

Many exposures are thought to contribute to the risk of ADRD over decades and midlife 

might be a critical time period for accumulating risk of AD91. This slow accumulation of 

risk is an added challenge for RCTs as these trials last a few years at most, which might 

be too short for interventions to have a significant effect on cognitive outcomes. Disease 

modification therapies might need to be given during the preclinical phases of AD whereas 

primary prevention efforts might need to occur even earlier such as during midlife92,93 (Fig. 

1).

Data from observational studies suggest that cumulative, long-term exposure (as opposed 

to short-term exposures) to factors such as high blood pressure65, smoking76 and 

depression94,95 is associated with the highest risk of poor cognition and dementia. Such 

cumulative effects might also help explain some inequalities in the risk of ADRD. 

For example, evidence indicates that differences in dementia incidence between Black 

Americans and white Americans are partly explained by higher blood pressure over the 

long term in Black Americans65. In contrast, obesity in midlife has been associated with an 

increased risk of AD but the association is null or inverse for obesity in late life, indicating 

that midlife could be a critical period during which a high body mass index increases the 

risk of dementia62. Early-life experiences and health status might also influence other health 

and lifestyle factors in a dynamic fashion over an individual’s life course96 (Fig. 2). These 

aspects of life-course epidemiology are difficult to study in the context of clinical trials but 

are important for understanding AD aetiology and for identifying interventions to reduce 

disparities. Identifying the timing of exposures and biomarkers of underlying pathology will 

also help identify windows during which intervention might be most effective, which is 

essential for designing better RCTs and moving on from recent trial failures.
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Under-represented populations

RCTs generally have strict eligibility criteria that select the samples most likely to 

demonstrate treatment effects. Invasive study procedures, such as PET scans or lumbar 

punctures, and requirements for a study partner (proxy respondent) are additional factors 

that can limit recruitment specifically in AD trials97. In addition to eligibility criteria, 

some individuals might face further barriers to inclusion such as lack of transportation or 

nearby study sites, language difficulties, and distrust of the medical establishment. Together, 

these factors might limit the inclusion of important subpopulations in RCTs for ADRD, 

for example, under-represented and minoritized groups, the oldest-old (age ≥90 years), 

individuals with lower SES, individuals from rural areas, individuals living alone, or those 

with medical comorbidities, disability or psychiatric conditions29.

Evidence indicates that, compared with white Americans, Black or African American 

individuals have a higher incidence of AD86 and are more likely to have mixed pathologies 

and other comorbidities98 but are less likely to be enroled in RCTs99. Furthermore, adults 

aged ≥90 years also tend to be excluded from RCTs and have more comorbidities, and 

those with dementia are more likely to have mixed and non-AD pathologies compared 

with adults <90 years100. Clarifying whether new treatments are effective and safe in these 

and other subgroups is essential for clinical practice. The exclusion of specific groups 

from participating in RCTs limits the generalizability of study findings and could cast 

doubt upon the efficacy and safety of treatments for real-world use. For example, evidence 

indicates that individuals with physical frailty and additional comorbidities have higher rates 

of discontinuation of anticholinergic medication for dementia than the general dementia 

population; this discontinuation is hypothesized to be the result of increased side effects101. 

Evidence published in 2021 suggests that 90% of Medicare beneficiaries with AD would 

have been excluded from the clinical trials for the newly approved aducanumab29. Together, 

this lack of representation in clinical trials means that drugs effective in RCT samples are 

likely to have reduced real-world effectiveness. Furthermore, the RCT setting often has 

more structured intervention strategies and methods to ensure adherence that might not be 

replicable in real-world settings.

Ideally, RCTs that include samples representative of all patients and conducted in real-world 

settings (for example, pragmatic trials) would be implemented for all newly approved 

treatments; however, observational studies evaluating treatment use, effects and adverse 

events are also useful in informing real-world implementation of drugs or other interventions 

and identifying disparities. As an example, acetylcholinesterase inhibitors are one of the 

few approved treatments for AD, with RCTs showing modest benefits over a few months 

of follow-up102. Long-term effects on cognition and mortality were then examined in a 

cohort study, which compared individuals with dementia treated with acetylcholinesterase 

inhibitors to untreated individuals with dementia over an average of 5 years of follow-up103. 

The findings suggested that there were small but long-term benefits associated with the use 

of acetylcholinesterase inhibitors, including slower rates of cognitive decline and reduced 

mortality. Observational studies are also useful for studying the effects of commonly used 

drugs (approved for the treatment of other conditions; for example, anticholinergics104 and 

benzodiazepines105) on the risk of ADRD.
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Public health surveillance

Last is the role of observational data for public health surveillance of ADRD and the 

relevant risk factors. Understanding and monitoring the prevalence and incidence of 

dementia is crucial for understanding the burden of disease and prioritizing policies and 

interventions. Estimates of the burden of ADRD are high and large increases are expected 

over the coming decades, which has helped to highlight ADRD as an issue of national106 

and global importance107. Data published in 2020 indicate a decline in dementia incidence 

over the preceding 25 years108, which gives hope that improvements in education, health 

behaviours and health care can reduce dementia risk. Beyond highlighting cohort and time 

trends; observational studies have also identified disparities in dementia incidence such as by 

race, gender, geography, medical comorbidity status or primary language47,86,107. Another 

observational study highlighted distributions of risk factors across subpopulations, which 

might be useful for prioritizing the application of prevention methods to reduce dementia 

disparities109. Together, such studies inform progress towards ADRD risk reduction and help 

identify interventions to reduce inequalities.

Causal inference

Observational studies are generally associated with a greater potential for systematic bias, 

such as confounding and reverse causation, than RCTs110 (Table 1 and Box 3). In some 

cases, treatments that were associated with beneficial health effects in observational studies 

have subsequently been found to have harmful effects in RCTs. For example, oestrogen 

therapy for postmenopausal symptoms was associated with a reduced risk of dementia in 

many observational studies111; however, in the Women’s Health Initiative clinical trials 

(1993–2002), combined oestrogen and progestin therapy was associated with an increased 

risk for dementia112. The trials were stopped early owing to health risks associated with the 

treatment. Causal inference approaches generally seek to emulate a hypothetical RCT and to 

use statistical and methodological techniques to ensure that exposure groups are otherwise 

similar to each other (as randomization does in an RCT; Fig. 3a). One set of causal inference 

methods — for example, marginal structural models113 and propensity score methods114 

— use statistical sample-weighting techniques to account for potential confounding. These 

approaches attempt to balance comparison groups in terms of confounders and are usually 

based on a two-step process: first, the probability or ‘propensity’ for the exposure is 

estimated; second, the weights of that propensity are incorporated into the analysis through 

matching or covariate adjustment. These models can also be used to estimate factors 

associated with sample selection or missing data115. Statistical sample-weighting techniques 

can be useful for identifying and reducing biased findings; for example, one study found 

that cognitive activities, such as newspaper reading, were associated with a reduced risk 

of dementia in a traditional model but, when using weights to account for prior levels of 

cognitive functioning, this association disappeared116.

Natural experiments or quasi-experiments are another type of study design that can help 

infer causality from observational data. A quasi-experiment involves an intervention; 

however, the circumstances that led to the intervention were not controlled by the 

researchers. These experiments require some aspect of intervention assignment to be 
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independent of the characteristics of the participant and the outcome117 (Fig. 3b). For 

example, many countries implemented mandatory schooling laws in the twentieth century 

that resulted in the vast majority of students attending school for longer. Comparing 

dementia risk between individuals who finished school just before the law change and 

individuals who finished school just after the law change can provide evidence regarding 

the effect of duration of education on dementia risk. This approach helps to control for 

confounders such as family SES or childhood health status that would otherwise influence 

the duration of education. To date, studies using this approach to study the relationship 

between education and dementia risk have produced mixed findings: no, or small, effects 

of education on dementia risk were reported in some countries, for example, Sweden118 but 

larger estimated benefits of education were observed in the USA119 and China120.

Studies examining policies as natural experiments often employ a method called 

instrumental variable analysis, in which a third variable is used as an instrument or proxy 

variable for the main exposure of interest121. Under certain assumptions, instrumental 

variable models can provide valid estimates of causal effects, for example, that the 

instrument is not associated with unmeasured confounders, that the instrument predicts the 

exposure of interest, and that the instrument does not directly affect the outcome of interest. 

An increasingly popular type of instrumental variable analysis is Mendelian randomization, 

which leverages genes as the instrumental variable (Fig. 3c). Mendelian randomization is 

based on the premise that an individual’s genes are randomly allocated from parents at birth 

and this genetic variation is not susceptible to typical confounders122. Genetic variants have 

been linked to many diseases, biological pathways, health behaviours and even lifestyle 

factors, facilitating a range of Mendelian randomization studies. For example, a Mendelian 

randomization study used 77 genetic variants previously associated with sleep duration 

and found evidence that short and long sleep duration might worsen cognition in older 

adults123. In another study, higher genetic risk scores for AD (based on 23 genetic variants 

previously associated with late-onset AD, including APOE) were associated with reduced 

sleep duration in older adults without dementia124, suggesting a bidirectional relationship 

between sleep and ADRD. However, other Mendelian randomization studies reported 

limited effects of education119, obesity125 and anti-hypertensive drugs126 on the risk of AD. 

Over the last decade, methods have been developed to enable the relaxation of some of the 

usual assumptions in the setting of Mendelian randomization studies, particularly to allow 

for pleiotropic effects of genes127. Although the results of such studies should be interpreted 

with caution, they can still provide novel insights into ADRD aetiology128. Detailed reviews 

of contemporary and novel Mendelian randomization methods are outside the scope of this 

Perspective but other sources provide extensive information (see ref.127) and this is an active 

area for future innovations.

There are other common methodological approaches for quasi-experiments that have been 

so far underutilized in ADRD research but are promising options for future studies; these 

include regression discontinuity — an approach that uses treatment qualification thresholds 

in continuous values (for example, blood pressure) to assign participants to groups. The 

logic is that individuals just above and below the threshold will receive different treatments 

but are likely to be otherwise similar, allowing the effect of treatment to be studied129. 

Interrupted time series uses the regression discontinuity approach but applies it to changes 
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across time such as the implementation of specific laws or events. This approach has also 

been used to estimate the effects of education on dementia risk by examining completion of 

primary school surrounding the Great Famine in China120. China’s Great Famine of 1959–

1961 resulted in malnutrition, higher mortality rates and social disorder, including school 

closures. The authors of the study leveraged this event as a natural experiment based on the 

premise that those born just before 1948 are more likely to complete primary school than 

those born just after; they found that the group with a higher likelihood of primary school 

completion (for example, those born within 1944–1948) had better cognition in late life than 

the group born within 1949–1953. As an interrupted times series model, this study focused 

on the narrow bands around the 1948 threshold, which reduces the likelihood that results are 

driven by other cohort differences such as malnutrition120. Difference-in-difference studies 

examine differences in effects before and after treatment (or intervention) periods in treated 

versus untreated participants and can evaluate the implementation of health programmes and 

policies117.

In ideal scenarios, the approaches described in this section can provide strong evidence for 

causality; however, they also rest on assumptions and can be prone to biases depending on 

study design11,130. For example, Mendelian randomization studies can be biased if genes 

have pleiotropic effects on the outcome122,131 and studies that examine trends over time can 

be biased if there are other concurrent changes with time130. As for any analytical model, 

the limitations of these approaches should be explored and discussed when interpreting 

findings.

Conclusions and future directions

Dementia is a devastating condition with few treatment options, many questions remain 

around ADRD aetiology and risk factors, and novel potential risk factors and mechanisms 

are continually identified. The examples discussed here demonstrated the continued 

importance of well-designed observational studies in the ADRD field. We highlight the 

particular utility of such studies for hypothesis generation, for research infeasible or 

unethical for RCTs, to estimate life-course associations and timing of exposures, to collect 

real-world evidence on populations not typically included in RCTs, and for public health 

surveillance. Therefore, promoting high-quality, valid observational research should be a 

priority. High-quality research requires clear research questions, well-defined study designs, 

robust outcome measures, an a priori analytical plan, and transparent identification of 

potential sources of bias in reporting132.

Given the limited treatment options for dementia and the failure of many clinical trials, we 

suggest that observational studies investigating a range of potential risk factors are needed 

to generate novel hypotheses. These future studies should leverage machine learning and 

big data, including medico-administrative data (for example, insurance claims, electronic 

health records) and/or high-dimensional biological data (for example, genome-sequencing or 

high-resolution imaging data)133, to identify novel predictors of ADRD. Indeed, machine 

learning algorithms have proven useful for evaluating high-dimensional data and have 

already been used to predict the risk of ADRD based on metabolomic biomarkers134, 

neuroimaging data135, and social and health risk-factor data136. In the future, we expect that 
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such machine-learning approaches will provide novel insights into ADRD pathophysiology 

and inform the development of effective risk-stratification and diagnostic strategies.

Although a range of life-course risk factors for ADRD has been identified, many remain 

poorly understood. This gap in our knowledge applies to more recently identified factors, 

such as sleep disturbances, sensory loss, air pollution, microbiome and mitochondrial 

function, as well as the more established but still debated risk factors such as depression, 

body mass index, and social and cognitive engagement. Therefore, further well-designed 

and innovative observational research is required to establish whether these and other 

potential risk factors cause ADRD. Evidence triangulation is the idea that consistent findings 

across several study approaches can enhance causal inference, particularly when studies are 

based on several different sets of underlying assumptions13. This concept highlights the 

importance and value of replicating research findings across different observational study 

designs, including both traditional observational studies and innovative quasi-experimental 

designs that leverage observational data. The proliferation of blood-based and PET imaging 

biomarkers for ADRD provides new opportunities to understand how risk factors relate to 

biological processes in ADRD and to tease apart causative factors from early markers of 

disease.

Another urgent area for future observational research involves the health inequalities that 

affect ADRD risk. For example, understanding how and which aspects of structural racism, 

discrimination, social factors and built environments affect the development of ADRD is 

essential. Such information is needed to identify feasible approaches to reduce inequalities 

in ADRD incidence and dementia care.

In conclusion, the strongest evidence for causes of ADRD comes from using a variety 

of study designs and complementing RCTs and laboratory science with observational 

epidemiological and clinical research. Observational epidemiological research is a key 

building block to obtain evidence for potential causes of ADRD that might lead to new 

drug targets and preventive strategies to reduce the burden of dementia in diverse ageing 

populations.
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Glossary

Amyloid cascade hypothesis
The hypothesis that amyloid-β is the main pathological agent that causes Alzheimer disease.

Big data
Large-scale data comprising many observations and/or many traits.

Causal inference
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Inferring the independent effect of one factor on an outcome, typically from data of 

observations.

Pleiotropic effects
When one gene influences two or more phenotypic traits.

Pragmatic trials
Clinical trials developed after drug approval to test the effectiveness of a drug in a real-world 

setting.

Real-world data
Observational data that represent real-world settings, for example, health-care records in a 

large health system.
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Box 1

Summary of common epidemiological study designs

Observational studies

Studies based on data that involve no intervention, manipulation, or experimentation of 

participants or samples

• Case reports and case series: description of observations on one patient or 

multiple patients (often with unusual or rare findings)

• Cross-sectional studies: comparison between an exposure and disease at one 

time-point

• Case–control: selection of cases based on disease and a sample of those 

without the disease (controls) followed by a comparison of exposures

• Cohort studies: selection of sample based on exposure or a population of 

interest, which is then followed for disease outcomes

• Ecological studies: comparison of aggregate information on exposure and 

disease in a population (or across populations)

Interventional studies

Studies based on data that involves an intervention, manipulation, or experimentation of 

participants or samples

• Randomized controlled trials: assignment of participants to the intervention 

group (or treatment) is random

• Non-randomized interventions: allocation of intervention is not randomly 

assigned
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Box 2

Questions suited for observational studies

Developing interventions

• Hypothesis generation for novel risk factors or treatments

• Validation of in vitro and animal research

• Evaluating and improving diagnosis and biomarkers

• Replication of findings across study designs and populations

• Identification of exposure windows and intervention targets

• Studying exposures that are not ethical or feasible for intervention

Studying real-world effects

• Effectiveness of an intervention or treatment in typical use setting

• Effectiveness of interventions in the general population and in subgroups that 

are not well represented in clinical trials

Public health surveillance

• Evaluating trends in risk factors, treatments and dementia incidence by 

person, place and time
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Box 3

Types of systematic bias common in clinical research

Confounding

A confounder is a factor that affects both the risk factor (that is, exposure) and the disease 

(that is, outcome). Confounders distort the observed association of a risk factor and 

outcome unless properly accounted for in the study design (such as through matching) or 

analysis stage (such as through inclusion as a covariate in regression models). Common 

confounders for questions relevant to Alzheimer disease and related dementias (ADRD) 

include age, education, income, health behaviours and other health conditions.

Reverse causation and confounding by prior outcomes

When an outcome affects the exposure, instead of the exposure affecting the outcome. 

Establishing the temporal order of late-life risk factors and ADRD is a challenge. 

This might explain associations in cross-sectional studies and in case–control studies 

that measure exposures after cases developed dementia. In cohort studies, incipient or 

preclinical ADRD might act as a confounder by affecting an individual’s behaviour and 

cognition years before a diagnosis of dementia.

Selection bias

A bias that generally arises in selecting a study or analytical sample, such that 

participants in the analytical sample are not representative of the underlying population. 

This can happen due to study sampling at recruitment or through attrition in follow-up. 

In order for bias to occur, selection must be influenced by the exposure and outcome 

or by a third factor that is also associated with the outcome (this is more generally 

called collider-stratification bias). An example is that studies based on recruitment in 

memory centres might lead to an overrepresentation of individuals with a family history 

of Alzheimer disease and memory loss compared with the general population — this 

would lead to an overestimation of the association of family history for Alzheimer 

disease and memory loss.

Information bias or measurement error

Bias that generally arises through inaccurate measurement of exposures, outcomes or 

confounders. Relevant to both observational and randomized controlled trials; however, 

many exposures not conducive to intervention are also ones that are difficult to 

measure (for example, life-course factors, social determinants and underlying biological 

conditions). Blinding can be an effective solution to reduce differential information bias.
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Fig. 1 ∣. Natural history of Alzheimer disease and related dementias and timing of interventions.
Alzheimer disease and related dementias develop over decades and are characterized by 

long preclinical and prodromal stages of high neuropathological burden but limited or subtle 

cognitive decline. Interventions could be useful for disease prevention, modification, and 

mitigation or symptom reduction; however, randomized controlled trials are typically short 

and might not occur at the optimal points in the disease process. For example, many trials 

of disease modification strategies could have produced negative results because participants 

already had a high level of pathology and brain atrophy.
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Fig. 2 ∣. Life-course risk factors for ADRD.
A life-course framework conceptualizes exposures for health as occurring across the lifespan 

in a dynamic and interconnected fashion. Experiences and conditions in early life might 

influence health and lifestyle factors in later life stages. Several key risk factors for 

Alzheimer disease and related dementias (ADRD) relevant to early life, midlife and late 

life are depicted; this is not a complete list of potential life-course risk factors and, for 

some risk factors, it is unknown at what life stages they have the biggest effect. The same 

risk factors might also accumulate or interact across time to influence the development of 

dementia. Research into the effects of life-course exposures on ADRD risk is best performed 

via observational studies; such work can also help to prioritize specific windows in which 

intervention might be effective.
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Fig. 3 ∣. Causal models for randomized and quasi-experimental studies.
Observational evidence suggests high blood pressure (BP) is a risk factor for dementia and 

that BP treatment might reduce the risk of dementia (part a). A key strength of a randomized 

clinical trial (RCT) is that allocation to treatment is random and is thus independent of 

potential confounders (common causes) of high blood pressure and dementia. As such, if 

lowering BP is found to reduce dementia risk in an RCT, there are few plausible alternative 

explanations for the finding. In theory, quasi-experimental designs can approximate similar 

inferences as RCTs if there is a third factor that influences BP but is not affected by 

patient-level confounders. For example, a change in treatment guidelines or policies for BP 

management (part b) or genetic risk for high or low BP (part c).
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Table 1 ∣

Strengths and limitations of observational studies and randomized controlled trials

Observational studies Randomized controlled trials

Strengths More feasible for evaluating multiple exposures and/or 
outcomes; more feasible for evaluating the effects of long-
term exposures; can often be conducted using previously 
collected data (electronic health records); less restrictive 
eligibility criteria might enhance representativeness

Suited for evaluating treatment effects; random assignment to 
treatment protects against selection bias at recruitment and 
unmeasured confounding, and establishes temporal order

Limitations Susceptible to confounding by other characteristics (factors 
that affect both exposure and outcome) and selection bias; 
establishing a clear temporal ordering of exposure and 
outcome is not always possible

Can be high-cost and logistically intensive; limited duration 
of intervention and follow-up; experimentation might not be 
suitable for research questions due to ethics or feasibility; 
design assumptions that allow a causal interpretation of the 
results of a randomized controlled trial do hold for post hoc 
subgroup analyses
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